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Abstract

Interactive fusion methods have been successfully applied to multimodal sentiment

analysis, due to their ability to achieve data complementarity via interaction of different

modalities. However, previous methods treat the information of each modality as a

whole and usually treat them equally, failing to distinguish the contribution of different

semantic regions in non-textual features towards textual features. It caused that the

public regions fail to be captured and private regions are hard to be predicted only with

textual. Meanwhile, these methods use sentiment-independent encoder to encode textual

features, which may mistakenly identify syntactically irrelevant contextual words as

clues for judging sentiment. In this paper, we propose a coordinated-joint translation

fusion framework with sentiment-interactive graph to solve these problems. Specifically,

we generate a novel sentiment-interactive graph to incorporate sentiment associations

between different words into the syntactic adjacency matrix. The relationships between

nodes are no longer limited to the sole existence of syntactic associations but fully

consider the interaction of emotions between different words. Then, we designed a

coordinated-joint translation fusion module. This module utilizes a cross-modal masked

attention mechanism to determine whether there is a correlation between the text and

non-text inputs, thereby identifying the most relevant public semantic features in the
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visual and acoustic modalities corresponding to the text modality. Subsequently, a

cross-modal translation-aware mechanism is used to calculate the differences between

the visual and acoustic modalities features transformed into the text modality and the

text modality itself, which allows us to reconstruct the visual and acoustic modalities

towards text modality to obtain private semantic features. In addition, we construct

a multimodal fusion layer to fuse textual features and non-textual public and private

features to improve multimodal interaction effects. Experimental results on publicly

available datasets CMU-MOSI and CMU-MOSEI illustrate that our proposed model

achieve a best accuracy of 86.5% and 86.1%, and best F1 of 86.4% and 86.1%. A

series of further analyses also indicate the proposed framework effectively improve the

sentiment identification capability.

Keywords: Multimodal sentiment analysis, Multimodal fusion, Sentiment-interactive

graph, Cross-modal masked attention, Cross-modal translation-aware mechanism

1. Introduction

Sentiment analysis aims to predict the sentiment polarities of opinion holders such

as positive, negative and neutral [2]. Previous studies focus on the textual sentiment

analysis, and it has been extensively applied in daily life [68]. For example, in e-

commerce, sentiment analysis can help enterprises improve the quality of goods and5

services according to feedback of customers by analyzing their reviews [26]. However,

with the development of multimedia technology and social networks, people express

their views and emotions through more diverse ways in the multimedia scene. Human

cognition does not only come from single textual data. In real scenes, text, image and

video data often appear simultaneously. Furthermore, it is difficult to accurately judge10

the sentiment state only by text in some cases, such as irony and sarcasm [22]. Irony and

sarcasm often combine neutral or positive textual content and audio expression that does

not match the content to complete a negative sentiment expression [23]. Above cases are

challenging to be solved fundamentally only by single text data. Therefore, multimodal

sentiment analysis that combines multiple modalities has attracted considerable attention15

in recent years.
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Multimodal sentiment analysis (MSA) is an important yet challenging task in natural

language processing, and it understands the attitudes and views of opinion holders by

combing different modalities such as textual, visual and acoustic data [40]. Multimodal

sentiment analysis follows the principle of complementarity which focuses on textual20

information, and makes more accurate predictions by supplementing the text with visual

and acoustic information. For example, Fig. 1 (a) presents a positive sentiment via

textual words such as enjoy, healthy and yum, and makes the textual representation

more vivid via image data. The text fails to clearly show any sentiment in Fig. 1 (b), and

bright colours from image can complement the text data to predict positive sentiment.25

And text represents a positive sentiment with fun in Fig. 1 (c), but image show a negative

sentiment via grim expression. Therefore, multimodal sentiment analysis more adapts

to the demand of multimodal scene, and realizes more accurate sentiment prediction via

abundant data from multi modalities [19].

(b) We spend our holiday at the beach. (Positive) (c) Oh yeah, that sounds like a lot of fun. (Negative)
(a) Enjoy life: healthy drink, followed by pasta with 

loads of cheese & yum dark chocolate. (Positive)

Figure 1: The architecture of the proposed sentiment interaction and multi-graph perception graph convolu-

tional network

This paper aims to achieve more accurate multimodal sentiment prediction by30

exploring multimodal fusion methods. Early multimodal fusion studies have achieved

some progress [4, 30, 31]. However, previous methods have two issues: First, these

early multimodal fusions methods usually utilize neural networks such as recurrent

neural network (RNN) and convolutional neural network (CNN) to extract the text

semantic features. The RNN-based models are only suitable for processing sequential35

information and cannot handle tree or graph structures, it is insufficient to capture

syntactical dependencies within a sentence. And, the CNN-based models can only
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perceive multi-word features as consecutive words with the convolution operations over

word sequences, but are inadequate to determine sentiments depicted by multiple words

that are not next to each other. This may lead them to mistakenly identify syntactically40

irrelevant contextual words as clues for predicting sentiment [28, 66]. Second, previous

studies [43, 63] have demonstrated that the visual and acoustic features can improve the

final performance of models. These methods only study the influence of different modal

interactions on the performance, and fail to explain why visual or acoustic modalities

can assist text semantics and which regions play a complementary role in text semantics.45

They treat the information of each modality as a whole and fuse textual, visual and

acoustic features equally, lacking the ability to distinguish the contribution of different

semantic regions in non-textual features towards textual features.

To address the above issues, we propose a coordinated-joint translation fusion

network (CJTF) for multimodal sentiment analysis. On the one hand, the consistency50

principle of multimodal complementarity makes the text information occupy a greater

proportion in different modalities. Therefore, the understanding of text semantics is

crucial to the final performance. The previous methods usually utilize the RNN and

CNN models to extract the semantic information. However, these methods fail to

capture textual syntactic features. Graph convolutional networks (GCNs) have been55

successfully applied to textual sentiment analysis, due to their ability to flexibly capture

syntactic information [50, 60, 69]. But these GCN methods have limitations: whether

there is dependency between two nodes. If there is a dependency, the node value at

the corresponding position of the adjacency graph is set to one; otherwise, it is set to

zero. It will lead to the disappearance of the contextual sentiment clues. In our view, the60

nodes should not only contain syntactic dependencies but also the sentiment interactions

between different words should be fully considered. For example, in the sentence

“Macbook notebooks quickly die out because of their short battery life.”. “Short battery

life” leads to “Macbook notebooks quickly die out”, there are sentiment correlations

and influences between different words. Therefore, we construct a sentiment-interactive65

graph convolutional network (SIGCN) which fuses sentiment interaction relations to

syntactic adjacency matrix to construct sentiment-interactive graph to capture long-

distance dependencies of syntactics and sentiment interaction of semantics.
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On the other hand, the previous methods have always emphasized that the comple-

mentation between different modalities is benefit for multimodal fusion, but they don’t70

explain which part of visual or acoustic information plays a role and what roles they play

in interaction. We consider that there are two features in multimodal interaction. One

is public feature that jointly describes entities to enhance text semantics, and the other

is private feature that contains unique information to coordinately complement other

modalities. Therefore, we design a coordinated-joint translation fusion module to cap-75

ture public and private features. We first utilize a coordinated module with cross-modal

mask attention to extract the non-textual public features that visual and acoustic towards

textual to enhance the textual semantics. Specifically, we calculate the text-oriented

visual and acoustic cross-modal attention score to identify the most relevant regions

in the visual and acoustic modalities that correspond to the text modality. Based on80

these regions, to capture visual and acoustic public semantics for textual modality, we

pay more attention to text features that contain a higher degree of shared semantics.

Therefore, we use a cross-modal mask attention mechanism to determine whether there

is an association between textual and non-textual modalities to mask irrelevant features,

thereby achieving the extraction of non-textual public features. Then, a joint translation85

fusion module with cross-modal translation-aware mechanism is designed to comple-

ment textual semantics by translating non-textual private features. We first generate

a query matrix based on textual modality, key matrices based on visual and acoustic

modalities, and value matrices based on visual and acoustic modalities. Then, based

on query, key and value matrix, we utilize a multi-head self-attention mechanism to90

calculate the differences between the features of visual and acoustic modalities trans-

formed into textual modality and the text modality itself. Subsequently, we employ an

attention-aware mechanism to reconstruct the visual and acoustic modalities towards

textual modality by leveraging the differences between the text modality and non-text

modalities to obtain private semantic features. Finally, the public and private features95

are fused into a multimodal fusion layer to predict sentiment polarity. Experiments on

two publicly-available datasets show that the textual features which contains semantic

and syntactic information as well as public and private feature are contribute to predict

multimodal sentiment.
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The main contributions can be summarized as follows:100

• We propose a sentiment-interactive graph convolutional network to capture the

long-distance dependencies of syntactics and sentiment interaction of semantics.

• We design a coordinated module with cross-modal masked attention mechanism

to extract the non-textual public features, which enhances the textual semantics

representation by calculating text-oriented visual and acoustic public semantic105

contribution.

• We construct a joint translation module with the cross-modal translation-aware

mechanism to capture non-textual private features, which supplements the textual

semantics representation by translating text-oriented visual and acoustic private

semantic features.110

• Experimental results on two public datasets CMU-MOSI and CMU-MOSEI

illustrate that our proposed model outperforms advanced baseline methods and

verify the effectiveness of our model.

The remainder of this paper is organized as follows. After introducing previous

works in Section 2, we propose a coordinated-joint translation fusion network in Section115

3. Then we describe the experimental details and analysis in Section 4. Finally, we

summarize our work and provide a direction of future work in Section 5.

2. Related work

Previous studies of sentiment analysis have been applied in textual, visual and acous-

tic filed [14, 15, 39]. With the development of multimedia technologies, multimodal120

data such as text, image and video are growing exponentially and has gradually become

the main form of data. Due to the limited information obtained by unimodal sentiment

analysis, achieving accurate analysis in some specific scenarios is difficult. There-

fore, multimodal sentiment analysis has attracted considerable attention of sentiment

analysis [19]. Different from unimodal sentiment analysis which only contains one125

modal information, multimodal sentiment analysis combines textual, visual and acoustic
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modal information to make expression more vivid and accurate [44]. In this section, we

introduce multimodal sentiment analysis in two parts: multimodal feature extraction

and multimodal fusion methods.

2.1. Multimodal feature extraction130

Previous MSA methods follows the principle of complementarity that focuses on

textual information, and predict sentiment polarity via the supplement of non-textual

information. They usually apply neural networks to extract multimodal features such

as convolutional neural networks, recurrent neural networks and pre-training models

(PTMs).135

CNNs extract the local features of text well via the local receptive field and weight

sharing operation. Poria et al. [36] proposed a multi-kernel learning method which

used the text hidden representation extracted by CNNs as the feature of the high-level

classifier. On the basis of this work, Poria et al. [37] further discussed the role of the

general framework for multi-modal sentiment analysis, and proposed a convolutional140

MKL method with CNN for multimodal sentiment analysis.

Despite CNN-based methods could capture local semantic information, pooling

operations resulted in the loss of overall semantic dependency. RNNs automatically

learn the global semantic features and save the sequential information with special

gates and cells. Xu et al. [57] proposed a deep semantic network MultiSentiNet for145

multimodal sentiment analysis. Attention mechanism breaks the limitation of RNNs

that the input depends on the output of the previous time, and often used in conjunction

with RNNs. Akhtar et al. [1] proposed a contextual inter-modal attention framework

based on RNN, which used multimodal and contextual information to simultaneously

predict the sentiment and emotion of a discourse in multi-task learning.150

Most MSA methods with CNNs and RNNs with attention mechanism are insufficient

to capture the complex sentiment dependency in sentences. Simply utilizing the rich

knowledge learned as the contextual embedding already achieves a large performance

gain such as BERT [12]. Yu et al. [61] introduced a novel weight self-adaption

strategy to balance the loss constraints of different tasks. This method extracted text155

features through BERT and mapped different modalities to a unified space through
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ReLU activation function. Ghorbanali et al. [16] proposed a hybrid MSA model based

on weighted convolutional neural networks. They utilized BERT model to receive

the textual descriptions of the images to extract the text features and imported these

features into a weighted convolutional neural network ensemble. The above studies show160

the excellent performance in capturing semantic information, ignoring an important

problem, i.e., syntactic dependency [66].

There are some GCN studies in textual sentiment analysis [5, 24, 58], but most

models only regard the relationship between sentences as whether there are syntactic

dependencies, i.e., whether they are connected or not, ignoring their internal sentiment165

interaction relations. Meanwhile, few studies use GCNs in multimodal sentiment

analysis. Therefore, we design a sentiment-interactive graphs to address the limitation

of most GCNs. The proposed method performs a graph convolution on the top of

LSTM to extract the long-distance syntactic dependencies and sentiment interaction of

semantics.170

2.2. Multimodal fusion methods

Most existing models use multimodal fusion method to map multimodal features

to unified semantic space for multimodal sentiment classification. Multimodal fusion

predicts the results by integrating information from multiple modalities, focuses on

how to integrate multi-modal data with a certain architecture or approach and jointly175

contribute to solving the target task [67]. Multimodal fusion methods are classified into

two categories: Model-agnostic and Model-based. The model-agnostic methods do

not directly depend on specific deep learning methods, while the model-based methods

apply deep learning models to explicitly solve multimodal fusion problems [3].

Model-agnostic methods are divided into early fusion, late fusion and hybrid fusion.180

Early fusion, also known as feature-level fusion, completes the fusion of features before

inputting the classifier by extracting features from different modal information. Early

fusion can better capture the interaction between modalities, and only one model needs

to be trained to complete feature fusion of different modalities. Therefore, it is widely

used in the early research of multimodal sentiment analysis [10, 34, 52], but it fails to185

address issues of time asynchronous and redundancy of data. Late fusion is also called
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decision-level fusion. Different modal features are modeled separately, and then the

output from model is integrated to produce final prediction. The processing of late fusion

is irrelevant to features and requires multi-network models for training which can adapt

well to the problem of modal missing. Therefore, some studies utilized the late fusion190

methods to model multimodal sentiment analysis [53, 59]. However, this method lacks

low-level interaction of multimodal data and more computationally intensive. Hybrid

fusion uses early fusion and late fusion respectively to realize multimodal sentiment

analysis [17, 47]. It combines the advantages of early and late fusion, also increases

structural complexity and training difficulty of the prediction model.195

Model-based methods focus on multimodal data fusion using neural networks such

as CNNs, LSTMs and PTMs. Zadeh et al. [62] introduced a Tensor Fusion Network

(TFN) to explicitly aggregates multimodal interactions. To combine cues from different

modalities, Chen et al. [8] proposed a gated multimodal embedding LSTM (GME-

LSTM(A)) with time attention to perform modal fusion at the word level. Each modality200

has its own representation space and contains some knowledge that other views cannot

access. Therefore, Zadeh et al. [63] proposed a memory fusion network (MFN) with

multi-view sequential learning to comprehensively and accurately describe multimodal

data. Wang et al. [51] believed that integrating the features of different modalities and

improving the performance are the main challenges of multimodal sentiment analysis205

tasks, and proposed an end2end fusion method with transformers for multimodal senti-

ment analysis. Zhu et al. [70] learned the corresponding relationship between regions

and words from text-image pairs, and proposed an image-text interaction network for

multi-modal sentiment analysis. Chen et al. [7] introduced a classifier for image-text

relevance into the multimodal task, and unified separate fusion strategies into a holistic210

framework for adaptive sentiment analysis.

The above methods utilize different technologies from various angles to attempt

multimodal fusion to better realize multimodal emotional analysis. However, they

fused textual, visual and acoustic features equally, failing to capture public semantic

regions and private regions are hard to be predicted only with textual. It caused the215

robustness and accuracy of the model to decline. Therefore, we design a coordinated-

joint translation modules to explore the semantic contributions of different modal
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 I don't  know why people are hating on the film 

because I really do love it.
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Figure 2: The architecture of proposed CJTF contains three components: sentiment-interactive graph convolu-

tional network, coordinated-joint translation fusion module and multimodal sentiment prediction.

regions.

3. Methodology

In this section, the proposed coordinated-joint translation fusion network (CJTF) is220

described in detail. As demonstrated in Fig. 2, the architecture of CJTF contains three

components: (1) Sentiment-interactive graph convolutional network. (2) coordinated-

joint translation fusion modules. (3) Multimodal sentiment prediction. CJTF first design

a sentiment-interactive graph convolutional network by deriving sentiment interaction

of each node to capture the long-distance dependencies of syntactics and sentiment225

interaction of semantics. Then, coordinated-joint translation modules are designed to

enhance and complement the textual semantics by translating non-textual public and

private features. Finally, the public semantic features and private semantic features are

fusion to predict multimodal sentiment polarities.
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3.1. Notation definition230

Given an utterance which includes textual, visual and acoustic modalities, the

input of three modalities is denoted as xk = {xki | 1 ≤ i ≤ L, k ∈ {t, v, a}}, where

xki ∈ Rdk×nk , in which dk = {dk | k ∈ {t, v, a}} denotes the dimension of unimodal

features, and nk = {nk | k ∈ {t, v, a}} is the number of utterances. L is the length of

the given sequence.235

3.2. Sentiment-interactive graph convolutional networks

To extract the basic semantics, we first utilize the LSTMs [18] to encoder the text,

video and audio to extract textual, visual and acoustic features hki

hki = Bi− LSTM(xki ) (1)

where hki = {hki |1 ≤ i ≤ L, k ∈ {t, v, a}, hki ∈ R2dh}. Then, we perform a graph

convolution on the top of hti to capture syntactic information. Different from the

previous GCNs that only considered a syntactic dependency between contexts, we

design a sentiment-interactive GCN to capture the syntactic dependencies and semantic240

interaction by deriving the long-range sentiment relations of each node towards itself

and contexts.

3.2.1. Original graph

We construct the original graph based on dependency trees to capture the syntactic

dependencies of sentences1. If node has syntactic relations in dependency tree, the value

of node in adjacency graph is set to one, otherwise it is set to zero.

DO
i,j =

1, if i = j or sti and stj in the dependency tree

0, otherwise
(2)

Where DO
i,j ∈ Rn×n is the adjacency matrix of original graph, and sti denotes the

words of sentence. In the adjacency matrix, each node is set to be adjacent to itself, and245

the value of diagonal is all set to one.

1We use spaCy toolkit to construct the dependency tree: https://spacy.io/

11

https://spacy.io/


3.2.2. Sentiment-interactive graph

The original graph considers the syntactic dependencies of adjacent nodes. To

explore the semantic interaction of different nodes, we generate an interactive adjacency

matrix by deriving the long-range syntactic relations of each node based on original250

graph.

AI
i,j =



1 + 1/ (1 + pe) , if si and sj ∈ T

1 + 1/ (|j − pe|+ 1) , if si ∈ T

1 + 1/ (|i− pe|+ 1) , if sj ∈ T

0, otherwise

(3)

where AI
i,j ∈ Rn×n is the adjacency matrix of interactive graph. T is the dependency

tree. pe denotes the end position of sentence, and | · | is an absolute value function. In the

sentence, the node-centric word also has a sentiment impact on the current node except

sentiment words. To capture this sentiment impact and augment the contextual-aware

abilities of nodes, we fuse sentiment interaction relations to interactive adjacency matrix

to construct sentiment-interactive graph.

GSI
i,j = DO

i,j +DO
i,j ∗ASI

i,j (4)

ASI
i,j =



DO
i,j + 1/(pe + 1) ∗DO

i,j ∗AI
i,j , if DO

i,j = 1

1 + 1/(|j − pe|) ∗AI
i,j , if si ∈ T

1 + 1/(|i− pe|) ∗AI
i,j , if sj ∈ T

0, otherwise

(5)

Where ASI
i,j ∈ Rn×n is the adjacency matrix of sentiment-interactive graph. DO

i,j ∈

Rn×n andASI
i,j ∈ Rn×n present the adjacency matrices of original graphs and interactive

graphs. To further enhance the direction-aware of GCN, we construct the sentiment-

interactive graph in unidirectional, i.e., GSI
i,j = GSI

j,i , where GSI
i,j , GSI

j,i ∈ Rn×n. The255

process of generating a sentiment-interactive graph is shown in Algorithm 1.

We input the hidden representation hti and graph GSI
i,j into GCN after obtaining the

sentiment-interactive graph. Significantly, we first utilize the position-aware mechanism
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Algorithm 1 The pseudocode of sentiment-interactive graphs
Input:1 A sentence S = {st1, st2 · · · , stn}; The dependency tree T and matrix AI

i,j .
Output:2 The sentiment-interactive graphs GSI

i,j .
1: while T <maximum number of iterations do
2: for i = 1→ n; j = 1→ n do
3: . The process of generating original graph
4: if i = j or si and sj in T then
5: DO

i,j ← 1

6: else
7: DO

i,j ← 0

8: end if
9: . The process of generating sentiment-interactive graph

10: if DO
i,j = 1 then

11: ASI
i,j ← DO

i,j + 1/(pe + 1) ∗DO
i,j ∗AI

i,j

12: else if si in T then
13: ASI

i,j ← 1 + 1/(|j − pe|) ∗AI
i,j

14: else if sj in T and As then
15: ASI

i,j ← 1 + 1/(|i− pe|) ∗AI
i,j

16: else
17: ASI

i,j ← 0

18: end if
19: end for
20: for i = 1→ n; j = 1→ n do
21: GSI

i,j = DO
i,j +DO

i,j ∗ASI
i,j

22: GSI
i,j ← GSI

j,i

23: return GSI

24: end for
25: end while

to translate the hidden representation hti to reduce the noise, and then perform the graph

convolution in the form of L layers on the top of hti to make each node update via a260

normalization factor.

hli = ReLU(

n∑
j=1

GSI
i,j Wl g

l−1
j /di + bl) (6)

gli =
n− i
n
∗ hti (7)

Where hli ∈ R2dh denotes the hidden representation of SIGCN, and gli ∈ R2dh denotes

the position-aware hidden representation. Wl ∈ Rdh×2dh and bl ∈ Rdh are the weight

parameters. di =
∑n

j=1G
si
i,j is the degree of dependency tree. ReLU() is a non-linear

activation function.265
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3.3. Coordinated-joint translation fusion module

In the above section, we obtain the textual representation via SIGCN, visual repre-

sentation hvi and acoustic representation hai via LSTMs. Next, we design a coordinated-

joint translation fusion module to extract public and private features from three modal

representation to enhance and supplement the textual representation. The coordinated-270

joint translation fusion module contain three components: coordinated module, joint

translation module and multimodal fusion module.

3.3.1. Coordinated module

Textual, visual and acoustic information have common attributes when they represent

the same object, and these attributes describe the object from different aspects. As275

shown in Fig.1 (a), drinks and food in the image with mellow colours correspond to text

words such as healthy and yum, and they cooperate with each other to enhance semantic

representation to predict positive polarity. To enhance the textual representation, we

construct a coordinated module to utilize the coordinated interaction of non-modalities.

First, we calculate the text-oriented visual and acoustic cross-modal attention score.280

βv→l
t =Wvltanh(Wv→l[h

l
t;h

v
t ] + bv→l) (8)

βa→l
t =Waltanh(Wa→l[h

l
t;h

a
t ] + ba→l) (9)

Where βv→l
t and βa→l

t denote the attention score of non-textual features towards tex-

tual. Wvl, Wal ∈ R1×2dh , Wv→l, Wa→l ∈ R2dh×4dh , and bv→l, bv→l ∈ R2dh are the

trainable weight parameters. hlt is the textual representation of SIGCN. [ ; ] represents

the concat operation and tanh() is the non-linear activation function. Then, inspired by

previous studies of mask [46, 55], we design a cross-modal mask attention mechanism to285

mask irrelevant features to capture the public features of non-textual modalities towards

textual modality.

αv→l
t = maskpubt · exp(βv→l

t )∑L
i=1 exp(β

v→l
j )

(10)
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αa→l
t = maskt ·

exp(βa→l
t )∑L

i=1 exp(β
a→l
j )

(11)

maskt =

1 + 1/(|t− L|), if {v, a→ l} ∈ Rpub

0, otherwise
(12)

Where αv→l
t , αa→l

t ∈R1×2dh are the attention weight. exp() is the exponential function.

maskt ∈RL×L denotes the public mask, andRpub ∈RL×L is a attention graph. Finally,

we obtain public feature by calculating hvt , αv→l
t and hat , αa→l

t .

hv→l
t =

L∑
t=1

αv→l
t · hvt (13)

ha→l
t =

L∑
t=1

αa→l
t · hat (14)

Where hv→l
t , ha→l

t ∈ RL×2dh is the non-textual public features, and hvi , hai is the visual

and acoustic representation.

3.3.2. Joint translation module290

Textual, visual and acoustic information contain a large number of private features in

addition to the common attributes that describe objects. As shown in Fig. 1 (b), Private

features such as bright sun, blue sea and golden sand beach in the image combine with

textual features to complement word sand beach from different aspects. Therefore, we

construct a joint translation module with cross-modal translation-aware mechanism to

capture non-textual private features to supplement textual semantics. We first design

a cross-modal translation mechanism to translate non-textual to capture non-textual

private features.

ηv→l
t = Translation(HV , HL)

= softmax(
QLKV

T

√
dk

)VV

= softmax(
HLWQL

WKV

THT
V√

dk
)HVWVV

(15)
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ηa→l
t = Translation(HA, HL)

= softmax(
QLKA

T

√
dk

)VA

= softmax(
HLWQL

WKA

THT
A√

dk
)HAWVA

(16)

Where ηv→l
t , ηv→l

t ∈ RL×2dh is the non-textual private weight. HL, HV and HA

represent the textual hidden representation hli and non-textual representation hvi , hai .

QL = HLWQL
, KV = HVWKV

and VV = HVWVV
denote the query matrix,

key matrix and value matrix of visual features towards the textual. QL = HLWQL
,

KA = HAWKA
and VA = HAWVA

denote the query matrix, key matrix and value295

matrix of acoustic features towards the textual. WQL
∈ Rdt×dk , WKV

∈ Rdv×dk and

WVV
∈ Rdv×dv are the linear translation weight matrices of visual features towards the

textual. WQL
∈ Rdt×dk , WKA

∈ Rda×dk and WAV
∈ Rda×dv are the linear translation

weight matrices of acoustic features towards textual. Then, we utilize an attention-aware

mechanism to compute the weighted sum and represent as the private representations.300

pv→l
t =

L∑
t=1

ηv→l
t · hvt (17)

pa→l
t =

L∑
t=1

ηa→l
t · hat (18)

Where pv→l
t , pa→l

t ∈ RL×2dh is the non-textual private representations, and hvi , hai is

the visual and acoustic representation of LSTMs.

3.3.3. Multimodal fusion module

In this section, we first compute the non-textual public features and textual represen-

tation as the public representations.

hpubt =Multimodalfusion[h
v→l
t ;hv→l

t ;hlt] (19)

Where hpubt ∈ RL×6dh denotes the final public representations. Multimodalfusion is

a fusion layer which contains a Bi-LSTMs and a self-attention module. Then, we utilize
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a ReLU activation function to fuse the public representations and private representations

to predict multimodal sentiment.

ŷ =Wf (ReLu(Wh[h
pub
t ; pv→l

t ; pa→l
t ] + bh)) + bf (20)

Where ŷ is the predict label. Wf ∈ R1×dh , Wh ∈ Rdh×10dh , bf ∈ R and bh ∈ Rdh

denote the trainable weight parameters. The overall learning of the model is to optimize

all the parameters, and minimize the loss function as far as possible.

L =
1

N

N∑
i=1

||yi − ŷi||22 (21)

4. Experiments

In this section, we first describe the experimental datasets in Section 4.1. Then, the305

implementation details and baseline models are described in Sections 4.2 and 4.3. To

evaluate the performance of our proposed model, we compare it with advanced baselines

on CMU-MOSI and CMU-MOSEI, and utilize the Acc, F1-score, MAE and Corr as

the evaluation metrics in Section 4.4. Next, we conduct an ablation study to evaluate

the contribution of the SIGCN module, the coordinated module and the joint translation310

module in Section 4.5 and explore the influence of the number of SIGCN layers to

model performance in Sections 4.6. To prove the long-distance syntactic dependencies

and non-textual public and private features is benefit to improve the performance of

multimodal sentiment analysis, we conduct a case study with baselines in Section 4.7.

Finally, we construct a visualization of the CJTF to demonstrate the interaction between315

different modalities of the CJTF in Section 4.8.

4.1. Experimental datasets

We conduct experiments on two publicly available datasets, CMU-MOSI datasets:

CMU Multimodal Opinion level Sentiment Intensity datasets 2 [64] and CMU-MOSEI

datasets: CMU Multimodal Opinion Sentiment and Emotion Intensity datasets 3 [65].320

2http://multicomp.cs.cmu.edu/resources/cmu-mosi-dataset/
3http://multicomp.cs.cmu.edu/resources/cmu-mosei-dataset/
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CMU-MOSI obtains 93 video clips from YouTube, and generates 2199 subjective video

clips and 1503 objective video clips through subjective annotation. The sentiment label

range of each utterance is annotated as [−3, 3]. CMU-MOSEI collects 3228 video clips

and 23453 sentences from YouTube. The sentiment annotation is similar to that of

CMU-MOSI which adopts a sentiment score of [−3, 3], and adopts six emotions of joy,325

sadness, surprise, anger, disgust and fear. In accordance with most previous studies, we

adopt binary classification accuracy (ACC), F1-Score (F1), Mean Absolute Error (MAE)

and the correlation coefficient (Corr) to evaluate on CMU-MOSI and CMU-MOSEI. We

use 1284, 229 and 686 utterances as training, validation and testing set on CMU-MOSI,

and use 16216, 1871 and 4625 utterances as training, validation and testing set on330

CMU-MOSEI.

4.2. Implementation details

In our experiments, we adopt the GloVe vectors [33] with 300 dimensions to initialize

the word embedding, and the origin visual features and acoustic features are obtained by

Facet [13] and COVAREP [11]. The batch size is set to 32 and the number of SIGCN335

layers is set to 2. The dimension of hidden state is set to 100. The max length of

CMU-MOSI and CMU-MOSEI are set to 50 and 128. We use the Adam optimizer to

optimize all models and the learning rate is set to 0.001. To optimize the model training,

we average the experimental results of 40 runs with random initialization.

Table 1: Hyperparameters of our model.

Hyperparameters MOSI MOSEI
Batch Size 32 32
Max Length L 50 128
Hidden Size dh 100 100
Hidden Size of BERT 768 768
Learning Rate 1e-3 1e-3
Learning Rate of BERT 5e-5 5e-5
Optimizer Adam Adam
Dropout 0.5 0.5
GCN layer 2 2
Epoch 40 40
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4.3. Baseline models340

We compare CJTF with 18 state-of-the-art baselines, 6 attention-based, 2 graph-

based, 5 interaction-based, and 5 pre-trained-based:

MFN [63] simulated the dynamics in a specific view and utilized a memory attention

network to fuse specific and cross view for predicting the sentiment category.

LMF [27] proposed a Low-rank Multimodal Fusion method that performed multi-345

modal fusion using low-rank tensors to improve efficiency.

RAVEN [49] designed a recurrent attended variation embedding network (RAVEN)

to model expressive nonverbal representations.

MulT [45] proposed an end-to-end model which adopted the cross-modal attention

to learn representations directly from unaligned multimodal streams.350

CIA [6] utilized inter-modal interactive modules and context-aware attention module

to increase the confidence of individual task in prediction.

MCTN [35] proposed a method to learn robust joint representations by translating

between modalities to ensure that joint representations retain maximal information from

all modalities.355

MMGraph [29] devised a graph pooling fusion network to automatically learn the

associations between various nodes from different modalities.

GATE [21] introduced the conditional gating mechanism to learn better cross modal

information and applied a self attention layer on unimodal contextual representations to

capture long term dependencies.360

MAG-BERT [38] fine-tuned BERT and attached a carefully designed Multimodal

Adaptation Gate (MAG) to the models.

GraphCAGE [54] adopted the graph construction and graph aggregation to compute

in parallel in the time dimension.

TCSP [55] designed the cross-modal prediction task to explore the shared and365

private semantics via training two cross-modal prediction models.

MPT [9] applied a sampling function to generate sparse attention matrices and

compressed a long sequence to a shorter sequence of hidden states.

MMLATCH [32] used the high-level representations extracted by the network and

low-level input features to model the interaction relations.370
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CubeMLP [41] explored multimodal approaches with a feature-mixing perspective,

and introduced a multimodal feature processing framework based entirely on MLP.

PS-Mixer [25] designed a Polar-Vector (PV) to determine the polarity of the senti-

ment and devised the MLP-Communication module to reduce the interference of noise

and facilitate multimodal interactions.375

EMT [42] proposed a generic and unified framework to employ utterance-level

representations from each modality as the global multimodal context to interact with

local unimodal features and mutually promote each other.

AOBERT [20] introduced a single-stream transformer which was pre-trained on

two tasks simultaneously to address traditional fusion methods have some loss of380

intramodality and inter-modality.

TETFN [48] proposed a novel Text Enhanced Transformer Fusion Network which

learned text-oriented pairwise cross-modal mappings for obtaining effective unified

multimodal representations.

4.4. Results and analysis385

To evaluate the performance of our proposed model, we utilize Acc, F1-score,

MAE and Corr as the evaluation metrics on CMU-MOSI and CMU-MOSEI, as shown

in Table 2 and 3. The compared baseline models are divided into attention-based,

graph-based, interaction-based and bert-based. First, compared with attention-based

baselines, we can find the performance of them is lower than CJTF. Attention-based390

models often utilize LSTMs to encode textual features, such as MFN and CIA. LSTMs

are a variant of the RNN model that processes sequential information to extract semantic

features of textual modalities and integrates modalities through attention mechanisms.

However, these models are unable to handle tree structures, resulting in their inability

to capture crucial syntactic dependency information within textual modalities and395

the sentiment interaction relations between different words. Additionally, because

the current input of LSTM depends on the output of the previous time step, they

may mistakenly identify syntactically irrelevant contextual words as clues for judging

sentiment. On the basis of using LSTM to capture semantic information, CJTF performs

graph convolution operations on the top of LSTM to capture syntactic dependency400
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Table 2: Performance of CJTF compared to 18 baselines on CMU-MOSI with the evaluation metrics. The

upward arrow indicates that the higher this indicator is, the better it is, and the downward arrow is the opposite.

Model
CMU-MOSI

Acc ↑ F1 ↑ MAE ↓ Corr ↑

Attention-based

MFN 77.4 77.3 0.965 0.632
RAVEN 78.0 76.6 0.915 0.691
MulT 81.5 80.6 0.861 0.711
CIA 79.9 79.5 0.914 0.689
GATE 82.9 80.6 - -
MPT 82.8 82.9 - -

Graph-based
MMGraph 80.6 80.5 0.933 0.684
GraphCAGE 82.1 82.1 0.933 0.684

Interaction-based

LMF 76.4 75.7 0.912 0.668
MCTN 79.3 79.1 0.909 0.676
TCSP 80.9 81.0 0.908 0.710
MMLATCH - - - -
PS-Mixer 82.1 82.1 0.794 0.748

Pre-Trained-based

MAG-BERT 82.5 82.6 0.731 0.789
CubeMLP 85.6 85.5 0.770 0.767
EMT 85.0 85.0 0.710 0.798
AOBERT 85.2 85.4 0.856 0.700
TETFN 86.1 86.1 0.717 0.800

CJTF(our)
LSTM+GCN 83.6 83.5 0.905 0.721
BERT+GCN 86.5 86.4 0.704 0.810

information. This enables CJTF to extract both semantic and syntactic information

simultaneously, resulting in improved extraction of textual modal features, thereby

improving the performance of multimodal sentiment analysis.

Secondly, we compare our model with graph-based baselines. From table 2, we ob-

served that CJTF still have superior performance. Although MMGraph and GraphCAGE405

utilize the method of constructing graphs for multimodal sentiment analysis, they first

create nodes from sequence, then define edges based on these created nodes. All the

nodes and edges compare the graph which contains sufficient information about long-

range dependencies. This method of generating graphs has two drawbacks: firstly, the
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Table 3: Performance of CJTF compared to 18 baselines on CMU-MOSEI with the evaluation metrics. The

upward arrow indicates that the higher this indicator is, the better it is, and the downward arrow is the opposite.

Model
CMU-MOSEI

Acc ↑ F1 ↑ MAE ↓ Corr ↑

Attention-based

MFN 80.6 80.0 0.612 0.687
RAVEN 79.1 79.5 0.614 0.662
MulT 80.1 80.9 0.630 0.664
CIA 80.4 78.2 0.683 0.594
GATE 81.1 78.5 - -
MPT 82.6 82.8 - -

Graph-based
MMGraph 81.4 81.7 0.608 0.675
GraphCAGE 81.7 81.8 0.609 0.670

Interaction-based

LMF 82.0 82.2 0.623 0.677
MCTN 80.8 80.6 0.611 0.670
TCSP 82.8 82.7 0.576 0.715
MMLATCH 82.8 82.9 0.582 0.704
PS-Mixer 83.1 83.1 0.537 0.765

Pre-Trained-based

MAG-BERT 83.8 83.7 0.539 0.753
CubeMLP 85.1 84.5 0.529 0.760
EMT 86.0 86.0 0.527 0.774
AOBERT 84.9 85.0 0.515 0.763
TETFN 85.2 85.3 0.551 0.748

CJTF(our)
LSTM+GCN 84.3 84.1 0.536 0.757
BERT+GCN 86.1 86.1 0.513 0.788

process of constructing dependency graphs fails to introduce syntactic relationships410

within the sentence, only considering the semantic relevance of the context. The second

is the inability to capture the sentiment interaction between different words and deter-

mine the sentiment impact of different words. CJTF generates original syntactic trees to

capture the syntactic dependency information and constructs the sentiment-interactive

graphs by integrating the sentiment relations into the syntactic dependencies to fully415

utilize such sentiment associations.

Interaction-based baseline belong to compound models which contain different

fusion components and strategies. These models often use different encoders to extract
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features of different modalities, and then use interactive modeling to fuse modalities.

This method can capture the interactive features of different modalities to improve420

the performance of the model to a certain extent. However, these models only focus

on global information of all modalities and treat them equally, ignoring the influence

of public features and private features with each modality to multimodal interaction.

The public features enhance the textual semantic representation to make the model

more robust and the private features complement the textual semantic representation425

to correctly predict sentiment. CJTF considers the cooperativity of public features

and complementarity of private features simultaneously. It first utilizes a coordinated

module with cross-modal mask attention to extract the non-textual public features that

visual and acoustic towards textual to enhance the textual semantics. Then, a joint

translation fusion module with cross-modal translation-aware mechanism is designed430

to complement textual semantics by translating non-textual private features. CTJF

fuses the public and private features into a multimodal fusion layer to predict sentiment

polarity. Therefore, CJTF achieves better accuracy by enhancement of public semantics

and supplement of private semantics.

In addition, considering the excellent performance of the transformer based Pre-435

Trained Language Model in textual semantic extraction, we applied both LSTM+GCN

and BERT+GCN for text encoding. We found that when we use LSTM+GCN to extract

textual modal features, the model performs better than MAG-BERT on Acc and F1, but

performs poorly on MAE and Corr. Compared with LSTM, BERT uses the multi-head

self-attention mechanism which divides the vector space into multiple blocks to learn440

more abundant semantic representation in different spaces. And, residual connection

better solves the problems of gradient vanishing and exploding, and layer normalization

improves the generalization ability which makes the predicted value closer to the true

value. Therefore, the MAG-BERT model is superior to our model. We believe that the

BERT pre-trained model can extract dynamic semantics based on contextual context445

compared to traditional LSTM, making it easier to discover sentiment clues. When

we use the BERT+GCN to encode textual modality, we found that the performance

of the model is superior to all BERT-based baseline models. This indicates that fully

considering syntactic information and sentiment interaction while obtaining context
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Table 4: Ablation study of CJTF model on different components. For component part, we remove SIGCN

module, coordinated module and joint translation module on CMU-MOSI respectively.

Model
CMU-MOSI

Acc ↑ F1 ↑ MAE ↓ Corr ↑

CJTF w/o SIGCN module 81.3 81.4 0.943 0.685
CJTF w/o coordinated module 81.8 81.7 0.919 0.693
CJTF w/o joint translation module 81.6 81.6 0.925 0.689

CJTF 83.6 83.5 0.905 0.721

Table 5: Ablation study of CJTF model on different components. For component part, we remove SIGCN

module, coordinated module and joint translation module on CMU-MOSEI respectively.

Model
CMU-MOSEI

Acc ↑ F1 ↑ MAE ↓ Corr ↑

CJTF w/o SIGCN module 82.4 82.1 0.579 0.714
CJTF w/o coordinated module 83.1 83.2 0.5510 0.733
CJTF w/o joint translation module 82.9 83.0 0.566 0.729

CJTF 84.3 84.1 0.536 0.757

based dynamic semantics can help CJTF better achieve multimodal sentiment analysis.450

4.5. Ablation study

We conduct an ablation study to evaluate the contribution of the SIGCN module,

the coordinated module and the joint translation module, as shown in Table 4 and

Table 5. CJTF w/o SIGCN indicates that we remove the SIGCN module, and the

performance on four evaluation indicators has deteriorated. SIGCN module is used455

to capture the syntactic and semantic information of textual features, it will fail to

capture the long-range dependencies of syntactics and sentiment interaction of semantics

when we remove the SIGCN module. CJTF w/o coordinated module and CJTF w/o

joint translation module indicates that we remove the coordinated module and the

joint translation module respectively. We observe the performance of CJTF is further460

degraded, so that we believe the coordinated-joint translation component can capture

non-textual public and private features to enhance and complement textual representation.
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When we remove these two modules, CJTF will fuse textual, visual and acoustic features

equally that ignores the enhancement and supplement of public and private features in

different modalities to modal interaction. Therefore, we think the proposed modules465

can significantly improve the model performance.

4.6. Influence of the number of SIGCN layer

To explore the influence of SIGCN layers on performance, we evaluate the number

of GCN layers ranging from 1 to 10 on CMU-MOSI and CMU-MOSEI. As shown in

Fig. 3 and Fig. 4, With 1-layer SIGCN, the CJTF performs poor performance that the470

model cannot propagate far enough to capture the long-range syntactic dependencies

and sentiment interactions. CJTF achieves the best performance in terms of accuracy, F1,

MAE and Corr when the GCN layer is set to 2. In contrast, the performance of CJTF
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Figure 3: Influence of the numbers of SPGCN layers on CMU-MOSI with the evaluation metrics.

decreases with the increase of the layers because the phenomenon of over-smoothing

[56] that makes the features of all nodes increasingly similar.475
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Figure 4: Influence of the numbers of SPGCN layers on CMU-MOSEI with the evaluation metrics.

4.7. Case study

To prove the sentiment interaction and non-textual public and private features are

benefit to improve the performance of multimodal sentiment analysis, we conduct a case

study with baselines as shown in Table 6. There are four utterances that the No.1 and 4

are positive and the No. 2 and 3 are negative. We observe that all models accurately480

predicted the sentiment polarity on No.1 and 2 due to these two utterances explicitly

expressing the sentiment of opinion holders. In the third utterance, the TCSP and CJTF

correctly predict the negative polarity but MCTN predict incorrectly. We think that the

reason for this is that the MCTN fail to achieve the information interaction of different

modalities. In the fourth utterance, the MCTN and TCSP all predict the negative polarity485

incorrectly. We believe that the reason is that these models pay too much attention

to the negative word “hating”, and non-text visual and acoustic information fails to

help the model focus on the positive word “love”. Compared with MCTN based on

LSTM encoder, we think the MCTN pays more attention to word “love” and ignores

the influence of word “but” and “bored”. We find CJTF focuses on “love”, “but” and490

“bored”, so that it can better capture context semantics and sentiment interaction relations
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Table 6: Case study of proposed CJTF model compared with baselines, and different degrees of orange

indicate the attention of the proposed CJTF to utterances.

No Utterances
Sentiment

Actual MCTN TCSP CJTF

1 The thing is its a very great

translation of the book .
PosX PosX PosX PosX

2 I thought that two hours was

way too long for this movie .
NegX NegX NegX NegX

3 Kids are gonna love the film ,

but for me i just a little bored .
NegX Pos

%
NegX NegX

4 I don’t know why people are

hating on the film because I

really do love it .

PosX Neg
%

Neg
%

PosX

to make the model more excellent in semantic representation construction; Meanwhile,

compared with the fusion methods of TCSP, TCSP thinks the word “don’t” and “hating”

are more important while CJTF focuses on word “love”. We believe that CJTF with the

cross-modal masked attention mechanism and cross-modal translation-aware mechanism495

can capture the semantic contribution of different regions of non-textual modalities

towards text modality, thus achieving more accurate multimodal sentiment analysis.

4.8. Visualization

To demonstrate the interaction between different modalities of the CJTF, we visualize

an utterance with textual and visual features from the CMU-MOSI dataset as shown in500

Fig. 5. We observe that the positive word “interesting” have a stronger correlation with

visual features that corners of the mouth raised, and it is weakly related to these visual

features that represent normal faces. We believe the reason for this is that the CJTF can

enhance and supplement the textual information with different visual images via the

different contributions of the public and private features to model.505
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He was only character that was slightly interesting

High

Low

Figure 5: Visualization of the CJTF

5. Conclusion

This paper aims to explore new multimodal fusion methods to break the limitation

of existing multimodal sentiment analysis methods. Based on the principles of con-

sistency and complementarity, non-textual modalities have public regions that jointly

express semantics and private regions that enjoy semantics individually. The public510

regions enhance the textual semantic representation to make the model more robust

and the private regions complement the textual semantic representation to correctly

predict sentiment. However, these methods only study the influence of different modal

interactions on the performance, and fail to explain why visual or acoustic modalities

can assist text semantics and which regions play a complementary role in text semantics.515

Meanwhile, there is a lack of exploration of sentiment interaction in multimodal inter-

active modeling. Therefore, compared with previous works, our method explores the

sentiment interaction in textual semantics via graph structure, and clarifies the reason

that visual and acoustic regions can enhance and supplement multimodal semantics. It

is determined that there are two semantic features in the multimodal fusion processing:520
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the non-textual public semantic features and private semantic features. The non-textual

public features enhance the textual semantics representation by calculating the visual

and acoustic public semantic contribution towards textual features, and the non-textual

private features supplement the textual semantics representation by translating the visual

and acoustic private semantic features towards textual features.525

In this paper, we propose a coordinated-joint translation fusion (CJTF) framework

for multimodal sentiment analysis, which integrates public and private features of non-

textual information to enhance and complement textual features containing semantics

and syntactics from sentiment-interactive GCN. Specially, we design a sentiment-

interactive GCN to extract the long-distance dependencies of syntactics and sentiment530

interaction of semantics to address the issue that models mistakenly identify syntac-

tically irrelevant contextual words as clues for judging sentiment. Furthermore, the

coordinated-joint translation module is designed to enhance and complement textual

features by calculating the public semantic contribution and translating visual and acous-

tic private semantics features towards textual features. In addition, the proposed model535

is suitable for semantic extraction using multiple models, including LSTM and BERT.

Experimental results on two public datasets CMU-MOSI and CMU-MOSEI illustrate

that our proposed model outperforms all advanced baselines and verify the effectiveness

of our model. However, our model may fail to capture the complex relations of internal

and cross different modalities. Therefore, we would like to utilize graph contrastive540

learning method to generate the graph strategy to capture sentiment relations in the

future work.
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