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Abstract—Centralized machine learning methods for device-to-
device (D2D) link scheduling may lead to a computing burden for
a central server, transmission latency for decisions, and privacy
issues for D2D communications. To mitigate these challenges, a
federated learning (FL) based method is proposed to solve the
link scheduling problem, where a global model is distributedly
trained at local devices, and a server is used for aggregating
model parameters instead of training samples. Specially, a
more realistic scenario with limited channel state information
(CSI) is considered instead of full CSI. Despite a decentralized
implementation, simulation results demonstrate that the proposed
FL based approach with limited CSI performs close to the
conventional optimization algorithm. In addition, the FL based
solution achieves almost the same performance as that of the
centralized training.

Index Terms—Federated learning, Device-to-device (D2D),
Link scheduling

I. INTRODUCTION

In the emerging Internet of Things (IoT) ecosystem, device-
to-device (D2D) communication becomes an important tech-
nology which enables direct communications between devices
[1]. One of the challenging problems in the D2D networks
is the link scheduling problem, however, such problem is a
tricky combinatorial and nonconvex optimization problem [2].
Conventional algorithms usually cannot meet the increasingly
stringent time requirements in wireless networks.

The state-of-the-art machine learning (ML) methods such
as [3], [4], and [5] have made great efforts to solve the
D2D link scheduling problem. These works not only achieve
performance close to the conventional optimization algorithms
but also accelerate the approximation of this link scheduling
problem. Nevertheless, these methods require centralized im-
plementations where massive training samples, e.g., channel
state information (CSI) of all D2D pairs, are transmitted from
distributed devices to a central server and trained there. This
could lead to a huge computational burden, especially for
large-scale networks. CSI is of paramount importance from the
perspective of physical layer security [6]. If CSI is obtained by
eavesdroppers, they can exploit it to decode the confidential
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transmitted data [7] and perform various attacks. Moreover,
sending the scheduling decisions from a central server to
local devices may result in transmission delay. Due to the
increasing computing power of IoT devices, the workload of
the centralized training is promising to be moved to edge
devices. Federated learning (FL) has emerged as a distributed
ML solution, wherein clients train their models locally, and
a server aggregates the local model parameters instead of
their raw training data [8]. Therefore, the FL can alleviate
the workload of the central server by moving model training
to local devices and preserve the data privacy by keeping it
locally which will also reduce the security risk induced by
CSI exposure. Besides, decisions can be made locally hence
reducing latency.

Regarding FL related scheduling, existing works mainly
focus on device scheduling policies for facilitating the con-
vergence of the FL, e.g., [9], rather than using the FL to solve
the optimization problem itself. Besides, the FL approach [8]
adopts the stochastic gradient descent (SGD) as the optimizer
for updating local models in parallel at clients, which is
usually difficult to tune and results in undesirable convergence
performance [10]. Moreover, it is assumed that the channel
matrix of all D2D pairs is available in [3], which is difficult
to acquire in practical wireless networks.

To mitigate the aforementioned challenges, the FL is used
to tackle the D2D link scheduling problem in a distributed
manner under the assumption of limited CSI instead of full
CSI. The contributions of this work are summarized as follows,

• An FL based method is proposed to facilitate distributed
training for D2D link scheduling in the presence of only
limited CSI. To the best of our knowledge, this is the
first work to provide a distributed implementation of this
problem.

• Compared to the conventional centralized training, the
FL based approach has great features including comput-
ing offloading, local decision-making and privacy issue
mitigation. Simulation results demonstrate that the pro-
posed decentralized solution achieves almost the same
performance as that of the centralized training method.

The remainder of this paper is organised as follows. Section
II presents the system model and the problem formulation for
the D2D link scheduling. An FL based solution is introduced
in Section III. Section IV evaluates the proposed approach via
numerical results followed by conclusions in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A D2D wireless network with L unidirectional pairs in a
shared channel is considered as the system model. The set
of all D2D pairs is represented by D = {D1, D2, . . . , DL},
and the set of their indexes is denoted by L = {1, 2, . . . , L}.



Besides, the transmitter and receiver of Dl are denoted by Tl
and Rl, respectively. The transmit power of Dl is denoted by
pl. The locations of all D2D pairs are randomly generated in
a square area with an edge length of darea, and the distance
between Tl and Rl is randomly selected within a pairwise
distance between dmin and dmax.

Let hll denote the communication channel between the Tl
and Rl, and hkl denote the interference channel from Tk to
Rl, where l, k ∈ L and l 6= k. Additionally, let xl denote the
binary decision variable of Dl indicating the on and off status
of the D2D pair. If Dl is active, xl = 1, otherwise xl = 0.
Let σ2 denote additive white Gaussian noise power level. The
signal-to-interference-plus-noise ratio (SINR) of Dl denoted
by ξl is written as

ξl =
|hll|2plxl∑L

k=1,k 6=l |hkl|2pkxk + σ2
. (1)

The objective of the D2D link scheduling problem is to
maximize the sum rate of the entire system via optimizing the
binary scheduling decisions, which can be formulated as

max
x

L∑
l=1

log2(1 + ξl(x)), s. t. xl ∈ {0, 1}, ∀l ∈ L , (2)

where x = [x1, x2, . . . , xL]
T denotes the binary scheduling

vector. The data rate is normalized by the channel bandwidth.

III. FEDERATED LEARNING FOR D2D LINK SCHEDULING

In this section, an FL based approach is presented for
learning the mappings from the channel vectors to the binary
scheduling decisions in D2D wireless networks.
A. Federated Learning for D2D Link Scheduling

For the implementation of the FL based method in D2D
networks, each D2D pair is treated as a client. The FL [8]
is employed to learn the input-output mapping of the link
scheduling problem in the D2D wireless networks, which
works as follows. Firstly, the parameters of the global model
are randomly generated as the initial state at the server.
Hereafter, at each round of the training, a fraction of clients
are randomly selected, then the server sends its current model
parameters to the selected clients. After this, each of the
selected clients trains its local model using its local dataset
based on the global parameters, and then transmits the updated
local model parameters back to the server which will compute
the average values based on the models of the clients and
update its global model. The aforementioned steps are repeated
until convergence. The FL over a D2D network is illustrated
in Fig. 1, where wtl , l ∈ L and wt denote the local and the
global model parameters of the t-th round, respectively.

In the state-of-the-art works, it is common to assume that
the full CSI of the entire D2D networks are available. For
each D2D pair, it is difficult to acquire all CSI including the
communication channel of itself, the communication channels
of other D2D pairs, the interference channels from a particular
D2D pair to other devices and vice versa. In this work, it is
assumed that each D2D pair knows only its direct channel
and the interference channels from itself to other devices. Let
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Fig. 1 Illustration of the FL over a D2D wireless network.

hl = [hl1, hl2, . . . , hlL]
T ∈ RL×1 denote the channel vector

from Tl to Rk, k ∈ L, and H = [h1,h2, . . . ,hL]
T ∈ RL×L

denote the channel matrix of a D2D network. For the cen-
tralized training, {H,x} is a training sample. For the FL
based solution, {hTl , xl} is a training sample for the client
Dl, ∀l ∈ L, since each client can only access to its local data.

In practical applications, each client collects its local CSI
from the real world and generates simulated CSI for other
pairs to make up full CSI, and runs the cross-entropy (CE)
algorithm [3] to get scheduling decisions. Local training can
be conducted on each client and more samples can be collected
to join the training. Let Ml denote the total number of samples
that the client Dl generated. The local CSI and the corre-
sponding decisions are selected as the local training dataset
for Dl, i.e., Dl = {(hTl )j , x

j
l }
Ml
j=1. For Dl, Y

j
l = {yjlc}1c=0

denotes the one-hot representation of xjl , where c = {0, 1}
because the D2D scheduling problem can be treated as a binary
classification problem. Besides, yjl0 = 1 and yjl1 = 0 if xjl = 0,
otherwise yjl0 = 0 and yjl1 = 1. Let Ỹl

j
= {ỹlcj}1c=0 denote the

activation probabilities generated by the local model for the
j-th sample of client Dl. At each client, the cross-entropy loss
is adopted as the criterion to measure the distance between the
output of the local model and the target. The local model of
each client is updated by minimizing this loss function, which
is written as follows,

`l = −
Ml∑
j=1

1∑
c=0

yjlc ln ỹlc
j . (3)

Let Bl denote the batch size for training at the client Dl. The
number of local updates can be denoted by G =Ml/Bl, which
is indexed by g. Let Ct denote the set of the randomly selected
ρL clients at the t-th round, where ρ represents the quantile,
and 0 < ρ 6 1. For the t-th round of the FL, the global
model parameters wt are broadcast to the selected clients who
will update their local models with wti,g=0 = wt, i ∈ Ct.
Next, each client performs G updates for its local model via
gradient descent algorithms, which is written as

wt
i,g+1 = wt

i,g − λt
i∇`i(wt

i,g, ξ
t
n), g = 0, . . . , G− 1, (4)

where λi denotes the learning rate for updating model at the
Di. ξn ∈ Di,g represents a training sample from the batch



g of Di. After the local training at the selected clients, their
local model parameters are updated as wt+1

i = wti,G and they
are sent to the central server where the Federated Averaging
(FedAvg) algorithm [8] is performed for aggregation, and the
global model is updated as

wt+1 =

∑
i∈Ct Miw

t+1
i∑

i∈Ct Mi
, (5)

where Mi denotes the number of training samples of the
selected clients i ∈ Ct.

To evaluate our proposed FL based method, a 4-layer feed-
forward deep neural network (DNN) is employed as the shared
model in this work, where a Softmax function is adopted as
the activation function at the last layer. Considering successful
applications of adaptive moment estimation (ADAM) [11]
optimizer in non-federated scenarios [3] [5], it is adopted to
update the parameters of local models for faster convergence in
this work. For each local model, the input is the concatenation
of the communication channel of the D2D pair and the
interference channels caused to other pairs. The output layer
consists of two neurons which represent probabilities of the
binary status of the D2D pair.
B. Data Sharing Analysis

This section provides the analysis of the data sharing of
the FL based method and the centralized training. The total
number of communication rounds is denoted by R. The
number of layers of the shared model is denoted by Q, which
is indexed by q. The number of neurons of the q-th layer
is represented by Eq . Let MC denote the number of training
samples for the centralized learning.

For the FL based solution, the total number of
parameters exchanged during the training is WF =
2ρLR(

∑Q−1
q=1 EqEq+1 +

∑Q
q=2Eq) + FρLR with the neg-

ligence of activation layers, where F denotes the number of
other parameters that each selected client sends to the server
along with the model parameters at each round. In this case,
F = 1, i.e., the value of Mi, i ∈ Ct. The centralized training
requires WC = (L2 + L)MC data to be shared with a central
server due to CSI and solution sharing. As observed from
the two equations, the overall number of data shared by the
FL based approach mainly depends on the dimensions of the
shared model and the number of communication rounds, while
the number of data shared by the centralized training is related
to the network scales and the number of training samples.

IV. NUMERICAL RESULTS

For fairness and convenience, the training data is generated
by simulations to compare the performance between different
methods. The FL is implemented by the Flower framework
[12]. Rayleigh fading channel with zero mean and unit vari-
ance is adopted to model the small scale fading. The main
system parameters and DNN parameters are given in Table I.
A. Benchmarks

The proposed FL based method with ADAM optimizer is
compared with benchmarks as follows:

TABLE I System and DNN parameters.
Parameters Values Parameters Values
Edge length 500 m Path loss model 148 + 40 log10(d[km])

Pairwise distance [2m, 65m] Dimensions of DNN {L+1, 50, 50, 2}
Transmit power of Dl 20 dBm Learning rate 0.0005

Noise density -174 dBm/Hz Batch size 10
Bandwidth 5 MHz Samples MC = Ml 2000

• Cross-entropy (CE) Algorithm [3]: The performance
of this conventional algorithm based on importance sam-
pling serves as an upper bound of the ML based methods
in terms of the accuracy and the sum rate. The simulation
results are normalized with respect to the CE algorithm
to demonstrate the effectiveness of the proposed design.

• Centralized Training: Training is performed at a central
server, where the training dataset contains the CSI of all
D2D pairs and their decisions, i.e., DC = {Hj ,xj}MC

j=1.
For fair comparisons, it adopts the same DNN model as
the FL based method, and MC =Ml, ∀l ∈ L.

• FL with SGD: This method simply changes the ADAM
optimizer of the FL based approach to the SGD.

Unless specifically stated otherwise, the proposed FL based
method adopts the ADAM optimizer in the simulations. The
global model is evaluated with 1000 test samples at the server.

B. The Number of D2D Pairs

The performance of the FL based method and the bench-
mark with L ∈ {5, 10, 15, 20} is presented in Fig. 2.
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Fig. 2 Performance with different numbers of D2D pairs.

As indicated in Fig. 2, the FL based method achieves
almost identical performance as that of the centralized training
method. When L increases from 5 to 20, the accuracy gener-
ated by the FL based solution degrades from 89% to 83%, and
the sum rate increases from 43 to 103 bits/s/Hz approximately
which is close to the conventional CE algorithm, e.g., for
L = 20, it is around 94% of the CE algorithm.

C. Convergence

The convergence performance of the FL based method is
compared between the ADAM and the SGD optimizers, and
the results are presented in Fig. 3. The learning rates for the
FL with the SGD optimizer ranges from 0.0002 to 0.001 for
networks with different L for better performance.

For the FL based method with the ADAM as shown in
Fig. 3a, the global models converge to their best performance
within dozens of communication rounds for all the tested
cases. As a comparison, the FL based approach with the SGD
takes several hundred of rounds to converge as demonstrated
in Fig. 3b. In this case, the FL with the ADAM is favorable



in applications in wireless networks since it requires less
communication rounds between the server and the clients than
that with the SGD, thus the former is more efficient.
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Fig. 3 Convergence performance of the FL based method with
different optimizers at clients.

D. The Fraction of Selected Clients

The performance of the FL based method with different
proportions of clients sampled randomly at each round is
evaluated on L = 10 as shown in Table II.

TABLE II Performance with different ρ of selected clients.
ρ 0.2 0.4 0.6 0.8 1

Accuracy 0.8505 0.8520 0.8453 0.8507 0.8484
Sum Rate 0.9519 0.9520 0.9524 0.9524 0.9527

As shown in Table II, when the server sampled different
numbers of clients for parameter aggregation during training,
the performance remains stable where all tested cases achieve
an accuracy of around 0.85 and a sum rate of over 0.95.
Consequently, it is recommended to select a small fraction
of clients at each round of training for efficiency.

E. Running Time

The time performance of the proposed approach is evaluated
on the pretrained models with the processor Intel Core i5-
9600KF CPU. It is compared to the conventional CE algorithm
as shown in Table III, where the time performance of the
model trained by the FL approach is ranging from 0.44 µs to
1.23 µs for increasing L from 5 to 20. The proposed approach
significantly decreases the running time of the CE algorithm
from second level to microsecond level. Therefore, it is a
potential candidate for real-time applications in D2D networks.

TABLE III Comparisons of the average running time in µs.
L 5 10 15 20
CE 1.6070×105 9.4370×105 2.3110×106 4.7089×106

FL 0.4387 0.9430 0.9456 1.2319

F. Data Sharing Comparison

The equations of the data sharing for the FL based solution
and the centralized training are given in Section III. B. Let us
assume MC = 2000, ρ = 0.1, and R = 30. The parameters of
the local model shown in Table I are adopted for data sharing
calculations. For L = 20, WF ≈ 4.5 × 105, and WC = 8.4 ×
105. In this case, the FL based method reduces nearly half of
the data to be shared compared to the centralized training. The
FL based approach will achieve greater advantages in some
scenarios, e.g., larger system scales, more training samples,
and faster convergence. On the opposite, the FL based method
cannot outperform the centralized training in some cases, e.g.,
small scale networks or small training datasets.

V. CONCLUSION

This work proposes an FL based method to approximate
the D2D link scheduling problem with limited CSI. This
decentralized approach not only mitigates the computing bur-
den of a central server via local training, but also reduces
transmission delay via local decision-making, as well as avoids
exposing CSI to eavesdroppers. Simulation results demonstrate
that the proposed federated learning method achieves almost
the same performance as that of the centralized training.
Additionally, the data sharing comparison between the FL
and the centralized training has been analyzed. Improving
scalability and generalizability will be studied in future works.
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