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Abstract
In this paper, composite dynamic movement primitives (DMPs) based on radial basis function neural networks (RBFNNs)

are investigated for robots’ skill learning from human demonstrations. The composite DMPs could encode the position and

orientation manipulation skills simultaneously for human-to-robot skills transfer. As the robot manipulator is expected to

perform tasks in unstructured and uncertain environments, it requires the manipulator to own the adaptive ability to adjust

its behaviours to new situations and environments. Since the DMPs can adapt to uncertainties and perturbation, and spatial

and temporal scaling, it has been successfully employed for various tasks, such as trajectory planning and obstacle

avoidance. However, the existing skill model mainly focuses on position or orientation modelling separately; it is a

common constraint in terms of position and orientation simultaneously in practice. Besides, the generalisation of the skill

learning model based on DMPs is still hard to deal with dynamic tasks, e.g., reaching a moving target and obstacle

avoidance. In this paper, we proposed a composite DMPs-based framework representing position and orientation simul-

taneously for robot skill acquisition and the neural networks technique is used to train the skill model. The effectiveness of

the proposed approach is validated by simulation and experiments.

Keywords Position and orientation skill learning framework � Composite dynamic movement primitive � Learning from

demonstration � Human–robot skill transfer � Radial basis function NNs (RBFNNs)

1 Introduction

Robot manipulator has been widely used in a number of

fields, such as industrial assembly [1], space exploration

[2], medical surgery [3] and so on. Specifically, it has been

utilised to perform tasks in specific and structured envi-

ronments due to the advantages of low-cost, efficiency and

safety. However, it is hard to program robots for various

scenarios, and it is also time-consuming to program each

robot manually. As the fast development of machine

learning techniques, robot skill learning has attained

increasing attention. Several machine learning techniques,

e.g., reinforcement learning, imitation learning and deep

learning [4, 5], have been successfully employed in robotic

skill learning. Among the various learning methods, the

learning from demonstration (LfD) (also named program-

ming by demonstration, PbD) has been proved as an

effective way to transfer manipulation skills from humans

to robots easily [6]. Also, human often has substantial

advantages over robots in terms of complex manipulation

skill. In contrast to the traditional robot programming

methods which require expertise in coding and significant

time investment, the attractive aspect of LfD is its capa-

bility to facilitate nonexpert robot programming. Thus, the

LfD has the potential to significantly benefit a variety of

industries, such as manufacturing and health care.

Currently, it is very common for industrial robots to

perform accurate position control tasks. However, it is

time-consuming to prepare the work environment and

robot programs carefully. It often needs to replan the tra-

jectory when any variation happens, such as the changes of
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object positions, the deviation between the real object and

the programmed position, limiting the application of

automation, such as assembly tasks in the industrial plant.

For example in [7], object handover is a common task in

human–robot interaction/collaboration, and it is still very

challenging on the generalisation, temporal and spatial

scaling. In [8], the proposed method can be used to gen-

erate a trajectory for the handover task, which could satisfy

the shape-driven and goal-driven requirement. It is ensured

to achieve the goal and also try to maintain the demon-

strated trajectory shape.

The LfD process consists of three phases: the human

demonstration, the model learning and skill reproduction.

In the demonstration stage, humans teach robots how to

execute the tasks with various approaches, such as kines-

thetic teaching, teleoperation and passive observation, and

the movement profiles of robots and humans will be

recorded. In the next learning stage, the manipulation skill

models will be trained, which has a significant impact on

the performance of robot skill learning and generalisation

in practice. The skill model is expected to be modular,

compact and adaptive for robotic manipulation skills.

There already exists much work to deal with skill mod-

elling for human–robot skills transfer, such as dynamic

movement primitives (DMPs) [9, 10], Gaussian mixture

model (GMM) [11], the stable estimator of dynamical

systems (SEDS) [12], kernelised movement primitives

(KMPs) [13], probabilistic movement primitives (ProMPs)

[14] and hidden semi-Markov model (HSMM) [15]. And

some of these approaches are combined, such as integrating

the HSMM with GMM to model the robot skills and per-

ception mechanism [16]. Generally, based on the mod-

elling principle, they can be divided into two branches:

dynamic system method and statistic approach. The

statistic-based methods include GMM, KMP, ProMPs and

HSMM, which could easily represent multimodal sensory

information. However, DMP is a general framework to

realise the movement planning, online trajectory modifi-

cation for LfD, which was originally proposed by Ijspeert

et al. [17]. As the DMPs have several good characteristics,

such as resistance to perturbation and uncertainties, spatial

and temporal scaling, they have been gaining much atten-

tion. The DMPs approach has the property of generalising

the learnt skills to new initial and goal positions, main-

taining the desired kinematic pattern. Since the original

version of DMPs was proposed, a number of modified

versions had been studied to improve the performance of

DMPs. Most of these works mainly focus on the two issues,

how to improve the generalisation ability of DMPs and

how to overcome the inherent drawbacks of DMPs. More

recently, it also has been further used to encode different

modalities, such as stiffness and force profiles. For exam-

ple, DMPs with the perceptual term have been proposed to

execute physical interaction tasks, which require robots to

regulate the contact force, torque, as well as the desired

trajectory [18]. Besides, some researchers proposed cou-

pling DMPs to realise obstacle avoidance, interaction with

objects and bimanual manipulation by modifying the for-

mulation of DMPs model or adding control methods [19].

The reinforcement learning technique has been used to

optimise the parameters of DMPs, which could further

improve the generalisation ability of DMPs. RL-based

DMPs were proposed to increase the generalisation of the

original DMPs [20].

An essential aspect of LfD is how to generalise the

learnt skills to novel environments and situations. Since the

demonstration cannot cover all the robot working envi-

ronments and situations, robots need to own the ability to

adapt their behaviours according to the changes in envi-

ronments. The adaptability of robot skills often refers to

spatial and temporal scaling, adjusting their behaviours

based on the perception information. Such as tracking

moving tasks, the robot needs to modify its trajectory based

on the position and velocity of the moving target [21].

Besides, many specific tasks require the generalisation of

robot skills, such as obstacle avoidance and performing

tasks in dynamic environments and situations. Heiko et al.

modified the original DMP framework using biologically

inspired dynamical systems to increase the generalisation,

achieving the real-time goal adaptation and obstacle

avoidance [22]. The sensory information has been inte-

grated into the DMP framework to increase the online

generalisation, which could generate a robust trajectory

account for external perturbations and perception uncer-

tainty [23]. The neural network technique has been utilised

to learn the perception term in DMP to realise the reactive

planning and control, which can pave the path for robots

working in dynamical environments. Further, the modula-

tion of DMP has been exploited using force and tactile

feedback to increase the interaction ability and execute

bimanual tasks [23]. In addition, a task-oriented regression

algorithm with radial basis functions has been proposed to

increase the generalisation of DMPs. For dynamic tasks,

such as tracking moving targets, it can be seen that many

researchers proposed modified versions of DMPs to deal

with moving goals. For example in [21], the authors

modified the DMP by adjusting the temporal scaling

parameter online to follow a moving goal, although it only

focused on the position trajectory in Cartesian space. To

improve the generalisation, single DMP could not produce

complex behaviour. Merging the different DMP is very

important to deal with this challenge [24]. It also pointed

out that building a motion skill library for robots to produce

complex behaviour is a useful tool. Also, the merging

sequential motion primitives have been studied to produce

complex behaviours. Complex trajectories involving
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several actions can be reproduced by sequencing multiple

motion primitives. Each motion primitive is represented as

DMP; various approaches were investigated to connect the

motion primitives seamlessly [24]. However, most of the

current work focused on the position motion primitives in

Cartesian or joint space, and there is a lack of research on

the orientation primitive trajectories in Cartesian.

Most recently, various versions of DMP have been

proposed to increase the online adaptability to uncertainties

and novel tasks. However, the spatial scaling is limited due

to encoding the position trajectory for each coordinate.

Most of the existing work focused on DMPs representing

position skills in Cartesian space, ignoring the orientation

requirements in some application, such as obstacle avoid-

ance [22, 25], picking and placing [10], cutting task [9].

However, for some tasks, such as ultrasound scanning in

medical application, the probe orientation has a significant

impact on the image quality in robot-assisted ultrasonog-

raphy; hence the orientation and position need to be con-

sidered simultaneously. The forcing term in DMPs often is

approximated by the Gaussian functions, and the locally

weighted regression (LWR) technique to be used to learn

the weights of each basis functions. However, [26] stated

that forcing term approximation could influence the accu-

racy and performance of DMP. And different basis func-

tions have been studied to improve the performance of

DMPs.

In this work, a composite DMPs-based skill learning

framework is studied, which considers not only the position

constraints but also the orientation requirement. Both

temporal and spatial generalisation capability has been

increased. Besides, the DMP-based framework can be

adapted temporally to moving targets with the specific

requirement of orientation. Further, the RBFNNs are uti-

lised to learn the nonlinear functions in composite DMPs.

The contributions in this work are (1) combining the

DMPs and RBFNNs to improve the generalisation of robot

manipulation skills. The radial basis function NN is

employed to approximate the force term in the composite

DMPs. (2) A basic skill associated with position and ori-

entation could be modelled by the composite DMP

simultaneously, coupled with the temporal parameter. (3)

The composite DMP could reach the moving goals with

generalisation in terms of temporal and spatial scaling. The

composite DMP-based framework can guarantee to con-

verge to moving goals while being perturbed to obstacles.

The rest of the paper is organised as follows. Section 2

provides an overview of the position and orientation DMP

in Cartesian space and its limitations. The composite DMPs

framework based on RBFNNs is presented in Sect. 3. The

stability analysis for the DMP-based model is presented.

Section 4 presents the simulation and experimental results

to validate the temporal and spatial generalisation.

RBFNNs have been utilised to learn the nonlinear func-

tions associated with the combined DMPs. Section 6 con-

cludes the paper finally.

2 Preliminaries and motivations

2.1 Radial basis function neural networks
(RBFNNs)

The neural network has been proved to an effective

approach to robot applications, and much work on the

neural network has been studied, such as the stability of

neural network [27, 28]. RBFNNs are a useful tool to

approximate nonlinear functions for robot control and

robot skills learning. For instance, RBFNNs is combined

with the broad learning framework to learn and generalise

the basic skills [29]. RBFNNs are employed to approxi-

mate the nonlinear dynamics of the manipulator robot to

improve tracking performance [16, 30]. Therefore,

RBFNNs can approximate the nonlinear forcing term in the

DMP framework. Radial basis function networks consist of

three layers: an input layer, a hidden layer with a nonlinear

RBF activation function and a linear output layer. It is an

effective approach to approximate any continuous function

h : Rn ! R,

hðxÞ ¼ WTSðxÞ þ eðxÞ ð1Þ

where x 2 Rn is the input vector, W ¼ ½x1;x2; . . .;xN �T 2
RN denotes the weight vector for the N neural network

nodes. The approximation error eðxÞ is bound. SðxÞ ¼
½s1ðxÞ; s2ðxÞ; . . .; sNðxÞ�T is a nonlinear vector function,

where siðxÞ can be defined as a radial basis function,

siðxÞ ¼ expð�hiðx� ciÞTðx� ciÞÞ i ¼ 1; 2; . . .;N

ð2Þ

where ci ¼ ½ci1; ci2; . . .; cin�T 2 Rn denotes the centres of

the Gaussian function and hi ¼ 1
�
v2
i , vi denotes the

variance. The ideal weight vector W is defined as,

W ¼ arg min
Ŵ2RN

sup hðxÞ � Ŵ
T
SðxÞ

���
���

n o
ð3Þ

which minimises the approximation error of nonlinear

function. The nonlinear functions in DMPs can be learnt by

RBFNNs from demonstration data. In this work, RBFNNs

will be utilised to parameterise the nonlinear functions in

DMPs.
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2.2 Position and orientation DMP in Cartesian
space

DMP is a useful tool to encode the movement profiles via a

second-order dynamical system with a nonlinear forcing

term. Robots skills learning by DMPs aims to model the

forcing term in such a way to be able to generalise the

trajectory to a new start and goal position while main-

taining the shape of the learnt trajectory. DMPs can be used

to model both periodic and discrete motion trajectories.

However, in this work, we will focus on the discrete

motion trajectories. Currently, the most research on DMPs

mainly focuses on the position DMPs and its modifications,

which can be used to represent arbitrary movements for

robots in Cartesian or joint space by adding a nonlinear

term to adjust the trajectory shape. For one degree of

multiple-dimensional dynamical systems, the transforma-

tion system of position DMP can be modelled as follows

[31],

ss _v ¼ azðbzðpg � pÞ � vÞ þ FpðxÞ ð4Þ

ss _p ¼ v ð5Þ

where the pg is the desired position, p is the current posi-

tion, the v is the scaled velocity, ss is the temporal scaling

parameter, az; bz are the design parameters, usually,

az ¼ 4bz. FpðxÞ is the nonlinear forcing term responsible

for tuning the shape of trajectory. The FpðxÞ can be

approximated by a set of radial basic functions,

FpðxÞ ¼
PN

i¼1 wiðxÞwi
PN

i¼1 wiðxÞ
xðpg � p0Þ ð6Þ

wiðxÞ ¼ expð�hiðx� ciÞ2Þ ð7Þ

where wiðxÞ is a Gaussian radial basis function with the

centre ci and width hi; p0 is the initial position, and wi is the

weight learning from demonstration. The phase variable x

is determined by the canonical system, which can be rep-

resented as follows,

ss _x ¼ �axx; x 2 0; 1½ �; xð0Þ ¼ 1 ð8Þ

where ax is a positive gain coefficient, ss is the temporal

scaling parameter and the x0 ¼ 1 is the initial value of x,

which can converge to 0 exponentially. For the multiple-

degree-of-freedom (DoF) dynamic system, each dimension

can be modelled by a transformation system, but they share

a common canonical system to synchronise them.

The orientation DMP has been first proposed by [32],

which is vital to robot learning and control. The orientation

in DMP is often represented by rotation matrix or quater-

nions. For example in [33], the unit quaternions are used to

model the orientation, and the unit quaternion set minus

one single point also has been proved to be contractible

[34]. This property of the unit quaternion set could guar-

antee the convergence of orientation DMPs. In addition, as

the quaternion formulation has less variable than the rota-

tion matrix, it has been used widely in the orientation

representation for robot learning and control. In [32], the

unit quaternion-based transformation system can be

described as,

ss _z ¼ �azðbz2 logðqg � �qÞ � zÞ þ FoðxÞ ð9Þ

ss _q ¼ 1

2

0

z

� �
� q ð10Þ

where q 2 S3 denotes the orientation as a unit quaternion,

qg 2 S3 represents the final orientation. x denotes the

angular velocity, z ¼ ssx 2 R3 is the scaled angular

velocity, ‘*’ denotes the quaternion product, �q represents

the quaternion conjugate which is equal to the inverse

quaternion for unit quaternions and 2 logðq2 � �q1Þ 2 R3

denotes the rotation of q1 around a fixed axis to reach q2.

The forcing term FoðxÞ 2 R3 for each orientation coordi-

nate will learn the desired orientation skills from the

demonstration data.

3 Composite position and orientation
dynamic movement primitives

Currently, the separate position or orientation DMP has

been studied widely [35]; however, research on the com-

posite DMPs, modelling the position and orientation

simultaneously, is not common. In real practice, most

manipulation skills often mix the position and orientation

skills, which requires robots to satisfy the specific position

constraints as well the orientation for many tasks, such as

polishing, spraying, assembly [36, 37]. In addition, for

human–robot interaction tasks, such as two partners col-

laborating an object handover interaction, the target posi-

tion is always changing. It is still open to guarantee various

orientation requirements. Inspired by the improvement in

the orientation DMP, the proposed framework has great

generalisation and adaptability to novel tasks and situa-

tions. Studying on the DMPs to handle the moving goals is

also vital to the practical application. Therefore, we pro-

pose the composite DMPs, coupling the position and ori-

entation modelling in a framework, and the RBFNNs are

used to learn the nonlinear term in models.

3.1 The composite DMP formulation

As shown in Fig. 1, the manipulation skill modelled by

position and orientation DMPs consisted of recoding the

demonstration data, training the RBFNNs and reproducing

the skills. The demonstration data include the position and
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orientation trajectories, and the output of skills reproducing

is the reference of position and orientation trajectories

associated with specific tasks. The canonical system is used

to coordinate the position and orientation constrains in the

composite DMPs. The nonlinear forcing terms associated

with each DMP are trained by using RBFNNs from the

position and orientation demonstration data. Six RBFNNs

are used to parameterise the nonlinear functions for posi-

tion and orientation DMPs, respectively. After the DMPs

have learned the demonstration, the dynamic and multiple

constraints can be guaranteed: (1) the goal and initial

position and orientation can be changed; (2) the targets can

be moved, the velocity profiles of DMP output will keep in

a safe bound; and (3) the requirements of position and

orientation can be achieved simultaneously.

The position DMP formulation can be described as,

ss _v ¼ �azðbzep þ vÞ þ diagðpg � p0ÞfpðxÞ ð11Þ

ss _ep ¼ v ð12Þ

where ep ¼ pg � p 2 R3 is the position error and v 2 R3 is

the scaled velocity error. The az; bz are positive gains, and

fpðxÞ is trained by RBFNNs for each DMP. The system is

trained using a demonstration from the initial position p0;d

to the stationary goal pg;d with temporal scaling sd.

The orientation DMP formulation can be described as

[33],

ss _z ¼ �azðbzeo þ zÞ þ diagðqg � �q0ÞfoðxÞ ð13Þ

ss _eo ¼ z ð14Þ

eo ¼ 2 logðqg � �qÞ ð15Þ

where the eo is the quaternion error, z is the scaled

quaternion error velocity. To obtain the orientation, we

solve equation (15),

q ¼ expð1
2
eoÞ � qg ð16Þ

The angular velocity is

x ¼ 2vecð _q � �qÞ ð17Þ

where the _q can be obtained by the following equations,

_q ¼ � 1

2
q � �qg � Jlog qðqg � �qÞ _eo � q ð18Þ

_eo ¼ �2Jqðqg � �qÞðqg � �q � _q � �qÞ ð19Þ

Inspired by the work [38], the temporal scaling can be

adjusted based on the task and the velocity constraints. The

target position and velocity update the shared temporal

parameter in the position and orientation DMPs, and it may

be described as [21],

_ss¼ �cðss�saÞþ _sa ð20Þ

where the c is a design parameter, sa is determined by

sa ¼
ek k
edk k � sd ð21Þ

Fig. 1 Structure of human–robot skill transfer using the composite DMP model
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e ¼ eTp ; eTo

h iT

ed ¼ eTp;d; e
T
o;d

h iT ð22Þ

where the ep is the position error between the goal and the

initial point, eo is the orientation error between goal and

start. The ep;d is the position error between the goal and the

initial point in the demonstration, eo;d is the orientation

error between the goal and start in the demonstration. sd is

the temporal scaling coefficient in the demonstration. The

temporal parameter update law has been proved to con-

verge to the moving goals in [21].

3.2 The training of DMPs by RBFNNs

Take one dimension for position and orientation DMP as

examples. The nonlinear forcing terms of position and

orientation DMP can be approximated by RBFNNs

respectively,

fpðsÞ ¼
X

i

wi
pw

iðsÞ ð23Þ

foðsÞ ¼
X

j

wj
ow

jðsÞ ð24Þ

wi
p;w

j
o are the weight coefficients, wiðsÞ and wjðsÞ are the

Gaussian activation functions, defined as,

wiðsÞ ¼ expð�hiðs� ciÞ2Þ ð25Þ

wjðsÞ ¼ expð�hjðs� cjÞ2Þ ð26Þ

In the demonstration phase, one position trajectory

pd; _pd; €pd is recorded, from starting position p0;d, to the

target position pg;d. According to the position DMP trans-

formation system Eqs. (11), (12) and the demonstration

data, the desired force function is

f dp ðsÞ ¼
1

pg;d � p0;d
ðs2

d €pd � azðbzðpg;d � pdÞ � sd _pdÞÞ

ð27Þ

where the sd is the temporal scaling during demonstration.

Similarly, the force term in the orientation DMPs can be

described as,

f do ðsÞ ¼ ðdiagð2 logðqg;d � �q0;dÞÞÞ�1

�ðs2
d _xd � azðbzð2 logðqg;d � �qdÞ � sdxdÞÞÞ

ð28Þ

The following error function between the desired force

term and the approximated value is the objective function

of the optimisation problem, which will be minimised for

learning the parameters of RBFNNs in the DMPs:

E ¼ 1

2
ððf dp ðstÞ � fpðstÞÞ2 þ ðf do ðstÞ � foðstÞÞ2Þ ð29Þ

st is the value of s. A gradient descent approach is used to

derive the weight update law as [39],

wi
pðt þ 1Þ ¼ wi

xðtÞ � k1

oE

owi
p

ð30Þ

wj
oðt þ 1Þ ¼ wj

oðtÞ � k2

oE

owj
o

ð31Þ

oE

owi
p

¼ ðf dp ðstÞ � fpðstÞÞ
o

owi
p

ð�
X

i

wi
pw

iðsÞÞ

¼ ðf dp ðstÞ � fpðstÞÞð�wiðstÞÞ
ð32Þ

The weight update law of wi
p is given as,

wi
pðt þ 1Þ ¼ wi

pðtÞ þ k1ðf dp ðstÞ � fpðstÞÞwiðstÞ ð33Þ

Similarly, the weight wi
o is updated by,

wj
oðt þ 1Þ ¼ wj

oðtÞ þ k2ðf do ðstÞ � foðstÞÞwjðstÞ ð34Þ

The weights in the RBFNNs can be attained through the

gradient descent approach and demonstration data.

Fig. 2 Six-DoF Omni Phantom

Table 1 Parameters in DMP

Parameter Descriptions Value

N Number of RBFNNs nodes 10

az Coefficient of DMP 60

bz Coefficient of DMP 15

k1 Learning rate for position 0.1

k2 Learning rate for orientation 0.15

c Coefficient for tracking target 2
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4 Experimental results

As a complex task can be hierarchically decomposed into

different subtasks involving multiple primitive actions and

manipulated objects, several basic motion skills could be

synthesised to complex tasks. Thus, in the paper, we will

conduct several typical motion skills through simulation

and experiments. As shown in Fig. 2, Omni Phantom is an

input device for human–robot skill transfer, which has been

used in the teleoperation applications. This haptic device

could provide the operator force feedback when interacting

with the objects or the environments. In this paper, the

Omni Phantom is used to acquire training data of human

demonstration in 3D Cartesian space for training the DMP

model.

Fig. 3 a Represents the human demonstration from Point A to Point

B; b represents the target goal moving from Point B to Point C

Fig. 4 In (a), the blue line is the human demonstration trajectory; the

green line is the reproduced trajectory by DMPs; the red dash line

represents the moving target. b The position trajectory generated by

demonstration and DMP; the red dash line is the goal’s position

trajectory. c The velocity trajectory generated by demonstration and

DMP; the red dash line is the goal’s velocity trajectory. d Provides the

evolution of the temporal coefficient and its derivative
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We use Omni Phantom to demonstrate trajectories,

including the position and orientation in Cartesian space.

We then used the demonstrated data to train all DMPs and

executed the DMPs with new start and goal position and

orientation. Omni Phantom can record the position and

pose of the end. During the demonstration, both the posi-

tion and orientation trajectories are recorded, and used to

train the skill model. In the execution, we modify the

desired task to test the generalisation performance. The

parameters in DMP are shown in Table 1.

4.1 Spatial scaling of composite DMP

To demonstrate the spatial generalisation ability, we car-

ried out simulation experiments to test the composite

DMPs. When the DMP reproduces trajectory, we set a new

goal position; the proposed DMPs could converge to the

desired position. We test the spatial generalisation of

DMPs through the task shown in Fig. 3, simulating the

picking and placing skill in the industrial case. First, we

demonstrate an obstacle-free trajectory from point A to

point B for robots. However, when the robot performs the

task, the target moves from Point B to Point C. Our

experiment assumes the target moves from B to C at a

constant velocity, which is known. The position DMP

could generate one trajectory online to adapt the dynamic

tasks.

In Fig. 4, the trajectory generated by DMPs could reach

the desired position of the moving goal even when we learn

the DMP using a static goal. (a) shows the human

demonstration trajectory and trajectory reproduced by

DMP. Although the goal is moving, the trajectory gener-

ated by DMP maintains the shape of the demonstration.

The red dash line in (c) represents the target velocity, and

the green line is the velocity trajectory generated by DMP.

From the (d), it can be seen that the temporal scaling

parameter ss is increasing. In the beginning, since the target

velocity is relatively high, the rate of change of ss is also

relatively large, until it decreases to zero. When the target

does not move, the ss does not change. Since the temporal

scaling coefficient is tuned based on the goal’s position and

velocity, it could achieve the target and maintain the

demonstrated shape. In original DMP, the temporal scaling

parameter is fixed; hence, it is hard to deal with the

dynamic perturbance, such as the moving target and the

stopping by an obstacle. Therefore, the composite DMP

could adapt to a dynamic environment and tasks based on

the position and velocity of the goal.

Fig. 5 Human demonstrating to change the pose of the Omni from

(a) to (b) through the three orientation joints (red arrow)

Fig. 6 a Pose of Omni: the blue line is the demonstration trajectory; the green one is the output of DMP when the execution time is set twice the

demonstration one; b provides the angular velocity generated by demonstration and DMP
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4.2 The temporal scaling of orientation DMP

It often requires robots to satisfy the orientation require-

ments when the robot coordinates with humans or other

robots in the industrial application. To demonstrate the

temporal scaling ability in the orientation of composite

DMP, we modify the execution duration when DMP is

reproducing the trajectory. As shown in Fig. 5, a human

demonstrates how to change Omni’s orientation from (a) to

(b) and the demonstration data are recorded for training the

orientation DMP. In reproduced period, we set the duration

time as twice, and the result is shown in Fig. 6.

From the (a) in Fig. 6, we can find the orientation DMPs

can be scaled temporally, and since the execution time is

longer, the angular velocity is slower than the demonstra-

tion one. The orientation scaling could be achieved by

adjusting the temporal parameter. When the temporal

coefficient ss is twice, the execution time is double, and the

trajectory shape is maintained. Also, from the (b), the

angular velocity trajectory has the same pattern with the

demonstrated one, when modifying the execution time. The

trajectory is also smooth and can be adjusted temporally

based on the task requirement and perception information

on the external environment. This property could be used

to adjust the orientation dynamically and satisfy the ori-

entation requirement. When the DMP couples the position

and orientation, the temporal coefficient is adjusted based

Fig. 7 a 3D trajectory. The blue and green lines in b show the

demonstration and DMP trajectory in each direction; the red dash line

is the goal trajectory in XYZ directions. c The orientation error

between the current orientation and the goal orientation. d provides

the evolution of the temporal coefficient and the phase variable x with

time
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on the position and orientation tasks, and the external

environment.

4.3 The performance of composite DMP
for a moving goal

For the tasks with position and orientation constraints, the

composite DMPs between the position and orientation are

necessary. Test the performance of composite DMPs to the

tasks requiring the position and orientation simultaneously.

For this case, we first demonstrate a trajectory involving

the position and orientation and then train the composite

DMPs using the demonstration data. During the repro-

ducing stage, the DMPs need to generate position and

orientation trajectory for the moving goal and satisfy the

orientation constrains. The performance of reaching a

moving target with orientation constraint can be found in

Fig. 7.

Through (a) and (b) in Fig. 7, the trajectory generated by

DMPs could reach the moving goal with the desired ori-

entation. Due to the moving goal, the temporal scaling ss is

increasing. Although the target has a constant velocity, the

shape of position and orientation is consistent with the

demonstration. Due to the goal’s velocity, the temporal

scaling is increasing, which guarantees the velocity shape

is similar to the learned pattern. The position and orienta-

tion constraints are satisfied simultaneously. For the com-

posite DMP, because the goal’s motion information could

influence the temporal scaling and phase variable, it could

influence the shape of trajectory. The position and orien-

tation could be coupled and adjusted based on the task and

the external environments through the temporal scaling.

The proposed composite DMP considers the moving goal

and the orientation requirements simultaneously.

5 Conclusion

This paper proposed composite DMPs, coupling the posi-

tion and orientation representation simultaneously and

using the RBFNNs to approximate the nonlinear forcing

term in DMPs. The composite DMPs can track moving

goals and guarantee the velocity stays in a safe range. The

generalisation performance of temporal and spatial scaling

is validated through several primitive skills. In the future,

we will consider extending the DMPs to model various

pieces of sensory information, making the DMPs interact

with the environment. It also can be used in the cooperation

manipulation tasks for the bimanual manipulator.
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