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a b s t r a c t 

Turning points in financial markets are often characterized by changes in the direction 

and/or magnitude of market movements with short-to-long term impacts on investors’ de- 

cisions. A Bayesian technique is developed for turning point detection in financial equity 

markets. The interconnectedness among stock market returns from a piece-wise network 

vector autoregressive model is derived. The turning points in the global equity market over 

the past two decades are examined in the empirical application. The level of interconnect- 

edness during the Covid-19 pandemic and the 2008 global financial crisis are compared. 

Similarities and most central markets responsible for spillover propagation emerged from 

the analysis. 
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1. Introduction 

The turn of events in major financial markets since late February 2020, following the spread of the novel Coronavirus 

from Wuhan, in China, to a global pandemic, is certainly a reminder of the increased interconnectedness of the global 

market. Connectedness plays a substantial role in the contagion spreading, especially during turbulent periods. Thus, a bet- 

ter understanding of the interconnectedness dynamics is critical to uncover potential contagion effects and support risk 

management decisions. Modeling interconnectedness has received much attention, especially after the 20 07–20 09 global 

financial crisis, and the 2010–2013 European sovereign debt crisis (see Ahelegbey et al., 2016a ; Billio et al., 2012; Battiston

et al., 2012; Diebold and Yilmaz, 2014; DasGupta and Kaligounder, 2014; Hautsch et al., 2015; Billio et al., 2019 ; Casarin

et al., 2020) . 

In investigating interconnectedness dynamics, it has become necessary to account properly for structural changes. For 

instance, financial institutions are often interconnected through diverse channels, ranging from inter-bank market transfers, 

direct deposits, relationship lending/borrowing, and exposures to common risk or market factors. These connections are 

often characterized by sudden changes in direction and magnitude with short-to-long term impacts on investors’ decisions. 
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Turning points may occur due to changes in policy regimes, fluctuations in underlying market conditions, or changes in the 

financial health of counterparties. 

From a modeling perspective, structural changes can produced bias in risk measure estimation and large forecasting 

errors, as the use of old data becomes counter-productive (see Chib, 1998; Bai, 20 0 0; Pesaran et al., 20 06; Qu and Perron,

2007; Ruggieri, 2013; Cho and Fryzlewicz, 2015 ). This paper contributes to the above discussion by advancing a Bayesian

technique to change point detection in financial time series. We formalize the interconnectedness among stock returns 

with a piece-wise vector autoregressive model (VAR) with residual structural equations (RSEM). Our model accounts for the 

contemporaneous, lagged, and cross-lagged dependencies beyond what simple stylized facts from historical data can provide. 

Moreover, in large VAR models, there are too many parameters to estimate compared to the available observations (e.g., 

see Hauzenberger, 2021 ; Ankargren and Jonéus, 2021 ; Hu et al., 2020) . A natural approach to overcome over-parametrization

is via variable selection to produce parsimonious and sparse models. Graphical modeling presents a convenient framework 

to achieve parsimony while providing explainable interactions in multivariate time series ( Ahelegbey et al., 2016a ). Closely 

related models have in recent times been applied to infer financial contagion networks (e.g., see Ahelegbey et al., 2016a;

2016b; Billio et al., 2012; Basu and Michailidis, 2015; Barigozzi and Brownlees, 2019; Diebold and Yilmaz, 2014; Billio et al.,

2019; Bianchi et al., 2019 ) and macroeconomic spillover networks (e.g., see Agudze et al., 2021 ; Skripnikov and Michailidis,

2019) . 

Recent studies recognized the relevance of structural breaks in connectedness analysis and proposed new modeling and 

inference solutions for large panel of time series. For example Massacci (2017, 2021) proposed regime changes in large di- 

mensional factor models through a threshold mechanism and considered connectedness measures based on covariance ma- 

trices. Bianchi et al. (2019) assumed a latent Markov switching process driving covariance restrictions in high-dimensional 

SUR models and studied connectedness based on network. The concept adopted in this paper places our contribution within 

the literature on change detection in multivariate time series and specifically to Bayesian turning point models ( Koop and

Potter, 20 07; 20 09; Jochmann et al., 2010 ), turning point network models ( Barnett and Onnela, 2016; Xuan and Murphy,

2007; Lèbre et al., 2010; Grzegorczyk et al., 2011 ), high dimensional Bayesian models ( Koop et al., 2019; Ahelegbey et al.,

2016b; Gruber and West, 2017 ), and graphical models (see Ahelegbey et al., 2016a; 2016b; Corander and Villani, 2006; Paci

and Consonni, 2020; Gruber and West, 2017 ). In this paper, we adopt a specification strongly connected to the Bayesian

turning point model of Jochmann et al. (2010) , the changing dependency structure of Xuan and Murphy (2007) , and exten-

sion of the Bayesian graphical VAR (BGVAR) model of Ahelegbey et al. (2016a) to allow for structural changes. 

Several techniques for estimating turning point locations have dominated the Bayesian literature. Prominent among such 

techniques are the ones based on Markov chain Monte Carlo (MCMC) ( Barry and Hartigan, 1993; Green, 1995; Western and

Kleykamp, 2004; Erdman and Emerson, 2008 ) and recursive dynamic programming algorithms ( Fearnhead, 2006; Fearnhead 

and Liu, 2007; Ruggieri, 2013 ). However, turning point estimation in high-dimensional models presents several inferential 

and computational challenges. In such settings, standard MCMC-based techniques usually suffer from slow mixing and high 

computational cost. We, therefore, propose a sequential turning point detection algorithm for BGVAR. The algorithm is an 

extension to multiple-equation models of the dynamic programming approach given in Ruggieri and Antonellis (2016) for 

single-equation models. This approach proves to be very effective in inferring the number and the timing of the turning 

points, reducing the computational cost for large data sets. 

We apply our proposed model to the global equity market by considering the 15 major stock markets, including the G10

countries. The dataset consists of daily prices from Bloomberg, covering January 28, 1999, to April 30, 2021. The empirical 

application examines the turning points, compares the connectedness level during the Covid-19 and global financial crisis 

periods, and identifies the most relevant markets in the spillover propagation. 

The paper is organized as follows. Section 2 presents the piece-wise BGVAR model and discusses the inference procedure. 

Section 3 presents a description of the data and reports the results in Section 4 . Section 5 concludes the paper. 

2. A Bayesian Graphical Piece-Wise Vector Autoregression 

2.1. Piece-Wise VAR Model 

Let Yt = (Y1 ,t , . . . , Yn,t ) be an n -variable vector of observed returns at time t , with t = 1 , . . . , T , where Yi,t is the time

series of market i at time t . Suppose there exist k turning points at 1 = τ0 < τ1 < τ2 < . . . < τk < τk +1 = T . We represent the

dynamics of Yt as piece-wise stationary vector autoregressive (VAR) model of order p given by 

Yt =
p ∑ 

s =1 

B(l) 
s Yt−s + U (l) 

t , t ∈ (τl−1 , τl ] , (1) 

U (l) 
t = B(l) 

0 
U (l) 

t + ε(l) 
t , ε(l) 

t ∼ N (0 , �(l) 
ε ) , (2) 

where p is the lag order, B(l) 
s is an n × n matrix of coefficients with B(l) 

i j,s 
measuring the effect of Yj,t−s on Yi,t for t ∈ (τl−1 , τl ] ,

l = 1 , . . . , k + 1 , B(l) 
0 

is a full (non-symmetric) matrix with zeroes on the main diagonal that records the contemporaneous

effect of shocks, U (l) is a vector independent and identically normal residuals with covariance matrix �(l) 
u , and ε(l) is a 
t t 
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vector of idiosyncratic components of the structural (and mutually orthogonal) shocks with diagonal covariance matrix �(l) 
ε . 

From Eq. (2) , the �(l) 
u can be expressed in terms of B(l) 

0 
and �(l) 

ε as 

�(l) 
u = (I − B(l) 

0 
)−1 �(l) 

ε (I − B(l) 
0 

)−1′ 
. (3) 

2.2. Network Models 

Following Ahelegbey et al. (2016a) , Eq. (1) can be operationalized as a network model, where the variables in Yt are

defined by nodes joined by a set of links, describing the statistical relationships between pairs of variables. The introduction 

of networks in VAR models helps to interpret the serial, temporal and contemporaneous relationships in a multivariate 

time series. To analyze Eqs. (1) and (2) through networks, we assign to each coefficient B(l) 
i j,s 

in B(l) 
s a corresponding latent

indicator G(l) 
i j,s 

in G(l) 
s ∈ { 0 , 1 }n ×n , such that for i, j = 1 , . . . , n, and s = 0 , 1 , . . . , p: 

B(l) 
i j,s 

=
{

0 if G(l) 
i j,s 

= 0 ⇒ Yj,t−s �→ Yi,t 

β(l) 
i j,s 

∈ R if G(l) 
i j,s 

= 1 ⇒ Yj,t−s → Yi,t 

(4) 

for l = 1 , . . . , k + 1 , where Yj,t−s �→ Yi,t means that Yj does not influence Yi at lag s . When s = 0 , Yj,t �→ Yi,t corresponds to

contemporaneous independence. 

Let B̄(l) 
i j 

= ∑ p 
s =0 

B(l) 
i j,s 

and Ḡ(l) 
i j 

= ∑ p 
s =0 

G(l) 
i j,s 

. Following Eq. (4) , we define two null-diagonal matrices A(l) ∈ { 0 , 1 }n ×n and W ∈
R

n ×n , whose i j-th element is given by: 

A(l) 
i j 

=
{

0 , if Ḡ(l) 
i j 

= 0 

1 , otherwise 
, W (l) 

i j 
=

{
0 , if B̄(l) 

i j 
= 0 

B̄(l) 
i j 

otherwise 
, (5) 

where A(l) 
i j 

specifies that Yj → Yi exist if there is a contemporaneous or lagged directed link from Yj to Yi . W
(l) 

i j 
specifies the

weights of such a relationship obtained as a sum of the estimated contemporaneous and lagged coefficients. The correspon- 

dence between (G(l) , B(l) ) and (A(l) , W (l) ) is such that the former captures the short-run dynamics in Yt while the latter can

be viewed as long-term direct relationships when Yt = Yt−1 = . . . = Yt−p . Defining a sparse structure on (G(l) , B(l) ) induces 

parsimony of the short-run model and sparsity on the long-run relationship matrices (A(l) , W (l) ) , l = 1 , . . . , k + 1 . 

2.3. Bayesian Estimation of a Piece-Wise Network VAR 

Following standard practice, we select the appropriate lag order of the VAR via a Bayesian information criterion (BIC). 

Thus, the parameters left to estimate in a piecewise network VAR are (k, Vτ,k , G1: k , B1: k , �ε, 1: k ) , where k is the number

of turning points, Vτ,k = (τ1 , τ2 , . . . , τk ) is the turning point locations, G1: k = { G(1) , . . . , G(k +1) } where G(l) = { G(l) 
0 

, . . . , G(l) 
p }

is the collection of lag-specific graphs for the interval (τl−1 , τl ] , B1: k = { B(1) , . . . , B(k +1) } where B(l) = { B(l) 
0 

, . . . , B(l) 
p } is the

collection of lag-specific coefficient matrices, and �ε, 1: k = { �(1) 
ε , . . . , �(k +1) 

ε } is the collection of error covariance matrices 

over segments. Estimating these parameters jointly is a challenging problem and a computationally intensive exercise. We 

complete the Bayesian formulation with prior specification and posterior approximations to draw inference on the model 

parameters. 

We specify the prior distributions over (k, Vτ,k , G1: k , B1: k , �ε, 1: k ) as follows: 

k ∼ U(0 , kmax ) , Vτ,k ∼ U(1 , T ) , [ B(l) 
i j,s 

| G(l) 
i j,s 

= 1] ∼ N (0 , η) , 

G(l) 
i j,s 

∼ Ber(qi j ) , �(l) 
ε 

−1 ∼ WG (δε , �ε, 0 ) , �(l) 
u 

−1 ∼ W(δu , �u, 0 ) 

for l = 1 , . . . , k + 1 , where kmax , η, qi j , δε , δu , �ε, 0 , and �u, 0 are hyper-parameters. 

The specification for k is a discrete uniform prior on the set K = { 0 , . . . , kmax } , with density 

P (k ) = 1 

kmax + 1 

1 { k ∈K} . (6) 

The choice of the discrete uniform prior is relatively non-controversial since it is similar to the truncated Poisson in Nobile

and Fearnside (2007) ; Grzegorczyk et al. (2011) . 

We consider τ1 , . . . , τk as order statistics and define dτ = τl − τl−1 as the distance between successive turning points. We 

consider Vτ,k to be uniformly distributed on [1 , T ] with density 

P (Vτ,k | k ) = 1 

Nk 

, Nk ≈
(

Td 

k 

)
, (7) 

where Td = T − dτ , τ0 = 1 and τk +1 = T , Nk is a normalizing constant and 

(
a 
b 

)
denotes a binomial coefficient indexed by a

and b. The motivation for this prior choice is to discourage short segments and to favour a priori an equal spacing of the

turning points. Also it shows that close observations are likely to belong to the same segment. 
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Table 1 

Description of stock market indices of countries classified according to regions. 

Region No. Country Code Description Index 

Americas 1 Brazil BR Brazil Bovespa IBOV 

2 Canada CA Canada TSX Comp. SPTSX 

3 United States US United States S&P 500 SPX 

Asia-Pacific 4 Australia AU Australia ASX 200 AS51 

5 China CN China SSE Comp. SHCOMP 

6 Hong Kong HK Hong Kong Hang Seng HSI 

7 India IN India BSE Sensex SENSEX 

8 Japan JP Japan Nikkei 225 NKY 

9 Korea KR South Korean KOSPI KOSPI 

Europe 10 France FR France CAC 40 CAC 

11 Germany DE Germany DAX 30 DAX 

12 Italy IT Italy FTSE MIB FTSEMIB 

13 Russia RU Russia MOEX IMOEX 

14 Spain ES Spain IBEX 35 IBEX 

15 United Kingdom UK UK FTSE 100 UKX 

 

 

 

 

 

 

 

 

 

 

 

 

The specification for B(l) 
i j,s 

conditional on G(l) 
i j,s 

follows a normal distribution with zero mean and variance η. Thus, relevant 

explanatory variables that predict a response variable must be associated with coefficients different from zero and the rest 

are restricted to zero. We consider G(l) 
i j,s 

as Bernoulli distributed with qi j as the prior probability. 

We assume �(l) 
ε 

−1 
is a G-Wishart distributed with prior expectation δ−1 

ε �ε, 0 and δε > n the degrees of freedom param- 

eter. The G-Wishart distribution is the conjugate prior for the precision matrix over P+ (Gε ) , i.e., the set of all symmetric,

positive definite matrices with zeros in the off-diagonal elements that correspond to missing edges in Gε , the graph asso-

ciated with ε(l) 
t . Since by assumption, the elements of ε(l) 

t are mutually independent, Gε is the empty graph, which implies 

that �(l) 
ε 

−1 
is a diagonal positive random matrix. 

We assume �(l) 
u 

−1 
is Wishart distributed with prior expectation δ−1 

u �u, 0 and δu > n the degrees of freedom parameter. 

Given the data, Y , the lag order p, and the prior distributions on the parameters, we apply a collapsed Gibbs and approx-

imate the posterior distribution by sampling sequentially from the following conditional distributions: 

1. P (k, Vτ,k | Y, p) , 

2. P (G(l) 
1: p 

| Y, p, k, Vτ,k ) , 

3. P (G(l) 
0 

| Y, p, k, Vτ,k , G
(l) 
1: p 

) , 

4. P (B(l) 
1: p 

| Y, p, k, Vτ,k , G
(l) 
1: p 

, �(l) 
u ) , 

5. P (B(l) 
0 

| Y, p, k, Vτ,k , G
(l) 
1: p 

, G(l) 
0 

, B(l) 
1: p 

, �(l) 
ε , �(l) 

u ) , 

6. P (�(l) 
ε | Y, p, k, Vτ,k , G

(l) 
1: p 

, G(l) 
0 

, B(l) 
1: p 

, B(l) 
0 

, �(l) 
u ) , 

7. P (�(l) 
u | Y, p, k, Vτ,k , G

(l) 
1: p 

, G(l) 
0 

, B(l) 
1: p 

, B(l) 
0 

, �(l) 
ε ) . 

We sample the number of turning points and their locations { k, Vτ,k } following the procedure in Ruggieri and Antonellis

(2016) and use an efficient MCMC algorithm for sampling { G(l) 
0 

, G(l) 
1: p 

, B(l) 
0 

, B(l) 
1: p 

, �(l) 
ε , �(l) 

u } . The collapsed Gibbs structure and

the procedure in Ruggieri and Antonellis (2016) allows us to sample and estimate first k and Vτ,k , which are then used

to sample the other parameters { G(l) 
0 

, G(l) 
1: p 

, B(l) 
0 

, B(l) 
1: p 

, �(l) 
ε , �(l) 

u } given { k, Vτ,k } (steps 2 to 7). A detailed description of the

posterior approximation and of the sampling methods is available in Appendix A . In our application, we set kmax = 20 ,

qi j = 0 . 5 , η = 100 , δε = n + 2 , δu = n + 2 , �ε, 0 = δε In , and �u, 0 = δu In . From our experiments, setting higher values for kmax 

does not change the results. 

3. Data Description 

Our study uses daily data from Bloomberg, covering between January 28, 1999, to April 30, 2021, and includes 15 major

stock market indices, including all G10 economies. We consider only one index per country, which typically contains the 

stock prices of the largest companies listed in the nation’s largest stock exchange. The countries can be grouped into three

regions: the Americas (Brazil, Canada, and the United States), Asia-Pacific (Australia, China, Hong Kong, India, Japan, and 

South Korea), and Europe (France, Germany, Italy, Russia, Spain, and the United Kingdom). Table 1 describes the market 

indices chosen for the selected countries. 

We report in Figure 1 the daily series of closing prices on a logarithmic scale. For visualization purposes, we scale the

prices to a zero mean and unit variance and add the absolute minimum value of each series to avoid negative values. This

standardizes the scale of measurement for the different series. 
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Fig. 1. Time series of daily equity log-prices from Jan-1999 to Mar-2021, by regional classification: Americas (top), Asia-Pacific (middle) and Europe (bot- 

tom). 

 

 

 

 

 

 

The figure shows that global financial markets have experienced several catastrophic events within and across different 

markets over the past two decades. Among these events are: 

1. the dotcom “tech” induced crisis of 20 0 0–20 03 which was fuelled by the adoption of the internet in the late 1990s,

triggering inflated stock prices that gradually went downhill and disrupted global market operations; 

2. the global financial crisis of 20 07–20 09 which was triggered by the massive defaults of sub-prime borrowers in the US

mortgage market; 

3. the European sovereign debt crisis of 2010–2013 which emanated from the inability of a cluster of EU member states 

to repay or refinance their sovereign debt and bailout heavily leveraged financial institutions without recourse to third 

party assistance; 

4. and the distress to the world economy and the global financial market caused by the Covid-19 pandemic in 2020. 

We compute daily returns as the log-differences of successive daily closing prices, that is, Yi,t = 100
(
log Ci,t − log Ci,t−1 

)
, 

with Ci,t the daily closing price of market i on trading day t . Table 2 reports a set of summary statistics for the index returns

over the sample period. The table shows that almost all index returns have a near-zero mean and a relatively high standard

deviation. The highest standard deviations, indicating individual market volatilities, are those of the emerging markets of 

Russia and Brazil. Almost all the return indices exhibit fairly symmetric behavior, i.e., they are characterized mostly by small 

but consistent positive gains and, occasionally, large negative returns. The excess kurtosis varies between 5.32 (China) and 

16.78 (Canada), confirming the stylized facts of leptokurtic behavior of the daily return series. 

4. Empirical Findings 

4.1. Turning Points in the Global Equity Market 

We select the appropriate lag of the VAR via a Bayesian information criterion (BIC) for different lag orders. The optimal

lag order according minimum BIC score is p = 1 . We report in Table 3 the number of turning points and the associated

posterior probabilities. The result favors 10 turning points over the sample period considered. 

Table 4 lists the turning point dates with their posterior probabilities and possible financial market events that charac- 

terize the identified dates. 
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Table 2 

Statistics of daily returns for stock market indices over the sample period from January 28 1999 

to April 30 2021. 

Country Code Min Max Mean SD Skewness Ex. Kurt. 

Brazil BR -15.993 28.824 0.050 1.853 0.308 16.029 

Canada CA -13.176 11.295 0.019 1.118 -0.902 16.868 

United States US -12.765 10.957 0.021 1.239 -0.365 10.849 

Australia AU -10.203 6.766 0.016 1.011 -0.705 8.481 

China CN -9.256 9.401 0.019 1.519 -0.273 5.359 

Hong Kong HK -13.582 13.407 0.018 1.442 -0.093 7.545 

India IN -14.102 15.990 0.049 1.466 -0.247 9.131 

Japan JP -12.111 13.235 0.013 1.444 -0.362 6.688 

Korea KR -12.805 11.284 0.030 1.525 -0.454 6.403 

France FR -13.098 10.595 0.008 1.432 -0.196 6.262 

Germany DE -13.055 10.797 0.019 1.477 -0.162 5.687 

Italy IT -18.541 10.874 -0.006 1.523 -0.564 8.972 

Russia RU -20.657 25.226 0.077 2.052 -0.067 14.305 

Spain ES -15.151 13.484 -0.002 1.464 -0.278 7.838 

United Kingdom UK -11.512 9.384 0.002 1.188 -0.315 7.664 

Table 3 

Number of turning points and posterior probabilities (January 28 1999 – April 30 2021). 

# of Turning Points < 9 9 10 11 12 > 12 

Posterior Probability 0 1 . 68 × 10−21 1 2 . 15 × 10−9 9 . 38 × 10−26 0 

Table 4 

Turning point dates with their posterior probabilities and possible financial market events. 

Dates Probability Financial Market Event 

1 11/09/2001 0.967 September 11 Effect 

2 01/10/2001 0.997 Turn-around in Financial markets 

3 08/07/2003 0.706 Turn-around after SARS induced crisis 

4 23/07/2007 0.528 Panic in the asset-backed commercial paper market 

5 15/09/2008 0.896 Bankruptcy of Lehman Brothers 

6 06/11/2008 0.976 IMF prediction of deep recession 

7 07/07/2009 0.945 End of the great recession 

8 12/07/2016 0.584 Rising oil prices and Aftermath of Brexit 

9 21/02/2020 0.999 Beginning of Covid-19 induced a global stock market crash 

10 08/04/2020 0.921 End of Covid-19 induced a global stock market crash 

 

 

 

 

 

 

 

 

 

 

The first turning point (event #1) in the financial market over the past two decades is the September 11, 2001 attack that

led to one of the most significant single-day point declines in major markets. A turn-around followed this at the beginning

of October 2001 (event #2). We shall notice that the number of samples between the first and second turning point is

relatively small, about 20. In this case, the sparse graphical prior proposed in Ahelegbey et al. (2016b) can be applied in

combination with turning point prior distributions. We leave this topic for future research. 

The Severe Acute Respiratory Syndrome (SARS) outbreak timeline shows that the illness first appeared in Guangdong 

Province, China, in November 2002 and spread to 37 countries. This affected the Asian financial market and began to affect

stock market integration around early 2003. The World Health Organisation (WHO) database shows that the SARS infection 

period was from 16/11/2002 – 05/07/2003 (see Organization, 2003) . Thus, the third turning point (event #3) captures the 

turn-around in the financial market due to WHO’s declaration that SARS outbreaks have been contained worldwide. 

The fourth turning point (event #4) marks the contraction in the asset-backed commercial paper (ABCP) market that be- 

gan in late July 2007, which triggered fears and panic across the financial market. As documented by Covitz et al. (2013) and

in Commission (2011) , the collapse of the ABCP market played a central role in transforming concerns about the credit qual-

ity of mortgage-related assets into a global financial crisis. Early July 2007 also experienced the collapse of two Bear Stearns

hedge funds that had speculated heavily in mortgage-backed securities. 

The fifth turning point (event #5) marks September 15, 2008, when stock markets experienced the worst sell-off in the 

last 20 years. It was a Monday that followed a weekend turmoil of triple trouble. That is, Lehman Brothers (the fourth-largest

US investment bank at the time) filed for Chapter 11 bankruptcy protection; Bank of America acquired Merrill Lynch, and 

the American International Group (AIG - the world’s largest insurance company) presented an unprecedented request for 

short-term financing from the Federal Reserve. According to the Commission (2011) , the risk exposures of AIG are concen- 

trated among the largest international banks (both US and European) across a wide array of product types (e.g., bank lines,

derivatives, securities lending). Thus, AIG’s failure could trigger significant counterparty losses to these firms. The fears and 
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panic across financial markets led to increased interconnectedness which amplified the shocks, affecting a broader aspect of 

the US financial system and many other correlated markets and economies. 

By the end of October 2008, many advanced economies like the US, Europe, and Japan were already facing their deepest

recession since the 1930s. With the global financial market in turmoil, producers and consumers were losing confidence in 

the financial system. As documented in the World Economic Outlook report published on November 6th, 2008 (see IMF, 

2008) , the IMF predicted a worldwide “deep recession” in 2009 following the deteriorated global growth of world GDP over 

the past month. This forecast, coupled with financial conditions, continued to present serious downside risks, pushing the 

world over the edge with reaction across major stock markets. Thus, the sixth turning point (event #6) marks the date of

the IMF prediction with its effect on the global equity market. 

The seventh turning point (event #7) identifies July 7th, 2009 as the day that marks the beginning of the global economic

recovery from the great recession. In its World Economic Outlook report published on July 8th, 20 09 (see IMF, 20 09) , the

IMF projected receding contractionary forces with a positive but weak recovery between 2009–2010. 

Rising crude oil prices in July 2016 affected oil-producing countries and oil-dependent nations, sending market partic- 

ipants worried about the possible impact of rising crude oil prices on the global stock market activities. The period also

coincides with the aftermath of the Brexit, which saw Britain voting to exit the EU in June 2016. The uncertainty surround-

ing Brexit had a significant effect on many investors, thereby altering financial market activities across the globe. The failure 

of the Bank of England to ease the shocks that followed the Brexit vote also contribute to a mild turning point (i.e., event

#8). 

Discussions of the first Covid-19 case date back to mid-November 2019. A global pandemic was triggered when the 

severity and scale of the impact of the novel Coronavirus led to what can be best described as “hibernation” of world

activities, i.e., a temporary sleep or “artificial coma”. February 21st, 2020 (event #9) marked the day Covid-19 outbreak 

began to affect Europe and the US, plunging many stock markets into turmoil. Despite its impact, the GFC is incomparable

to the Covid-19 outbreak regarding the scale and magnitude of its effects. The uncertainty at the onset of the latter was

accompanied by the existential threat from which many markets may not recover in the sense that it could cripple if not

wipe out nations and economies completely. This assertion is evidence by the fact that it recorded the fastest fall in the

global stock market (see Figure 1 ). Unlike any of the past crises, within just a month of reported Covid-19 cases in Europe

and the US, major national indices began to record their worst ever historical prices in history. 

The last turning point (event #10) marks the beginning of financial market recovery from the Covid-19 outbreak. Al- 

though the global stock market is in a recovery phase, major world economies are currently in a recession or depression. 

4.2. Structural Dynamic Interconnectedness in the Global Equity Market 

A preliminary analysis of the equity market return provides some evidence in favor of some variations and sudden 

changes in the level of interconnectedness. More specifically, we estimate connectedness via yearly rolling windows of 240 

trading days. We monitor the daily changes in interconnectedness by setting the increments between successive rolling win- 

dows to one day. Thus, we set the first window of our study from January 28, 1999, to January 3, 20 0 0, followed by January

29, 1999, to January 4, 20 0 0; the last window is from March 31, 2020, to April 30, 2021. In total, we consider 5426 rolling

windows. We used the data points of April 2021 to test the out-of-sample forecast performance of our model. 

Various measures of connectedness have been proposed in the literature (e.g., see Acharya et al., 2010 ; Adrian and Brun-

nermeier, 2016) . Our change point BGVAR model and the Bayesian estimator for large covariance matrices can be used 

to compute measures based on covariance matrices and their eigenvalues following for example Billio et al. (2012) and 

Massacci (2017, 2021) . Nevertheless, since our BGVAR model naturally provides a network representation of the lagged and 

contemporaneous dependence among time series, we focus on network-based measures. We estimate two well-known mea- 

sures: the network density ( Billio et al., 2012 ), which exploits the notion of Granger’s causality among time series, and the

spillover index ( Diebold and Yilmaz, 2014 ) which relies on the Sims’ causality notion. See Eichler (2013) for a review of

causality in multiple time series. 

The Network Density measure is computed from the restrictions on the autoregressive coefficient matrix: 

Network Density (A(l) ) = 100 

n (n − 1) 

n ∑ 

i =1 

n ∑ 

j=1 

A(l) 
i j 

. (8) 

The Spillover Index is computed from the autoregressive coefficient matrix and the covariance matrix through the general- 

ized forecast error variance decomposition: 

Spillover Index 
(
B(l) , �(l) 

u ; H
)

= 100 

n 

n ∑ 

i j=1 ,i � = j 

( 

Si j 

(
B(l) , �(l) 

u ; H
)

∑ n 
j=1 Si j 

(
B(l) , �(l) 

u ; H
)
) 

, (9) 

where 

Si j 

(
B(l) , �(l) 

u ; H
)

=
σ (l) −1 

j j,u 

∑ H−1 
r=0 

(
e′ 

i 
θ (l) 

r �(l) 
u e j 

)2 

∑ H−1 
r=0 

(
e′ 

i 
θ (l) 

r �(l) 
u θ

(l)′ 
r ei 

) , 
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Fig. 2. Top: rolling-window estimates of the Spillover index following BVAR and BGVAR models and the estimate the Network Density. Bottom: Spillover 

index following BGVAR with change points and Network density, both on the entire sample (solid lines) and on subsamples (dashed lines). In all plots: the 

posterior probability of turning points (gray line). 

 

 

 

 

 

 

with θ (l) 
r = B(l) 

1 
θ (l) 

r−1 
+ B(l) 

2 
θ (l) 

r−2 
+ . . . + B(l) 

p θ
(l) 
r−p , with θ (l) 

0 
= In and θ (l) 

r = 0 for r < 0 . The upper-script l indicates sub-periods,

A(l) 
i j 

is defined in (5) , H is the number of steps ahead forecast, e j is the j-th element of the standard orthonormal basis of

R
n , B(l) 

1 
is the autoregressive coefficient matrix, �(l) 

u is the covariance matrix defined in (3) , and σ (l) 
j j,u 

is the j-th diagonal

element of �(l) 
u . The unknown parameters used in the calculation of the connectedness measures are replaced by the cor- 

responding estimates. Concerning the adjacency matrix A(l) of the BGVAR, a MAP estimator is considered for the entries of 

the matrix. 

We report in Figure 2 the plot of rolling-window and piecewise Network Density and Spillover index from the standard 

Bayesian VAR (BVAR) and the Bayesian graphical VAR (BGVAR) together with the posterior probability of a turning point for 

each day between January 3, 20 0 0, to March 31, 2021. 

The figure shows that the network density and spillover index of the global financial crisis (GFC) and Covid-19 periods 

are much greater than any period of market crisis in the last 20 years, and this includes the period of the dot-com “tech”

induced crisis of 20 0 0–20 03, and the European sovereign debt crisis of 2010–2013. The spike in the network density and

spillover index after February 2020 is typified by the fear and panic that greeted the global financial market, thus intensify-

ing sell-off assets. 

According to Forbes and Rigobon (2002) , when markets exhibit a high degree of comovement during periods of stable

economic/financial conditions, and these continue to be highly correlated after a shock. The markets are said to be inter- 

dependent and do not constitute contagion. However, when there is a significant increase in cross-market linkages after a 

shock to one/more markets, this suggests contagion. The increased interconnectedness during 20 08–20 09 and 2020 provides 
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Fig. 3. Ratio between BVAR and BGVAR-CP root mean square errors (red solid line) and turning points posterior probability (dashed line). 

Table 5 

Out-of-sample RMSFE of the point forecast performance of BVAR and 

BGVAR-CP model. 

Minimum Maximum Mean Std-Deviation 

BVAR 0.0697 18.1375 1.6422 2.1843 

BGVAR-CP 0.0211 16.3338 1.5981 2.0663 

 

 

 

 

 

 

 

 

more substantial evidence of contagion in the global financial crisis and Covid-19 pandemic than during the dot-com and 

Eurozone crises. 

A closer look at the rolling spillover index from the BVAR and BGVAR in Figure 2 suggests an insignificant difference

between the spillover from both models. This can be attributed to the fact that the generalized forecast error variance

decomposition assumes a full error covariance structure, which means the variables in the model are contemporaneously 

interdependent. Thus, the difference between the two indices is due to the sparsity in the autoregressive coefficients matrix 

of the BGVAR model. 

We report in Figure 3 the results of the comparison between the BVAR and the BGVAR change-points (BGVAR-CP) model 

using the ratio of the root-mean-squared-errors (RMSE). 

Figure 3 reports the ratio between the root-mean-squared-error (RMSE) for the BVAR and the BGVAR change-points 

(BGVAR-CP) model. When the ratio of RMSE is greater than 1, then the BGVAR-CP model is preferred to the BVAR in terms

of predictive performance. Over the sample period considered, the ratio of the RMSEs ranged between 1.009 – 1.192, with 

an average value of 1.018 and a standard deviation of 0.01. Thus, the BGVAR-CP achieved higher predictive accuracy than the

BVAR. 

We report in Table 5 the out-of-sample root-mean-squared forecast error of the performance of the BVAR and the BGVAR- 

CP model. The result again favour the the BGVAR-CP over the BVAR. 

4.3. Dynamic Interconnectedness in the Global Equity Market 

We analyze the dynamic nature of the interconnectedness among the major stock markets. Using the turning point dates 

estimated with our change-point BGVAR model, we divide the sample into four sub-periods of tranquil and turbulent times: 

(03/01/20 0 0 – 12/09/20 08), (15/09/20 08 – 06/07/2009), (07/07/2009 – 20/02/2020), and (21/02/2020 – 31/03/2021). In each 

sub-period l the graph adjacency matrix A(l) 
i j 

is the union graph of the contemporaneous and lagged dependence graphs, 

G(l) 
0 

and G(l) 
1 

, respectively. The entries of G(l) 
s are MAP estimates based on the edge posterior probability. We report in 

Figure 4 the network topology over the sub-periods. Each network is represented with color-coded links and nodes. Red 

links indicate negative weights, and green links denote positive weights. Red-color nodes represent American markets, blue 

nodes for European markets, and green nodes for markets in Asia-Pacific countries. The size of the nodes is proportional to

their hub scores. 

The figure provides strong evidence of clustering among the markets. More importantly, the Asian-Pacific markets (green- 

nodes) seem to move together, likewise, the European markets (blue-nodes) due to similarities in underlying market condi- 

tions. The US, however, appears separated from the others most of the time, as the rest of the American markets (red-nodes)

are usually closer to the European ones. We notice that the US is usually the biggest sized node and strongly positively con-

nected to the rest of the markets. Based on the node sizes, the US appears to be the most influential in almost all the
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Fig. 4. Sub-period Interconnectedness. Red nodes represent America markets, blue for European, and green for Asia-Pacific. The size of the nodes are 

weighted out-degree. Red links denote negative effects and green for positive interactions. The node position is based on eigendecomposition of the 

networks. Note: the graph adjacency matrix A(l) 
i j 

is the union graph of the contemporaneous and lagged dependence graphs, G(l) 
0 

and G(l) 
1 

, respectively. The 

entries of G(l) 
s are MAP estimates based on the edge posterior probability. 

Table 6 

Statistics of the networks in the sub-periods both estimated with our change-point BGVAR model. Note: the graph 

adjacency matrix A(l) 
i j 

is the union graph of the contemporaneous and lagged dependence graphs, G(l) 
0 

and G(l) 
1 

, re- 

spectively. The entries of G(l) 
s are MAP estimates based on the edge posterior probability. 

No. Date Interval Average Degree Density Clustering Coefficient Average Path Length 

1 03/01/2000 – 12/09/2008 4.000 28.571 0.597 1.903 

2 15/09/2008 – 06/07/2009 8.133 58.095 0.749 1.419 

3 07/07/2009 – 20/02/2020 4.133 29.524 0.532 2.171 

4 21/02/2020 – 31/03/2021 8.667 61.905 0.830 1.424 

 

sub-periods except 21/02/2020 – 31/03/2021, where Japan seems to dominate. Thus, the results suggest that before the 

Covid-19 outbreak, the US equity market significantly impacted other markets, reflecting its leadership and influence in the 

equity market. 

Since spillover transmission can involve markets that are connected directly or indirectly through other markets, we com- 

pare the sub-period networks in terms of direct connectivity measures (average degree, density), local indirect connectivity 

(clustering coefficient), and global indirect connectivity (average path length). See Appendix B for a description of these 

network metrics. Table 6 shows that network statistics extracted for the four sub-period connectivity structures. We notice 

that two sub-periods record tranquil (non-crisis) conditions (i.e., 03/01/20 0 0 – 12/09/20 08 and 07/07/2009 – 20/02/2020), 

while the other two (15/09/2008 – 06/07/2009, and 21/02/2020 – 31/03/2021) experienced stressful conditions. The tranquil 

periods are characterized by a relatively low average degree of interconnectedness, lower density, and clustering index, and 

a relatively high average path length. This suggests a lower degree of equity market integration before and after the global
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Fig. 5. Comparing the Global Financial Crisis network (GFC) and Covid-19 outbreak network. Red nodes represent America markets, blue for European, and 

green for Asia-Pacific. The size of the nodes are weighted out-degree. Red links denote negative effects and green for positive interactions. The number 

in parenthesis signifies the total links in each network. Note: Gc denotes the complement of the graph G . the graph adjacency matrix A(l) 
i j 

is the union 

graph of the contemporaneous and lagged dependence graphs, G(l) 
0 

and G(l) 
1 

, respectively. The entries of G(l) 
s are MAP estimates based on the edge posterior 

probability. 

Table 7 

Centrality ranking during the Global Financial Crisis and the Covid-19 Pan- 

demic. 

Rank GFC (20 08–20 09) Covid (2020) 

Hub Authority Hub Authority 

1 US 0.774 CA 0.406 IN 0.395 JP 0.355 

2 FR 0.331 DE 0.356 JP 0.389 AU 0.327 

3 UK 0.259 FR 0.309 DE 0.352 RU 0.325 

4 BR 0.250 ES 0.292 US 0.349 IN 0.294 

5 CA 0.227 IT 0.286 IT 0.332 CA 0.282 

6 IT 0.166 JP 0.263 CA 0.328 BR 0.251 

7 KR 0.159 KR 0.262 RU 0.224 KR 0.251 

8 HK 0.116 UK 0.255 KR 0.209 UK 0.242 

9 JP 0.110 HK 0.236 FR 0.198 DE 0.232 

10 AU 0.089 BR 0.223 ES 0.175 ES 0.227 

11 DE 0.086 IN 0.213 BR 0.167 FR 0.223 

12 IN 0.072 RU 0.181 HK 0.131 US 0.211 

13 RU 0.067 CN 0.169 UK 0.119 IT 0.209 

14 ES 0.063 AU 0.165 AU 0.079 CN 0.196 

15 CN 0.054 US 0.067 CN 0.027 HK 0.172 

 

 

 

 

 

 

 

financial crisis. It also shows that in the event of a shock to a major market or a group of major markets, this shock will

take a much longer time to propagate to other markets to cause a systemic breakdown. 

On the other hand, the turbulent periods are characterized by a relatively high average degree of interconnectedness, a 

high density and clustering index, and a relatively low average path length. The lower average path length shows that it

takes a relatively shorter time for a shock to a major market or a group of major markets to propagate to other markets,

leading to a systemic breakdown. The network statistics of 15/09/2008 – 06/07/2009 and 21/02/2020 – 31/03/2021 periods 

show that stock market integration during the GFC is strikingly similar to the behavior exhibited most recently at the height

of the Covid-19 pandemic in 2020. More importantly, the spikes in the network density at the onset of both crisis periods

(see Figure 2 ) indicate elevated levels of unusualness in stock markets with a rise in volatility and market co-movements. 

4.4. Global Financial Crisis vs Covid-19 Outbreak 

We compare the interconnectedness of markets during the GFC and the Covid-19 outbreak. For this comparison, we 

extract the intersection and differences between the networks. Figure 5 presents the similarity and differences between the 

structure of interconnectedness during the GFC and Covid-19 sub-periods. Figure 5 (a) depicts the network links during the 

GFC but not in the Covid-19 period. Figure 5 (b) display the network links common to both periods, and Figure 5 (c) shows

only links in the Covid-19 period but not present during the GFC. 

Overall, we found 78 common connections between both networks. The GFC recorded 44 extra links that were not 

present in the Covid-19 network, and the latter also report 52 new connections that were not in existence during the
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financial crisis. Surprisingly, the majority of the new stock market connections center around Japan, Germany, and India, 

whereas the GFC period centered around the US. 

We now turn our attention to assess and compare the most critical (or central) market during what appears to be the

two most severe equity market crises over the last two decades. Table 7 reports the summary of the centrality ranking of

the most influential markets over the two crisis sub-periods. The top three transmitters (e.g. high hub scores) of spillover 

propagation during the GFC are the US, France, and UK, while the top three receivers of shocks during the period were

Canada, Germany, and France. During the Covid-19 outbreak, most central markets in transmitting shocks are India, Japan, 

and Germany, while Japan, Australia, and Russia rank high at the receiving shocks. Thus, not only has the structure of the

nature of interconnectedness changed over the two crisis, but the most central markets for spillover propagation has also 

changed in recent times. 

5. Conclusion 

This paper studies the nature of the turning points in financial equity markets. We propose a Bayesian technique for turn-

ing point detection in a piece-wise network vector autoregressive model that approximates the interconnectedness among 

stock market returns. The empirical application examines turning points in the global equity market over the past two 

decades. We also compare the Covid-19 induced interconnectedness with that of the global financial crisis to identify simi- 

larities and the most central markets for spillover propagation. 

Our proposed approach proves to be effective in identifying financial market turning points in relevant periods, like the 

September 11 attack of 2001, the turn-around after SARS induced crisis in 2003, the panic in the asset-backed commercial 

paper market in 2007, the Bankruptcy of Lehman Brothers in 2008, the beginning and the end of 20 08–20 09 great recession,

the rising oil prices and aftermath of Brexit in 2016, and the beginning and end of Covid-19 induced global stock market

crashed in 2020. We document a significant change in the structure of stock market integration during the global financial 

crisis and the Covid-19 outbreak. The result shows that the Covid-19 induced market interconnections record the highest 

network density, suggesting stronger evidence of spillovers and contagion in the Covid-19 outbreak than during the global 

financial crisis. 
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Appendix A. Details of Posterior Approximation and Sampling Approach 

A1. Posterior Approximation 

Let Zt = (Y ′ 
t , Y

′ 
t−1 , . . . , Y

′ 
t−p )

′ be m -dimensional vector of contemporaneous and lagged observations, where m = n (p + 1) .

Denote with Z(l) = (Zτl−1 +1 , . . . , Zτl 
) is h × m matrix of the observations Zt with t in the time interval (τl−1 , τl ] of length

h = τl − τl−1 . For some lag order p, and under the assumption that Z1: h ∼ N (0 , �(l) ) , the likelihood function is given by 

P (Z(l) | �(l) ) = (2 π)− mh 
2 | �(l) |− h 

2 etr 

(
− 1 

2 

�(l) −1 
ˆ S(l) 

)
, (A.1) 

where etr (·) is the exponential of the standard trace function, ˆ S(l) = ∑ τl 
t= τl−1 +1 

Zt Z
′ 
t is the sample sum of squared matrix of 

dimension m . It can be shown that �(l) is a transform of the structural parameters (B(l) , �(l) 
ε ) (see Ahelegbey et al., 2016b,

section 2) . Under the assumption that �(l) is inverse-Wishart distributed, P (�(l) ) ∼ IW (ν, �) , with prior expectation 

1 
ν �

and ν > m degrees of freedom, we follow the Bayesian framework of Geiger and Heckerman (2002) to integrate out the

structural parameters analytically, thus, obtaining a marginal likelihood function given by 

P (Z(l) ) = (π )− mh 
2 (ν)

mν
2 

(ν + h )
m 
2 (ν+ h ) 

m ∏ 

i =1 



(

ν+ h +1 −i 
2 

)


(

ν+1 −i 
2 

) |�̄(l) |− 1 
2 (ν+ h ) , (A.2) 

where �̄(l) = (� + ˆ S(l) ) / (ν + h ) is the posterior covariance matrix. Clearly, we can notice that h controls the window size

which is related to the turning point locations. From the above representation, we notice that except for �̄(l) whose com-

putation depends on the observed data, the rest can be pre-computed for different values of h , 1 ≤ h ≤ T with ν = m + 2 . 

This allows us to apply an efficient sampling algorithm to sample the model parameters in blocks. The algorithm proceeds 

as follows: 

1. Sample [ k, Vτ,k | Y, p] following Ruggieri and Antonellis (2016) by: 

(a) sampling k from the marginal distribution: [ k | Y ] ; 
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(b) recursively sampling Vτ,k from the conditional distribution: [ Vτ,k | k, Y ] . 

2. For l = 1 , . . . , k + 1 , sample [ G(l) 
0 

, G(l) 
1: p 

, B(l) 
0 

, B(l) 
1: p 

, �(l) 
ε , �(l) 

u | Y, p, k, Vτ,k ] as follows: 

(a) Sample via a Metropolis-within-Gibbs [ G(l) 
0 

, G(l) 
1: p 

| Y, p, k, Vτ,k ] by: 

(1) sampling G(l) 
1: p 

from the marginal distribution: [ G(l) 
1: p 

| Y, p, k, Vτ,k ] ; 

(2) sampling G(l) 
0 

from the conditional distribution: [ G(l) 
0 

| Y, p, G(l) 
1: p 

, k, Vτ,k ] . 

(b) Sample from [ B(l) 
0 

, B(l) 
1: p 

, �(l) 
ε , �(l) 

u | Y, G(l) 
0 

, G(l) 
1: p 

, p, k, Vτ,k ] by iterating the following steps. 

(1) Draw [ B(l) 
i,πi | 1: p 

| Y, G(l) 
1: p 

, G(l) 
0 

, B(l) 
0 

, �(l) 
ε , �(l) 

u ] ∼ N (B̄(l) 
i,πi | 1: p 

, D(l) 
πi 

) , where 

B̄(l) 
i,πi | 1: p 

= σ−2 
u,i 

D(l) 
πi 

Z′ 
πi 

Yi , D(l) 
πi 

= (η−1 Idz 
+ σ−2 

u,i 
Z′ 
πi 

Zπi 
)−1 , (A.3) 

where Zπi 
∈ Z corresponds to ( G(l) 

yi ,zπ | 1: p 
= 1 ), σ 2 

u,i 
is the i -th diagonal element of �(l) 

u , dz is the number of covariates

in Zπi 
, and πi is the parent node set defined by πi = { j = 1 , . . . , np, s.t. G(l) 

i j| 1: p 
= 1 } . 

(2) Draw [ B(l) 
i,πi | 0 | Y, G(l) 

0 
, G(l) 

1: p 
, B(l) 

1: p 
, �(l) 

ε , �(l) 
u ] ∼ N (B̄(l) 

i,πi | 0 , Q
(l) 
πi 

) , where 

B̄(l) 
i,πi | 0 = σ−2 

ε,i 
Q (l) 

πi 
ˆ U (l)′ 
πi 

ˆ U (l) 
i 

, Q (l) 
πi 

= (η−1 Idu 
+ σ−2 

ε,i 
ˆ U (l)′ 
πi 

ˆ U (l) 
πi 

)−1 (A.4) 

with 

ˆ U (l) = Y − ZB(l)′ 
1: p 

, ˆ U (l) 
πi 

∈ ˆ U (l) 
−i 

is the contemporaneous predictors of ˆ U (l) 
i 

that corresponds to ( G(l) 
yi ,yπ | 0 = 1 ), du is 

the number of covariates in 

ˆ U (l) 
πi 

, and πi is the parent node set defined by πi = { j = 1 , . . . , n, s.t. G(l) 
i j| 0 = 1 } . 

(3) Draw [�(l) 
ε 

−1 | Y, G(l) 
1: p 

, G(l) 
0 

, B(l) 
1: p 

, B(l) 
0 

, �(l) 
u ] ∼ WG (δε + N, �ε,N ) where 

�ε,N = �ε, 0 + ˆ ε(l)′ ˆ ε(l) , ˆ ε(l) = ˆ U (l) − ˆ U (l) B(l)′ 
0 

(A.5) 

(4) Draw [�(l) 
u 

−1 | Y, G(l) 
1: p 

, G(l) 
0 

, B(l) 
1: p 

, B(l) 
0 

, �(l) 
ε ] ∼ W(δu + N, �u,N ) where 

�u,N = �u, 0 + ˆ U (l)′ ˆ U (l) . (A.6) 

A2. Sampling Approach of the Parameters 

This section provides a detailed description of the sampling approach of the parameters. 

A3. Sampling Number of Turning Points 

Using Bayes rule, the posterior distribution on the number of turning points is given as: 

P (K = k | Z) = P (K = k ) P (Vτ,k | K = k ) P (Z| K = k, Vτ,k ) 

P (Z) 

= 1 

kmax + 1 

1 

Nk 

P (Z| K = k, Vτ,k ) 

P (Z) 
, (A.7) 

where 

P (Z) =
∑ 

k 

∑ 

Vτ,k 

P (Z| K = k, Vτ,k ) P (K = k, Vτ,k ) . (A.8) 

Let Z1: h = (Z1 , . . . , Zh ) . For t = 1 , . . . , T , we denote with �k (1 , h ) = P (Z1: h | K = k, Vτ,k ) , the density of Z1: h with k > 0 turning

points defined by (see Ruggieri, 2013) 

�k (1 , h ) =
∑ 

t<h 

�k −1 (1 , t) P (Zt+1: h ) , (A.9) 

for h = (kdτ + 1) , . . . , T , where the above density for k = 0 is initialized by �0 (1 , t) = P (Z1: t ) , and dτ = τl − τl−1 is the dis-

tance between two successive turning points. 

A4. Sample Turning Point Locations 

Following the process of filtering recursion (see Fearnhead, 2006 ; Ruggieri, 2013) , the posterior distribution of the first 

turning point is given by 

P (τ1 = s | Z) = �0 (1 , s ) P (Zs +1: T ) ∑ 

�0 (1 , s ) P (Zs +1: T ) 
, (A.10) 
s<T 
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and the posterior distribution of the first turning point is given by 

P (τk = t| τk +1 , Z) = �k −1 (Z1: t ) P (Zt+1: τk +1 
) ∑ 

t∈ [ k −1 ,τk +1 ) 

�k −1 (Z1: t ) P (Zt+1: τk +1 
) 
. (A.11) 

A5. Sampling The Network 

Let Vy = (yi , . . . , yn ) be the vector of indices of response variables, and Vz = (z1 , . . . , znp ) the indices of the lagged observa-

tions. The network relationship from zψ 

∈ Vz to yi ∈ Vy can be represented by (Gyi ,zψ 
= 1) . Following Geiger and Heckerman

(2002) , the closed-form expression of the local marginal likelihood is given by 

P (Y | Gyi ,zψ 
) = π− 1 

2 N ν
1 
2 ν0 

0 

ν
1 
2 νn 

n 



(

ν0 + N−nx 

2 

)


(

ν0 −nx 

2 

) ( | Z′ 
ψ 

Zψ 

+ ν0 Inv | 
| X ′ 

i 
Xi + ν0 Inx 

| 
)

1 
2 νn , (A.12) 

where 
(·) is the gamma function, Xi = (Yi , Zψ 

) , Id is a d-dimensional identity matrix, nψ 

is the number of covariates in

Zψ 

, nx = nψ 

+ 1 , ν0 > nx is a degree of freedom hyper-parameter of the prior precision matrix of (Y, Z) , and νn = ν0 + N.

Equation (A.12) indicates that only the ratio of the posterior sum of squares depend on the data. Thus, we reduce com-

putational time by pre-computing the part of () that is independent of the data, for different values of nx ∈ [1 , m ] and

for fixed ν0 = m + 2 and N. We also pre-compute the posterior of the full sum of squares matrix and extract the sub-

matrices that relates to { Zψ 

} and { (Yi , Zψ 

) } . For computational details of the score function (see Ahelegbey et al., 2016a ).

See Algorithms 1 and 2 for a pseudo code of the lagged and contemporaneous network sampling steps. 

Algorithm 1 Sampling [ G1: p | Y, p] 

1: Require : Set of responses Vy = (yi , . . . , yn ) and lagged attributes Vz = (z1 , . . . , znp ) 

2: Initialize G(1) 
1: p 

= ∅ 
3: for yi ∈ Vy do 

4: for z j ∈ Vz do 

5: Compute φa = P (Y | G(1) 
yi , ∅| 1: p 

) and φb = P (Y | G(1) 
yi ,z j | 1: p 

) 

6: if φb > φa then G(1) 
yi ,z j | 1: p 

= 1 else G(1) 
yi ,z j | 1: p 

= 0 

7: for h = 2 to Total iterations do 

8: for yi ∈ Vy , set G(∗) 
yi | 1: p 

= G(h −1) 
yi | 1: p 

do 

9: Randomly draw zk ∼ Vz 

10: Add/remove link from zk to yi : G
(∗) 
yi ,zk | 1: p 

= 1 − G(h −1) 
yi ,zk | 1: p 

11: Compute φ = exp [log P (Y | G(∗) 
yi | 1: p 

) − log P (Y | G(h −1) 
yi | 1: p 

)] .Draw u ∼ U(0 , 1) . 

12: if u < min { 1 , φ} then G(h ) 
yi | 1: p 

= G(∗) 
yi | 1: p 

else G(h ) 
yi | 1: p 

= G(h −1) 
yi | 1: p 

Algorithm 2 Sampling [ G0 | Y, G1: p , p] 

1: Require : Set of attributes Vy = (yi , . . . , yn ) and estimated lag network G1: p 

2: Initialize G(1) 
0 

= ∅ and G(1) 
0: p 

= [ G(1) 
0 

, G1: p ] 

3: for yi ∈ Vy do 

4: Set Vyi 
= Vy \{ yi } and { zπ : Gyi ,zπ | 1: p = 1 } 

5: for y j ∈ Vyi 
do 

6: Set πi = (y j ∪ zπ ) .Compute φa = P (Y | G(1) 
yi ,zπ | 0: p 

) and φb = P (Y | G(1) 
yi ,πi | 0: p 

) 

7: if φb > φa then G(1) 
yi ,πi | 0: p 

= 1 else G(1) 
yi ,zπ | 0: p 

= 1 

8: for h = 2 to Total iterations do 

9: for yi ∈ Vy , set G(∗) 
yi | 0: p 

= G(h −1) 
yi | 0: p 

do 

10: Randomly draw yk ∼ Vyi 

11: Add/remove link from yk to yi : G
(∗) 
yi ,yk | 0: p 

= 1 − G(h −1) 
yi ,yk | 0: p 

12: Compute φ = exp [log P (Y | G(∗) 
i | 0: p 

) − log P (Y | G(h −1) 
i | 0: p 

)] . Draw u ∼ U(0 , 1) . 

13: if u < min { 1 , φ} then G(h ) 
yi | 0: p 

= G(∗) 
yi | 0: p 

else G(h ) 
yi | 0: p 

= G(h −1) 
yi | 0: p 
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Appendix B. Network Statistics 

In this section some useful network statistics are defined. See Newman (2010) for further material on network analysis. 

Average Degree 

Average degree is simply the average number of edges per node in the graph. It can be computed numerically as: Average

Degree = Total Edges/Total Nodes. 

Clustering Coefficient 

Network clustering index is a measure of the tendency for nodes in a network form clusters or triangles. We apply the

global clustering index of Barrat and Weigt (20 0 0) which corresponds to the social network concept of transitivity and can

be captured numerically as: 

CC = 3 × (number of triangles) 

(number of open triads) 
, (B.1) 

where open triads are defined as a connected sub-graph consisting of three nodes and two edges. The index takes values

between 0 and 1. It can be viewed as the probability of two neighbors of a node link to each other. 

Average Path Length 

The average path length is the average number of steps along the shortest paths for all possible pairs of network nodes.

The average path length for a network with n -nodes is 

AP L = 1 

n (n − 1) 

∑ 

i � = j 
SPi j , (B.2) 

where SPi j is the shortest path between the nodes i and j. 

Node Centrality 

Node centrality in networks addresses the questions of how important a node/variable is in the network. Commonly 

discussed centrality measures include in-degree (number of in-bounds links), out-degree (number of out-bound links), au- 

thority, and hub scores. Let W be an n -node weighted graph without self-loop. 

1. The authority score of node- i is a weighted sum of the power/hub score of the vertices with directed links towards

node- i . They can be obtained via absolute value of the eigenvectors associated with the largest eigenvalue of (W W ′ ) . An

authority node has a large in-degree. 

2. The hub score of node- j is the weighted sum of the power/authority score of vertices with a directed link from node- j.

They can be obtained via absolute value of the eigenvectors associated with the largest eigenvalue of (W ′ W ) . A hub node

usually has a large out-degree. 

From a financial viewpoint, nodes with high authority scores/in-degree are highly influenced by others, while high hub 

scores/out-degree nodes are the influencers. 
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