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Abstract
This paper explores a dynamic model of sequential club formation in which iden-
tical individuals join or leave clubs over time and their preferences depend solely 
on the number of members in the club. There exists a unique optimal-sized club 
which maximises per-period payoff of each individual. To study the implications of 
the dynamic setting, we use a benchmark game of a finite number of periods which 
mimics the static framework. Implied by the dynamic nature of the problem, we find 
a new source of inefficiency that is caused by so called fear of exclusion phenom-
enon where individuals fear being excluded from a relatively superior sustainable 
club, which is not necessarily optimal. An unusual behaviour may be observed in 
which individuals strictly prefer to form sub-optimal sized clubs. A specific class of 
equilibria is analysed to examine such behaviour.

Keywords Non-cooperative games · Club goods · Fear of exclusion · Stable club 
structure · Infinite horizon · Optimal club

1 Introduction

Clubs form for the purpose of sharing the benefits and costs of a club good. When 
individuals decide to become members of a particular club, they generally care about 
about how many other members are there and how those other members behave. In 
this paper, we consider situations in which individuals only care about the size of 
the club they intend to form or join. One can think of gyms as an example. If gym 
etiquettes are commonly understood and all members follow the norms, then what 
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really defines members’ preferences is the number of members using the gym facili-
ties. It is desirable to have some members in the gym because it provides incentives 
and motivation to exercise, but too many would lead to congestion and long wait-
ing times. Therefore, it can be argued that an individual would prefer to join a gym 
which is neither too crowded nor too empty: we call them optimal-sized clubs. The 
question then arises whether individuals always join such an optimal sized club? To 
analyse such situations, we consider dynamic environment in which individuals take 
decisions over long periods and found that inefficiencies (potential members joining 
sub-optimal sized clubs) may arise. The aim of this paper is to uncover the underly-
ing mechanism behind the source of such inefficiencies. We investigate the process 
where individuals decide to form clubs and decisions involve changing the size of 
the club; more specifically, the paper explores the dynamic decision making process 
of club formation and aims to find a new source of inefficiency, which we show in 
the paper is generated by an endogenous “fear of exclusion” (FOE) phenomenon. 
Fear of exclusion is characterized by a situation in which an individual feels anxious 
about being left out of the what is considered as a relatively better outcome, and this 
exact fear might generate inefficiency endogenously.

The study of club goods has spawned a huge literature in economics going back 
to at least Tiebout (1956) and Buchanan (1965). Club theory, as developed by 
Buchanan (1965), views club goods as public goods that are excludable and par-
tially rivalrous: there is excludability in the sense that the club goods are restricted 
only to the members of the club; and there is rivalry because of the crowding effect. 
If the cost of provision is shared equally among members then increasing the size 
of the club reduces the cost. This, in turn, increases the utility of each member but 
only until reaching a point where congestion may set in. Therefore, individuals’ 
preferences will incorporate a trade-off between cost reduction and crowding as size 
increases. Several extensions and refinements of Buchanan’s theory of club goods 
have been modelled and analysed, but the analysis of membership size in a dynamic 
context to explore varied inefficiencies is largely missing in the club literature.1

The early literature on club theory mainly aimed at examining the welfare aspect 
of club formation (optimal provision of the club good and optimal membership size) 
in a static setting. However, it is evident that players can join or leave clubs repeat-
edly. The future implications of such decisions may be particularly important if the 
agents in the economy are far-sighted and patient enough. Konishi et al. (1997) stud-
ied a coalition formation game with free mobility of players where the population 
partitions itself into clubs, but the game ends as soon as the stable club structure 
is reached. Stiglitz (1977) analysed club formation with a median voting rule by 
assuming that the current changes would not lead to future changes. Klevorick and 
Kramer (1973) also considered a median voter rule in a one period game with sin-
gle-peaked preferences over the decision variable. Layard (1990) studied a bargain-
ing model of wages for a democratic trade union where the median voter’s choice 
of wage is bargained with the firm. Under the assumption of zero discounting, the 

1 These refinements include different forms of the congestion functions, hedonic games (the composition 
of members), different types of mechanism for exclusion, optimality of clubs, financing of clubs, etc.



251Fear of exclusion: the dynamics of club formation  

equilibrium level of wages and employment was analysed. An important distinction 
between these papers and ours is that the clubs’ decisions (not just membership) are 
agreed at the formation stage through negotiations.

To capture dynamic considerations, we define a non-cooperative game of club 
formation in which each player’s strategy is either to propose to form a new club or 
respond (say yes or no) to the proposal offered to her over time. The order in which 
players propose is given by an exogenous protocol. Each player only cares about the 
size of her club, rather than the identity of its members.2 Utility increases initially 
with size, and then decreases because of a crowding effect. There is, therefore, a 
unique optimal sized club, which maximises its members’ utility. Since all individu-
als are identical and have the same preferences over the size of the club, they would 
all like to be members of an optimal sized club. The objective of this exercise is to 
obtain equilibria where fear of exclusion arises endogenously. A class of FOE equi-
libria are the ones in which agents refrain from forming optimal sized clubs. To this 
end, we concentrate on a very specific class of stationary Markov perfect equilibria 
(SMPEs). In the infinite-horizon game, we consider those equilibria in which clubs 
of only two sizes prevail in the long-run: a good (bigger size) club whose mem-
bers receive a higher utility; and a bad (smaller size) club whose members receive 
a low utility. We establish the existence of SMPEs of interest of such a game by 
construction.

One can argue that it is well-known from Folk theorems that repeated interactions 
with rational and patient enough players can allow for many SPE outcomes that sat-
isfy the properties of Individual Rationality and Feasibility. We would like to bring 
attention to two points here. First, that standard Folk theorems do not directly apply 
to Markov Prefect equilibria because of the changing and evolving states, on which 
players can base their decision. The Folk-Theorem-like results, even for Markovian 
equilibria, typically rely on mixed-strategy equilibria, randomization devices, and 
intricate constructions. The equilibria we have, on top of being Markovian, are as 
refined and intuitive as it gets: in particular, they are pure and absorbing. In addition, 
while the Folk-Theorem literature typically focuses on the set of equilibrium payoff 
vectors, our focus is on equilibrium behaviour, and in particular the emergence of 
the fear of exclusion as an equilibrium phenomenon. Hörner et  al. (2011) studied 
stochastic game and proved a Folk theorem under some conditions. The game is 
stochastic in the sense that each state depends on the action and previous state and 
is probabilistic, whereas in our paper, only the order of moves of players is proba-
bilistic. Also, it is assumed in their paper that limiting set of equilibrium payoff is 
independent of the initial state and in our set up, we do not assume this, but it rather 
emerges as a property of the class of FOE equilibria. Their model is more complex 
and hence stricter assumptions are imposed to prove the desired results. In compari-
son, our model is much simpler, but still provide intuitive insights without imposing 
many restrictive assumptions.

2 The size of the club can appear directly in the players’ utility function through the cost sharing of the 
club good or indirectly through decisions taken by a club of a given size.
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Second point concerns the results: Hörner et  al. (2011) proved a Folk theorem 
for the stochastic model, whereas our results differ from theirs and hence from Folk 
theorems. We find that there is a unique equilibrium payoff in finite repetition game 
and characterize multiple equilibria in infinite repetition. If the payoff of the finite 
game coincides with that of the minmax payoff of the stage game or if we use the 
same version of the Folk theorem as Friedman (1971), then multiplicity of equilibria 
in the infinite game reveals that all but one equilibrium payoff are either same or 
worse than the minmax payoff or Nash equilibrium payoffs of one stage game. In 
fact, we can support any equilibrium in the infinite game under some mild condi-
tions, whereas Folk theorem supports individually rational and feasible payoffs of 
the stage game. In terms of Pareto optimality, the outcome of finite game is Pareto 
optimal, but most of the outcome in infinite game is Pareto inefficient. This stands in 
contrast to Folk Theorems.

A club structure is just a partition of individuals, i.e. grouping of individuals into 
non empty clubs in such a way that every individual is included in exactly one club. 
We follow Acemoglu et al. (2012) to find (dynamically) stable club structures, i.e. 
club structure which does not change once it has been formed. Under the assumption 
that players are forward looking, we characterize and prove the existence of a very 
specific class of stable club structures. The properties we consider when providing 
such a characterization are: (a) existence of stable club structures, and (b) forma-
tion of optimal sized clubs in stable club structures. We explore the different kinds 
of behaviour individuals might exhibit, depending on whether they are in finite or 
infinite horizon game.

Our main conclusions are derived from comparing the results of finite and infinite 
games given in Propositions 1, 2, and 3. If the players are patient enough, we show 
that club structures with no optimal sized clubs may be stable in an infinite horizon 
game. The assumption of a high discount factor is essential and enables us to get the 
desired results; but it is also empirically relevant. A high discount factor is natural 
when club formation and dissolution take little time.

Why may we observe stable club structures which have no optimal sized clubs in 
the infinite horizon game? Despite the dynamic nature of the game, we can point out 
two straightforward reasons that dictate the equilibrium behaviour which leads to 
such club structures: (1) one or more individuals have pessimistic views that optimal 
sized clubs are not sustainable, and (2) fear of exclusion. Players might believe, in 
equilibrium, that optimal sized clubs would not survive for long. They might then 
fear exclusion from a club of sub-optimal size which provides a larger return than 
the other sustainable club. In other words, they fear exclusion from their best avail-
able option among clubs that are sustainable in the future. Fear of exclusion mani-
fests itself in players’ behaviour in such a way that it compels disloyalty to optimal 
sized clubs and other non-stable clubs. By contrast, these arguments do not apply in 
finite period game. Even though membership commitment is not feasible in our set-
up, players’ ability to see the end outcome guarantees non-betrayal.

The rest of the paper is organised as follows. Section 2 reviews the relevant lit-
erature. We present our model in Sect. 3, and provide results for finite and infinite 
period games in Sects. 4 and 5, respectively. In Sect. 6, we discuss the results and 
intuitions, and provide a brief overview of a potential extension of the model which 
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could potentially explain how extreme groups form and are sustained and weather 
FOE, among factors, can explain the emergence of such groups. Section 7 concludes.

2  Related literature

Buchanan (1965) was one of the first studies that looked at the welfare analysis of 
the in-between case of pure public and private goods. Buchanan developed a general 
theory of clubs to address how the size of the club influences the provision of public 
goods. For predecessors of club theory such as Tiebout (1956), Wiseman (1957) 
and Olson (1965) among others, the provision was exogenous and therefore, it was 
not clear how the provision of shared good and membership interacted. In contrast, 
in Buchanan clubs, membership size is an endogenous choice which depends on 
the provision decision. Several models and extensions have built on this concept of 
Buchanan clubs: earlier papers include Pauly (1970), Wooders (1978) and Shubik 
and Wooders (1982, 1983); more recent papers include Page and Wooders (2007), 
Banerjee et al. (2001) and Bogomolnaia and Jackson (2002).

This paper is closely related to the models which allow for congestion effects. 
Milchtaich (1996) studied a class of non-cooperative games in which the utility of 
a player derived from using a specific strategy depends only on the total numbers 
of players who are employing that same specific strategy, and the utility decreases 
with that numbers in a way which is defined for that particular player. Similarly, 
Holzman and Law-Yone (1997) looked at a more specific case of congestion games, 
which reflects the negative effects of the congestion. Konishi et al. (1997) analysed 
a non-cooperative game where individuals have the same congestion function. They 
proved existence for the general case and showed that existence may fail without 
the assumption of a common congestion function. Hollard (2000) studied a similar 
model with an anonymous congestion function which allowed for externalities on 
non-members. While these studies prove existence and find stable Nash equilibrium 
strategy choices, the static nature of these models cannot explain how an equilib-
rium is reached, if at all. Our first contribution is therefore to the limited literature 
on the dynamics of club formation. To do this, we follow Acemoglu et al. (2012) by 
allowing for repeated interactions, and characterize dynamically stable states.

This paper also relates to the literature on non-cooperative coalition formation. 
Chatterjee et  al. (1993) analysed a game of coalitional bargaining with n players 
where players can transfer utility and investigated the efficiency (no-delay and for-
mation of grand coalition) properties of SSPEs. They show that inefficiently small 
coalitions may arise in equilibrium and/or agreement may be delayed. However, the 
sequence in which the players move significantly affects the efficiency of the equi-
librium. Seidmann and Winter (1998) studied endogenous bargaining games with 
reversible and irreversible actions and show that if players are allowed to renegotiate 
then the process results in the grand coalition, but this might not happen otherwise. 
The kind of commitment device (players leaving the game after forming the club 
in Chatterjee et al. (1993)) and (reversible and irreversible action in Seidmann and 
Winter (1998)) drives their results to some extent. We refrain from imposing such 
commitment, which emerges endogenously in our framework.
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Ray and Vohra (1999) studied a coalition formation game where players have 
utilities which depends on the whole coalition structure. They formulated the analy-
sis after defining a partition function, and assumed that players can write binding 
agreements. They provided sufficient conditions for no-delay equilibria, and used 
these finding in the context of Cournot oligopoly. Hyndman and Ray (2007) studied 
a coalition formation game in which agreements are binding until all affected par-
ties agree to renegotiate it. Allowing for history-dependent strategies, they showed 
that for characteristic function games, efficiency is achieved on every equilibrium 
path. In contrast to these studies, members of a club in our model cannot write bind-
ing contracts; in other words, they cannot formally provide commitment to members 
within or outside the club they belong to.

Anesi and Seidmann (2015) studied a dynamic committee voting model in which 
committee members decide on the division of a pie. They employed Markov Per-
fect Equilibrium concept to demonstrate the existence and uniqueness of equilib-
rium payoffs. Using two different voting rules, they analysed whether the entire pie 
is divided among a minimal winning majority and whether the equilibria are Pareto 
efficient. The logic underlying the equilibrium construction in our paper is reminis-
cent of Anesi and Seidmann (2015), but the voting-game structure of their extensive 
form is different from ours. In particular, their construction relies on the fact that 
as soon as a winning coalition reaches an agreement, all players are “stuck” with 
that absorbing state. This is similar to our construction, where players are stuck in 
dynamically stable state (optimal or suboptimal) once it has been reached on the 
equilibrium path. However, unlike their voting game structure, in our club-forma-
tion context, once a club reaches an agreement (even on the equilibrium path), other 
players can still form clubs, and the subgame that starts after the formation of that 
club is strategically different from the subgame that started in the previous period. 
Moreover, due to the different context, their primary arguments on efficiencies are 
based on comparing the outcomes of unanimity games with those of non-unanimity 
games, while our main focus is on identifying the long-term inefficiencies that arise 
in the dynamics of club formation games.

Arnold and Wooders (2015) studied a dynamic club formation game where the 
mobility of players is modelled explicitly, and players are myopic. In their model, 
there is no restriction on how clubs are formed and dissolved, in the sense that play-
ers simultaneously choose locations/clubs, and individuals who choose the same 
location or club form a club. The result is that existing members of a club cannot 
restrict further entry. Therefore, an equilibrium fails because of the indivisibility 
problem: when the population size is not an integer multiple of the optimal size 
club, the remaining individuals who are not members of optimal sized club prevent 
the process from settling down. To solve this, they restrict attention to approximate 
Nash club equilibrium. We depart from this and emphasize on forward looking play-
ers and follow a different approach to restrict entry by introducing unanimity rules 
within a club. This formulation allows us to investigate equilibria in which players 
rationally avoid forming optimal sized clubs.

Our model is a simple version of the dynamic club good game analysed by, 
among others, Roberts (2015) and Barbera et al. (2001). The former article consid-
ers voting by majority rule, and individuals are ordered according to single-crossing 
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preferences, meaning individuals have different preferences over the size of the club 
depending on the order. The later article proved existence of a pure strategy perfect 
equilibrium for finite horizon games in which any member of the club can vote to 
include a non-member/s unilaterally and the utility of the players depends on the 
stream of the members included in the club. Even though these models incorporate 
more complex elements of club formation process and provide many useful insights, 
a model like ours is much needed to analyse the emergence of clubs in a relatively 
simple setting of homogeneous preferences over the size of the club without the fac-
tors at play considered in the above mentioned papers.

3  The model

In this section, we introduce the model of club formation. There are n identical indi-
viduals denoted by N ≡ {1,… , n} with n ≥ 3 . The players are indexed by i. A club S 
is a non-empty subset of players. We write s ∈ N as the size of club S or the number 
of members of S. A club structure, � is partition of N. Let Π be the set of all club 
structures. For any non-empty subset of K of N, the set of partitions of K is denoted 
by ΠK , with typical element �K.

The focus of this paper is on the size of the club; so, we assume that the each 
individual’s preferences do not depend on the identity of the members of her club, 
but only on the size of the club. An individual who belongs to club S gains a per-
period payoff of v(s).3 For each i ∈ N and each � ∈ Π , define vi(�) as vi(�) = v(s) 
where i ∈ S ∈ � and s = |S| . We assume that v is strictly concave and single-peaked. 
This implies that there exists an optimal club size for each individual.

Let P be the set of permutations of N and N ≡ 2N⧵{�} . A rule of order � ∈ Δ(P) 
is an exogenous protocol, where � determines the order of moves of proposers at the 
beginning of each period t in the sequential game of club formation. Suppose that 
Nature chooses the sequence of proposers (�1,… , �n) , then each agent is chosen as a 
proposer exactly once, but her order in the sequence is randomly chosen by Nature 
in each period.

In each period t = 1, 2..., T  (where T may be infinite) the sequential game of club 
formation proceeds as follows. The first proposer, �1 , starts the game by propos-
ing to form a club S ∋ �1 or passes. If �1 proposes S to which she belongs then all 
i ∈ S simultaneously decide whether to accept or reject �1 ’s proposal. If all members 
accept, the members of S form a coalition and each member then incurs a positive 
cost of forming a club, denoted 𝜀 > 0 , in that period and the period ends. The simul-
taneous move is considered for the ease of writing responders’ strategies.4 It has no 

3 Buchanan (1965) assumed that there are n identical individuals, with utility represented by U(x, s, G), 
where x is the private good consumed, s is the number of club members, and G is the provision of the 
club good. Utility increases in x and G, and decreases in s (congestion from overcrowding).
4 The significance of sequential versus simultaneous moves lies in when a responder chooses to accept 
or reject a proposal. A responder is pivotal when her rejection changes the outcome, while she is non-
pivotal when she would accept regardless. In sequential moves, the responder accepts if all prior players 
have done so. In simultaneous moves, her choice depends on others’ strategies: if others reject, she is 
indifferent, but if all accept, she does too.
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implications on the results as we restrict our attention to those equilibria in which 
no player uses weakly dominated strategy as established by Bernheim (1984) and 
further supported by Milgrom and Roberts (1991).5

Note that the cost of forming a new club could, in principle, depend on the size of 
the club but, here, we only introduce this cost as a tie breaking device. Therefore, we 
assume this cost to be given and fixed. If any i ∈ S rejects the proposal or the pro-
poser passes then the next proposer, �2 , makes a proposal S� ∋ �2 or passes. The stage 
game then proceeds as before, until a new club has been formed or the last proposer 
has proposed.6 The next period then starts and the game proceeds with the first pro-
poser in the order selected by Nature. Finally, all agents seek to maximise their aver-
age discounted per-period payoff, and share a common discount factor � ∈ [0, 1).

Thus, at the end of each period t, we obtain a coalition structure �t , which con-
tains: (i) a new club (possible empty) that has been formed in the current period; (ii) 
clubs in �t−1 that have not been affected by the moves in the current period (none 
of their members have successfully proposed or agreed to form another club); and 
(iii) the broken clubs (one or more whose members has left the club to join the new 
club). We assume that members of the broken club remain in their old club after 
some of the members have left.

Period t starts with the club structure obtained from the last period, t − 1 . In any 
period t, the club structure from the last period, �t−1 , can be altered at most once. 
Thus, when a player i gets to move, the club structure from the last period is intact 
and she has the opportunity to change it, either as a proposer or as a respondent. 
Hence, the current coalition structure for an active player i in period t is �t−1 . The 
above set up implies that in each period, only one club is formed, if at all. In any 
period t, if all the proposers pass or if all the proposals are unsuccessful then no club 
is formed in that period. The assumption that maximum of one club can be formed 
in each period is for expositional purposes and our results do not depend on this.7

A history at any stage of the game is a complete list of all proposals, acceptances 
and rejections that took place in all the previous periods and stages. A player is 
called active at history ht at date t if it is her turn to move after history ht . We assume 
that all players possess perfect recall and that the game is of perfect information. At 
any stage, each player observes and recalls everything that has previously transpired 
in the game, which we call a complete history.

5 By imposing stage-undominated strategies, we eliminate situations where non-pivotal players vote 
against their dynamic preferences, ensuring more consistent voting behavior. This also excludes uninter-
esting equilibria in which all responders reject new proposals, preventing the formation of any new club 
with three or more members. As a result, the focus shifts to more meaningful outcomes, where respond-
ers’ decisions align with their evolving preferences, promoting relevant and stable group formation.
6 The period ends when either a club is formed or the last proposer has proposed.
7 This is just for the ease of clarity to show how a club forms. We could, in fact, allow for multiple clubs 
to form in each period and the results will still hold. The reasoning behind this is the fact that what mat-
ters is how many members are there in each club, not who is in the club. If an individual can successfully 
form a desired club in period t > 1 , then she could also form that club in period 1 if it is possible and she 
gets the opportunity. This would result in same equilibrium club structure with the only difference that 
who belongs to those clubs might differ depending on the protocol.
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3.1  Equilibrium and strategies

Note that games with infinitely repeated interactions and patient players may have 
many equilibrium outcomes (cf. the folk theorem). It is therefore easy to find an 
equilibrium in which clubs of inefficient sizes form. Following the lead of Acemo-
glu et al. (2012), we therefore use the Markovian solution concept. Specifically, a 
player’s strategy can, generally, depend on the complete history, i.e. everything that 
has transpired in all stages of all previous periods; but we focus on Markovian strat-
egies (cf. Maskin and Tirole (2001)). We will therefore shed unneeded generality 
and only provide a formal definition for such strategies.

The definition of Markov strategies begins with the set of payoff-relevant states, 
which in this case are of two types: proposer states, and respondent states. A pro-
poser state is a pair of a club structure � ∈ Π and a list of remaining proposers 
(�
�
,… , �n) ∈ N� , for some � ∈ {1,… , n} . (We identify �

�
 as the identity of the pro-

poser, whose turn it is to make a proposal). A responder state is a pair of a proposer 
state (�, ((�

�
,… , �n)) and a proposal to form a club S ∈ 2N.

For a player who is a proposer and active at history ht , the only payoff-relevant 
variables of the history are the current coalition structure � , and the remaining 
sequence of proposers; for a respondent, the payoff-relevant variables are the current 
coalition structure, the remaining sequence of proposers, and the proposal just made 
to her, S. (We interpret S = � as passing). The sets of proposer and responder states 
are denoted by Kp and Kr respectively, with generic element �.

Let Kp

i
 be the set of proposer states in which it is player i’s turn to make a proposal 

i.e., Kp

i
≡
{(

�, (�
�
,… , �n)

)
∈ Kp ∶ �

�
= i

}
 ; and let Kr

i
 be the set of responder states 

in which i has to respond to a proposal i.e., Kr
i
≡
{(

�, (�
�
,… , �n), S

)
∈ Kr ∶ S ∋ i

}
 . 

A (stationary) Markov strategy for player i ∈ N is a pair �i = (�i, �i) of a proposer 
strategy and a responder strategy, where �i ∶ K

p

i
→ 2N , and �i ∶ Kr

i
→ { yes , no } . 

Note that strategy profile �i is stationary in the sense that it only depends on history 
via payoff-relevant states.

A stationary Markov perfect equilibrium (SMPE) is a subgame perfect equilib-
rium in which all players use stationary Markov strategies. We follow the standard 
approach of concentrating throughout on equilibria in stage-undominated responder 
strategies, i.e., those in which, at any response stage, no player uses a weakly domi-
nated strategy. In particular, we are interested in finding pure strategy SMPEs. 
Henceforth, any reference to ‘equilibria’ is to the pure strategy SMPEs in stage-
undominated responder strategies.

Optimality or efficiency. In our analysis of sequential club formation, we define 
optimality as follows: optimal club structures are the ones which have all possi-
ble optimal-sized clubs; on the other extreme, sub-optimal club structures are the 
ones in which none of the clubs are of optimal size. In the literature of club goods 
or public goods, it is not clear whether efficiency or Pareto-optimality should be 
viewed from the point of social welfare or the welfare of the representative member 
of a club [see Helpman and Hillman (1977), Ng (1973, 1978)]. As a first step in this 
paper, we refrain from the complete welfare analysis of equilibrium club structure 
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and follow the approach of Buchanan clubs to find optimal club structure, so we use 
the word ‘optimal’ even though we are not using it in the sense of welfare analysis.8 
In some instances, we will comment on whether an equilibrium club structure is 
Pareto-optimal.

4  Benchmark: short‑run interactions

In this section we study the game with finite number of periods, i.e. 1 ≤ T < ∞ . The 
main purpose of this benchmark is to characterize equilibria of the finite game, so as 
to compare equilibrium outcomes in the finite and infinite games. We start by study-
ing the special case of T = 1 period.

We know that v is strictly concave and let s∗ = min{n, argmaxs∈ℕ v(s)} be the opti-
mal club size. Throughout the paper we assume that v(s) > v(s�) ⇒ v(s) − 𝜀 > v(s�) . 
This assumption, plus the concavity of v imply that

where 𝜀 > 0.

Proposition 1 Let k∗ be implicitly defined by k∗s∗ ≤ n ≤ (k∗ + 1)s∗ . If T = 1 then in 
any subgame perfect equilibrium, the following holds: (i) no club of size-s∗ breaks 
up; and (ii) if at the start of the period there are fewer than k∗ clubs of size-s∗ then an 
additional club of size-s∗ forms.

The proof of proposition 1 is in the Appendix. We use the standard backward 
induction argument to prove the claims made. The way it proceeds is that the last 
proposer will either form an optimal sized club if she is already not a member of one 
and there are enough individuals left out of the optimal sized club. If the last pro-
pose is already a member of optimal sized club, then it is best for her to remain in 
her club: she already has highest possible payoff and this is the only payoff she cares 
about. Same reasoning is applied to respondents. If a respondent is a member of an 
optimal sized club, then she remains in that club. Given this reasoning, no optimal 
sized club will dissolve after the last proposer has proposed. Moving back to the 
best response of the second last proposer and the respondents, same reasoning can 
be applied to their responses because they can anticipate that no optimal sized club 
will dissolve until the end of the game. Thus, no optimal size club break. Given this, 
individuals will form an optimal sized if they have the opportunity because they can 
anticipate that club will remain in place.

The Proposition 1 shows that, in a single period game, an optimal sized club 
forms if it is possible to form one, i.e. if s∗ or more than s∗ individuals do not belong 
to a club of size-s∗ at the start of the period. It also shows that members of optimal 

(1)v(s∗) − 𝜀 > v(s) ∀s ≠ s∗

8 In deriving the Pareto-optimality conditions, Buchanan equilibrium clubs maximise the benefits of a 
representative club member rather than maximising the total net benefit of the whole population.
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sized club never break their clubs (pass if they are proposer or reject any proposal 
if they are respondents). This implies that if k∗ optimal sized clubs already exist at 
the start of the game then k∗ clubs would remain intact until the end of the game. 
Note that size-(n − s∗k∗ ) is the next best club after size-s∗ club since v is strictly con-
cave. Then, Proposition 1 also implies that if k∗ optimal sized clubs exist at the start 
of the game then the individuals who are not in optimal sized club form a club of 
size-(n − s∗k∗ ) if they already do not belong to size-(n − s∗k∗ ) club; otherwise every 
proposer passes. Individuals know that they will get payoff only once and therefore 
they strive to get the highest payoff, i.e to form or join an optimal sized club as soon 
as they get an opportunity. If they are already in optimal sized club then they can 
anticipate that none of the members of their club would break their club because 
optimal sized club provide them the highest payoff since forming new clubs incurs a 
cost. We now consider the more general case of T > 1 finite.

Proposition 2 If T is finite then the following holds in each period: (i) no club of 
size-s∗ breaks up; and (ii) if at the start of the period there are fewer than k∗ clubs of 
size-s∗ then an additional club of size-s∗ forms.

The proof of proposition 2 is in the appendix. Proposition 2 implies that in every 
period an optimal sized club would form if it is possible to form one and that no 
existing optimal sized club would break until the end of the game. Individuals can 
anticipate that optimal sized clubs remain intact until the end of very last period if 
they form or join an optimal sized club. Then, from there onwards they can get the 
highest payoff in every period. Thus, if there are enough periods to form all optimal 
sized clubs then there will be k∗ clubs of size-s∗ in the stable club structure.

As mentioned before, the cost of forming a new club is assumed to be positive as 
a tie breaking rule. The essence of our main results remains valid even if � = 0 . To 
demonstrate Proposition 2 if � = 0 , we will focus exclusively on SMPEs to eliminate 
any trigger strategies.9 Given that we concentrate on Markov strategies, assume � = 0 . 
In the last period, there exists at least one club of size s∗ . If no optimal sized club 
exists in the last period, then s∗ individual will successfully form one. If all or some 
optimal sized clubs exist, then if a new club forms it must be of size s∗ . The players 
in the second last period anticipate that they will either be in s∗ club or some other 
club s� ≠ s∗ . Then, in the second last period, if a club is successfully formed, it must 
be of size s∗ because v(s∗) + 𝛿[𝛼v(s∗) + (1 − 𝛼)vs

�

] > v(s
��

) + 𝛿[𝛼v(s∗) + (1 − 𝛼)vs
�

] 
where � is the probability of ending up in optimal sized club. Note that a player’s 
strategy and her being in optimal club cannot guarantee that she will remain in opti-
mal club in the next period. Some members of her current club might break the club 
and form a new optimal sized club. However, she knows for sure that she will either 
be in s∗ or s� ≠ s∗.

9 Even without Markov strategies, the core results would still hold. The difference is that in some equi-
libria, players might use trigger strategies to support forming sub-optimal club except in the last period, 
when it will eventually break down. Therefore, sub-optimal club structure is not sustainable in the finite 
period game.
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Corollary 1 Let m∗ (possibly 0) be the number of size-s∗ clubs at the start of period 
1. Then, at the end of period t = (k∗ − m∗) there exist k∗ clubs of size-s∗.

This is a direct consequence of Proposition 2. We know from Proposition 2 that 
a club of size-s∗ never breaks. Then, after all the optimal-sized clubs are formed, all 
the proposers who are members of a size-s∗ club would pass when given the oppor-
tunity to propose, and all the respondents who are members of a size-s∗ club reject 
any offer to form a new club. Thus, all clubs at the end of period k∗ − m∗ are optimal 
sized, and there are some left over individuals who cannot form an optimal-sized 
club because there are not enough individuals left to form one. Also, for any initial 
club structure, the protocol and the proposer and responder optimal strategies deter-
mine the equilibrium, but not the outcome, i.e., the club structure. In other words, 
the stable club structure remains the same in every equilibrium.

The analysis of the finite-horizon game implies that the outcome (number of 
clubs and club sizes) of all possible equilibria is unique. Depending on the protocol 
and the initial club structure, some individuals will end up in an optimal sized club 
and those who did not get the opportunity to become member of an optimal sized 
club would end up in a sub-optimal sized club. Agents anticipate that at the end of 
the game, there will only be two types of clubs: one club of size-(n − m∗s∗ ) and rest 
of the clubs would be of size-s∗ . The finite horizon allows members of the optimal 
sized club to implicitly “commit” not to break their club if agents are aware that the 
process of club formation ends at some point. Note that outcome in the finite game 
is also Pareto optimal.

The club structure at the end of period k∗ − m∗ would have k∗ clubs of size s∗ . 
In the next period, players who are not in a size-s∗ club would form a club among 
themselves, i.e. a club of size-(n − k∗s∗ < s∗ ), if they already do not belong to a club 
of size-(n − k∗s∗ ): a club of size-(n − k∗s∗ ) is the next best club after a size-s∗ club. 
Then, the club structure at the end of period k∗ − m∗ + 1 would have one club of size-
(n − k∗s∗ ) and k∗ clubs of size-s∗ . This club structure would never change because 
we know from Proposition 2 that size-s∗ clubs never break, and size-(n − k∗s∗ ) is the 
next best club after size-s∗ club. All the possible stable club structures of the finite 
period game have the maximum possible number of clubs of optimal size.

5  Long‑run interactions: T = ∞

In this section, we analyse how clubs of inefficient size may form in the infinite 
horizon game. We observed in Section 4 that, in the case of short-term interactions, 
all the possible optimal-sized clubs form after a finite number of periods and never 
dissolve. Once all the optimal-sized clubs have been formed, the rest of the agents 
form the next best club and remain in that club forever. As a result, the equilibrium 
stable club structure does not change once all the optimal-sized clubs and next best 
club have been formed. Thus, optimality (stable optimal club structure) is achieved 
in the case of finite periods. The objective of this section is to show that this may not 
hold if there is no deadline. In particular, fear of exclusion may appear endogenously 
in an equilibrium. If agents are far-sighted then fear of exclusion from a relatively 
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better club can make agents behave differently as compared to the case of finite peri-
ods. A change in behaviour, in turn, might change the club structure obtained, since 
membership in a club is itself influenced by the behaviour of agents.

5.1  (Sub‑optimal) dynamic stable club structure

Now we characterise the equilibria of this game. To this end we will use the 
approach of Acemoglu et al. (2012) to define dynamically stable club structures.

Definition 1 We say that a club structure � ∈ Π is dynamically stable if there exists 
a threshold 𝛿 ∈ (0, 1) such that for all 𝛿 ∈ (𝛿, 1) , there exists a SMPE in which the 
following holds: (i) � is formed after a finite number of periods with positive prob-
ability on the equilibrium path; and (ii) whenever � is formed (on or off the path), it 
remains in place in all future periods.

In other words, � is dynamically stable if it does not change once it has been 
formed in some period. Our objective in this section is to show that there exists 
a dynamically stable club structure � which only consists of clubs of sub-optimal 
size, i.e. where none of the clubs are of size-s∗ . We now state the main result of this 
section.

Now, we state Proposition 3 and provide a proof and intuition for it. We will use 
the following notation to prove the Proposition. For any integer s̄ < n , let m(s̄) be 
the maximum number of clubs of size-s̄ that can possibly be formed, i.e. m(s̄) ∈ ℕ is 
implicitly defined by m(s̄)s̄ ≤ n ≤ (m(s̄) + 1)s̄.

Proposition 3 For any s̄ ∈ ℕ that satisfies m(s̄)s̄ < n and v(n − m(s̄)s̄) < v(s̄) , there 
is a threshold 𝛿 < 1 such that, if 𝛿 > 𝛿 then there exists an equilibrium in which the 
following holds in each period: (i) no club of size-s̄ ever breaks up; and (ii) if at the 
start of any period there are fewer than m(s̄) clubs of size-s̄ then an additional club 
of size-s̄ forms.

For notational ease, let m(s̄) ≡ m̄ . In Proposition 3 we show that the dynamic sta-
ble structures that exhibit FOE can be obtained with stationary strategies. In these 
stable club structures, members of size-(n − m̄s̄) are excluded from size-s̄ clubs. 
We proved through Propositions 1 and 2 that every possible stable club structure of 
the finite horizon game has as many optimal sized clubs as possible. Proposition 3 
shows that the result of the finite horizon game might not hold in the infinite horizon 
game where it is possible to generate equilibria in which none of the clubs in the 
stable club structure are of optimal size. We provide the intuition for this result in 
Sect. 6 and discuss why this result cannot be replicated in the finite horizon game.

Proof The proof of Proposition 3 is constructive and proceeds in four steps. In Step 
1, we construct a function Wi for each player i, and establish some properties which 
will be useful in the next steps. Step 2 defines a stationary Markov strategy � . Step 
3 defines the continuation values; and finally, in Step 4 and 5, we show that � is an 
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SMPE, thus completing the proof of the Proposition. Note that s̄ ≤ s∗ is consistent 
with the premise and some s̄ > s∗ may also satisfy the premise.

Step 1: Preliminaries. We begin with the construction of n real functions 
W1,… ,Wn . The domain of each Wi is the union of the set of proposer states Kp and 
the set of coalition structures Π : K ≡ Kp ∪ Π.

To define Wi , i ∈ N , we need to establish some additional notation. First define 
the order ⊲i on N ⧵ {i} as follows: if i = 1 or i = n , then ⊲i =< , where < is equiva-
lent to strictly less than; otherwise

Proposer i proposes to other agents to form a club as defined by the order ⊲i . Now 
for each club structure � ∈ Π , let Ā(𝜋) be the set of agents who are members of club 
of size-s̄ , that is

For each i ∈ N and � ∈ Π , we define Si(�) ∈ 2N as the club comprising the first 
s̄ − 1 agents (according to order ⊲i ) in N ⧵ Ā(𝜋) if n − ||Ā(𝜋)|| ≥ s̄ , and as N⧵Ā(𝜋) 
otherwise.

We are now in a position to define Wi(k) for every k ∈ K . To this end, consider 
the following path of the game that begins with proposer state k =

(
�, (�

�
,… , �n)

)
 , 

i.e., player �
�
 is about to move in a proposal stage at which the current club structure 

is � and the list of remaining proposers is (�
�
,… , �n) : 

1. In any proposal stage at which she is called upon to propose, player i behaves as 
follows: 

(a) If i belongs to Ā(𝜋) , or if the current club structure comprises m̄ size-s̄ clubs 
and one size-(n − m̄s̄) club, then she passes.

(b) Otherwise she proposes to form club Si(�).

2. All proposals made (on this path) are successful.

It is readily checked that on this path, the game reaches a dynamically stable club 
structure after a finite number of rounds, which comprises m̄ size-s̄ clubs and one 
club of size-(n − m̄s̄) . Let Wi(k) be the expected payoff to player i resulting from 
this path (where expectations are taken over the distributions of proposer orders 
in each period).

To complete the definition of Wi , we must define the values it takes when Nature 
has not yet selected the sequence of proposers and k contains some coalition struc-
ture � ∈ Π . In this case, we set Wi(�) ≡ �

�

[
Wi

(
�, (�1,… , �n)

)]
 , where the expecta-

tion is taken over the set of proposer lists (�1,… , �n) which Nature may select at the 
start of any period using probability distribution �.

i + 1 ⊲
i
… ⊲

i
n ⊲

i
1 ⊲

i
2 ⊲

i
i − 1.

Ā(𝜋) ≡ {i ∈ N ∶ i ∈ S for some S ∈ 𝜋 such that s = s̄}.
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Lemma 1 For each i ∈ N , let Wi ∶ K → ℝ be defined as above. Then there exists 
𝛿 ∈ (0, 1) such that the following holds for all 𝛿 > 𝛿 : 

 (i) W̄ ≡ max
{
Wi(𝜋) ∶ i ∉ Ā(𝜋)

}
< v(s̄) − 𝜀;

 (ii) (1 − 𝛿)v(s∗) + 𝛿Wi(𝜋) < v(s̄) − 𝜀 , for all i ∈ N and � ∈ Π such that i ∉ Ā(𝜋);
 (iii) Wi(k) ≤ v(s̄) , for all k ∈ K and i ∈ N.

The proof of Lemma 1 is in the appendix. Through this Lemma we establish 
some properties of Wi that we will use in the rest of the proof. It essentially speci-
fies what values Wi can take if it follows a path defined in (a) and (b). These 
values are provide for different conditions and depending on the discount factor 
being significantly high. These are inequalities between the maximum values of 
Wi on the path and the deviation values.

Step 2: Construction of the strategy profile � = (�1,… , �n) . For each player 
i ∈ N , strategy �i prescribes her the following behaviour. At any proposer state (
�, (�

�
,… , �n)

)
∈ Kp : 

(a) If i belongs to Ā(𝜋) , or if the current club structure comprises m̄ size-s̄ clubs and 
one size-(n − m̄s̄) club, then she passes.

(b) Otherwise she proposes club Si(�).

Note that the club structure at the start of the period can be altered at most 
once per period. For every club structure � ∈ Π and any proposal (offered club) 
S ∈ 2N⧵{�} , let �S denote the coalition structure obtained at the end of the period 
if S forms. At any responder state 

(
�, (�

�
,… , �n), S

)
∈ Kr : 

(c) If i belongs to Ā(𝜋) , then she rejects proposal S.
(d) If i does not belong to Ā(𝜋) , and either |S| = s̄ or 

[
|Ā(𝜋)| = m̄s̄& S = N⧵Ā(𝜋)

]
 , 

then she accepts proposal S.
(e) Otherwise, she accepts the proposal if and only if: 

 where s0 is the size of the club i belongs to in �.

Note that � defined above depends on Kr or Kp which only contain the payoff-
relevant part of the history; so � is Markovian.

(1 − 𝛿)v
(
|S|

)
+ 𝛿W

i
(𝜋

S
) >

{
(1 − 𝛿)v(s0) + 𝛿W

i
(𝜋) if � = 1,

W
i

(
𝜋, (𝜄2,… , 𝜄

�
)
)

if � ≥ 2,
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Step 3: Continuation values. We now define the continuation values from play 
according to the strategy profile define above. Let V�

i
(�) be the continuation values 

of player i from play that begins in state � (according to �).10

From conditions (a) and (c) in the definition of � , agents in Ā(𝜋) always pass 
when they are proposers and reject when they are responders. As a consequence, no 
existing club of size-s̄ will ever break up. Note that (a) and (b) in Step 2 correspond 
to (1) in the path defined in Step 1. Similarly, (c) and (d) in Step 2 correspond to (2) 
in the path defined in Step 1. We know from Step 1 that, for any k ∈ K , the payoff 
of player i is Wi(k) if she plays according to (a)–(d). Hence, conditions (a)–(d) imply 
that V�

i
(�) = Wi(k) for i ∈ N , where K ≡ Kp ∪ Π and � is either a proposer state or 

respondent state.

Step 4: Verification that players do not accept stage-dominated proposals. Con-
sider an arbitrary responder state, in which a responder has been proposed to form 
club S. Then, V�

i
(�) = Wi(k) , together with (e) in Step 2 ensures that each responder 

accepts the proposal S only if V𝜎
i
(S ∣ 𝜅) > V𝜎

i
(s0 ∣ 𝜅) , and only rejects proposal S if 

V�
i
(S ∣ �) ≤ V�

i
(s0 ∣ �).

Step 5: Verification that � is an SPE. Let 𝛿 be defined as in Lemma 1 and, from 
now on, assume that 𝛿 ≥ 𝛿 . We know from Step 2 that � is a stationary Markov strat-
egy profile. To complete the proof, therefore, it remains to establish that � is a sub-
game perfect equilibrium. By the One-shot Deviation Principle, it suffices to check 
that there is no state at which an agent has a profitable deviation from the prescribed 
strategy profile.

One-shot deviations at proposer states. We begin with proposer states. Take an 
arbitrary state k = (�, (j1,… , jl)) and let i be the agent whose turn it is to propose.

(a) We show that there is no profitable deviation from (a), as defined in Step 2.
a.1 Consider first the case when i ∈ Ā(𝜋) . Strategy � prescribes her to pass. If 

she does so then, from (c), her current club will never be dissolved. Hence, her total 
discounted payoff from playing according to � is v(s̄) . By deviating from � , either 
(i) she makes an unsuccessful proposal, in which case her payoff is v(s̄) , or (ii) she 
forms another club of size-s̄ , so her payoff is (1 − 𝛿)(v(s̄) − 𝜀) + 𝛿v(s̄) , or (iii) she 
successfully proposes S with s ≠ s̄ . In cases (i) and (ii), she does not have a profit-
able deviation. In case (iii), she dissolves her size-s̄ to form a club of a different size. 
The payoff she obtains by doing so is bounded above by

where the inequality follows from our assumption that 𝛿 ≥ 𝛿 and Lemma 1(ii). 
Hence, proposer i cannot profitably deviate from �.

(1 − 𝛿)(v(s∗) − 𝜀) + 𝛿W̄ ≤ v(s̄)

10 Note that the sets of proposer and responder states are denoted by Kp and Kr respectively, with generic 
element �.
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a.2 We now consider a case when i ∉ Ā(𝜋) and � is such that there are m̄ 
clubs of size-s̄ and one size-(n − m̄s̄ ) club. Strategy � prescribes i to pass. If she 
passes then her payoff is v(n − m̄s̄) . If she deviates, she can only make a suc-
cessful proposal to agents who are not in Ā(𝜋) , since all agents in Ā(𝜋) reject 
all future proposals. So, by deviating, i can only be in clubs of size s� ≤ n − m̄s̄ . 
Since v(s�) ≤ v(n − m̄s̄) , there is no profitable deviation.

(b) We show that there is no profitable deviation from (b) defined in Step 2. 
We consider two cases: when |Ā(𝜋)| < m̄s̄ and when |Ā(𝜋)| = m̄s̄.

b.1 If |Ā(𝜋)| < m̄s̄ , then Si(�) is the first s̄ − 1 successors of i in N⧵Ā(𝜋) . If she 
offers Si(�) then, from (d), she successfully forms a club of size-s̄ ; so her payoff 
is v(s̄) − 𝜀 . By deviating from � , either (i) she successfully forms another club S 
with s ≠ s̄ , or (ii) she makes an unsuccessful proposal or passes. In case (i), her 
payoff is v(s̄) − 𝜀 . In case (ii), her payoff is

where s0 is the size of her current club. If � = 1 , then from Lemma 1(ii) her payoff is 
bounded above by (1 − 𝛿)v(s∗) + 𝛿W̄ ≤ v(s̄) − 𝜀 . If � ≥ 2 , then from Lemma 1(i) her 
payoff is bounded above by W̄ ≤ v(s̄) − 𝜀 . Hence, i has no profitable deviation.

b.2 Let |Ā(𝜋)| = m̄s̄ such that i ∈ S and s < n − m̄s̄ . Then, if she plays accord-
ing to � , she successfully forms Si(�) such that i ∈ Si(�) and si(𝜋) = n − m̄s̄ . Her 
payoff then is v(n − m̄s̄) − 𝜀 . If she deviates, she can only make a successful pro-
posal to agents who are not in Ā(𝜋) , since all agents of Ā(𝜋) reject all the future 
proposals. So, by deviating, i can only be in clubs of size s� ≤ n − m̄s̄ . Since 
v(s�) − 𝜀 ≤ v(n − m̄s̄) − 𝜀 , she has no profitable deviation.

One-shot deviations at responder states. We now turn to responder states.
(c) We show that there is no profitable deviation from (c) defined in Step 2. 

Let i ∈ Ā(𝜋) . Strategy � prescribes her to reject any offer. If she rejects, then we 
know from the equilibrium construction that her current club will never dissolve. 
Thus, her payoff is v(s̄) . If she rejects, she gets V�

i
(�) . From Step 3 we know that 

Wi(k) = V�
i
(�) . We also know from Lemma 1(iii) that vi(s̄) ≥ Wi(k) = V𝜎

i
(k) for 

all k ∈ K . Hence, i cannot profitably deviate.
(d) We show that there is no profitable deviation from (d) defined in Step 2.
(d.1) Suppose that i ∉ Ā(𝜋) and that i is offered S ∋ i with s = s̄ . Strategy � 

prescribes her to accept the offer. If she does so then her payoff is v(s̄) − 𝜀 . By 
deviating to reject the offer, her payoff is

If � = 1 then her payoff is bounded above by (1 − 𝛿)v(s∗) + 𝛿W̄ ≤ v(s̄) − 𝜀 . If � ≥ 2 , 
then from Lemma 1(i), her payoff is bounded above by W̄ < v(s̄) − 𝜀 . Hence, i can-
not profitably deviate.

(1 − �)v(s0) + �W
i
(�) if � = 1,

W
i

(
�, (�2,… , �

n
)
)

if � ≥ 2,

(1 − �)v(s0) + �W
i
(�) if � = 1,

W
i

(
�, (�2,… , �

n
)
)

if � ≥ 2,
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d.2 Suppose that i ∉ Ā(𝜋) , |Ā(𝜋)| = m̄s̄ and that i is offered S ∋ i such that 
s = n − m̄s̄ . Strategy � prescribes her to accept the offer. Then, from the same 
argument as in (b.2), she has no profitable deviation.

(e) Strategy � prescribes player i to accept the offer S iff the expression on 
the LHS is strictly greater than the expression on the RHS of the inequality. The 
expression on the LHS is the payoff player i gets if she accepts offer S, and the 
expressions on the RHS are the payoffs she gets if she rejects offer S for � = 1 and 
� ≥ 2 . Thus, i cannot profitably deviate from accepting offer S if the expression 
on the LHS is strictly greater than the expression on the RHS.   ◻

Corollary 2 Let s̄ ∈ ℕ that satisfies m(s̄)s̄ < n and v(n − m(s̄)s̄) < v(s̄) , then any club 
structure that comprises m̄ clubs of size-s̄ and one club of size-(n − m̄s̄ ) is dynami-
cally stable.

This is a direct consequence of Proposition 3. Note that there is a multiplicity 
of equilibria and hence there are also other equilibria which have properties dif-
ferent from the one defined above. If s̄ < s∗ then the premise in Proposition 3 is 
satisfied without any condition. If s̄ > s∗ , then we need to impose the condition 
that v(n − m̄s̄) < v(s̄) for the condition in the premise to be satisfied.

The construction of inefficient equilibria is straightforward and intuitive, and 
it relies more on the framework of the analysis than on the mathematics. The 
features of the model that are important in the characterization of the inefficient 
SMPEs are: that the individuals are homogeneous in their preferences in that they 
all care only about the size of the club they belong to; that utility function v is 
strictly concave and single peaked; and a high enough discount factor and a mild 
condition on the existence of different sized clubs in the stable state. In particular, 
that each player can either be in a bad club or a good club eventually.

In the club formation context, it is important that members can form new club 
in the next or future periods even if an optimal/good club has been just formed 
and that the unanimity is required to form a new club. In the club formation pro-
cess, it turns out to be important that the members cannot commit not to break 
their current clubs or agreement. Even if they deviate, the need for unanimous 
agreement would prevent breaking up their current good club. The construction 
then relies on player specific punishment: any player who successfully form an 
optimal sized club is punished with a positive probability of ending up in a bad 
sized club. Of course, the protocol will dictate who will in good club and in bad 
club, but it does not influence the number of optimal/good club in the stable state. 
While a complete characterization would be desirable, our purpose here is to pro-
vide some support for a class of dynamic repeated interactions and to suggest 
that such an analysis will reveal, at time strikingly, different behaviour and hence 
equilibrium outcomes.

The following example illustrates Definition 1 and demonstrates the mecha-
nism behind our equilibrium construction. This example provides some intuition 
for the general result in Proposition 3.
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Example 1 Let N = {1, 2, ..., 8} and v(s) = 10s − s2 for all i ∈ N . Hence, the opti-
mal club is of size 5. Take for example a club structure � = {S1, S2, S3} such that 
s1 = s2 = 3 and s3 = 2 . Let Ā be the set of players who are in a club of size 3 and 
let X = [1, 2, 3, 4, 5, 6, 7, 8] be a ternary relation. If � ≥ 8∕9 then the following strat-
egy profile forms a pure strategy SMPE in which � is a dynamically stable club 
structure:

• If proposer i belongs to a club of size 3 or � has been formed then she always 
passes, and otherwise proposes to the next two agents in X ⧵ Ā to form a club 
of size 3 if 8 − |Ā| ≥ 3 , otherwise proposes to next agent in X ⧵ Ā to form a 
club of size 2.

• Let s0 be the size of the current club of respondent i and s be the size of the 
club she has been offered. If s0 = 3 then i rejects any offer. If s0 ≠ 3 , and either 
s = 3 or |Ā| = 6 and s = 2 then she accepts the offer. Otherwise, she accepts 
the offer iff (1 − 𝛿)v(s) + 205𝛿∕10 > (1 − 𝛿)v(s

0
) + 205𝛿∕10.

The intuition is as follows. Even though the result would hold for any club struc-
ture, assume that the club structure at the start of the game is such that there 
exists one club of size 3 and one club of size 5. It is readily checked that the strat-
egy profile above leads to dynamically stable club structure � at the end of period 
2: one club of size 3 forms in the first period and one club of size 2 forms in the 
second period, and never changed thereafter.

Note that every player can end up in one of the two clubs in the long run and 
remains in that club forever: a “good club” (club of size-3) in which she receives 
21 in every period, and a “bad club” (club of size-2) in which she receives 16 
in every period. A club structure at the start of any period is either a stable club 
structure � or would ultimately lead to a stable club structure � . In the former 
case, player i’s expected discounted payoff is 21 if i is in a good club, and 16 other-
wise. In the latter case, player i receives (1 − �)v(s) in the current period and total 
discounted payoff from next period onwards is 9∕10 × 21 + 1∕10 × 16 = 205∕10 
(i belongs to a good club with probability 9/10: recall that Nature decides the 
order of moves). Her expected payoff is therefore (1 − �)v(s) + (�205∕10) , which 
is less than 21 for all values of s (recall that � ≥ 8∕9 ). The agents in good clubs 
would never want to leave their current club because of the fear of ending up in a 
bad club at some later stages of the game. (There is a positive probability that a 
member of a good club club ends up in a bad club if she decides to break her cur-
rent (good) club now to form an optimal sized club).

Thus, every agent i wants to minimise the chance of ending up in a bad club. 
In respondent stages, this includes rejecting any proposal if respondent i already 
belongs to a good club: even if the proposal is to form an optimal sized club, the 
respondent knows that optimal sized clubs are not sustainable and fears ending 
up in a bad club. It also includes accepting any proposal S ∋ i such that s = 3 
when i is not already in a good club. Any attempt by the members of a bad club to 
form a club which includes members of a good club would be unsuccessful; and 
any proposal to form a good club when enough agents are not in a good club is 
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successful. In the proposal stage, it is therefore optimal for player i to pass if she 
already is in a good club and/or the current club structure is � , and otherwise to 
propose a good club if enough agents are outside a good club, and to propose a 
club with the rest of the agents otherwise.

This example illustrates why the result in the infinite horizon game is different 
from that in the finite period game. In particular, it explains how and why there 
might be situations where none of the clubs which form are of optimal size in equi-
librium: any deviation to propose to form a optimal club would be either unsuc-
cessful or is not profitable, as the club structure would revert back to (sub-optimal) 
dynamically stable club structure � . The role of the discount factor is crucial to get 
this result. If the discount factor is small then the agents do not regard future payoff 
highly enough. Therefore, they would form an optimal sized club as soon as they 
have an opportunity because only the current period payoff really would matter; and 
forming optimal sized club would earn them the highest payoff. In conclusion, the 
above mentioned strategy profile fails to survive in equilibrium if agents’ discount 
factors are not high enough.

6  Implications

The analysis of dynamic club formation in infinite periods contrasts starkly with that 
of finite periods. In the finite period game, the optimal sized clubs form as long as 
there are enough agents left to form one; and that once an optimal club forms, it 
never dissolves. Players use backward induction to anticipate that once an optimal 
sized club forms, it does not dissolve until the end of the game. However, if the 
players are unsure about the sustainability of optimal sized clubs then they cannot 
always guarantee not to dissolve an optimal sized club.

The uncertainty mentioned above about the future leads to a natural lack of com-
mitment: if players, for some reason, are pessimistic about the stability of optimal 
sized clubs then they would not commit to stay in the optimal sized club, as it might 
hurt them in future (if they end up in the bad club). Note that commitment here 
does not mean that players can write binding contracts; this is mutually understood 
among the members of a club based on their beliefs and time horizon. Therefore, for 
the results in Sect. 5 to hold, it is important that players do not have the means to 
formally commit.

In Proposition 3, we prove the existence of and characterize a (dynamically) sta-
ble club structure in which none of the clubs need be of optimal size. This charac-
terization relies on the observation that sufficiently forward looking agents do not 
support a change which might ultimately lead to a situation in which they are worse 
off. Consider an equilibrium which prescribes clubs of size s̄ < s∗ . Agents who can 
make changes in the current period to get a higher return by forming an optimal 
sized club cannot guarantee that they will remain in that club. This is because they 
may believe (based on what other agents do) that the optimal sized club is not sus-
tainable in the future. Note that the agents who are currently in a bad club have high 
incentives to change the clubs: they know that if they are in a bad club and the stable 
state in reached, they will get stuck in the bad club forever. Those who immediately 
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gain by forming an optimal sized club now cannot refrain from taking decisions later 
that would hurt some of their fellow agents who made it possible to form an optimal 
sized club.

Based on players’ pessimistic views and their response to such views, a steady 
state will be reached at some point in time in which only clubs of two different sizes 
exist. Players strictly prefer to be included in the larger club, and therefore take 
advantage of an opportunity to join such a club, as they fear being excluded from 
such a club in the future. The presence of an inferior club in the stable state is a 
requisite condition for individuals to exhibit fear of exclusion. If this is not the case, 
players do not fear being excluded from sustainable (same size) clubs in the stable 
state: knowing that everyone would eventually end up in same size club, they could 
profitably deviate in the current period from forming sub-optimal sized to optimal 
sized clubs. Thus, in the absence of inferior clubs in the stable state, the strategy 
profile which prescribes players to form a sub-optimal sized club cannot survive in 
equilibrium.

Fear of exclusion (from a better sustainable club) is the main reason why players 
cannot assure that they will remain in the optimal sized club. This leads to two intui-
tive results. First, the stability of a club structure turns on whether there are enough 
players excluded from better clubs to jointly form such a club. It does not depend on 
whether players would prefer to be members of a club that is not in the structure. For 
instance, in Example 1, members of A and B can form a new club of size 5; but this 
club structure is not stable when the players fear exclusion. Second, a dynamically 
stable club structure can be inefficient, i.e. there might be another club structure 
whose payoff dominates the payoffs in the dynamically stable club structure. Again 
in Example 1, a club structure with one club of size 5 and one club of size 3 Pareto 
dominates the club structure with two clubs of size 3 and one club of size 2.

An important point to note is that the FOE is generated endogenously, which is 
conceptually quite interesting, but it can also provide insights about the formation 
and sustainability of extreme groups and whether FOE, in addition to other phenom-
ena, can explain the rise in religious fundamentalism in modern society. One limita-
tion of our model is that individuals have homogeneous preferences on one dimen-
sion. More complicated formulation might consider heterogeneous preferences on 
more than one characteristic of club goods. Thus, we do not regard the present study 
as an explanation for how extreme groups come about and how they are sustained, 
but rather as an exemplar and first approach towards a promising enquiry. This 
could complement studies like Fan et  al. (2021), which conducted simulations to 
analyse the causes of fundamentalism. The following very primitive stylized expose 
attempts to showcase an application if the current model is refined to include hetero-
geneous preferences over multiple characteristics of the club goods.

Consider a society in which individuals join groups based on their religious 
beliefs. To incorporate heterogeneous preferences, one could think of three differ-
ent types of clubs or groups: fundamentalists, atheists and moderates. Assume that 
fundamentalists are minority. The dynamics here would present how the group rep-
resentatives could make their group bigger to an optimal one to attain sustainabil-
ity and influence over time. It would be interesting to see under what conditions 
which groups become sustainable and what is the underlying mechanism behind 
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such observation and what role FOE plays in that. A comparative analysis could 
then be conducted to see the prevalence of fundamentalism across short and long 
run as the parameters of club goods’ characteristics change. This model highlights 
the interplay of two different influences on the emergence of different groups: direct 
interaction between insiders and outsiders in the process of group formation, and 
peer group effects within groups (club goods). The increased complication because 
of heterogeneous preferences over multiple dimensions would probably require sim-
plifying the interactions among agents, but it might lead to new insights.

7  Conclusion

This paper has examined a process of club formation in a dynamic setting when 
individuals are far-sighted. An important feature of the dynamic club formation pro-
cess is that given the rules that govern the formation and dissolution of clubs, the 
current decision makers have an opportunity to take a decision to their advantage 
that affects their and others’ choices in the future. This implies that dynamic club 
formation must recognize that current decision-makers make choices knowing that 
their decision will have an impact on their future choices, and, therefore, their cur-
rent decision might depend on what they know or believe about future outcomes.

We developed a framework to study this problem of dynamic club formation 
when individuals are only concerned about the size of the club they belong to. The 
model is very simple with forward looking players who decide whether to form a 
new club or not over time. We use the same approach as Acemoglu et al. (2012) in 
finding stable club structures. We have investigated and provided the characteriza-
tion for stable club structures that have all possible optimal sized clubs and stable 
club structures that have no optimal sized clubs (sub-optimal club structures). In 
the infinite horizon game, because of the multiplicity of equilibria we focus only on 
a very specific class of equilibria to find stable club structures with interest in the 
properties that all clubs are of suboptimal size in a stable club structure.

We first analyse the benchmark in Sect. 4 for finite horizon game with which to 
compare the results in Sect. 5. The most notable difference we observe is that that 
sub-optimal stable club structures can only exist in infinite horizon games. Pessi-
mistic beliefs about the optimal club and fear of exclusion from better club exhibit 
a lack of commitment on the part of players. However, this is never observed in the 
finite horizon, where equilibrium outcomes are Pareto efficient though we cannot 
always comment on the Pareto efficiency of the outcomes in infinite horizon. Future 
studies could delve into this aspect further.

The theory in this paper has several interesting extensions. In our study, individu-
als whose sole aim is to join a club only care about the size of the club. It would 
be interesting to look at the hedonic setting in which the individuals have different 
tastes, and preferences not only over the club size but also who they share the club 
with. Another interesting extension would be to investigate other possible equilib-
ria (in the infinite horizon case) such as clubs of three different sizes, all different 
from the optimal size and to examine the behaviour which supports these kinds of 
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club structures. We could also do robustness checks on the equilibria of the infinite 
period game by proving that there are no joint deviations.

Appendix

Proof of Proposition 1 Let � be the initial club structure and A be the set of agents 
who are members of a size-s∗ club at the the start of the game; that is

Part (i) To prove part i, it suffices to show that whenever a proposer offers to form 
a club which includes member/s of A , the proposal is rejected. To see this, consider 
the last proposer, �n . Suppose the last proposer offers to form a club of size-s which 
includes member/s of A . The utility of the agents in A is v(s∗).

If a respondent in A accepts the offer, she gets a payoff of v(s) − � , whereas, if she 
rejects then she receives a payoff of v(s∗) . Thus, each respondent i ∈ A rejects the 
offer from �n to form a club of size-s because v(s∗) > v(s) − 𝜀 ∀s.11 As a result, the 
last proposer is unsuccessful in breaking size-s∗ club/s.

Consider now the second last proposer, �n−1 and suppose that she offers to form a 
club which includes member/s of A . Anticipating that the club of size-s∗ will remain 
intact if she rejects proposal from �n−1 , a respondent i ∈ A rejects the offer and the 
proposal is unsuccessful for the same reason as above. Proceeding along the same 
lines, we can conclude that a proposer �i is unsuccessful in breaking size-s∗ club if all 
the proposers in the order from �i onwards till the last proposer, �n , are unsuccessful 
in their attempt to break club/s of size-s∗ . We proved that �n is unsuccessful in break-
ing size-s∗ club and therefore by inductive reasoning, no proposer is successful in 
forming a club which includes members of A , proving part (i).

Part (ii) Let m be the number of clubs of size-s∗ at the start of the game. Note 
that only one club is formed in every period and therefore we just need to prove that 
whenever a club is formed, it must be of size-s∗ and that a club forms if m < k∗ . If 
m < k∗ then the number of remaining players, s∗(k∗ − m) , are a multiple of s∗ who 
are outside A . Now, consider the last proposer �n.

∙ If �n ∈ A then no new club forms. From part (i) we know that the proposer either 
passes or proposes an unsuccessful club.

∙ If �n ∉ A then she successfully forms a size-s∗ club. Given condition (2.1), all 
the respondents in N ⧵ A would accept a proposal to form the size-s∗ club. If �n suc-
cessfully offers the members of N ⧵ A to form a size-s∗ club then she gets a payoff of 
v(s∗) − �.12 If she passes or offers an unsuccessful proposal then she gets a payoff of 
v(s) < v(s∗) − 𝜀 , and, therefore, she forms a size-s∗ club in every equilibrium.

A ≡ {i ∈ N ∶ ∃S ⊆ N such that i ∈ S ∈ 𝜋& s = s
∗}.

11 Condition 1 implies v(s∗) > v(s∗) − 𝜀 ≥ v(s) − 𝜀 ∀s.
12 If �n offers a proposal to a member/s in A then she is unsuccessful. Thus, the only way she can form a 
new club is by offering the proposal to the agents in N ⧵ A . Also, she would offer to form a size-s∗ club 
because it gives her the highest payoff.
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Consider now, the penultimate proposer.
∙ If �n−1 ∈ A then no new club forms. From part (i) we know that such a proposer 

would either pass or offer an unsuccessful proposal.
∙ If �n−1 ∉ A then a club of size-s∗ forms, either now or at some later stage. If �n−1 

anticipates that she would not otherwise be a part a size-s∗ club which forms at some 
later stage then she successfully proposes to the members of N ⧵ A to form a club 
of size-s∗ . She is indifferent between forming a size-s∗ club now and passing if she 
anticipates that she would be included in the club of size-s∗ at some later stage. In 
either case, a size-s∗ club forms.

Proceeding recursively, any proposer who does not belong to the optimal sized 
club would:

1. Successfully propose to form a new club of size-s∗ if she anticipates that she 
would not otherwise be part of club of size-s∗ which forms at some later stage or

2. Passes or successfully proposes to form a new club of size-s∗ if she anticipates 
joining a size-s∗ club at some later period if she passes. In either case, a club of 
size-s∗ forms.

As m < k∗ , some individual, and therefore some proposer must not be in A : for 
every protocol � . Consequently, a club of size-s∗ must form, proving part (ii).   ◻

Proof of Proposition 2 We start by proving Part (i).
In the last period T, no club of size-s∗ breaks up. The last period is equivalent to 

the one period game. Hence, the same argument applies to the last period as to the 
one period game.

In period t = T − 1 , no club of size-s∗ breaks up. We begin with the last proposer. 
We show that last proposer, �n , is unsuccessful in breaking any size-s∗ club, either 
by forming a club which includes member/s who are in the optimal sized club or by 
successfully forming a new club when she is already a member of an optimal-sized 
club. Suppose that she proposes to form a new club of size-s∗ to a member of an 
optimal-sized club. This respondent anticipates that her club will remain in place in 
the next (last) period. If she accepts the offer then she gets a total discounted payoff 
of no more than v(s) − � + �v(s) and she gets a payoff of v(s∗) + �v(s∗) if she rejects. 
The respondent then rejects the offer because v(s∗) + 𝛿v(s∗) > v(s) − 𝜀 + 𝛿v(s) . 
Thus, the last proposer in the last period is unsuccessful in forming a new club 
which includes any member of an optimal-sized club. Finally, suppose that �n ∈ A . 
In equilibrium, she cannot break her current club: anticipating that her club remains 
intact in the next period, �n gets a payoff of v(s∗) + �v(s∗) if she passes or offers an 
unsuccessful proposal. This is the maximum payoff she can get. If she successfully 
forms a new club, she incurs a cost of � . Thus, the last proposer in period T − 1 can-
not break any size-s∗ club.

Any respondent in a size-s∗ club, would reject any offer to form a new club if she 
anticipates that her club will never be dissolved in all the later stages and periods, 
i.e. if all the proposers in later stages and periods are unsuccessful in breaking any 
size-s∗ club. In other words, a proposer in period t is unsuccessful in breaking any 
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size-s∗ club in that period if all subsequent proposers in that and in later periods fail 
to break up any size-s∗ club. We know that no proposer in the last period is success-
ful in breaking a size-s∗ club and that the last proposer in the second last period is 
unsuccessful. Hence by inductive reasoning, no proposer in any period is successful 
in breaking any optimal-sized club, proving part (i).

We now prove Part (ii).
Consider a period t in which there are mt clubs of size-s∗ and that mt < k∗ and 

A is a set of agents who belong to a size-s∗ club in that period. Since mt < k∗ , 
s∗(k∗ − mt) ≥ s∗ individuals are not in A.

Now, consider a proposer �k in period t.
∙ If �k ∈ A , she passes or offers an unsuccessful proposal. To see this note that: 

1 If she passes or offers an unsuccessful proposal, she gets v(s∗) +
∑T

�=t+1
��−tv(s∗)

2 If she successfully forms a new club, say of size-s , she gets a payoff of 
v(s) − � +

∑T

�=t+1
��−tv(s)

We know that v(s∗) ≥ v(s) and that 
∑T

�=t+1
��−tv(s∗) ≥

∑T

�=t+1
��−tv(s) . 

Therefore, �k ∈ A passes or offers an unsuccessful proposal because 
v(s∗) +

∑T

𝜏=t+1
𝛿𝜏−tv(s∗) > v(s) − 𝜀 +

∑T

𝜏=t+1
𝛿𝜏−tv(s).13

Consequently, any new club must be offered by a proposer who does not belong 
to A.

∙ If �k ∉ A then a new club of size-s∗ forms, either now or at some later stage of 
the current period.

Suppose that k = n and that the proposer belongs to a club of size sk ≠ s∗ . The 
proposer gets a payoff of v(sk) +

∑T

�=t+1
��−tv(s) if she passes or offers an unsuccess-

ful proposal. The proposer can successfully offer to the agents in N ⧵ A.14 Since s∗ 
is the unique maximum and s∗(k∗ − mt) ≥ s∗ , the proposer offers to individuals in 
N ⧵ A to form a club of size s∗ . Condition (2.1) implies that all respondents accept. 
The proposer gets a payoff of v(s∗) − � +

∑T

�=t+1
��−tv(s∗) if she offers a club of size-

s∗ to individuals in N ⧵ A . Thus, the proposer forms a new club of size-s∗ because 
v(s∗) − 𝜀 +

∑T

𝜏=t+1
𝛿𝜏−tv(s∗) > v(sk) +

∑T

𝜏=t+1
𝛿𝜏−tv(s).

Suppose k ≠ n and that the proposer belongs to a club of size-sk ≠ s∗ . She suc-
cessfully forms a club of size-s∗ if she anticipates that she would not otherwise be 
part of size-s∗ club at some later stage. She is indifferent between forming a club 
now and passing if she anticipates joining a size-s∗ club at some later stage. In either 
case, a club of size-s∗ forms in the period t.

13 Since there is discounting, the agents do not wait to become part of size-s∗ club till the next period and 
they take the opportunity to be part of a size-s∗ club either by forming one or by agreeing to the proposer 
who wants to form one.
14 From part (i) we know that no club of size-s∗ breaks and therefore individuals who belong to A reject 
any offer.
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In sum, a club of size-s∗ forms in period t if �k ∉ A . As mt < k∗ , some individual, 
and therefore some proposer must not be in A : for every protocol � . Consequently, a 
club of size-s∗ must form, proving part (ii).   ◻

Proof of Lemma 1 (i) To establish the first part of the Lemma, it suffices to show that 
Wi(𝜋) < v(s̄) − 𝜀 , for all i ∈ N and � ∈ Π such that i ∉ Ā(𝜋) . As there is only a finite 
number of pairs (i,�) such that i ∉ Ā(𝜋) , this indeed guarantees that W̄ < v(s̄) − 𝜀.

Let i ∈ N and � ∈ Π be such that i ∉ Ā(𝜋) , and suppose first that ||Ā(𝜋)|| = m̄s̄ . By 
definition of Wi , this implies that

so that Wi(𝜋) < v(s̄) − 𝜀 because v(n − m̄s̄) < v(s̄) , where � is the cost of forming 
a new club15. Indeed, if N⧵Ā(𝜋) ∉ 𝜋 , then all proposers in Ā(𝜋) pass, and the next 
proposer outside Ā(𝜋) successfully forms the coalition N ⧵ Ā(𝜋) , which contains i.

Now suppose that ||Ā(𝜋)|| < m̄s̄ . It follows that the next proposer who is not in 
Ā(𝜋) , say j, forms the size-s̄ club Sj(�) . If i is a member of Sj(�) then she receives 
v(s̄) − 𝜀 < v(s̄) . If i is not a member of Sj(�) then it follows from the definition of the 
path in Step 1 that she will either end up in a size-s̄ club or in a size-(n − m̄s̄) club 
after a (random) finite number, say � , of periods. As her stage payoff is bounded 
above by v(s∗) and 𝜏 ≤ m̄ + 1 , i’s expected payoff (conditional on i ∉ Sj(�) ) is itself 
bounded above by

where s̃ ∈ {s̄, n − m̄s̄} is the random variable describing the size of i’s club 
from period m̄ + 1 onward, and the expectation is computed from the distri-
bution of proposer orders. As v(n − m̄s̄) < v(s̄) and the probability of i end-
ing up in the (n − m̄s̄)-sized club is positive, �

[
v(s̃)

]
< v(s̄) . Moreover, as 

lim𝛿→1(1 − 𝛿m̄)v(s∗) + 𝛿m̄
(
�
[
v(s̃)

]
− 𝜀

)
= �

[
v(s̃)

]
− 𝜀 , there exists 𝛿1 ∈ (0, 1) such 

that (1 − 𝛿m̄)v(s∗) + 𝛿m̄
(
�
[
v(s̃)

]
− 𝜀

)
< v(s̄) − 𝜀 , for all 𝛿 ∈ (𝛿1, 1) . This in turn 

implies that Wi(𝜋) < v(s̄) − 𝜀 . Henceforth, we assume that 𝛿 > 𝛿1.
(ii) Let i ∈ N and � ∈ Π be such that i ∉ Ā(𝜋) . By definition of W̄ , we have

where the last inequality follows from part (i) and 𝛿 > 𝛿1 . Hence, there exists 
𝛿2(i,𝜋) ∈ (0, 1) such that (1 − 𝛿)v(s∗) + 𝛿Wi(𝜋) < v(s̄) − 𝜀 whenever 𝛿 > 𝛿2(i,𝜋) . 
We obtain the result for all i ∈ N and � ∈ Π be such that i ∉ Ā(𝜋) by imposing 
𝛿 > 𝛿2 ≡ max

{
𝛿2(i,𝜋) ∶ i ∉ Ā(𝜋)

}
 . Henceforth, we assume that 𝛿 > 𝛿2.

W
i
(𝜋) =

{
v(n − m̄s̄) if N ⧵ Ā(𝜋) ∈ 𝜋,

v(n − m̄s̄) − 𝜀 otherwise;

(1 − 𝛿)

m̄∑

s=1

𝛿s−1v(s∗) + 𝛿m̄(1 − 𝛿)

∞∑

s=1

𝛿s−1
(
�
[
v(s̃)

]
− 𝜀

)
= (1 − 𝛿m̄)v(s∗) + 𝛿m̄

(
�
[
v(s̃)

]
− 𝜀

)
,

lim
𝛿→1

[
(1 − 𝛿)v(s∗) + 𝛿W

i
(𝜋)

]
≤ lim

𝛿→1

[
(1 − 𝛿)v(s∗) + 𝛿W̄

]
= W̄ < v(s̄) − 𝜀,

15 Remember the assumption that v(s) > v(s�) ⇒ v(s) − 𝜀 > v(s�)
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(iii) Let i ∈ N and k ∈ K and let �S denote the club structure obtained at the end 
of the period if S forms. Suppose first that i ∈ Ā(𝜋) . Then, by definition Wi(k) = v(s̄) . 
Suppose now that i ∉ Ā(𝜋) and |Ā(𝜋)| < m̄s̄ . It follows that the next proposer (not in 
Ā(𝜋) ), say j, forms the size-s̄ club Sj(�) . If i is a member of Sj(�) , then she receives 
v(s̄) − 𝜀 < v(s̄) . Otherwise, her payoff is (1 − 𝛿)v(s0) + 𝛿Wi(𝜋Sj(𝜋)) < v(s̄) , where s0 is 
the size of her current club and the inequality follows from from part (ii).

Suppose now that i ∉ Ā(𝜋) and ||Ā(𝜋)|| = m̄s̄ . By definition of Wi , this implies that

Setting 𝛿 ≡ max{𝛿1, 𝛿2} , we obtain the Lemma.   ◻
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