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a b s t r a c t 

This paper presents the estimation methods of the Bayesian Graphical Vector Auto-regression with and 

without innovations such as external regressors (BG-VAR(X)) and Bayesian Graphical Systems Equation Modelling 

with and without exogenous variables (BG-SEM(X)), which are developed to examine risk network structures 

embedded in multivariate time series. This methodical approach allows for the analysis of various dynamics 

and persistence in the multivariate time series in terms of risk propagation. For instance, both the BG-SEMX 

and BG-VARX can reveal the within-day and across-day major risk transmitters as well as risk recipients from 

other univariate time series, which better explain risk contagion using complex network models. In addition, 

the procedures for models with and without exogenous variables have been explored, which shows that the 

former produce more network structures compared to the latter and therefore depict their influential role. This 

approach, therefore, provides a platform for future research in terms of extension of the method to encompass 

different types of multivariate data with additional innovations that might aid feasible analysis and the design of 

policy instruments and the implementation of relevant policy implications. 

• Development and application of innovative network models that enhances the efficient analysis of 

multivariate time series data. 
• Estimation of intra-day and inter-day interconnection from a daily multivariate time series data and their 

dynamics and persistence from contagion analysis viewpoint. 
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Specifications table 

Subject area Economics and Finance 

More specific subject area Time series analysis, energy risk management, energy economics, network 

analysis 

Method name Methods for Risk analysis, and Model performance using Bayesian 

Graphical Network Vector Autoregression with and without Exogenous 

Variables (BG-VAR(X) ) and Structural Equation Modelling with and 

without (BG-SEM (X)) coupled with real world applications. 

Name and reference of original method Modelling risk contagion in the Italian zonal electricity market. 

Resource availability Data source: Italian Electricity market data obtained at 

www.mercatoelettrico.org 

Software: R statistical software, MATLAB; Excel; Microsoft word; LATEX 

Hardware: Computers 

Introduction 

The fundamental rationale behind network theory is that essential information, knowledge, data- 

driven insights and patterns about complex systems can be deduced by examining the underlying 

network structure. Some of these systems include the following: transportation, financial markets, 

power grids etc. Network theory, therefore, aids the discovery of hidden structures and provide

unique understanding of the interactions between complex structures and their architectural network 

dynamics. The use of complex networks can therefore help to extract hidden information from various

complex systems. From the viewpoint of network science, complex networks can be defined as a

collection of nodes connected by edges that depicts various complex interaction among the nodes. 

It is worth noting that almost any large system whether natural or physical exhibits some form

of interconnections. In terms of the energy market, one could think of, for instance, grid lines

and their interconnections, energy prices and their linkages etc. In view of this, [6] use dynamic

Granger-causality and network theory to analyze the interactions among 13 European electricity 

spot prices, by constructing 7651 dynamic multivariate networks, where the nodes correspond to 

different EU countries and the links weight the Granger-causality between the variations of the 

respective electricity prices. Other related works include: [14 , 16 , 19 , 20] and many more. Furthermore,

accounting for linkages in electricity market zones that are rich in intermittent renewable energy

sources, [15] explore volatility transmission patterns using VAR-GARCH estimation approach given ex- 

ante and ex-post the inauguration of a new cable. Specifically, the SAPEI cable offers two cyclical

perspectives. On the one hand, it is able to accommodate stronger volatility transmissions towards 

Sardinia in the off-peak periods. On the other hand, it shows no significant transmissions during peak-

load periods. However, this paper proposes and exploits risk network structures inherent in the Italian

energy market by estimating the within-day and across-day market connections using a multivariate 

time series of hourly prices. Some recent papers that focus on the volatility spillover patterns include:

[8 , 12 , 18 , 21] among many others. 

In consequence, various network measures, such as network density, centrality of networks, etc. 

have been investigated to ascertain risk propagation in the market. Our findings are relevant for

market participants such as policymakers, traders, investors and regulators to guard against sudden 

systemic failures, which can negatively have impact on many businesses and economies because of 

the significant socio-economic role played by energy in the global economy. Some related recent 

papers on systemic risk include the following: [2,4,5,7,9] , who propose several econometric measures

of connectedness based on principal components analysis and Granger-causality networks. According 

http://www.mercatoelettrico.org
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o the authors, systemic risk is inherent in financial systems and groups of interconnected institutions

ith business relationships, so the risk of illiquidity, insolvency and losses can quickly propagate

uring periods of financial distress 1 . 

This paper, therefore, contributes to various strands of methodological literature. First, we develop

nd employ an innovative Bayesian graphical network model that enhances and improves analysis

f market interconnections using vector autoregression and system equation modeling with external

egressors; BG-VARX and BG-SEMX respectively. As a result, we provide both the within-day

nd across-day daily time series interconnection analysis, thereby exploring various risk network

tructures. On the other hand, we study the persistence of the interconnectedness in multivariate

ime series data. Finally, we examine the various risk network structures to identify and quantify

ndividual univariate time series that play dominant role as well as those that are vulnerable to

he spread of risk, for instance, among the multivariate time series data, thereby providing a unique

nderstanding of risk management practices. Overall, modeling framework, details a methodology that

s effective in designing policy and making actionable data-driven decision and thus applicable to risk

anagement practices in various sector of the economy such as the financial markets, commodity

arkets, insurance markets, among many others. 

ethod details 

This section provides an overview of the model and estimation procedure adopted in this paper

o analyze interdependencies in multivariate financial time series data. These interdependencies can

e decoupled and broken down into two underlying network structure-inferred typologies: an intra-

ay (same day) network, in which the dependence occurs on the same day; and an inter-day (day-

o-day) network, in which the dependence occurs with a time-lag. The intra-day and inter-day

ependencies from multivariate time series are modeled using a simultaneous equation (SEM) and a

ector autoregressive model (VAR). However, the aforementioned models also provide the possibility

o incorporate exogenous variables; see [9] for further details. The subsequent sections discuss the

odeling framework. 

ayesian graphical network model estimation 

In this section, we present the Bayesian graphical framework of multivariate analysis. The

rocedure for Bayesian Graphical Vector Autoregression and Bayesian Graphical Structural Equation

odeling framework constitutes a special case of the equation (1) . This implies that both methods

an be represented by a system of equations framework given by: 

Y t = BX t + ε t , ε t ∼ N (0 , �ε ) (1)

here B = (B y | y , B y | z ) , X t = (Y ′ t , Z 
′ 
t ) 

′ and �ε = �u in the case of the intra-day model; and B =
A 1 ,y | y , . . . , A p,y | y , A y | z ) , X t = (Y ′ 

t−1 
, . . . , Y ′ t−p , Z 

′ 
t ) 

′ and �ε = �v in the case of the inter-day model.

he objective of the BG-SEMX is to estimate ( B y | y , B y | z , �u ), while that of BG-VARX is to estimate

 p, A y | y , A y | z , �v ) using the available data. 

etwork models 

Complex network analysis can be recognized as a tool for mining technological, social and financial

ata, among many others. The multiplexity of different network structures, if accurately inferred and

licited, can help provide unique understanding and insights into various naturally existing and man-

ade networks. As such, the introduction of networks in a typical multivariate multiple regressions

odel helps to interpret the relationships in the model. In the formalization of this representation,

quations (1) can be specified from the viewpoint of networks by assigning to each coefficient B i j a
1 See [1] for a review of the state of the art for statistical inference and the application of network analysis to financial time 

eries. 
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latent variable including indicator G i j ∈ { 0 , 1 } , such that for i, j = 1 , . . . , n , we have the following: 

B i j = 

{
0 if G i j = 0 ⇒ Y j � Y i 
b i j ∈ R if G i j = 1 ⇒ Y j → Y i 

(2) 

where Y j � Y i means that Y j does not influence Y i . Modeling from the perspective of equation (1) and

equation (2) , a network model is specified by the parameters (G, B, �ε ) , where G is related to the

latent network structure (often referred to as the adjacency matrix of a network graph). B denotes

the coefficients, and �ε is the residual covariance matrix. 

Prior specification 

The joint estimation of the BG-SEMX and BG-VARX or the simplified regression model in 

equation (1) is a challenging and computationally expensive problem. To this extent, the Bayesian

formulation with prior specification and posterior approximation for the inference of the model 

parameters are carried out by specifying the prior distributions as follows: 

[ B i j | G i j = 1] ∼ N (0 , η) , G i j ∼ Ber (πi j ) , �2 
ε ∼ W(δ, �0 ) 

where η, πi j , δ, and �0 are hyper-parameters. The specification for B i j conditioned on G i j follows a

normal distribution with zero mean and variance η. Therefore, the relevant explanatory variables 

with significant information to predict a response variable are associated with coefficients different 

from zero and the rest (representing not-relevant variables) are restricted to zero. We consider G i j as

Bernoulli distributed with πi j as the prior probability. Closely related to our specification for B and G ,

is the stochastic search variables selection [SSVS, 11] that assumes an indicator matrix underlying B

and employs the spike and slab prior on the elements in B [see also 13 ]. The SSVS and the Bayesian

graphical VAR [BGVAR, 3] have proven efficient in selecting relevant variables in over-parameterized 

VAR models. The difference between the two methods is that the estimated SSVS coefficient matrix

often consists of elements with values significantly different from zero, whereas the rest concentrate 

around zero but are not ignored. Parsimony is, therefore, not guaranteed. 

Finally, we assume �−1 
ε is Wishart distributed with prior expectation 

1 
δ
�0 and δ > n as the

degrees of freedom parameter. 

Posterior approximation 

Let Y t be the vector of log volatilities of the zones and X t the vector of explanatory variables at

time t . In addition, let Y = (Y 1 , . . . , Y T ) and X = (X 1 , . . . , X T ) denote a collection of Y t and X t over a

fixed window of length T . Following the Bayesian framework of [10] , the structural parameters can

be integrated out analytically to obtain a marginal likelihood function over the graphs. This allows for

the application of an efficient Gibbs sampling algorithm to sample the graph structure and the model

parameters in blocks. In order to approximate the graph and parameters posterior distribution, we 

consider a collapsed Gibbs sampler that proceeds as follows: 

1. Sample via a Metropolis-within-Gibbs [ G | Y, X] (see 3.1 for an overview) 

2. Sample from [ B, �ε | Y, X] by iterating the following steps: 

(a) Sample [ B i,πi 
| Y, X, ˆ G , �ε ] ∼ N ( ̂  B i,πi 

, Q πi 
) where 

ˆ B i,πi 
= σ−2 

ε,i 
Q πi 

X ′ πi 
Y i , Q πi 

= (η−1 I d x + σ−2 
ε,i 

X ′ πi 
X πi 

) −1 (3) 

where X πi 
∈ X is the set of predictors of Y i that corresponds to ( ̂  G y i ,x π = 1 ), σ 2 

ε,i 
is the i -th

diagonal element of ˆ �ε , and d x is the number of covariates in X πi 
. 

(b) Sample [�−1 
ε | Y, X, ˆ G , B ] ∼ W(δ + N, �T ) where 

�T = �0 + (Y − X ̂  B ′ ) ′ (Y − X ̂  B ′ ) (4) 

For further details concerning the network sampling algorithm and convergence diagnostics, refer to 

3.1 for an overview. 
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asso regularization method 

We apply the Lasso regularization method by [17] as a benchmark model for our empirical analysis.

his approach estimates the coefficients of (1) by solving: 

ˆ B i j = min 

B i j 

{ T ∑ 

t=1 

(
Y i,t −

q ∑ 

j=1 

B i j X j,t 

)
2 + λ

q ∑ 

j=1 

| B i j | 
} 

(5)

here T is the number of observations, q the number of covariates, and λ is the penalty term,

uch that large values of λ shrinks a large number of the coefficients towards zero. In the empirical

nalysis, we select the regularization parameter using ten-fold cross-validation on a grid of λ values

or the penalized logistic regression problem. We select the regularization parameter that corresponds

o one standard error from the minimum mean square cross-validated errors, i.e., λ. 1 se . 

etwork sampling algorithms 

The Bayesian inference of a network graph underlying a system of linear equations is made feasible

y integrating out other parameters analytically to obtain a marginal likelihood function over graphs

see 2,10 ]. Let V y = (y i , . . . , y n ) be the vector of indices of response variables, and V x = (x 1 , . . . , x q )

he indices of the predictor variables in X . The network relationship from x ψ 

∈ V x to y i ∈ V y can be

epresented by (G y i ,x ψ 
= 1) . Following [10] , the closed-form expression of the local marginal likelihood

s given by 

P (Y | G y i ,x ψ 
) = 

π− 1 
2 

N ν
1 
2 
ν0 

0 

ν
1 
2 
νn 

n 

�
( ν0 + N−n r 

2 

)
�
( ν0 −n r 

2 

) ( | X ′ 
ψ 

X ψ 

+ ν0 I n v | 
| R ′ 

i 
R i + ν0 I n r | 

)
1 
2 
νn (6)

here �(·) is the gamma function, R i = (Y i , X ψ 

) , I d is a d-dimensional identity matrix, n ψ 

is the

umber of covariates in X ψ 

, n r = n ψ 

+ 1 . In addition, ν0 > n r is a degree of freedom hyper-parameter

f the prior precision matrix of (Y, X ) , and νn = ν0 + N. Equation (6) shows that only the ratio of the

osterior sum of squares depends on the data. Thus, we reduce computational time by pre-computing

he part of equation (6) that is independent of the data, for different values of n r ∈ [1 , m ] and for fixed

0 = m + 2 and N. We also pre-compute the posterior of the full sum of squares matrix and extract

he sub-matrices that relate to { X ψ 

} and { (Y i , X ψ 

) } . For computational details of the score function

see 2 ]. 

The algorithm presented for sampling G is a Metropolis-within-Gibbs sampler with random

alk proposal distribution. In the Monte Carlo Markov chain (MCMC) search algorithms, the space

xploration crucially depends on the choice of the starting point of the MCMC chain. Usually, a set

f burn-in iterations is conducted to obtain a good starting point. In this application, we adopt an

nitialization scheme that provides a good starting point for the MCMC algorithm. 

ampling SEMX network 

Let X t = (Y ′ t , Z 
′ 
t ) 

′ be the vector of possible explanation variables for the SEMX model. 

1. Initialization: Set G 

(0) as (n × n ) null matrix. 

Set V y = (y i , . . . , y n ) - vector of indices of response variables in Y 

Set V x = (x 1 , . . . , x q ) - vector of indices of predictor variables in X . 

Note that V y ⊆ V x 
2. Iterate h = 1 , . . . , H by performing a local network update 

Pick at random y i ∈ V y and set G 

(∗) 
y i 

= G 

(h −1) 
y i 

and V x i = V x \{ y i } 
(a) Randomly draw a candidate explanatory variable x k ∼ V x i 
(b) If G 

(h −1) 
y i ,x k 

= 0 and G 

(h −1) 
x k ,y i 

= 1 then Consider a reverse move: G 

(∗) 
y i ,x k 

= 1 and G 

(∗) 
x k ,y i 

= 0 else

Add/remove edge between x k and y i : G 

(∗) 
y i ,x k 

= 1 − G 

(h −1) 
y i ,x k 

(c) If G 

∗ is acyclic then 

(i) Compute log P (Y | G 

(∗) = 

∑ n 
i =1 log P (Y | G 

(∗) ) 

i 
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(ii) Compute φi = exp [ log P (Y | G 

(∗) ) − log P (Y | G 

(h −1) ) ] 

(iii) Draw u ∼ U(0 , 1) . If u < min { 1 , φ} then Set G 

(h ) = G 

(∗) else Set G 

(h ) = G 

(h −1) 

(d) else if G 

∗ is not acyclic Set G 

(h ) = G 

(h −1) 

Sampling VARX network 

Let X t = (Y ′ t−1 , . . . , Y 
′ 

t−p , Z 
′ 
t ) 

′ be the vector of possible explanation variables for the VARX model.

Assume X t is a q -dimensional vector. Following standard application, we determine the lag length p

by minimizing the BIC: 

BIC(p) = log | ̂  �y | x (p) | + n 2 p 
log M 

M 

, p ≤ p ≤ p̄ (7) 

where ˆ �y | x (p) = �yy − �yx �
−1 
xx �

′ 
yx , �yx is the covariance between Y and X , M = N − p is the number

of observations, and | ̂  �y | x (p) | is the determinant of ˆ �y | x (p) . Given some lag length ˆ p , we proceed

with the VAR network sampling as follows: 

1. Initialization: Set G 

(1) 
| ̂ p 

as (n × q ) null matrix 

Set V x = (x 1 , . . . , x q ) - vector of indices of predictor variables in X

Set V y = (y i , . . . , y n ) - vector of indices of response variables in Y 

For each y i ∈ V y , compute a reference score: P r(Y | G 

(1) 
y i | ̂ p 

) 

(a) For each x j ∈ V x , compute the marginal score: P r(Y | G 

(1) 
y i ,x j 

) 

(b) Compute BF = log P r(Y | G 

(1) 
y i ,x j | ̂ p 

) − log P r(Y | G 

(1) 
y i | ̂ p 

) 

(c) If BF > 0 then set G 

(1) 
y i ,x j | ̂ p 

= 1 else set G 

(1) 
y i ,x j | ̂ p 

= 0 

2. Iterate in h = 2 , . . . , H by performing a local network update 

For each y i ∈ V y , set G 

(∗) 
y i | ̂ p 

= G 

(h −1) 
y i | ̂ p 

(a) Randomly draw a candidate explanatory variable x k ∼ V x 

(b) Add/remove edge between x k and y i : G 

(∗) 
y i ,x k | ̂ p 

= 1 − G 

(h −1) 
y i ,x k | ̂ p 

(c) Compute φ = exp [ log P (Y | G 

(∗) 
y i | ̂ p 

) − log P (Y | G 

(h −1) 
y i | ̂ p 

) ] and draw u ∼ U(0 , 1) . 

(d) If u < min { 1 , φ} then set G 

(h ) 
y i | ̂ p 

= G 

(∗) 
y i | ̂ p 

else set G 

(h ) 
y i | ̂ p 

= G 

(h −1) 
y i | ̂ p 

Graphical abstractions of modeling framework 

This section presents the graphical abstract of our modelling framework. In effect, it summarizes

some of the stages of our procedures and thus provide a unique understanding for readers with

diverse interest. As earlier on mentioned, the network structures are deduced from the adjacency 

matrix. In our approach, the sub-periods are selected based on the evolution of the network density

plots, which depict unique features of peaks and troughs. Furthermore, the network structures are 

deduced based on these sub-periods for detailed analysis. A graphical display of these procedures are

demonstrated below. 
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onclusion 

In this paper, methodologies based on network theory and econometrics have been presented.

pecifically, we have developed and proposed the BG-VARX and BG-SEMX, which are able to

ccount for and accommodate both the intra-day and inter-day analysis, respectively. In the proposed

odel, multivariate time series data has been utilized to study complex dynamic network structures

mbedded in the data. The analyis has been achieved using, Microsoft Excel, MATLAB and R software.

ATLAB recorded a maximum computational speed of BG-SEM at 9.63 secs; and the of BG-SEMX is

2.07 secs; BG-VAR is 2.67 secs; and BG-VARX is 2.80 secs. 

On the one hand, for the Lasso method, we observed the following computational speed using

ATLAB, that is, Lasso-SEM 2.15, Lasso-SEMX 3.38, Lasso-VAR 3.89, and for Lasso-VARX a computation

peed of 6.06. These differences in the computational speed for both the BG-VAR(X) and BG-

EM(X) accounts for the constraints used in the Bayesian graphical method. On the other hand, the

asso-SEMX and Lasso-VARX show a relatively higher computational time because of the additional

ovariates (or exogenous variables) and the self-looping nature of the Lasso method respectively.

n this light, both intra-day and inter-day dependencies structures inherent in the data have been

xamined. For each case, the overall time series have been divided into sub-periods to accommodate

hort-term variability due to the nature of electricity time series data. The methodologies help

o identify major risk transmitters and risk receivers based on the within-day and across-day

ependencies, respectively, which is relevant for market participants to effectively and efficiently

dentify and manage changing trends in the markets with various underlying scenarios. 
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