
4532 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 7, JULY 2021

Word Representation Learning Based on
Bidirectional GRUs With Drop Loss

for Sentiment Classification
Xia Sun , Yi Gao , Richard Sutcliffe , Shou-Xi Guo , Xin Wang , and Jun Feng , Member, IEEE

Abstract—Sentiment classification is a fundamental task in
many natural language processing applications. Neural networks
have achieved great successes on the sentiment classification task
in recent years, since recurrent neural networks and long-short-
term memory networks have the ability to deal with sequences of
different lengths and to capture contextual semantic information.
However, the effectiveness of these methods is limited when
used to extract contextual information from relatively long texts.
Therefore, in our model, we apply bidirectional gated recurrent
units to capture contextual information as far as possible when
learning word representations, which may effectively reduce the
noise compared to other methods. We also propose a novel
loss function namely drop loss (DL) which makes the model
focus on the hard examples—examples which are easily classi-
fied incorrectly—in order to improve the accuracy of the model.
We experiment on four commonly used datasets, and the results
show that the proposed method has a good performance on
four datasets, and needs fewer parameters compared with recent
benchmarks, such as CoVe, ULMFiT, embeddings from language
models, and bidirectional encoder representations from trans-
formers. Furthermore, we demonstrate that the classification
performance of existing shallow network models can be signifi-
cantly improved by using DL. In particular, the accuracy of the
CNN+LSTM model improves 9% on the IMDB-10 dataset.

Index Terms—Loss function, neural networks, sentiment clas-
sification, word presentation.

Manuscript received March 17, 2019; revised June 6, 2019; accepted
September 1, 2019. Date of publication October 8, 2019; date of current
version June 16, 2021. This work was supported in part by the National
Natural Science Foundation Projects of China under Grant 61877050, in part
by the Open Project Fund of Shaanxi Province Key Laboratory of Satellite and
Terrestrial Network Tech of China, and in part by the Fund Program for the
Scientific Activities of Selected Returned Overseas Professionals in Shaanxi
Province of China under Grant 202160002. This article was recommended
by Associate Editor X. Wang. (Corresponding authors: Richard Sutcliffe;
Jun Feng.)

X. Sun and J. Feng are with the Department of Computer Science,
Northwest University, Xi’an 710127, China, and also with the State-
Province Joint Engineering and Research Center of Advanced Networking
and Intelligent Information Services, Northwest University, Xi’an 710127,
China (e-mail: raindy@nwu.edu.cn; fengjun@nwu.edu.cn).

Y. Gao, R. Sutcliffe, S.-X. Guo, and X. Wang are with the
Department of Computer Science, Northwest University, Xi’an 710127, China
(e-mail: gaoyi-1@foxmail.com; rsutcl@nwu.edu.cn; jialiangjia9@gmail.com;
xinchn@163.com).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TSMC.2019.2940097.

Digital Object Identifier 10.1109/TSMC.2019.2940097

I. INTRODUCTION

SENTIMENT classification is one of the most popularly
used natural language processing (NLP) techniques and

has been applied to many areas, such as E-commerce websites,
stock forecast [1], and political orientation analyses [2]–[4].
In the sentiment classification task, feature-based representa-
tions play an important role, often based on the bag-of-words
(BoWs) model [5], where bi-grams or larger n-grams are
designed to represent features. For example, a BoW model
is used to represent documents by Pang et al. [6] and
Wang and Manning [7], who both build SVM classifiers for
text classification. Although SVM is an extremely strong per-
former, the problem of data sparsity when using the BoW
features heavily affects the classification accuracy [8]. Word
embedding [9] has brought a new inspiration for solving the
data sparsity problem to many NLP tasks [10], because it can
represent each word as a low-dimensional, continuous, and
real-valued vector [11]. For neural models [12]–[15] used to
achieve tasks in NLP, pretrained word embeddings [16]–[18]
play a significant role and are widely used in the state-of-
the-art models as their first layer [19]. Hence, many methods
based on word embedding have been proposed to capture
more semantic information from text and improve the clas-
sification accuracy [16], [20]. For instance, Rao et al. [21],
Tang et al. [11], and Xu et al. [22] utilized word embeddings
to present words before they use neural networks to learn word
representations.

Although the aforementioned models with word embed-
dings can greatly alleviate the data sparsity problem to improve
the sentiment classification accuracy, word embeddings alone
can still not eliminate the problem of word polysemy entirely,
and this will impact the models performance to a certain
extent. Polysemy can be characterized as follows: the same
word may have different meanings in different contexts. For
example, the word present shows diverse meanings in the fol-
lowing sentences: in “He sent me a present for my birthday,”
the word present means gift; in contrast, the meaning of word
present refers to attendant in “There were 200 people present
at the meeting.”

Recurrent convolutional neural network (textRCNN) [23]
proposes that combining a word and its context to present a
word can obtain a more precise word meaning to reduce noise
caused by polysemy. However, the textRCNN model merely
considers that the context has impacts on words meaning and
does not take into account the effect of the word itself to the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0572-641X
https://orcid.org/0000-0001-8441-6166
https://orcid.org/0000-0002-5549-5691
https://orcid.org/0000-0001-6374-1672
https://orcid.org/0000-0002-3286-5338
https://orcid.org/0000-0002-0706-2103

SUN et al.: WORD REPRESENTATION LEARNING BASED ON BIDIRECTIONAL GRUs WITH DL FOR SENTIMENT CLASSIFICATION 4533

meaning of context when it captures the contextual semantic
information of a word. We can use the earlier example to illus-
trate how textRCNN model will ignore the influence of word
itself to contextual semantics. For word “present,” textRCNN
model regards “He sent me a” and “for my birthday” as the
left-side and right-side context of word “present,” respectively,
and does not include word itself when it uses unidirectional
recurrent neural network (RecurrentNN) [24] to capture the
contextual semantics.

In fact, the target word can sometimes influence the mean-
ing of a context. In other words, if you put different words into
the same context, the meaning of the whole sentence may be
different. For example, consider the sentence “I am a , and
I am in class.” where “ ” is an undetermined word. If the
undetermined word is “student,” then the sentence would be
interpreted as meaning that the student listens to the teacher
in class. In contrast, if the unknown word is “teacher” then
the sentence meaning is that the teacher teaches students in
class. From the above example, we see that the word itself
also has an effect on the semantics of the context. To address
this limitation of the above model, we add the word itself into
its left-side and right-side contexts during word representation
learning process. In addition, the bidirectional mechanism cap-
tures more contextual information than a unidirectional one
has proved in many sequence processing tasks [25], [26]. So
we use a bidirectional network structure and gated recurrent
unit (GRU) [27], respectively, to replace the unidirectional
structure and RecurrentNN of the textRCNN to capture deeper
contextual semantics of each word. And then combine these
contextual semantics of words with itself to make words
meaning more precise to obtain better sentiment classification
accuracy.

In contrast to our approach as outlined above, many
researchers tend to use deep neural networks to capture
the deep semantic information of documents [28]–[30] or
research pretrained word representations add into various mod-
els [19], [31] to achieve the purpose of improving the models
classification performance at present. Le et al. [32] men-
tioned that the importance of depth in convolutional models
via analyzing the respective advantages of shallow-and-wide
convolutional neural network (CNN) [33] and deep CNN.
Peters et al. [20] used a deep bidirectional language model
(biLM) to learn deep contextualized word representations.
Although the aforementioned approaches have pushed forward
this field significantly, we still consider whether there is a
way to improve the models classification performance without
increasing the depth of the neural network.

We have found that examples which are not easy to classify
correctly can heavily affect the accuracy of a model during the
process of experiment. For example, in “She runs the gamut of
emotions all the way from A to B,” the expression is implicit
without specific emotion words, but it actually expresses pos-
itive sentiment. Hence, examples like these are difficult to
classify correctly with shallow neural networks and are called
hard examples. In contrast, there are easy examples that are
easy to be classified correctly, such as “Perhaps the gross-
est movie ever made” where the word “grossest” expresses
the sentiment strongly and clearly. For these, shallow neural

networks work well because the expression of sentiment is
explicit and uses specific emotional words.

Sentiment classification datasets consist of both easy and
hard examples. As long as the classification accurancy of hard
examples is improved, the classification accuracy of shallow
neural network models will also increase. If a large number
of easy examples exist in the data, they will play a major
role in the classification model to lead the direction of the
gradient when neural networks are used for sentiment classifi-
cation. Under these circumstances, the neural network may be
unable to learn useful information and cause hard examples
are misclassified. Drawing on the idea of Lin et al. [34], we
design a loss function suited to the sentiment classification task
called drop loss (DL). Different from the idea of the Lin et al.
work, we add a truncation factor into our loss function. DL
makes the model enhance the learning of hard examples by
down-weighting the loss assigned to the easy examples and
preventing a vast number of easy examples from overwhelm-
ing the model during the process of training. Therefore, DL
can improve the classification accuracy without changing the
models depth. In addition, the time complexity of the model
will be reduced with using DL because it can directly filter
the loss of some easy examples via truncation factor during
training.

We conducted experiments on four datasets to verify the
effect of our model. The experiments demonstrate that our
model has a good performance on all four datasets. DL has
significantly improved the classification accuracy of the model,
especially in some shallow neural networks where the number
of network layers is small, such as single-layered CNN, long-
short-term memory (LSTM) [35], or GRU, etc. Overall, our
main contributions are as follows.

1) We introduce two bidirectional GRUs to capture the left-
side and right-side contexts information of each word,
respectively. We add the word itself into its left-side
and right-side contexts when we learn the word repre-
sentation. Therefore, our method is able to capture more
meaningful semantics compared to textRCNN which is
regarded as one of the best existing methods.

2) For the sentiment classification task, a novel loss func-
tion DL is proposed to improve the models attention
on hard examples. DL will not affect the loss of hard
examples during the reduction of loss values for easy
examples. Furthermore, DL can directly filter the loss of
some easy classifications without increasing the amount
of calculation.

3) Our model is comparable to the state-of-the-art meth-
ods for sentiment classification, such as CoVe, ULMFiT,
embeddings from language model (ELMo), and bidirec-
tional encoder representations from transformer (BERT),
and is better than CoVe and ELMo on IMDB-2 and
SST-5 datasets. Moreover, our model is more efficient
to train than all these methods and uses substantially
less parameters.

4) Experiments we have conducted to prove that when DL
is incorporated into well-known shallow neural network
models in place of the traditional cross-entropy (CE) loss
function, the accuracy of these models is improved.

4534 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 7, JULY 2021

Fig. 1. Overview of our model architecture for sentiment classification. This figure regards the sentence “A sunset stroll along the South Bank affords an
array of stunning vantage points.text” as example.

II. RELATED WORK

Sentiment classification is a fundamental task in NLP. Word
representation is regarded as a crucial intermediate component
of sentiment classification [23]. BoW [5] is one of the widely
used word representation methods. Pang et al. [6] used a
supervised machine learning method SVM and represent word
with BoW feature for text classification. Afterward, various
approaches focus on designing the handcrafted features to
improve the performance of machine learning methods for
text classification [36], [37]. Representative features include n-
grams [7] and text topic [38]. However, these methods have the
data sparsity problem [11], [23], and their classification accu-
racy greatly depends on the effectiveness of the handcrafted
features [21].

Recently, deep neural networks [12], [13] and word embed-
ding [9] have offered some novel perspectives to alleviate
the aforementioned problems [10]. Therefore, many neural
models have been proposed based on word embedding to
improve sentiment classification accuracy [16], [21], [22].
Pretrained word embeddings, such as Word2Vec [39] and
GloVe [17], gradually become an important component in
many neural language understanding models [20] and com-
mon initializations for the word vector of deep learning
models [11], [40].

Subsequently, some researchers have found that combining
contextual information with word embeddings as the input of
neural networks for NLP task can improve the performance of
these models [40]. For instance, Lai et al. [23] proposed that
adding the context into word embedding to present a word
vector. McCann et al. [40] used a deep LSTM encoder from
an attentional model trained for machine translation to contex-
tualize word vectors, and combine these context vectors with
its corresponding vector based on GloVe as an input of model.
Unlike previous methods for learning contextualized word vec-
tors [40], [41], ELMo representations learned functions of
the internal states of a deep biLM so that it contains deeper
semantics of text [20]. Moreover, another kind of pretrain-
ing models need not to include the pretrained representations
as additional features [31]. Howard and Ruder [19] proposed

a model namely ULMFiT which consists of three stages,
and they consider that pretraining is beneficial for tasks.
BERTs [31], proposed by Devlin et al., is based on a multilayer
bidirectional transformer [42] and shows the state-of-the-art
performance on various NLP task.

III. PROPOSED METHOD

In this section, we introduce our word representation method
and loss function. Fig. 1 is the overview of our model for
sentiment classification. Given a document D as the input of
the network, which is a sequence of words w1, w2, . . . , wn.
The words are then presented by our word representation
method, which will be specifically illustrated in Section III-A
of this section. The output of the word representation method
is regarded as the input of the dense layer, where each part
of word vector (the word vector contains a word embedding
for the word and the words left and right contexts.) obtained
from word representation method will be completely fused.
After that all represented words of a text will be sent to the
next layer. Next, the max-pooling layer is used to capture the
information throughout the entire text. Finally, the output layer
predicts the class of D by our method, and our loss function
is used in the process of training the model.

A. Word Representation Learning

Polysemy is a common phenomenon in language, so we
intend to combine a word and its contextual information to
present a word to alleviate the impact of polysemy for model
performance. In our model, we use two bidirectional GRU
models to capture contextual information of each word and
combine with word embedding, which can help us to get a
more accurate word meaning.

The bidirectional GRU model is used to learn the semantic
information of the left and right contexts of words. The output
of sending the words left and right contexts to the bidirectional
GRU, respectively, is called left context vector and right con-
text vector. As shown in Fig. 2, for a word wi, we concatenate
its word embedding with its corresponding left and right con-
text vectors. We define cl(wi) as the left context vector of word

SUN et al.: WORD REPRESENTATION LEARNING BASED ON BIDIRECTIONAL GRUs WITH DL FOR SENTIMENT CLASSIFICATION 4535

Fig. 2. Framework used for word representation. The figure is a partial example of the sentence “A sunset stroll along the South Bank affords an array of
stunning vantage points”, and subscripts denotes the positions of the corresponding word in the original sentence.

wi. Similarly, cr(wi) denotes the right context vector of word
wi. cl(wi) is calculated by (1)–(3), where e(wi) represents the
word embedding of word wi,

−→cl (wi−1) and ←−cl (wi−1) refer to
the results of contexts of wi−1 (wi−1 is the previous word of
wi) pass the forward and backward GRUs, respectively. For the
parameters Wl and Ws

l , “→”and “←” indicate the direction of
the bidirectional network. Wl and Ws

l are both weight matrices,
Wl is used to transform the layer (context) into the next layer
and Ws

l is used to joining e(wi) into the previous word’s left
context. f is a nonlinear activation function. The calculation
method of cr(wi) is similar to cl(wi), and the specific formula
is shown in (4)–(6)

−→cl (wi) = f
(−→

Wl
−→cl (wi−1)+−→Ws

l e(wi)
)

(1)

←−cl (wi) = f
(←−

Wl
←−cl (wi+1)+←−Ws

l e(wi)
)

(2)

cl(wi) = [−→cl (wi); ←−cl (wi)] (3)
←−cr (wi) = f

(←−
Wr
←−cr (wi+1)+←−Ws

r e(wi)
)

(4)

−→cr (wi) = f
(−→

Wr
−→cr (wi−1)+−→Ws

r e(wi)
)

(5)

cr(wi) = [←−cr (wi); −→cr (wi)]. (6)

Equations (3) and (6) are used to concatenate the semantics
of context captured from forward and backward direction to
present left and right context vector, respectively. We will illus-
trate our word representation learning with a concrete example.
For the word representation process of “along” in Fig. 2,−→cl (w4) encodes the semantics of the context “. . . stroll along”
together with all previous words in the sentence, ←−cl (w4)

encodes the semantics of context “along the South . . . ” We
connect −→cl (w4) and ←−cl (w4) to get the left context vector
cl(w4). For the right context vector cr(w4), it is combined in
the order of ←−cr (w4) and −→cr (w4). Then, the representation of
word wi is defined as (7), which is made up of cl(wi), e(wi),
and cr(wi). Our model may be better able to disambiguate the
meaning of wi through combining this contextual information

vi = [cr(wi); e(wi); cr(wi)]. (7)

We apply a linear transformation together with the relu [43]
activation function to vi after obtaining the representation vi

of the word wi, and then send the result to the next layer.
Equation (8) shows the dense layer of Fig. 1. y(1)

i is a latent
semantic vector, in which each component of vi will be fused
to obtain better word representation effect

y(1)
i = relu(W1vi + b1). (8)

B. Text Representation Learning

All of the representations vi for the words wi are calculated,
we apply a max-pooling layer after the dense layer (shown
in Fig. 1). The max function is an element-wise function,
in which the kth element of y(2) is the maximum in the kth
elements of y(1)

i

y(2) = max
1≤i≤n

y(1)
i . (9)

The pooling layer not only reduces the text vectors dimen-
sions in order to simplify the computational complexity of the
network; it also captures the information throughout the entire
text. There are other types of pooling layers such as aver-
age pooling layers [44]. Because only a few words and their
combination contribute to the sentiment of a document, we
do not use average pooling here. The max-pooling layer will
capture the k meaningful elements of the text, so we select it
as our pooling layer to determine the most meaningful factor
for classification.

The last layer of our model is the output layer. Similar to
traditional neural networks, it is defined as

y(3) = W3y(2) + b3. (10)

Finally, the softmax function is used to output the prob-
ability of classifying, where C is the number of sentiment
categories

Pi =
exp

(
y(3)

i

)

∑C
k=1 exp

(
y(3)

i

) . (11)

The parameters of our model need to be updated during
training are denoted as �:
� = {E,

−→
Wl,
−→
Ws

l ,
←−
Wl,
←−
Ws

l ,
−→
Wr,

−→
Ws

r ,
←−
Wr,

←−
Ws

r , W1,

W3, b1, b3}.

4536 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 7, JULY 2021

Specifically, E ∈ R
|e|×V refers to word embedding, where

|e| is the dimention of each word and V presents vocabulary
size.
−→
Wl,
−→
Ws

l ,
−→
Wr,
←−
Wr ∈ R

|c|×|c|, where |c| is number of GRU

units.
−→
Ws

l ,
←−
Ws

l ,
−→
Ws

r ,
←−
Ws

r ∈ R
|e|×|c|, W1 ∈ R

H×(|e|+4|c|), W3 ∈
R

C×H , the bias vectors b1 ∈ R
H and b3 ∈ R

C, where H refers
to the hidden layer size.

C. Drop Loss

DL is designed to solve the problem of easy/hard exam-
ples in sentiment classification tasks. We introduce DL starting
from the CE loss function

CE = −
C∑

j=1

yj log
(̂
yj

)
(12)

where y is the truth class of an example and it is encoded
as a one-hot vector. ŷ is the predicted result by softmax
function. C is the number of sentiment categories. For nota-
tional convenience, we define p and rewrite the CE formula
as follows:

p = max
1≤i≤C

yĵyj (13)

CE(p) = − log(p) (14)

where p ∈ [0, 1] is the models estimated probability for the
truth class. One notable property of this loss is that it does
not discriminate between the loss of easy examples and hard
ones. In other words, even examples that are easily classified
(p � 0.5) lead to a loss with nontrivial magnitude. When
summing a large number of easy examples, their loss values
can overwhelm those of hard examples.

As our experiments show, the vast number of easy exam-
ples account for most of the loss and dominate the gradient.
Therefore, we down-weight the loss of easy examples through
reshaping the loss function. Then, the hard examples are
focused on during the training process. More specifically, we
refer to the modulating factor (1− p)γ of focal loss (FL) [34]
to solve the above problems. We transform the CE loss into
(11), where the factor γ ∈ [0, 5] is for adjusting the rate at
which easy examples are down-weighted

CE(1) = −(1− p)γ log(p). (15)

Intuitively, the modulating factor reduces the contribution of
easy examples to the loss. For instance, when γ = 2, an exam-
ple classified with p = 0.9 would have 100 times lower loss
compared with CE. Certainly, if the p of an example is higher,
it should have the lower loss. In brief, the modulating factor
has two advantages as follows: 1) the factor down-weights the
loss of easy examples and 2) the parameter γ steadily adjusts
the rate at which easy examples are down-weighted.

While (1− p)γ causes the loss for well-classified examples
to down-weight, the loss of hard examples goes down as well.
Although the rate of loss for easy examples becomes faster as
the parameter γ increases, the loss of some hard examples also
decreases. In order to avoid the problem of hard examples loss
decrease when we down-weight the loss for easy examples, we
propose to add a threshold m (truncation factor) into CE(1). If
p > m (m ∈ [0, 1]), DL will directly ignore the loss for the

Fig. 3. Loss function (DL function and FL function) curve. We set γ = 5
in FL, and set γ = 5, m = 0.65 in DL. For FL, all examples are treated by
it that means all sample losses decrease with increasing γ , and the loss for
some hard examples has approached 0.

example. By this means, we accelerate the declining rate of
loss for easy examples without increasing γ . We define the
DL as

DL = −θ(m− p)(1− p)γ log(p) (16)

where θ is described as (17), which helps us to achieve the
function of ignoring the loss for the example with p > m

θ(x) =
⎧
⎨
⎩

1,

0.5,

0,

x > 0
x = 0
x < 0.

(17)

Since (1− p)γ has reduced the loss of easy examples, why
do we need the truncation factor m? Consider the instance for
CE(1) where γ = 5; an easy example classified with p = 0.65
will have 100 times lower loss, but for a difficult-to-classify
example and we assume its probability p = 0.46 which will
be classified correctly, its loss will also dropped by 100 times.
In order to explain the introducing truncation factor m more
clearly, we use Fig. 3 to illustrate the difference between FL
and DL. For FL, setting γ > 0 reduces the relative loss for
easy examples (p > 0.5), but some hard examples’ loss are
also reduced. Moreover, some hard examples’ loss values will
be infinitely approaching 0 as shown in Fig. 3, and this will
have an impact on the performance of the model. For DL,
however, if we set γ = 1 and m = 0.65 for DL, the loss is
filtered for the easy examples classified with p > 0.65, while
the loss of hard examples is unaffected.

According to the above description, we note two properties
of the DL.

1) When an example is misclassified and p < m, the loss is
unaffected and the loss for some easy examples (p > m)
will be directly removed.

2) We reduce the network time complexity because some
example losses are filtered directly. Generally speak-
ing, it down-weights the loss assigned to well-classified
examples.

IV. EXPERIMENTS

In this section, we will introduce the datasets and experi-
mental parameters used in our experiments. Besides, we will
analyze the results of our model and other baselines on these

SUN et al.: WORD REPRESENTATION LEARNING BASED ON BIDIRECTIONAL GRUs WITH DL FOR SENTIMENT CLASSIFICATION 4537

TABLE I
STATISTICAL INFORMATION OF FOUR DATASETS

common datasets to verify model performance. Our experi-
ment expands along the following three aspects: 1) verifying
our word representation method effect; 2) verifying the effect
of DL; and 3) combine our word representation method with
DL for experimentation.

A. Datasets

For sentiment classification, we evaluate our model
on the following datasets: the Stanford massive
open online courses (MOOCs) posts datasets (http://
datastage.stanford.edu/StanfordMoocPosts), IMDB (http://
datasets.imdbws.com), and the Sentiment Treebank (http://
nlp.stanford.edu/sentiment). Table I provides detailed
information about each dataset.

Stanford MOOC Posts: This dataset contains forum posts
pertaining to three domain areas: 1) humanities, 2) medicine,
and 3) education. We use the area of Education and set the
posts with a sentiment rating greater than four in the MOOC
post dataset to fall into the sentiment class as positive, while
all other posts fall into the negative class.

IMDB-2 and IMDB-10: We use the binary version of IMDB
as well as its ten-class version. IMDB-10 is a large movie
review dataset that consists of ten classes [45] and contains
50 000 reviews. IMDB-2 contains 25 000 reviews, and its class
is binary. They include movie reviews from around the world.

SST-5: This dataset contains movie reviews parsed and
labeled by Socher et al. [46]. The labels are very negative,
negative, neutral, positive, and very positive.

B. Experiment Settings

Our preprocessing is as follows. For all documents, we use
the natural language toolkit (nltk) to obtain the tokens. For
the four datasets, we divide the datasets into training, vali-
dation, and testing sets with proportion 8/1/1. We train word
embeddings using the default parameters in word2vec with the
Skip-gram algorithm. We use accuracy as the metric (in %)
to evaluate the performance of our approach. Our network is
trained on one NVIDIA GeForce GT730 GPU in a 64-bit Dell
computer with one 3.60-GHz CPU and 8 GB main memory.

For the choice of hyper-parameters, we choose a
set of commonly used values, following previous stud-
ies [23], [40], [44], [47]. Furthermore, we use RMSprop [48]
as an optimizer and its learning rate is set to 0.001. The vector
size of the word embedding is |e| = 300, the hidden layer
size H = 100, and the number of vocabulary V = 300.
Formally, some parameters of our method will be slightly

TABLE II
OPTIMAL HYPER-PARAMETER CONFIGURATION FOR FOUR DATASETS

adjusted according to different datasets. These parameters set
for each dataset are shown in Table II.

C. Baselines

To evaluate the effectiveness of our approach, we compared
our methods with several existing algorithms.

1) Bag of Words/Bigrams + LR/SVM:
Wang and Manning [7] build an SVM classifier
after representing a document with unigram features.
These baselines mainly use machine learning algorithms
with unigram or bigrams as features. We train logistic
regression (LR) and SVM, respectively, with unigrams
and bigrams as features.

2) LSTM: LSTM is an RecurrentNN with memory cells
and a three-gate mechanism [35], [49]. It can capture
further contextual information than RecurrentNN dur-
ing training. LSTM prevent the gradient vanishing of
RecurrentNN.

3) CNN: The CNN has strong adaptability and is adept at
extracting local features [50].

4) GRU: GRU is proposed by Bahdanau et al. whose
network structure adopts a two-gate mechanism and is
leaner than LSTM [27].

5) 2-Layer LSTM: Both of its two hidden layers are
LSTMs, the first hidden layer is used as input to the sec-
ond layer in the same time step [13]. Here, the idea is
to let the second layer capture longer-term dependencies
of the input sequence.

6) CNN+LSTM: This model is used for sentiment classi-
fication and consists of a convolutional layer, a max
pooling layer and an LSTM layer [51].

7) textRCNN: Lai et al. [23] used a recurrent structure to
capture the semantics of the contexts and combine it
with a word to present a word.

8) SR-LSTM: Rao et al. [21] proposed a model with two
LSTM layers. The first layer learns sentence vectors
to represent semantics of sentences, and the document
representation is encoded by the relationship of its
constituent sentences in the second layer.

9) CoVe: CoVe [40] is an effectual transfer learning method
for NLP, which use two-layer bidirectional LSTM to
obtain the contextualized word vectors. And then each
word vector in GloVe with its corresponding vector in
character vectors and context vectors as input sent to
biattentive classification network (BCN) for classifica-
tion.

10) ULMFiT: ULMFiT is proposed by Howard and Ruder
to deal with NLP task, which contains three stages:

4538 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 7, JULY 2021

TABLE III
RESULTS OF OUR MODEL AGAINST MACHINE LEARNING ALGORITHMS

a) language model (LM); b) pretraining, LM fine-tuning;
and c) classification fine-tuning [19].

11) ELMo: ELMo [20], a state-of-the-art word representa-
tion model in NLP field, uses a deep biLM to pretrain
word vector. It can be easily applied by existing models
and improve the performance of these models.

12) BERT: BERT [31] is based on a multilayer bidirec-
tional transformer [42] and is designed to pretrain deep
bidirectional representations by jointly conditioning on
context.

D. Results

In this section, we show the experimental results. For the
convenience of description, our model is called BGDL when
it uses the common loss function (CE), and DL-BGDL when
it uses DL.

Table III compares BGDL model with other traditional
methods (e.g., BoW + LR). The accuracy of BGDL on
the datasets IMDB-10 and SST-5 is 50.7% and 53.25%,
respectively. Compared with the other traditional baselines
in Table III, the accuracy improvements range from 9.78%–
10.79%, 12.39%–17.01% on datasets IMDB-10 and SST-5,
respectively. The results show that our approach may suffer
from the data sparsity problem less and capture more contex-
tual information of features compared with traditional methods
using the BoW features. Furthermore, the neural networks do
better in composing the semantic representation of texts than
the traditional methods for both datasets, namely IMDB-10
and SST-5 IMDB and SST.

We compare BGDL and DL-BGDL with other baselines,
and the results are shown in Table IV. The common CE
loss function is used both for the baselines and for BGDL
during training. BGDL outperforms other neural networks
on IMDB-10 datasets, whose results is 50.70%. Next, we
compare against textRCNN in Table IV, the accuracy of
BGDL increased by 1.02%, 3.24%, 2.54%, and 3.87% on
four datasets. This demonstrates that our proposed word repre-
sentation learning method are more efficient than textRCNN.
As shown in Table IV, the results of DL-BGDL on the four
datasets are slightly higher than BGDL’s ones, whose improve-
ments are 0.41%, 1.6%, 0.12%, and 1.88%, respectively. This
illustrates that the DL suppresses the loss for easy examples
and makes the network focus training on hard examples to
improve the model accuracy.

We now discuss the results in Table IV relating to the recent
state-of-the-art baselines CoVe, ULMFiT, ELMo, and BERT.
First, for the MOOC dataset, there are results for ULMFiT
and BERT, DL-BGDL is worse than ULMFiT by 1.06% and
BERT by 2.12%. Second, for IMDB-2 where there are results

TABLE IV
EXPERIMENTAL RESULTS FOR OUR MODEL AND OTHER COMPETITIVE

NEURAL NETWORK MODELS

TABLE V
EXPERIMENTS FOR DL

for CoVe, ULMFiT, and BERT, DL-BGDL is better than CoVe
by 1.88% and BERT by 3.56% but worse than ULMFiT
by 1.72%. Third, for IMDB-10 where there are results for
ULMFiT and BERT, DL-BGDL is better than them of 2.42%
and 3.6%, respectively. Fourth, for SST-5 where there are
results for CoVe, ELMo and BERT, DL-BGDL is better than
CoVe by 1.43% and better than ELMo by 0.43%, but worse
than BERT by 0.74%. Although the accuracy of DL-BGDL is
not optimal results on datasets MOOC, IMDB-2, and SST-5,
and the number of trainable parameters of DL-BGDL is less
against them (CoVe, ULMFiT, ELMo, and BERT). For exam-
ple, the parameters that BGDL needs to be train is 260 K,
and it consistently outperforms other models, such as CoVe,
ULMFiT, ELMo, and BERT. The CoVe model has 9.04 M
parameters, ULMFiT model has 64.38 M parameters and
ELMo model has 303M parameters and BERT model needs
110 M parameters, so DL-BGDL requires less computational
resources and is also much faster to train. Lastly, we note that
our model is a simple end-to-end architecture, while ULMFiT
and ELMo require pretraining, and in particular ULMFiT
consists of three stages to solve the task.

In order to demonstrate that DL is a universal loss func-
tion for all neural networks, we devised an experiment in
which DL is used for partial models in baselines during the
process of training. Table V shows the results of these mod-
els after using DL. By comparing the results of each model

SUN et al.: WORD REPRESENTATION LEARNING BASED ON BIDIRECTIONAL GRUs WITH DL FOR SENTIMENT CLASSIFICATION 4539

TABLE VI
EFFECT OF DIFFERENT STRATEGIES ON PERFORMANCE

TABLE VII
TIME COSTING OF MODELS WITH DL AND CE LOSS FUNCTION

using DL in Table V, and the results of the model using CE
in Table IV, we can find the results of those model with
DL in Table V are almost always better than the results
shown in Table IV on all datasets. The results of models
mentioned in Table V compare against the results shown in
Table IV, the accuracy of these models is improved by 0.41%–
1.52%, 0.70%–2.96%, 0.12%–9%, and 1.34%–8.26% on the
four datasets, MOOC, IMDB-2, IMDB-10, and SST-5, respec-
tively. This proves that our novel loss function is suited to
all neural networks. Moreover, it also demonstrates that DL
can effectively solve the easy/hard examples problem so that
improved classification accuracy can be attained.

Finally, in order to further investigate the effectiveness of
each strategy proposed by us, we divide DL-BGDL into its
component strategies in order to demonstrate the effective-
ness of each. The results are shown in Table VI, the basic
BGDL model refers to a version of BGDL which does not con-
tain the word itself during the application of the bidirectional
GRU to capture the context of the word. When only using the
basic BGDL model with CE for sentiment classification, the
model achieves results on the four datasets of 79.29%, 90.78%,
49.68%, and 51.72%. After that, we added the current word
into its left and right context when we used the basic BGDL to
extract the contextual information of the word. We were pleas-
antly surprised to find that the accuracy over the four datasets
improved to different degrees, the improvements being 0.91%,
1.3%, 1.02%, and 1.53%, respectively. This demonstrates the
point that the word itself has an effect on the meaning of the
context. Formally, when we consider this impact and incor-
porate the solution into the model, the performance is further
improved.

E. Discussion

The results in Tables IV and V indicate the effectiveness of
our proposed methods. To illustrate more clearly, we carry out
a detailed analysis in this section.

First, we observe the experimental results of Table IV. Our
method and textRCNN outperform other models on MOOC
and IMDB-10 datasets. We believe the main reason is that
the contexts help us to obtain a more precise word meaning
during word representation learning and avoid the influence
of polysemy on classification tasks. Furthermore, the gap in
accuracy between our model and textRCNN on the IMDB-2,
IMDB-10, and SST-5 datasets are great. The accuracy of
BGDL is 92.08%, 50.70%, and 53.25% and textRCNN is
88.84%, 48.16%, and 49.38% on the IMDB-2, IMDB-10,
and SST-5 dataset, respectively. This illustrates that a bidirec-
tional structure can capture more semantic information than a
unidirectional one, especially in long documents.

Second, the word representation method proposed by this
article presents a word meaning more precisely by incorpo-
rating its context. To illustrate this, we choose three words
from the SST-5 dataset and display their word2vec represen-
tations along with those produced by our BGDL method in
different contexts in Fig. 4. All vectors are reduced to two
dimensions using principal component analysis in order to
allow them to be plotted on a diagram. Thus, for example, the
first part of Fig. 4 shows the word2vec representation of the
word “second,” which appears at the top left of the plot. The
representations for second as produced by our method within
four different sentences, s1, s2, s3, and s4 are also shown. As
can be seen, the representations for s1–s4 are in four different
positions and are also far from the word2vec representation.
The same effect can also be observed for the two other words,
“elegant” and “yellow.” This demonstrates that the context of
a word indeed results in that word having a different repre-
sentation within our approach, an effect which is reflected in
our improved results.

Third, when we compare the results of shallow neural
networks (such as GRU, CNN, and LSTM et al.) in Table V
with some complex networks (like textRCNN) in Table IV, we
find that the accuracy of shallow neural networks is similar to
that of complex neural networks. That means DL makes it pos-
sible to improve on the accuracy of shallow neural networks
without compromising the complexity of the neural network.
The results of the simple neural model using DL function
can even match the accuracy of complex neural networks
using traditional loss function. Now, with these shallow neural
networks, the accuracy of the model has been greatly improved
by using DL. This has profound significance for application,
such as E-commerce websites, stock forecast, etc., because the
time complexity of a shallow neural network is much lower
than that of a deep neural network.

Forth, to evaluate more accurately the differences between
using DL and CE for the model, we compute the experimental

4540 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 7, JULY 2021

(a) (b) (c)

Fig. 4. Distance between a word represented by word2vec and the same word represented by BGDL within different SST-5 sentences. (a) Shows the word
“second” as it appears in the following sentences: s1—“Yet in its own aloof, unreachable way it is so fascinating you will not be able to look away for a
second”; s2—“Those moviegoers who would automatically bypass a hip-hop documentary should give ‘scratch’ a second look”; s3—“Crush is so warm and
fuzzy you might be able to forgive its mean-spirited second half”; s4—“The fact that the ‘best part’ of the movie comes from a 60-s homage to one of Demme’s
good films does not bode well for the rest of it.” (b) Shows the word “elegant” as it appears in the following sentences: s1—“Handled correctly, Wilde’s
play is a masterpiece of elegant wit and artifice”; s2—“An elegant work, Food of Love is as consistently engaging as it is revealing”; s3—“The movie’s
thesis—elegant technology for the masses—is surprisingly refreshing”; s4—“The hard-to-predict and absolutely essential chemistry between the down-to-earth
Bullock and the nonchalant Grant proves to be sensational, and everything meshes in this elegant entertainment”. (c) Shows the word “yellow” as it appears
in the following sentences: s1—“Brilliantly written and well-acted, Yellow Asphalt is an uncompromising film”; s2—“Like Rudy Yellow Lodge, Eyre needs to
take a good sweat to clarify his cinematic vision before his next creation and remember the lessons of the trickster spider”; s3—“Pumpkin struts about with
‘courage’ pinned to its huckster lapel while a yellow streak a mile wide decorates its back”; s4—“The disjointed mess flows as naturally as Jolie’s hideous
yellow do.”

Fig. 5. Differences of DL and CE on model performance.

results for DL on each dataset minus the results for CE,
as shown in Fig. 5. Each bar represents the performance
difference between DL and CE for each model on the cor-
responding datasets. As Fig. 5 shows, the accuracy of the
CNN+LSTM model improves the most on IMDB-10 dataset:
with DL, its accuracy increased by 9%. Generally, we find
that DL has a greater impact on simple networks (LSTM,
GRU, etc.) than on complex ones. We consider the reason
is that complex networks already have a strong learning abil-
ity and are thus not so sensitive to the down-weighted easy
examples. For simple networks, however, their ability to learn
features is weaker than complex ones. Therefore, DL focuses

on training on hard examples and prevents the vast number
of easy examples from overwhelming the network during
training.

Lastly, analyzing our model in terms of time complexity,
the parameter m [see (16)] is a threshold value at which, if
the examples estimated probability by the softmax function is
greater than m, its loss value is not calculated. The time costing
of each model with DL or CE is shown in Table VII. We see
that the time taken by the model during training is less with DL
than it is with CE. We believe the main reason is that DL can
reduce the time complexity of the network by filtering the loss
of some easy examples via truncation factor, because the loss

SUN et al.: WORD REPRESENTATION LEARNING BASED ON BIDIRECTIONAL GRUs WITH DL FOR SENTIMENT CLASSIFICATION 4541

of an easy example that is directly truncated is not calculated
during the network training process. As a result, the models
using our DL function require lower computational time.

V. CONCLUSION

We have applied bidirectional RecurrentNNs incorporating
a novel loss function, DL, to the task of sentiment classifica-
tion. Our model not only combines a word and its contextual
information to present a word, but also solves the problem
of easy versus hard examples to improve the accuracy of the
networks. Moreover, DL ensures that the loss values for hard
examples are not affected. The experiments demonstrate that
our approach has a good performance on four different senti-
ment classification datasets. In addition, DL makes it possible
to improve on the accuracy of many kinds of shallow neural
networks without compromising their complexity. In partic-
ular, the results of the simple model using DL function can
match the accuracy of the complex networks using traditional
loss function.

ACKNOWLEDGMENT

The code of this article is at: https://github.com/Yolk-
justlike/BGDL.

REFERENCES

[1] D. D. Wu, L. Zheng, and D. L. Olson, “A decision support approach for
online stock forum sentiment analysis,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 44, no. 8, pp. 1077–1087, Aug. 2014. [Online]. Available:
https://doi.org/10.1109/TSMC.2013.2295353

[2] P. Ji, H.-Y. Zhang, and J.-Q. Wang, “A fuzzy decision support model
with sentiment analysis for items comparison in e-commerce: The case
study of http://PConline.com,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 49, no. 10, pp. 1993–2004, Oct. 2019.

[3] T. Wilson, J. Wiebe, and P. Hoffmann, “Recognizing contextual polarity
in phrase-level sentiment analysis,” in Proc. HLT/EMNLP, vol. 7, 2005,
pp. 347–354.

[4] R. Ren and D. Wu, “An innovative sentiment analysis to measure herd
behavior,” IEEE Trans. Syst., Man, Cybern., Syst., to be published.

[5] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau,
“Sentiment analysis of Twitter data,” in Proc. Workshop Lang. Soc.
Media (LSM), Stroudsburg, PA, USA, 2011, pp. 30–38. [Online].
Available: http://dl.acm.org/citation.cfm?id=2021109.2021114

[6] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? Sentiment clas-
sification using machine learning techniques,” in Proc. Conf. Empirical
Methods Nat. Lang. Process., 2002, pp. 79–86.

[7] S. I. Wang and C. D. Manning, “Baselines and bigrams: Simple, good
sentiment and topic classification,” in Proc. Meeting Assoc. Comput.
Linguist. Assoc. Comput., vol. 2, 2012, pp. 90–94.

[8] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[9] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain,
“Neural probabilistic language models,” J. Mach. Learn. Res., vol. 3,
no. 6, pp. 1137–1155, 2003.

[10] Q. Huang, R. Chen, X. Zheng, and Z. Dong, “Deep sentiment represen-
tation based on CNN and LSTM,” in Proc. Int. Conf. Green Informat.
(ICGI), Aug. 2017, pp. 30–33.

[11] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent
neural network for sentiment classification,” in Proc. Conf. Empirical
Methods Nat. Lang. Process., 2015, pp. 1422–1432.

[12] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” in Proc.
53rd Annu. Meeting Assoc. Comput. Linguist. 7th Int. Joint Conf. Nat.
Lang. Process. Asian Federation Nat. Lang. Process., vol. 1, Jul. 2015,
pp. 1556–1566.

[13] A. Mnih and G. Hinton, “Three new graphical models for statis-
tical language modelling,” in Proc. Int. Conf. Mach. Learn., 2007,
pp. 641–648.

[14] T. A. Mikolov, “Statistical language models based on neural networks,”
Ph.D. dissertation, Dept. Comput. Graph. Multimedia, Brno Univ.
Technol., Brno, Czechia Republic, 2012.

[15] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. Int. Conf. Mach. Learn., 2014, pp. 1188–1196.

[16] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin,
“Advances in pre-training distributed word representations,” in Proc.
11th Int. Conf. Lang. Resources Eval. (LREC), Miyazaki, Japan,
May 2018, pp. 52–55.

[17] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proc. Conf. Empirical Methods Nat. Lang.
Process. (EMNLP), Oct. 2014, pp. 1532–1543. [Online]. Available:
http://aclweb.org/anthology/D/D14/D14-1162.pdf

[18] T. Mikolov, I. Sutskever, C. Kai, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 26, 2013, pp. 3111–3119.

[19] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” in Proc. 56th Annu. Meeting Assoc. Comput. Linguist.
(ACL), vol. 1. Melbourne, VIC, Australia, Jul. 2018, pp. 328–339.
[Online]. Available: https://aclanthology.info/papers/P18-1031/p18-1031

[20] M. E. Peters et al., “Deep contextualized word representations,” in Proc.
Conf. North Amer. Assoc. Comput. Linguist. Human Lang. Technol.,
vol. 1, 2018, pp. 2227–2237.

[21] G. Rao, W. Huang, Z. Feng, and Q. Cong, “LSTM with sen-
tence representations for document-level sentiment classification,”
Neurocomputing, vol. 308, pp. 49–57, Sep. 2018. [Online]. Available:
https://doi.org/10.1016/j.neucom.2018.04.045

[22] J. Xu, D. Chen, X. Qiu, and X. Huang, “Cached long short-term
memory neural networks for document-level sentiment classification,”
in Proc. Conf. Empirical Methods Nat. Lang. Process. (EMNLP),
Austin, TX, USA, Nov. 2016, pp. 1660–1669. [Online]. Available:
http://aclweb.org/anthology/D/D16/D16-1172.pdf

[23] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification,” in Proc. 29th AAAI Conf. Artif. Intell.,
2015, pp. 2267–2273.

[24] J. L. Elman, “Finding structure in time,” Cogn. Sci., vol. 14, no. 2,
pp. 179–211, 1990.

[25] A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional LSTM networks,” in Proc. IEEE Int. Joint Conf. Neural
Netw. (IJCNN), vol. 4, 2005, pp. 2047–2052.

[26] R. Cai, X. Zhang, and H. Wang, “Bidirectional recurrent convolu-
tional neural network for relation classification,” in Proc. Meeting Assoc.
Comput. Linguist., 2016, pp. 756–765.

[27] K. Cho et al., “Learning phrase representations using RNN encoder–
decoder for statistical machine translation,” in Proc. Conf. Empirical
Methods Nat. Lang. Process., 2014, pp. 1724–1734.

[28] H. Schwenk, L. Barrault, A. Conneau, and Y. LeCun,
“Very deep convolutional networks for text classification,” in
Proc. 15th Conf. Eur. Assoc. Comput. Linguist. (EACL), vol. 1.
Valencia, Spain, Apr. 2017, pp. 1107–1116. [Online]. Available:
https://aclanthology.info/papers/E17-1104/e17-1104

[29] D. Tang, B. Qin, X. Feng, and T. Liu, “Effective LSTMS
for target-dependent sentiment classification,” in Proc. 26th
Int. Conf. Comput. Linguist. Tech. Papers (COLING), Osaka,
Japan, Dec. 2016, pp. 3298–3307. [Online]. Available:
http://aclweb.org/anthology/C/C16/C16-1311.pdf

[30] X. Zhang and Y. LeCun, “Text understanding from scratch,”
CoRR, vol. abs/1502.01710, Feb. 2015. [Online]. Available:
http://arxiv.org/abs/1502.01710

[31] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understand-
ing,” CoRR, vol. abs/1810.04805, Oct. 2018. [Online]. Available:
http://arxiv.org/abs/1810.04805

[32] H. T. Le, C. Cerisara, and A. Denis, “Do convolutional
networks need to be deep for text classification?” in Proc.
Workshops 32nd AAAI Conf. Artif. Intell., New Orleans,
LA, USA, Feb. 2018, pp. 29–36. [Online]. Available:
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16578

[33] Y. Kim, “Convolutional neural networks for sentence classifi-
cation,” in Proc. Conf. Empirical Methods Nat. Lang. Process.
(EMNLP), Oct. 2014, pp. 1746–1751. [Online]. Available:
http://aclweb.org/anthology/D/D14/D14-1181.pdf

[34] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” IEEE Trans. Pattern Anal. Mach. Intell., to be
published.

[35] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

4542 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 7, JULY 2021

[36] G. Paltoglou and M. Thelwall, “A study of information retrieval weight-
ing schemes for sentiment analysis,” in Proc. 48th Annu. Meeting Assoc.
Comput. Linguist. (ACL), Uppsala, Sweden, Jul. 2010, pp. 1386–1395.
[Online]. Available: http://www.aclweb.org/anthology/P10-1141

[37] L. Qu, G. Ifrim, and G. Weikum, “The bag-of-opinions method for
review rating prediction from sparse text patterns,” in Proc. 23rd
Int. Conf. Comput. Linguist. (COLING), Beijing, China, Aug. 2010,
pp. 913–921. [Online]. Available: http://aclweb.org/anthology/C10-1103

[38] R. Xia and C. Zong, “Exploring the use of word relation features for sen-
timent classification,” in Proc. 23rd Int. Conf. Comput. Linguist. Posters
(COLING), vols. 23–27. Beijing, China, Aug. 2010, pp. 1336–1344.
[Online]. Available: http://aclweb.org/anthology/C/C10/C10-2153.pdf

[39] T. Mikolov, K. Chen, G. Corrado, and J. Dean. (2013). Efficient
Estimation of Word Representations in Vector Space. [Online]. Available:
https://arxiv.org/abs/1301.3781

[40] B. McCann, J. Bradbury, C. Xiong, and R. Socher, “Learned in
translation: Contextualized word vectors,” in Proc. Adv. Neural
Inf. Process. Syst. 30th Annu. Conf. Neural Inf. Process. Syst.,
Long Beach, CA, USA, Dec. 2017, pp. 6297–6308. [Online]. Available:
http://papers.nips.cc/paper/7209-learned-in-translation-contextualized-
word-vectors

[41] M. E. Peters, W. Ammar, C. Bhagavatula, and R. Power, “Semi-
supervised sequence tagging with bidirectional language models,” in
Proc. 55th Annu. Meeting Assoc. Comput. Linguist. (ACL), vol. 1.
Vancouver, BC, Canada, Jul./Aug. 2017, pp. 1756–1765. [Online].
Available: https://doi.org/10.18653/v1/P17–1161

[42] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Inf. Process. Syst. 30th Annu. Conf. Neural Inf. Process. Syst.,
Long Beach, CA, USA, Dec. 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need

[43] R. H. R. Hahnloser and H. S. Seung, “Permitted and forbidden sets in
symmetric threshold-linear networks,” in Proc. Adv. Neural Inf. Process.
Syst. 13th Neural Inf. Process. Syst. (NIPS), Denver, CO, USA, 2000,
pp. 217–223. [Online]. Available: http://papers.nips.cc/paper/1793-
permitted-and-forbidden-sets-in-symmetric-threshold-linear-networks

[44] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach.
Learn. Res., vol. 12, pp. 2493–2537, Feb. 2011.

[45] Q. Diao, M. Qiu, C.-Y. Wu, A. J. Smola, J. Jiang, and C. Wang, “Jointly
modeling aspects, ratings and sentiments for movie recommendation
(JMARS),” in Proc. ACM 20th Int. Conf. Knowl. Disc. Data Min., 2014,
pp. 193–202.

[46] R. Socher et al., “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proc. Conf. Empirical Methods Nat. Lang.
Process. (ACL), 2013, pp. 1631–1642.

[47] F. Kokkinos and A. Potamianos, “Structural attention neural networks for
improved sentiment analysis,” in Proc. 15th Conf. Eur. Assoc. Comput.
Linguist., 2017, pp. 586–591.

[48] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA Neural Netw.
Mach. Learn., vol. 4, pp. 26–30, Nov. 2012.

[49] A. Graves, “Long short-term memory,” in Supervised Sequence
Labelling With Recurrent Neural Networks. Heidelberg, Germany:
Springer, 2012, pp. 37–45.

[50] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[51] A. Yenter and V. Abhishek, “Deep CNN-LSTM with combined ker-
nels from multiple branches for IMDb review sentiment analysis,” in
Proc. 8th IEEE Annu. Ubiquitous Comput. Electron. Mobile Commun.
Conf., 2017, pp. 540–546.

Xia Sun received the Ph.D. degree in computer sci-
ence from Xi’an Jiaotong University, Xi’an, China,
in 2006.

She is an Associate Professor with the School
of Information Science and Technology, Northwest
University, Xi’an. Recent projects have included
causality extraction from educational data, and rela-
tionship extraction from bioinformatics text. She
has coauthored 40 articles and edited or coedited 4
books. Her current research interests include natural
language processing and machine learning.

Dr. Sun has served as a Reviewer for the IEEE TRANSACTIONS

ON INDUSTRIAL INFORMATICS, the IEEE TRANSACTIONS ON NEURAL

NETWORKS AND LEARNING SYSTEMS, and the Chinese Journal of
Electronics. She has also reviewed for the IEEE International Conference
on Computational Science and Engineering.

Yi Gao received the B.S. degree in computer science
from Northwest University, Xi’an, China, in 2017,
where she is currently pursuing the M.S. degree in
computer science.

Her current research interests include neural
networks and natural language processing. In addi-
tion to sentiment classification, she has applied deep
learning to student performance prediction.

Richard Sutcliffe received the Ph.D. degree in
computer science from the University of Essex,
Colchester, U.K., in 1989.

He is an Associate Professor with Northwest
University, Xi’an, China. His current research
interests include natural language processing,
information retrieval, and music information
retrieval. He has coauthored 101 articles and
coedited 3 books and 10 conference proceed-
ings. Recent projects have included persuasive
conversational agents, public sector message

classification, analysis of classical music texts, and personality and
translation ability.

Dr. Sutcliffe has reviewed for Artificial Intelligence Review, Computational
Linguistics, Computers and the Humanities, Information Processing and
Management, Information Retrieval Journal, Journal of Natural Language
Engineering, and Journal Traitement Automatique des Langues. Conferences
he has reviewed for include ACL, CIKM, COLING, IJCNLP, LREC,
NAACL-HTL, and SIGIR.

Shou-Xi Guo received the B.S. degree in soft-
ware engineering from the Shenyang University of
Chemical Technology, Shenyang, China, in 2017. He
is currently pursuing the M.S. degree in computer
science with Northwest University, Xi’an, China.

His current research interests include neural
networks and natural language processing. Current
projects include the application of convolutional
neural networks to ancestry estimation of skulls, and
the use of recurrent convolutional neural networks to
categorize textual blog posts.

Xin Wang received the B.S. degree in computer
science from Northwest University, Xi’an, China,
in 2018, where she is currently pursuing the M.S.
degree in computer science.

Her research combines neural networks with
natural language processing. Recent work develops
new neural network algorithms and frameworks for
sentiment classification.

Jun Feng (M’07) received the Ph.D. degree in
computer science from the City University of
Hong Kong, Hong Kong, in 2006.

She is a Professor with the School of Information
Science and Technology, Northwest University,
Xi’an, China. She has coauthored 132 articles and
coedited three books. Her current research interests
include pattern recognition and machine learning,
especially in the fields of medical imaging analy-
sis and intelligent education. Recent projects have
included medical image analysis with deep learn-

ing, and intelligent education based on AI and brain–human interaction.
Prof. Feng has reviewed for many journals, including the IEEE

TRANSACTIONS ON SIGNAL PROCESSING, IEEE ACCESS, EURASIP
Journal on Image and Video Processing, Multimedia Tools and Applications,
Journal of Digital Information Management, Canadian Journal of Cardiology,
Journal of Clinical and Aesthetic Dermatology, OPE, and INFPHY.
Conferences she has reviewed for include IEEE-VR, MICCAI, SIGCSE,
IWCSE, and CompEd. She is a member of ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

