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ABSTRACT This paper presents a novel performance evaluation framework for energy harvesting
communications. As the harvested energy may not always be at the required levels in the transmitter’s
battery, possible energy outage may hinder the transmission, especially in weak channel conditions. Herein,
we analyze the performance of an energy harvesting communication link by allowing a certain level of
energy outage to occur. Such operation is challenging, given that the energy coming into the battery
from an uncontrollable source, e.g., solar energy, does not relate to the channel conditions and quality-
of-service (QoS) requirement, whereas energy going out of the battery is directly dependent on both.
Hence, the incoming energy and outgoing energy become independent of each other. Knowing the exact
level of energy that is accumulated in the battery is therefore challenging. To deal with these challenges,
a probabilistic energy-outage approach and a virtual battery queuing model are proposed and used to develop
the target performance evaluation framework while leveraging the large deviation principle theorem. The
derived energy-outage probability of the communication system relates the system parameters, namely,
QoS component, channel conditions, and harvested energy. Numerical results are presented to confirm the
analytical findings and discuss the performance of energy harvesting based communication with tolerable
energy-outage as a function of the system parameters.

INDEX TERMS Energy harvesting, energy outage probability, large deviation principle, QoS.

I. INTRODUCTION
A. MOTIVATION AND RELATED WORK
For industrial internet of things (IIoT) applications, auto-
mated networks rely on the seamless integration of innovative
self-optimized procedures to increase effectiveness, depend-
ability, and operation economics [1]. Traditional power
distribution systems that are dispersed over a vast region
are tracked and diagnosed using wired communications with
expensive start-up and ongoing costs [2]. Grid monitoring
can be carried out using wireless communication techniques
to reduce prices. For these applications, by including
power fraud, defect detection, outage detection, power line
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automation, etc., wireless sensor networks (WSNs) are a
workable option. WSNs have lower capital and operating
costs than traditional cable communication methods [3].
In fact, the paradigm of smart grids is created by the
integration of contemporary communication techniques, such
as WSNs, as well as monitoring, automation, and control
capabilities into the infrastructure of the power grid to
increase reliability, productivity, efficiency, etc. [1].

Conventional wireless systems were bound to have bat-
teries with limited capacity, which were used to charge
wireless power nodes. In order to eliminate the need for
exchanging batteries, environmental energy harvesting (EH)
technology is becoming increasingly crucial in many use
cases such as today’s wireless communication networks,
connected devices, and the development of IoT. EH is a
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process where the wireless power or ambient energy from
the surrounding environment is scavenged by harvesting
equipment, offering the capacity to increase the battery life of
communication devices and sustain the continuous operation
of low-power sensor nodes [4]. For instance, WSN nodes
are usually installed in remote and rugged areas, which can
make the recharging or replacement of their depleted batteries
difficult and impractical, unless the energy source is renewed
or a harvesting mechanism is included to fix the energy
deficit [5]. The logical next step in future networks has also
been identified as zero-power communication technology,
which promises wireless information transmission without
the need for changing or charging batteries [6].
Besides, most machine-type communications (MTC)

devices are battery-restricted and challenging to recharge.
Another crucial area for green MTC is energy harvesting,
yet unforeseen environmental conditions and unidentified
channel state information (CSI) make it difficult for current
models to function in real time. Optimizing security and QoS
for energy-harvesting IoT using AI involves leveraging 6G
technology to enable energy usage tracking, weather predic-
tions, and intelligent metering. Furthermore, greater security
consumes more energy. As a result, it is recommended that
IoT sensing devices be equipped with a mechanism for EH
[7], [8].

On the other hand hand, the stochastic character of energy
sources, in which energy is generated at random times and in
variable amounts, may make the amount of harvested energy
unpredictable, posing significant challenges for a system
operating relying solely on EH [9]. Generally, studies on
EH-based systems can be categorized into two kinds, based
on the knowledge about the energy arrivals. The first category
includes offline methods that call for full knowledge of the
arrival energy which is not causal [10]. The second category
consists of online approaches. In an online transmission pol-
icy, the energy arrival information is only revealed causally
over time [11]. Several research works have been carried
out to develop efficient power allocation algorithms for
better energy management strategies for EH communication
systems, see e.g. [12] and [13], and references therein. In [12],
the resource allocation problem aims to best use the available
harvested energy and transfer the available data to the sink
node at the lowest possible cost. Therein, both offline and
online transmission policies are put forth. The formulation
of the offline problem makes use of non-causal knowledge
of the harvested energy and the data arrival. The online
policy of the energy harvesting WSN is solved using the
model predictive control architecture. In [13], combined
hardware and constraint-based models that allow for consis-
tent, opportunistic communication with worst-case latency
guarantees, are proposed. Therein, an offline worst-case
strategy ensures restricted communication delay between
two nodes while permitting locally opportunistic online
communication attempts in the event of better-than-worst-
case EH. An EH context can be supported offline by a node

in the worst-case communication behaviour without violating
the offline requirements that ensure bounded latency between
two nodes.

In the literature, offline power allocation has received sig-
nificant attention. Different system models were investigated
to improve various performance [14], [15], [16]. Particularly,
an offline algorithm based on dynamic programming to
minimize the transmission completion time under infinite
battery capacity was proposed in [14]. Therein, the random
arrival of data packets and the harvested energy at the
source were considered. Optimal offline algorithms for
EH communication under limited energy storage capacity
and energy replenishment constraints are studied in [15].
Particularly, the limits on the energy replenishment process
and the battery capacity are used to determine the ideal
transmission policy. The work in [15] was also extended to
the time selective fading channel in [16], where an iterative
approach was used to address the energy allocation problem
to maximize the sum-throughput.

The focus of the above-mentioned works is mainly within
the scope of having complete knowledge of the arrival time
and the amount of harvested energy, which are unrealistic
assumptions in practical scenarios. Indeed, one cannot ignore
the fact that getting complete information of the dynamics
of the EH process is not possible in practice. To make
the problems tractable, IoT based wireless sensor systems
implementing EH were studied in different papers [17], [18],
[19], [20]. Specifically, for different EH system models,
various wireless sensor systems were discussed in different
industrial and automation areas for planning, monitoring,
and managing the system’s development and productivity.
Particularly in [17], in the field of agriculture, a solar-based
WSNwith several scattered nodes was introduced to measure
humidity and temperature using data received from the
sensor nodes. Reference [21] proposed integrating poweredge
energy subsystems into a sustainable and energy-efficient
smart agricultural system that relies on renewable energy
sources. The goal is to ensure cost-effective and efficient
energy utilization in all stages, including solar panel pro-
duction and power generation. A Q-learning algorithm was
proposed in [22] to adjust the sampling rate. In IoT andWSN,
reinforcement learning has been employed for sequential
decision-making under uncertainty. On the other hand, the
use of solar EH as a solution to the issue of scarce energy
supply was proposed in [23], where each sensor node has
a harvesting module to directly recharge its battery. The
advantages of the proposed approach in smart agricultural
monitoring are improved production and crop quality, as well
as effective management and control. In [24], the trade-off
between energy usage and delay for mobile edge computing
with EH capabilities were investigated. Therein, subject to
restrictions on the stability of buffer queues and battery level,
an online dynamic task scheduling is provided to minimize
the average weighted energy consumption and execution
delay.
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More recently, advanced works on online transmission
policies were carried out [11], [25], [26], [27], [28],
[29], [30]. In [25], an optimal power control scheme in
a multi-user setting is formulated through a predictive
approach, employing the use of a Markov Decision Process
(MDP). The MDP framework is particularly suited for
addressing decision-making and optimization challenges that
arise from sequential actions in uncertain environments.
The Bellman dynamic programming equation was solved to
minimize the distortion over a fading channel by estimating
the energy used to transmit data. In the same work, a practical
Q-learning algorithm was proposed, providing a sub-optimal
solution for the power management problem. It is to be noted
that dynamic programming suffers from limited scalability.
In [26], an algorithm based on reinforcement learning is
proposed to address the joint optimization compression
and transmission control in wireless IoT systems. In [11],
minimization of the average age of information (AoI) in EH
communication systems with online policy, was analyzed.
The AoI denotes the amount of time elapsed since the
most recent information is delivered to the end point. The
said work tackled the problem by sending an update signal
only if the AoI exceeds a certain threshold, and developed
an optimal renewal policy by using Lagrangian approach
for different system models. For single-user and multi-user
channels, the distributed fractional power (DFP) policy is
proposed in [27] and shown to be nearly optimal. It is
demonstrated that the harvested energy is ideally distributed
and decreased until the end of the renewal time, by assuming
that a Bernoulli process synchronizes the energy arrival
received by the users. With the aid of Markov processes
and deviation theory, the authors in [28] investigated an
analytical model for a general EH transmitter with energy
storage, and formulated the probabilities of outages and
overflows. The work in [29] presented the asymptotically
optimal online power allocation solution that enhances the
performance of the EH communication for infinite time slots
and battery capacity. Reference [30] proposed the statistical
energy underflow limitation and an energy management
method to limit the battery from falling under a certain
level. In [31], the effective capacity is derived to analyze the
QoS performance of EH wireless links. The system model
comprises EH nodes, but the source of energy is not specified.
Average delay and energy arrival constraints based on post-
decision state-functions to maximize the data packet arrival
rate over fading channels is studied in [32], but assuming
an infinite storage capacity. The authors of [33] developed
statistical QoS-driven power control policies to maximize
the spectrum efficiency in EH networks. Therein, the energy
outage constraint is ignored.

The aforementioned works in [15], [16], [34], [35] have an
underpinning assumption that the resources are allocated in
such a way that they guarantee the availability of a sufficient
amount of energy in the battery for transmission at a given
rate. This assumption is not always feasible, particularly

when the fading channel is severely weak, or that energy
available for the data transmission is not sufficient. When the
transmissions have to be donewith significantly high transmit
powers, guaranteeing the QoS, e.g., statistic delay, becomes
very challenging [36], [37]. Hence, it is inevitable that energy
outage will happen, i.e., energy available in the battery is not
sufficient. In such scenarios, the EH communication system
cannot accommodate the required QoS. However, and as will
be detailed shortly, we look at the problem from a different
perspective by limiting the energy outage to a very small
value.

The energy outage constraint was considered in some
works [38], [39], [40], [41]. In particular, in [38], mini-
mization of the outage probability of an EH system with
strict delay constraints was studied by providing a fixed
threshold transmission (FTT) scheme supporting an online
transmission policy. There, it was demonstrated that for
practically applicable EH rates, the FTT scheme performed
nearly equal to the offline lower bound. However, [38]
does not consider scenarios where the wireless channel
dynamics influence the energy input process, unlike the
proposed work in this paper. The idea in [38] of three power
control policies, namely, linear power levels policy, joint
threshold-based policy, and disjoint threshold-based policy,
was later extended and investigated for minimization of the
outage probability in [39]. These policies were investigated
to compare the energy arrivals between the source and
the destination for finite-sized and infinite-sized batteries.
In [40], two power allocation schemes were studied and
compared using an exhaustive search, and an upper-bound
expression was derived using monotonic optimization for the
outage probability of the considered EH system. The work
in [40] assumes the availability of information regarding
the future energy arrival process, which is not feasible in a
practical scenario. The work in [41] uses MDP to reduce the
battery outage in the considered EH system. The problemwas
studied under channel and battery status constraints for high
signal-to-noise ratio (SNR). A high SNRdenotes a substantial
disparity in strength between the signal and the background
noise, leading to enhanced clarity and heightened reliability
in communication. The system assumed exact knowledge
of the state transition probabilities. However, accurately
estimating the channel transition probabilities in real-world
scenarios is challenging.

Compared to the studies referenced in [38], [39], [40],
and [41], the approach presented in this work confronts the
difficulties stemming from the energy irregularities within
EH systems. The unpredictability and uncontrollability of the
harvested energy give rise to a lack of direct correlation with
the channel conditions and the stipulated QoS requisites. This
study introduces a novel methodology involving a probabilis-
tic energy-outage approach and a conceptual model centered
around a virtual battery queue. This approach is harnessed to
construct a comprehensive framework for evaluating system
performance. Notably, the framework leverages the large
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deviation principle (LDP) theorem to deduce the probability
of energy outages, thereby establishing a coherent connection
among the system parameters, the QoS elements, the channel
conditions, and the harvested energy profile.

Specifically, we consider point-to-point communication,
where direct connection between two nodes can be used
to establish back and forth communication between them.
This is useful for the analysis carried out in the paper,
as our mathematical tool studies the performance of point-
to-point EH-based communication, which applies in different
energy-constrained networks, including wireless body area
networks [42]. The point-to-point radio link can be used
to monitor temperature, rainfall, bushfires, etc., where the
transmitters are sensors deployed in remote areas without
access to the power grid [43], [44], [45], [46].

B. CONTRIBUTIONS
With regard to the previously discussed studies, a math-
ematical framework that can provide a useful tool to
analyze the performance of EH communication systems
when considering energy outage at the transmitter is desired.
As discussed, developing such a framework is difficult due
to the independent randomness in the energy arrival for
the harvesting and the fading channel conditions. Motivated
by the above discussions, and to obtain more insight for
analyzing the performance of EH-based communication,
in this work we develop a simple and novel mathematical
framework in which we expand the idea of statistical energy-
outage constraint. Such an event happens when we need to
transmit with a certain amount of energy, but that the battery
does not have sufficient resources. To satisfy a target QoS,
high transmission power is required. In EH systems, energy
consumed from the battery depends on the QoS required by
the end user, and on the CSI. At the same time, the energy
arrival to the battery depends on the strength of the power
source, solar in this case, and is independent of the fading
channel conditions and the required QoS. Due to the
independence between the energy arrival into the battery
and the energy consumed from there, it is challenging to
estimate the exact status of the available energy in the battery.
In such conditions, energy outage is inevitable. Assuming
that the system can tolerate some level of energy outage to
take place, we introduce a simple mathematical framework
for analyzing the performance of EH communications under
QoS constraint, by invoking tools of LDP. In more detail,
the major contributions of this work can be summarized as
follows:

• A mathematical framework is proposed for the perfor-
mance analysis of EH communications. The framework
is developed based on a concept of energy outage
probability. Energy outage is experienced when there is
no further energy for the system to utilize for the data
transmission.

• The randomness property of the energy outage occur-
rence in the system is used to develop the mathematical

FIGURE 1. The energy-harvesting based communication system.

framework. Specifically, the LDP theorem is used to
model a queuing system for the EH battery. A virtual
battery queuing model is used to facilitate providing the
assumptions needed for using LDP.

• Building upon the above two fundamental new ideas,
a formulation that relates the channel capacity to the
rate of the energy arrival is obtained. This gives a
unique mathematical framework that directly relates the
two concepts together, which are rather independent
by nature. The performance of point-to-point EH
communication is investigated using this mathematical
tool.

• Simulation results are provided in order to understand
how this mathematical framework performs.

The remainder of the paper is organized as follows.
Section II explains the system model in detail. The proposed
mathematical framework is developed in section III. Then,
numerical results are presented and discussed in section IV,
followed by concluding remarks provided in section V.

II. SYSTEM MODEL AND PRELIMINARIES
A. SYSTEM MODEL
The point-to-point EH-based communication model is illus-
trated in Fig. 1. At the transmitter, data packets are stored
in a data queue, and a battery is used to store the harvested
energy. The outgoing energy is stationary and ergodic. Since
the fading channel is considered to be stationary and ergodic,
and the outgoing energy is a function of the fading conditions,
the outgoing energy is also stationary and ergodic.We assume
that the channel is Rayleigh block fading, and refer to it by
coefficient h(t), where t is the time index. With the block
fading model, the channel remains constant during a fading
block, but varies independently from one fading block to
another. The block duration is denoted by T . With the SNR
denoting the ratio of the signal power to the noise power, the
function r(t) in Fig. 1, which refers to the instantaneous rate,
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can be written

r(t) = log(1 + SNR(t)). (1)

At the destination node of the EH-based communication
system under consideration, the signal captured by the receive
antenna is given by

y(t) = h(t)x(t) + n(t), (2)

where x(t) is the transmitted signal, and n(t) is the Gaussian
random noise, assumed to be of zero mean and unit vari-
ance [34], [47]. A similar system model has been considered
in [48], where a finite-sized EH battery is considered to
measure the performance the EH based communication
system.

B. PHYSICAL BATTERY STORAGE MODEL
Physical battery storage model for the EH source is
considered. The model has an energy queue, where the
arriving (harvested) energy is stored. Energy accumulated in
the battery at time t is denoted by A(t), and the empty portion
of the battery is denoted by E(t). The physical battery storage
model represents the EH as the energy arrival process, and
the energy consuming as the departure process. The model is
depicted in Fig. 1(b). Accordingly, the empty portion of the
battery can be mathematically represented by

E(t) = Bmax − A(t), (3)

where Bmax, in Joules, denotes the maximum level of energy
that the battery can withhold.

Energy accumulated in the battery at time t + 1 can be
formulated as

A(t + 1) = max{0,min{Bmax,A(t) + µi(t)T − µo(t)T }},

(4)

where µi(t) is the rate of incoming energy into the battery,
in the unit of Joules/sec, and µo(t) is the rate of energy spent
out from the battery, in the unit of Joules/sec.

With the described model, the instantaneous rate, r(t) in
nats/s/Hz, can be expressed as

r(t) = log
(
1 +

h(t)µo(t)
N0B

)
, (5)

where N0 is the noise density per unit bandwidth and B is
system bandwidth.

The transmission power of the system is constrained by a
maximum permissible level, Pmax. Therefore, the outgoing
power can never go beyond this level. On the other hand, the
end-user has a QoS requirement that needs to be met in terms
of the minimum rate Rmin, and this constraint serves as the
QoS guarantee for the delay-sensitive user. Since the channel
fading is a random process, meeting the target QoS requires
that the transmission be done with high transmit power when
the channel is severely weak.

However, it is challenging to guarantee that the required
amount of transmit power is always available in the

EH battery of the transmitter, not to mention that the said
amount of power is difficult to measure given that the
incoming energy into the battery is harvested from the
environment, e.g., solar, and that it is difficult to predict
whether it can be sufficient to allow proper adaptation of the
data transmission to the variations of the channel so as tomeet
the user’s QoS, or not.

Given that the accumulated energy in the battery is a
complex function of all of these parameters, it is challenging
to estimate the exact battery status, and guarantee that the
required QoS can be maintained during the whole data
transmission process. Also, we assume zero battery overflow
probability. That is, when the battery is big enough as
compared to the arrival energy, it will very unlikely be full.
The limiting factor in this work is the risk of the battery
becoming empty rather than becoming full. This is very
common since solar energy arrives in very small epochs
and, since the sensor nodes are small in size, they cannot
be equipped with very big solar panels. Therefore, it is very
likely that this assumption is valid in real-world applications.

C. PROBLEM STATEMENT AND APPROACH
As discussed above, due to the unknown status of the
available energy in the battery, the required QoS cannot
be guaranteed all the time. However, it is possible to meet
the demand for at least a high percentage of time by
allowing a small amount of energy outage to happen in the
system. Accordingly, a probabilistic approach is taken in
our performance analysis problem, in which we leverage the
LDP theorem to examine the probability of energy-outage
occurrence in the battery. The large deviation theory is mainly
concerned with the study of the asymptotic behavior of prob-
abilities of rare events [49]. The theory proves that the decline
of the probability of rare/tail events is exponential [49].

Let us assume S1, S2, . . . to be a sequence of independent
and identically distributed (i.i.d.) random variables withmean
m = E[S1] < ∞, and let M (N ) =

1
N (S1 + . . . + SN ) denote

the empirical mean. From the law of large numbers and the
central limit theorem, we note that limN→∞ Pr{M (N ) >

b} = 0 for any b > m. As N grows, the distribution of
M (N ) converges to the expected value of the random variable.
However, the convergence of the tail event probabilities when
N → ∞ is not provided by the law of large numbers and
the central limit theorem. To fill the gap, convergence when
N → ∞ is examined by using the theory of large deviation.
Based on the LDP theorem, for a dynamic queuing

system with stationary ergodic arrival and transmission
processes [50], the accumulated portion of the queue length
process M (N ) converges in distribution to a steady-state
queue lengthM (∞), leading to

lim
N→∞

log
(
Pr{M (∞) ≥ b}

)
b

= −I , (6)

where I is the so-called rate function. The probability
decays exponentially as N → ∞ at a rate that depends
on b [49], [51].
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FIGURE 2. The virtual battery queuing model.

In the LDP theorem, the probabilities of events that are
exponentially small are taken into account. Hence, invoking
the tools of LDP in the current work is useful to find
a statistical expression for the energy outage under QoS
constraint in the EH-based communication system. This
inequality, which is based on the LDP theorem, can be
estimated only when the battery capacity threshold is very
large, using

Pr{M (∞) ≥ b} ≈ e−Ib. (7)

In our proposed design, we assume that energy outage hap-
pens when the amount of energy needed to transmit the data
packets is less than the outgoing energy µo(t)T .1 We define
the battery’s energy-outage status Poutage statistically, that is

Poutage = Pr{A(t) < µo(t)T }, (8)

which explains the conditionwhere the available energy/power
is not sufficient to transmit the data, in which case the system
suffers energy outage.

III. PROPOSED MATHEMATICAL FRAMEWORK
We aim to develop a simple mathematical framework based
on assumptions of the LDP theorem. In order to implement
the assumptions, we further propose a virtual battery
queuing model. Using the proposed model, we estimate
the energy-outage probability under QoS constraint. Also,
the theory of effective EH is proposed to derive statistical
relations between the QoS component, the Rayleigh fading
channel conditions, and the level of incoming energy into the
battery of the data transmitter.

A. VIRTUAL BATTERY QUEUING MODEL
The virtual battery queuing model is shown in Fig. 2. This
model is basically a representation of the physical battery
storage model with interchanged parameters such that tools
of the LDP theorem can be invoked.

In the proposed queuing model, the roles of the harvested
energy and the consumed energy are reciprocated to have

1If energy accumulated in the battery exceeds the storage capacity, then
battery overflow will occur, leading to energy waste. Hence, we need to
deal with the problem of an unstable queuing system, which makes the
analysis of the system under study, and EH-based communication in general,
a challenging task, especially that many powerful tools and results from
queuing theory cannot be applied due to the instability. For smooth operation
of the system, it is required to avoid energy loss due to battery overflow.
Also, the battery overflow probability is equal to the probability of the virtual
battery being non-empty. As our focus in this paper is on considering the
event of energy outage, situations with battery overflow are left for future
investigation.

a steady queue. The inputs and outputs of this model
are interchanged so that we can invoke the tools of the
LDP theorem as compared to the physical battery storage
model. Therefore, the rate of the outgoing energy µo(t)T is
considered as input to the model, and the rate of the incoming
energy µi(t)T is the output. In this way, the proposed virtual
battery queuing model can be implemented to use the inverse
inequality so as to make use of the LDP theorem.

Under this setup, the queue length, E(t), can be explained
by the energy consumption instead of the level of energy left
in the battery. Correspondingly, energy left in the battery is
given by

A(t) = Bmax − E(t). (9)

As shown in Fig. 2, the energy arrival to the virtual queue
is denoted as µo(t), µi(t) indicates the energy departure from
the queue, and the threshold level of the queue is Bmax.
Similar to (9), E(t) for the virtual queue model can be defined
as

E(t) = Bmax − A(t). (10)

Also, the number of empty energy slots in the battery at
time t + 1 can be approximated as follows:

E(t + 1) = max{0,min{Bmax,E(t) + µo(t)T − µi(t)T }},

(11)

Our goal is to estimate and analyze the energy-outage
probability in the proposed virtual battery queuing model
in order to examine the performance of the EH-based
communication system under QoS constraint.

B. ANALYSIS OF THE ENERGY-OUTAGE PROBABILITY
We analyze the energy-outage probability to theoretically
evaluate the performance of the EH-based communication
system.

According to the physical limitation of the system,
we define the energy outage condition as the probability when
the harvested energy is not sufficient enough to sustain the
active power consumption process. That is, situations where
the harvested energy is unavailable for data transmission
or that the harvested energy is below the outgoing energy
µo(t)T , should be very limited. Otherwise, the system
remains inactive and no data transmission takes place.
Specifically, once the accumulated energy, A(t), is below the
threshold µo(t)T , the transmitter enters into the battery-low
status or an energy outage event occurs, and then the system
will hibernate until the battery gets recharged to a satisfying
level.

With the aid of the proposed virtual battery queuing
model by considering the empty side of the battery, the
energy-outage probability is estimated with the probability
of empty portion of queue at time t . At the same time, the
occurrence of energy outage should be minimum, i.e.,

Pr
{
E(t) ≥ (Bmax − µo(t)T )

}
≤ Poutage, (12)
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where Poutage is the maximum probability of energy outage
that the system tolerates. Here, the left-hand side of the
formula in (12) expresses the probability that the virtual
buffer is not full at a given time t .

Next, we derive and estimate of the energy-outage
probability under QoS constraint by invoking tools of the
LDP theorem.

C. STATISTICAL QOS GUARANTEES
Based on the LDP theorem [50], we can show that for a
dynamic queuing system, a simpler and tighter formulation
can be found to calculate the energy-outage probability.
An assumption is made that the battery’s maximum power
PmaxT can be used at each time slot. The empty portion of
queue length process, E(t) (t ≥ 0), converges in distribution
to a finite random variable E(∞) that satisfies

lim
Bmax→∞

log
(
Pr

{
E(∞) ≥ (Bmax − PmaxT )

})
Bmax − PmaxT

= −u, (13)

which states that the probability of the queue length
exceeding threshold (Bmax − PmaxT ) decays exponentially
fast as Bmax increases.

For large values of Bmax, we have

Pr
{
E(∞) ≥ (Bmax − PmaxT )

}
≈ e−u(Bmax−PmaxT ). (14)

For small values of Bmax, a more accurate approximation is
given by

Pr
{
E(∞) ≥ (Bmax − PmaxT )

}
≈ ϵe−u(Bmax−PmaxT ), (15)

where ϵ denotes the probability of non-empty virtual buffer,
i.e.,

Pr{E(t) > 0} = ϵ, (16)

which can be approximated by the ratio between the average
incoming rate and the fixed outgoing rate pertaining to the
virtual battery queue model, namely, as ϵ ≈

E(µo(t))
µimin

[52].
In the above formulation, the constant u (u ≥ 0) is termed

the QoS exponent with respect to the outage probability of the
battery, which acts as a significant aspect for the statistical
QoS guarantee requirement, and shows the exponential
decreasing rate of the QoS violation probabilities. A larger
value of u results into a faster decay rate supporting a
more stringent QoS requirement, while a smaller value of
u leads to a slower decay rate, which illustrates that the
EH-based communication system can provide a looser QoS
requirement. Specifically, when u is close to 0, a longer decay
can be tolerated by the communication system. On the other
hand, when u is tends to ∞, the system cannot endure any
delay [50].

D. THEORY OF EFFECTIVE ENERGY HARVESTING
The proposed theory of effective EH states that the stochastic
behaviour of the arrival energy process can be modelled by
its effective EH asymptotically.

An arrival energy process to the queue is considered, which
gets to the empty side of it, or we can simply say that the
empty slot accumulation of the battery, i.e., µo(t), which is
defined for t ≥ 0, represents the rate of outgoing energy or
energy spent (in Joules per second) from the battery over the
time interval [0, t).

The asymptotic log moment generating function (MGF) of
µo(t) is assumed, which is expressed as

3(u) = lim
t→∞

1
t
log

(
E

[
euµo(t)

])
, (17)

and exists for all u ≥ 0. Here, E[·] denotes the expectation
operator.

Further, assume that µi(t), which is the rate of energy
exiting from the virtual queue, i.e., the rate of energy coming
into the battery of the physical model, is is minimum and
fixed, which is again a common assumption for solar EH and
is given by µimin .
The effective EH function of µo(t) can then be defined as

α(u) =
3(u)
u

. (18)

By substituting the asymptotic log-MGF (15) into (16),
then defining

S(t) =

t∑
i=0

µo(t), (19)

and assuming that the sequence is uncorrelated, we get

3(u)
u

= lim
t→∞

1
ut
log

(
E

[
euS(t)

])
, (20)

= lim
t→∞

1
ut

log
(

E
[ t∏
i=0

euµo(i)
])

, (21)

= lim
t→∞

1
ut

log
( t∏
i=0

E
[
euµo(i)

])
. (22)

The service process is stationary, ergodic and holds given
the block fading nature of the channel. Hence, assuming the
independence of µo[i], i = 0, 1, 2, · · · , we get

3(u)
u

= lim
t→∞

1
ut
log

(
E

[
euµo(i)

])t

. (23)

Hence, a simplified expression for the effective EH function
is obtained as follows:

3(u)
u

=
1
u
log

(
E

[
euµo(i)

])
. (24)

E. FORMULATION OF AN UPPER BOUND FOR µIMIN
According to the energy arrival process and the expression
shown in (5), by assuming the rate of energy µi(t) to be
minimum and constant, namely, µimin , the rate of incoming
energy to achieve the user’s QoS, i.e., the minimum rate Rmin,
is actually the minimum rate of incoming energy µimin . Thus,
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we can write

µimin ≤
3(u)
u

=
1
u
log

(
E

[
euµo(t)

])
. (25)

Let us recall that the goal is to achieve a minimum required
rate Rmin. Hence, Rmin, in the unit of nats/s/Hz, can be
expressed as

r(t) = log
(
1 +

µo(t)|h(t)|2

N0B

)
≥ Rmin, (26)

which leads to

µo(t) ≥
(eRmin − 1)N0B

|h(t)|2
. (27)

Now, substituting (27) into (25), we find the expression for
µimin as

µimin ≤
1
u
log

(
E

[
e
u
(
(eRmin−1)N0B

|h(t)|2

)])
. (28)

The simple and final analytical expression of the large
deviation theorem shown in (28) establishes the relationship
between the channel |h(t)|2, which is changing all the time,
the minimum required rate by the user, Rmin, which is the
user’s QoS, and the rate of the fixed incoming solar energy,
µimin . At the same time, this inequality also satisfies and
relates to the energy-outage probability calculated in (15).
For a given QoS exponent u, we can find the fixed arrival
energy from (15). Also, by using the value of u in (15), we can
calculate the probability of energy outage in the EH-based
communication system, namely, determining the probability
that the battery will not have the required amount of energy
for the data transmission.

IV. VALIDATION AND DISCUSSION
With the proposed mathematical framework, numerical
results pertaining to the required rate of EH for achieving
the target QoS in the EH-based communication system
are now presented and discussed. Simulations are used
to confirm the analytical findings through the developed
framework, particularly with respect to the expressions
obtained in (15) and (28), and also to investigate the impact
of the energy-outage probability Poutage, the QoS component
u, and the amount of incoming energy µimin , on the system
performance.

In the simulations, the number of independentMonte-Carlo
runs is 105. Unless otherwise stated, the parameter setting
is as follows: the noise density N0B = 1, the maximum
level of energy that the transmitter’s battery can withhold is
Bmax = 50 Joules, the minimum rate requirement Rmin =

0.5 nats/s/Hz, the maximum transmission power Pmax =

10 dB,2 and the time slot duration is T = 1 sec.
Firstly, Fig. 3 shows the energy-outage probability, Poutage,

versus the QoS component, u, for various values of the
maximum transmission power Pmax. As observed, when

2Given that N0B is assumed unity in the simulations, Pmax = Pmax/N0B.
This why unit-less dB unit is used here.

FIGURE 3. Energy-outage probability versus the QoS component for
various values of Pmax.

FIGURE 4. Energy-outage probability versus the QoS component for
various values of the minimum required rate Rmin.

the QoS component increases, the energy-outage probability
decreases. This confirms the theory that larger u gives a more
stringent QoS guarantee, i.e., the system will tolerate less
energy outage, which also confirms our design approach. The
figure’s results also demonstrate that when Pmax increases
from 6 dB to 14 dB, Poutage decreases, which is a favorable
condition for the EH-based communication system to be
more sustainable.

Fig. 4 illustrates the energy-outage probability versus
the QoS component, for different values of the minimum
required rate Rmin. As observed, when u increases, Poutage
decreases. This confirms the theory that larger u gives a
stricter QoS guarantee, i.e., the system will tolerate less
energy outage and, as such, it will be more efficient to
increase throughput and decrease energy outage as per the
required performance measures. The plots also demonstrate
that when Rmin increases from 0.5 nats/s/Hz to 1.5 nats/s/Hz,
then Poutage increases, which proves the correctness of our
framework design and confirms as well the desired output
result according to the paper’s analysis.

Fig. 5 plots the rate of the incoming energy, µimin , versus
the QoS component, for various values of Pmax. From this
figure, we notice that when Pmax varies from 5 dB to 15 dB,
µimin first remains stable and, then, increases gradually to
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FIGURE 5. Rate of incoming energy versus the QoS component for
various values of Pmax.

FIGURE 6. Rate of incoming energy versus the QoS component for
various values of the minimum required rate Rmin.

become stable eventually after a break-point for increased
values of the QoS component. This behavior can be explained
by the fact that the amount of the required incoming energy
into the battery also increases at higher rate with higher values
of Pmax, for stringent QoS guarantee. That is, higher rate
of incoming energy will be required to support maximum
transmission power.

Fig. 6 shows the variations of the rate of incoming
energy µimin versus the QoS component for various values
of minimum required rate Rmin. As observed, µimin increases
with the increase of the QoS component u as Rmin increases
from 0.5 nats/s/Hz to 1.5 nats/s/Hz. This proves that higher
QoS can be guaranteed with the increase in the rate of the
incoming energy into the battery of the data transmitter. If we
consider the QoS component to be 10−2, then for a minimum
required data rate of 0.5 nats/s/Hz, the rate of the incoming
energy µimin is 3.2 dB. For a minimum required data rate of
1.0 nats/s/Hz, µimin is almost 6 dB, whereas for a data rate
requirement of 2.0 nats/s/Hz, µimin is between 7 dB and 8 dB.
This shows that as Rmin gets higher, the rate of incoming
energy µimin will also need be higher to satisfy the required
QoS.

Fig. 7 shows the energy-outage probability Poutage versus
the rate of incoming energy µimin , for various values of the

FIGURE 7. Energy-outage probability versus the rate of incoming energy
for various values of the minimum required rate Rmin.

FIGURE 8. Energy-outage probability versus the rate of incoming energy
for various values of Pmax.

minimum required rate Rmin. When µimin is relatively large,
e.g., 7.5 dB, then Poutage shows a consistently downward
trend with the increase of µimin for all the considered rate
values. This shows that a higher rate of incoming energy can
be harvested and, at the same time, the system will face less
energy outage events.

Fig. 8 illustrates the energy-outage probability versus
the rate of the incoming energy for various values of
the transmission power Pmax. As it can be noticed, the
energy-outage probability decreases rapidly. A higher rate of
incoming energy shows that the transmission power can also
be increased, which means that more data can be transmitted.
With the increase in the incoming energy, the system will
face less energy outage, which is obviously beneficial for the
system.

Fig. 9 shows the variation of Poutage as a function of µimin ,
for various values of the battery capacity Bmax. To explain in
detail, if we consider the rate of the incoming energy (µimin )
to be 7 dB, then for a battery capacity of at least 30 Joules,
the energy-outage probability lies between 10−1 and 10−2.
Similarly, for a battery capacity of 40 Joules and 50 Joules,
the energy-outage probability lies between 10−2 and 10−3,
and between 10−3 and 10−4, respectively. This indicates that
an increase in the battery capacity will allow more energy
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FIGURE 9. Energy-outage probability versus the rate of incoming energy
for various values of Bmax.

FIGURE 10. Energy-outage probability versus the QoS component for
various values of Bmax.

FIGURE 11. Confirmation of the correctness of the proposed mechanism.

to be stored, which will help to reduce the energy-outage
probability.

We further plot results of the energy-outage probability
versus the QoS component for different values of the battery
capacity Bmax. Here in Fig. 10, Pmax = 10 dB is considered.
The figure indicates that for small values of the QoS
component, e.g., u = 10−3, different values of Bmax will not
affectPoutage.When u increases, changes inBmax yield energy
outage events. This shows that with the increase in battery

capacity, the required QoS can be maintained and, also, the
system faces less energy outage.

The energy-outage probability is analyzed in Fig. 11
as a function of the rate of incoming energy, µimin . The
number of independent Monte-Carlo runs is 107. From
the result of derivation, we obtained the value of Poutage
to be approximatively 10−1, and µimin is approximated as
10.6 dB. From the system simulation output, Poutage is
approximated as 10−2, and µimin is approximated as 10.4 dB.
Therefore, we can say that the energy-outage probability with
the proposed mechanism is less than 10−5 in the system
simulation. Also, we can see that the value of Poutage obtained
from the proposed framework is higher than the one obtained
with the system simulation, which can be explained by the
tighter measure of the outage probability being needed in the
framework for the QoS constraint to be satisfied.

V. CONCLUSION
In this paper, a thorough study was carried out to analyze
the required energy harvesting rate for satisfying the QoS
requirements when a level of energy outage is allowed in
point-to-point EH-based communication system equipped
with a finite-sized battery. A probabilistic approach was
taken, and a novel yet simple mathematical framework using
large deviation principle (LDP) was developed. In particular,
a virtual battery queuing model was proposed so that the
LDP can be used and adapted. Furthermore, an expression
relating the rate of the incoming energy with the fading
channel conditions and the QoS requirement of the system
was provided to analyze the performance of the EH-based
communication system under energy constraint. Numerical
results were provided to validate the proposed analytical
framework and discuss the system performance in different
scenarios.
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