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Abstract

The rapid growth of data generated by businesses has surpassed human capabilities to

produce actionable insights. Modern marketing applications depend on vast amounts of

customer labelled data and supervised machine learning algorithms to predict customer

behaviour and their potential next actions. However, this process requires significant effort

in data pre-processing and the involvement of domain experts, which can be costly and

time-consuming. This work reviews representation learning techniques as an alternative

approach to feature engineering, aiming to eliminate the need for hand-crafted features

and accelerate the process of extracting insights from data. Techniques such as Bayesian

neural networks, general embeddings, and encoding-decoding architectures are explored to

compress information obtained directly from raw input data into a dense probabilistic space.

This thesis introduces the necessary technical aspects of neural networks and represen-

tation learning, from traditional methods like principal component analysis (PCA) and

embeddings, to latent variable and generative methods that use deep neural networks, such

as variational auto-encoders and Bayesian neural networks. It also explores the theoretical

background of survival analysis and recommender systems, which serve as the foundation

for the applications presented in this work to predict when individuals are likely to stop their

relationship with businesses in a non-contractual settings or which items individuals are the

most likely to interact with in their next purchase. Experiments conducted on real-world retail

and benchmark datasets demonstrate comparable results in terms of predictive performance

and superior computational efficiency when compared to existing methods.
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1
Introduction

1.1 Motivation

In the last years, the vast amount of data produced by businesses around the world often

exceeds the ability of humans to produce reliable insights. Nowadays, the majority of modern

applications in marketing to obtain insights about customers and potential buyers rely on

the use of large amounts of customer labelled data and supervised machine learning or

artificial intelligence algorithms to obtain automatic predictions about customer’s behaviour

and their likely next actions. For example, predicting which customers are likely to make

their next purchase over the next few days, or which ones are likely to be interested in a

particular product or offering. At having such information about customers, companies

are well equipped to produce better targeted offerings to customers to enhance customer

experience and satisfaction, therefore increasing overall revenue to generate more businesses.

As noted by [Davenport et al., 2019], artificial intelligence is likely to impact significantly

marketing strategies, sales processes and customer opportunities over the next years.

However, the use of labelled data and supervised learning typically induces the need

of dedicating large efforts in data pre-processing to create high-quality attributes to predict

the desired variable of interest, which is a process not only expensive for companies, but

also requires the involvement of specialists in the field to ensure relevancy of the generated

attributes from data. This process limits directly the predictive ability of machine learning

models to make accurate predictions and make automated decisions about customer’s journey
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once they are deployed in production applications, such as recommending a specific product,

offering a discount at check-out, or include the customer in a targeted marketing campaign.

To overcome the need of obtaining hand-crafted features from specific knowledge ex-

perts and speeding up the process of obtaining insights from data, representation learning

techniques, such as bayesian neural networks, general embeddings, and encoding-decoding

architectures aim to compress the information obtained directly from raw input data and its

relationship with the target variable of interest into a dense probabilistic space. This space

then can be used to obtain data representations and train machine learning models without

the need of observing the original data or attributes created from it. Representation learn-

ing techniques can be useful in several business applications, particularly when obtaining

high-quality attributes or acquiring additionally data for experimentation is expensive or not

possible at all.

The main goal of this thesis is exploring an alternative approach to feature engineering

approaches commonly used in machine learning to obtain hand-crafted attributes from data

and train machine learning models with similar or better prediction performance. Instead,

the process of encoding the necessary information to predict the target variable from raw

data is carried by a representation learning technique, such a neural network.

The primary target audience for this thesis is the scientific community of machine learning

and marketing who are interested in exploring efficient techniques to obtain representations

of data and their potential applications. Although the experiments presented in this thesis

are focused on marketing science and obtaining insights about customers, these can be easily

implemented in other industries and applications with a different goal.

1.2 Research objectives

This thesis aims to explore representation learning techniques as an alternative approach to

feature engineering in machine learning, with a special focus in marketing applications. The

work and experiments presented in following chapters aim to eliminate the need for hand-

crafted features in feature engineering and accelerate the process of extracting insights from

data by compressing information obtained directly from raw input data into representations

from which machine learning algorithms can learn. Specific objectives of this work include:

Explore the use of representation learning techniques as a substitute to hand-crafted
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features and feature engineering.

The primary goal of this thesis is to investigate the potential of representation learning

techniques as a substitute for traditional feature engineering in machine learning, with a

particular emphasis on marketing applications. By compressing raw input data into a dense

probabilistic space, the research seeks to eliminate the reliance on hand-crafted features and

ease the process of deriving insights from data.

Investigate technical aspects of neural networks and representation learning.

This thesis examines the technical aspects of neural and representation learning. It covers

well-stablished methods to obtain representations from data like principal component analy-

sis (PCA) and embeddings, which are widely used in natural language processing (NLP) and

computer vision to encode data without the need for creating probability distributions. Addi-

tionally, it explores latent variable and generative methods that use deep neural networks,

such as variational auto-encoders and Bayesian neural networks, which combine ideas from

deep learning and probabilistic modelling to capture relevant information from data with

respect to the desired target variable.

Review theoretical background of survival analysis and recommender systems and

understand how these are applied in marketing settings.

This work examines the theoretical background of survival analysis and recommender

systems, which serve as the foundation for the applications, baseline models, and experiments

presented in the following chapters. Survival analysis focuses on predicting the time until an

event occurs, such as customer churn or next purchase, while recommender systems aim to

suggest items or actions to users based on their preferences and behaviour.

Explore the application of deep learning-based representation learning methods for

enhancing marketing strategies.

Introduce novel approaches to analyse item purchases and customer churn as sequential

information seen as a series of time-ordered events rather than static snapshots. This approach

acknowledges the dynamic nature of customer interactions and purchasing patterns, which

evolve over time and are influenced by various factors such as marketing campaigns, seasonal

trends, and personal preferences.

Discuss the potential benefits, challenges, and drawbacks of implementing representa-

tion learning methods in machine learning.
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This work aims to discuss potential benefits, challenges, and drawbacks of implementing

representation learning methods in machine learning. It highlights the importance of consid-

ering the specific characteristics of marketing data and the need for interpretable models in

certain applications.

1.3 Contributions to knowledge

Despite its importance and relevance in several applications, the development of representa-

tion learning in the field of marketing has been slower than in fields such as image processing

or reinforcement learning, where finding robust representations of data is at the core of

most production-ready application developed in industry, mainly do the fact that creating

hand-crafted features for every image or for every experiment to be conducted is highly

inefficient or impossible. One of the main reasons for this is also the abundant availability

of well-established methodologies in statistics to create human-interpretable predictions

from low dimensional structured data usually found in marketing settings, such as logistic

regression and decision trees. However, as nowadays most of customer’s behaviour data is

produced by automated systems in the form of logs, the available data is more often complex

and extremely high-dimensional, which limits considerably the capacity of using the standard

and interpretable machine learning techniques.

Broadly speaking, most representation learning techniques combine ideas from deep

learning and probabilistic modelling to capture relevant information from data with respect

to the desired target variable by defining generative models based on neural networks

with the use of known multi-dimensional distributions, to estimate the inherent probability

distribution from which available data was generated. For example, variational autoencoders

(VAEs) [Kingma and Welling, 2013], are deep latent variable models are widely used in the

field of computer vision to create low-dimensional representations of images by capturing

the distribution of pixels in a set of images, or in unsupervised learning of to generate low-

dimensional representations of high-dimensional data distributions. Nevertheless, there are

representation learning techniques purely based in deep learning, such as embeddings that

are widely used in natural language processing (NLP) and computer vision to encode data

without the need of creating probability distributions.

This thesis contributes to the academic knowledge in the field of representation learn-
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ing and artificial intelligence, particularly in the field of marketing, by proposing novel

approaches to obtain insights from customer data and improve prediction performance by

proposing novel methodologies for marketing applications, demonstrating their effectiveness

through extensive experiments, and discussing their potential benefits, challenges, and future

research directions. Overall, these contributions can be broadly categorized into three areas:

Advancements Deep learning representation learning techniques for marketing applications,

Novel applications in customer interactions, and Discussion on benefits, challenges, and

future research directions.

Advancements Deep learning representation learning techniques for marketing appli-

cations.

This thesis provides a comprehensive introduction to deep learning and representation

learning techniques, including recurrent neural networks, Bayesian neural networks, and

autoencoders. It discusses the advantages of these techniques over traditional hand-crafted

feature engineering methods, such as reliability, scalability, flexibility, and ease of implemen-

tation. This foundational knowledge is essential for understanding the novel applications

presented in the later parts of the thesis. Furthermore, this work explores the use of represen-

tation learning techniques in marketing applications, where obtaining high-quality attributes

or acquiring additional data for experimentation is expensive or not possible. By leveraging

techniques such as Bayesian neural networks, general embeddings, and encoding-decoding

architectures, this work demonstrates the potential of these methods to compress information

obtained directly from raw input data and its relationship with the target variable of interest

into a dense probabilistic space.

Novel applications in customer interactions.

This thesis introduces two innovative applications of representation learning techniques

for customer interactions: predicting customer churn (Chapter 3) and item recommendation

(Chapter 4). These applications demonstrate how customer transactions can be analysed

as sequential information using Bayesian and recurrent neural networks, without the need

for additional hand-crafted attributes. The successful implementation of these applications

showcases the potential of representation learning techniques in marketing and other indus-

tries.

Discussion on benefits, challenges, and future research directions.
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The work highlights the challenges and limitations associated with implementing repre-

sentation learning techniques, such as interpretability, evaluation, and experimentation. By

discussing these challenges, the work contributes to a better understanding of the current

state of the field and helps researchers and practitioners to identify areas where further

research is needed. Furthermore, this work outlines potential questions for further research,

paving the way for future advancements in the field of representation learning and artificial

intelligence applied to marketing and other industries. These contributions not only advance

the state-of-the-art in representation learning techniques but also provide valuable insights

for practitioners aiming to leverage these methods in real-world marketing scenarios.

1.4 Thesis outline

Chapter 2 introduces the necessary technical aspects of neural networks and representation

learning, from traditional methods to perform dimensionality reduction of high-dimensional

spaces like principal component analysis (PCA) and embeddings, to latent variable and

generative methods which aim to discover and represent data as their generative probability

distribution with the use of deep neural networks such as variational auto-encoders, and

Bayesian neural networks. This chapter also explores the theoretical background of survival

analysis and recommender systems, which are the foundations to introduce the applications,

baselines models, and experiments presented in the following chapters.

Chapter 3 presents the methodology and the main results of the submitted manuscript

Modelling customer churn for the retail industry in a deep learning based sequential framework that

introduces a probabilistic deep learning approach to compress information of purchases

to estimate the likelihood of next customer purchase over a period of time. Under the

assumption that customer interactions can be represented as sequences of data through time,

the main focus of this chapter is to find a representation space for marketing sequences by

combining unsupervised learning, deep neural networks, and survival analysis to avoid time

consuming hand-made feature engineering and estimate what is the most likely future time

for customers to make their next purchase. This is achieved by creating a latent space from

sequences of time arrivals and make predictions of the survival distribution of event-times at

customer level.

Predictions made with this methodology are compared against two well-established
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survival analysis methods commonly used to predict customer churn: Cox Proportional

Hazard (CPH), and Kaplan-Meier (KM) estimator with respect to survival and classification

metrics for experiments using a dataset containing transactions of retail customers, as well as

a simulated dataset designed to resemble customer transactions. The results obtained show

comparable prediction performance of predictions made with sequential representations of

purchases against methods that use hand-crafted features at training, besides allowing to

obtain individual estimations of churn probability for individual customers.

Chapter 4 presents the methodology and main results of the submitted manuscript

Sequence-aware item recommendations for multiply repeated user-item interactions, an innovative

approach to analyse item purchases as sequential information to make product recommenda-

tions. Inspired by natural language processing techniques to process, and analyse sequences

of text, this paper proposes a recommender system that accounts to the order of user-item

interactions in a sequential framework to make recommendations. This new technique analy-

ses all purchases made by customers and processes them with a recurrent neural network to

make predictions of which are the most likely items to be bought next.

Experiments were conducted for two retail datasets and a popular recommender sys-

tems benchmark dataset showing outstanding performance in terms of recommendations

quality against recommendation techniques used in industry such as matrix factorisation

and collaborative filtering, besides showing a considerable reduction in the computational

time to make predictions and item recommendations to customers. This new technique was

additionally tested against a proprietary recommender system in a live A/B test for 500,000

customers recommendations in an email marketing campaign obtaining an uplift of 13% in

total revenue for the business and deployed in production for on-going usage.

Chapter 5 finally discusses the potential benefits, challenges, and drawbacks of implement-

ing representation learning methods in machine learning, as well as highlighting potential

questions for further research.
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2
Theoretical background

2.1 Artificial Neural Networks

Artificial neural networks (ANN) are popular machine learning models capable of learning

complex non-linear patterns present in data with the use of nodes and weighted connec-

tions interrelated in an architecture design that is mainly inspired in the structure of the

human brain. Neural networks have proof to be models capable of outperforming several

machine learning techniques such as logistic regression and tree-based models in different do-

mains, such as Natural Language Processing (NLP) [Camacho-Collados and Pilehvar, 2018],

computer vision [Rawat and Wang, 2017], and machine translation [Sutskever et al., 2014].

ANN’s have been also widely explored in the fields of survival analysis by [Kvamme et al., 2019]

and churn prediction by [Sharma and Panigrahi, 2011], for tasks where the observations may

allow to presence of censoring and covariates can be extracted from the input data.

2.1.1 History of Neural Networks

The concept of artificial neural networks is not new in the field of machine learning, the

concept of an artificial neuron is introduced by McCulloch [McCulloch and Pitts, 1943] which

is commonly treated as the origin of neural networks in machine learning. Nevertheless,

it is until late 1950’s when the first practical application is introduced with the use of the

perceptron by Rosenblatt [Rosenblatt, 1958] with demonstrated the ability of artificial neurons

to perform pattern recognition.
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Unfortunately, the single-layer perceptron was widely criticised due to main two issues,

the first, its inability to solve the exclusive-or (XOR) problem. And the second one, that

advanced computers back then were incapable to perform the necessary calculations to train

large neural networks [Minsky and Papert, 1969]. Leading into many researchers losing in-

terest in further development in the field for over a decade. It was until 1980’s when research

in artificial neural networks increased dramatically and new concepts had been introduced.

Hopfield [Hopfield, 1982] used statistical mechanics to explain the operation of neural net-

works with associative memory. Werbos [Werbos, 1974] introduced the back-propagation

algorithm as a generalisation of the delta/chain rule to train multi-layer perceptron. And

Rumelhart et al. [Rumelhart and McClelland, 1987], showed the efficiency of the backpropa-

gation method for the family of semi-linear activation functions, which required activations

to be non-decreasing and differentiable to overcome all the issues mentioned by Minsky and

Papert in 1969.

In the 1990’s and 2000’s researchers tried to develop neural networks by using backpropa-

gation and stochastic gradient descent during training, unfortunately most of the networks

would not train as quick as to be useful for real applications. It was just until Hinton et al.

[Hinton et al., 2006] when learning of complex architectures such as the convolution neural

network was efficient enough to be used in modern applications.

By 2010’s, Deep Learning (DL) with artificial neural networks had already became in

a popular methodology for training new machine learning models. Its popularity is often

attributed to their ability to approximate any non-linear decision function for a wide range of

applications in Computer Vision (CV) for image classification, Natural Language Process-

ing (NLP) and Understanding (NLU) for text analysis, and Robotics for task automation.

A considerable amount of deep learning research has focused on improving state-of-the-

art benchmarks for several applications, typically by assigning either more computational

resources or data to the task in hand, or by simple increasing the size of the network by

attaching more layers to the architecture.

It was not until 2017, when Vaswani et al. [Vaswani et al., 2017] introduced the Trans-

former, a model architecture fully based on the attention mechanism to draw global depen-

dencies between input and output signals. Nowadays, most popular applications in the

Artificial intelligence (AI) industry rely on the use of transformer-based neural networks

to make predictions. For instance, the Generative Pre-trained Transformer 3 (GTP-3) is a
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specialised transformer trained from dozens of NLP datasets to find data representations in

an unsupervised fashion and then fine-tuned for specific natural language generations and

understanding tasks, the largest version of this model contains 175 billion parameters and is

capable of achieving state-of the-art results in relatively all NLP applications.

2.1.2 Architecture

The typical neural network consists of the concatenation of simple processing units inter-

connected between them to process data or information over a large number of weighted

connections. In the neural architecture, each unit performs a relatively simple job, the unit

receive input from the input or the previous layer and use it to compute the output signal as

the sum of weighted inputs plus a bias terms followed by an activation function.

Mathematically, a neural network (NN : Rn → Rm) with n-dimensional input and

m-dimensional output can be seen as a linear combination or a function of X ∈ Rn fea-

tures (nodes) with their corresponding weights W ∈ Rn×m and bias term b ∈ R (connections),

followed by a non-linear activation function, i.e., NN(X) = φ(b+W TX), where φ : Rm → Rm

represents the chosen activation for the network. Figure 2.1 shows a visual representation of

this process for a single unit with n inputs. In practice, deep neural network architectures

contain multiple nodes in their input and intermediate layers to allow the learning of complex

non-linear mappings from input to output data during the training process. To simplify the

notation, we denote NNX , as the neural network learnt from training data X .

Common choices of activation are the linear (φ(x) = x), exponential (φ(x) = exp(x)),

softmax (φ(x) = exp(x)/
∑

j exp(xj)) for a vector of dimension j, and sigmoid (φ(x) = 1
1+e−x )

functions. Figure 2.1 shows a visual representation of this process for a unit with n inputs.

Figure 2.1: Visual representation single unit neural network.
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Although neural networks are powerful machine learning models, these also have their

caveats. Firstly, due to their structure with usually multiple intermediate layers, the model

might contain thousands or millions of parameters that need to be optimized in the training

process, so these techniques require large volumes of input data at training to avoid over-

fitting and provide reliable predictions. Secondly, neural networks typically provide only

point estimates of the target variable and do not capture the uncertainty in their predictions,

which is not favourable when the goal is estimating a probability distribution such as in the

experiments presented in Chapter 3.

A common way to approach these issues is using representation learning methods by

taking a probabilistic approach and assume a distribution over the target variable Y , i.e., Y ∼

Q(θ) with unknown parameter vector θ, then the neural network outputs are only estimates

of the parameter distribution instead of estimates of the target variable, i.e, NNX(x) =

φ(b+W Tx) = θ̂, and target point estimates can be obtain as the expectation of the distribution

w.r.t. the input data as ŷ = E[Q(θ̂ | x)]. Naturally, this process can be implemented not

only for the output layer, but in each or some of the intermediate layers as well, leading into

the field of Bayesian neural networks that are trained by minimizing the Kullback-Leibler

divergence between the estimated posterior distribution Q(θ̂) and a defined prior distribution

as noted by [Lampinen and Vehtari, 2001].

2.1.3 Training Process

A neural network must be configured in such way that the application of inputs and weights

throughout the architecture resembles the desired set of outputs. Typically, the initial weights

in the network are set as random using a uniform distribution between 0 and 1 and then the

architecture can be ’trained’ by processing input teaching data and updating the network

weights with respect to a loss or error function. This process is commonly known in machine

learning as ’supervised learning’ of the network, where the pair of input-output tuples are

fed in the network in batches.

Werbos [Werbos, 1974] proposed in 1974 the backpropagation algorithm as a generali-

sation of the delta rule for non-linear activations and multi-layer networks, with the only

restrictions that the activation need to be non-decreasing and differentiable. The main goal

of the learning process via backpropagation is the activation values are propagated to the

previous layers by comparing the networks’ outputs with the desired true output values, and



2.1 Artificial Neural Networks 22

distributing the error of the model to all the hidden layers that each unit is connected to by

applying the chain rule to the derivative of the loss function with respect to all the weights of

the model.

2.1.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are an extension of traditional neural networks that have

proof efficiency in modelling sequential data in several applications domain over the last

decade. For example, in the field of machine translation [Sutskever et al., 2014] to translate

textual documents from one language into another, and computer vision [Phong and Ribeiro, 2020]

to perform image and video classification and object recognition. In RNNs, the hidden cell

structure can be used to encode information of a temporal-dependant random variable at

time t denoted as X<t = [x1, x2, ..., xt−1] into a latent variable ht = g(X<t), which depends of

the time t and then is used to define the output distribution p(Xt|ht). For an observation of

X<t, the state of the latent variable ht evolves over time, and at each time step incorporates

information from the previous state by using a non-linear function g, i.e., at each time-step

ht = g(ht−1, Xt) as shown in Figure 2.2.

Figure 2.2: Graphical representation of the hidden state structure of Recurrent Neural Networks.

However, the differentiable function g must to be powerful enough to capture long-

term dependencies in the data. Popular choices for g are memory cells units such as LSTM

[Hochreiter and Schmidhuber, 1997] and GRU [Chung et al., 2014], that use a gated mecha-

nism to store and forget information through the recurrent training process and are specially

designed to avoid the vanishing gradient problem in RNNs [Hochreiter, 1998].

Long-short Term Memory (LSTM)

One of the initial approaches to model sequential data with the use of neural networks was

the long-short term memory (LSTM) unit proposed by Hochreiter and Schmidhuber in 1997
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[Hochreiter and Schmidhuber, 1997], it shares many of the properties of the Gated recurrent

unit [Chung et al., 2014] proposed later in 2014, although the LSTM is slightly more complex

in its inner structure.

The LSTM unit incorporates Four gates in its structure, and it is designed to decide when

to remember or ignore inputs into the hidden latent variable ht. The first gate is the output

gate which reads entries from the cell itself. The second gate is the input gate, which decides

whether to read the data to be processed by the unit. The third gate is the forget gate which

decides when to reset the contents of the cell. And finally, the memory cell which stores the

information of the hidden state ht at each time-step. In the LSTM unit, the input, output, and

forget gates include a sigmoid activation to compute the values for each gate, which ranges

between the interval [0,1], but the memory cell includes a tanh as the activation function with

a value range for [-1, 1]. In each time-step, the data fed into the LSTM gates is the input at the

current time-step xt and the hidden state at the previous time-step ht−1. Figure 2.3 shows a

representation of the LSTM unit with each of its internal gates.

Figure 2.3: Computation of memory cells in an LSTM.

In practice, the training process of the LSTM can be done via the backpropagation algo-

rithm presented in section 2.1.3, while the gated mechanism in the LSTM aids to mitigate the

vanishing gradients problem [Kolen and Kremer, 2001] of long-term dependencies in neural

network.
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2.1.5 Asymmetric loss functions

Typically, the training process of neural networks is based in adjusting the networks’ weights

and biases via the back-propagation to find the weights that minimise the error between

model’s predictions ŷ and real observed values y with respect to a loss function L(ŷ, y) :

Rm × Rm → R , which measures the discrepancy between predictions and target values.

In classification or regression tasks the target variable is fully known and given by a set of

true labels y, thus the model predicts ŷ = NNX(x) and the model’s error can be obtained

straightforwardly. Popular choices of loss function are the Mean Squared Error (MSE =

1
N

∑N
i=1(yi− ŷi)

2), and Mean Absolute error (MAE = 1
N

∑N
i=1 | yi− ŷi |) for regression, and the

binary or categorical cross entropy (Entropy = −
∑N

i=1 yi · log(ŷi)) for classification. However,

these loss functions do not consider the presence of censored labels in the data and only

provide reliable estimations when over-predicting or under-predicting the real value of the

target does not have a significant impact during model training, which is not the case at

estimating the parameters of a time-to-event distribution.

The estimation of parameters for an exponentially shaped time-to-event distributions has

been widely explored over the last decades, as several life problems such as waiting time

problems or time intervals between events usually distribute similar to an exponential shape.

Several authors, such as [Zellner, 1986, Varian, 1975, Srivastava and Tanna, 2007] have shown

that the use of asymmetric loss functions outperform the estimation of parameters carried

with quadratic-type losses such as MSE and MAE, due to their inherent structure that consider

both, the goodness of fit against the distribution to estimate and the precision of individual

estimations. In addition, generalized linear models [Nelder and Wedderburn, 1972] provide

a statistical framework to model non-symmetric distributions.

Popular choices heuristically motivated for asymmetric loss functions are the LINEX loss

function [Varian, 1975], which increases exponentially on one side of zero and linearly in the

other side. Similarly, balanced loss functions (BLF) [Zellner, 1986] combine the distance of

a given estimator to the target distribution and to its unknown parameters. Balanced loss

functions are usually considered in the field of Bayesian statistics as these may consider prior

knowledge of parameters that can be captured in the form of a prior distribution.
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2.2 Representation learning

The success of most machine learning methods is heavily dependent of the data represen-

tation (or features) used in their construction [Bengio et al., 2013]. For this reason, most

machine learning and artificial intelligence practitioners in research and industry allocate

large amounts of resources in data preparation, cleaning, and feature engineering with the

final goal of improving predictions. Representation Learning aims to overcome the need of

obtaining expensive handcrafted features from data by leveraging robust mechanisms such as

neural networks the process of building a representation of data themselves. In this domain

different unsupervised techniques like Principal Component Analysis (PCA) [Pearson, 1901],

Embeddings [Chamberlain et al., 2017], and Gaussian Mixtures Models (GMM) have been

used to learn a latent representation of data for non-temporal domains.

In general, the goal of these techniques is to obtain a reliable representation of data without

any previous knowledge of the full probabilistic generative process from which the data

was extracted. For example, in computer vision, convolutional neural networks (CNN) are

extremely efficient in obtaining a low-dimensional feature representation of images, which

then can be used to into classifiers to make predictions [Rawat and Wang, 2017]. In the field of

probabilistic deep learning, the Variational Autoencoder (VAE) [Kingma and Welling, 2013]

has shown to be a powerful technique in learning the posterior distribution of data p(X|Z),

given a prior distribution p(Z) where Z is a unknown latent variable and its distribution is

estimated from the data with neural networks. An introduction to Variational Autoencoders

and their applications can be found in [Kingma and Welling, 2013].

In this work, in order to to obtain reliable a representation of customer interactions and

capture the dynamic preferences of customers over time for chapters 3 and 4, we need to

analyse customer interactions as complete sequences instead of as static snapshots. Learning

sequential models is a long-standing challenge in machine learning and statistics, commonly

approached with the use of Dynamic Bayesian Networks (DBNs) such as Hidden Markov

Models (HMM’s) and Kalman filters, where the information of the temporal-dependant

random variable Xt is usually modelled as the likelihood function in an auto-regressive

manner: p(Xt) =
∏t

t=1 p(xt|X<t), i.e. as the product of the individual densities at each time

step. However, over the last decade, Recurrent Neural Networks (RNN) have gained special

attention from the research community as being a special type of neural networks which
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recursively models data by updating and maintaining internal hidden states as stated in

section 2.1.4.

2.2.1 Latent Modelling

Historically, statistical modelling has been focused on modelling the probability distribution

of a random variable X ∼ p(X) as a parametric distribution p(X, θ) given a data sample of n

observations of the original random variable {x1, x2, ..., xn}, where the parameter vector θ of

the model is unknown and the observations in the data sample are commonly assumed to be

identically and independently distributed. Then, the goal of is to find a value θ̂ of the real

parameter θ so that the parameterised distribution p(X, θ) matches closely the distribution of

the data p(X).

Machine learning methods which focus in using observed data to make predictions

typically rely on the use of hand-crafted attributes extracted from the data sample, where the

distribution of these attributes is typically known and joint likelihood can be obtained as the

product of individual densities p(X) =
∏

i p(xi), then the goal of these systems is to learn a

mapping function f : X → Y to make predictions using only the set of independent variables

X and the target or dependant variable Y . This approach is considerably efficient in different

applications, particularly when the size of the data sample is large and the dimensionality

of X is relatively small. Unfortunately, as technology evolves and more data and more

abundant types of data such as images, videos, and audio are available for analysis, the

process of extracting hand-crafted attributes is not feasible in modern applications, as the

dimensionality of every observation could be in the thousands or millions. For example,

a modern smartphone camera can take a picture of 12 megapixels resolution (4000 x 3000

individual pixels), which means that a model that a machine learning model designed to

classify images with this resolution will require to consider 36,000,000 parameters for every

observation or picture in the training data.

Instead, latent modelling techniques try to resemble the generative process from which

the data was created. These rely on the use of an auxiliary and unobserved random variable

Z which captures all the necessary information of X . As we cannot directly observe the

distribution p(Z) of Z due to its large dimensionality, their properties must be inferred

indirectly from the available data sample obtained from X . In practical scenarios, it is

necessary to induce a prior distribution over the latent variable Z and obtain the joint
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distribution over observed and latent variables as

p(X,Z) = p(X|Z)p(Z),

which allows to express the complex marginal distribution p(X) in terms of a more simple

distribution built from the conditional distribution p(X|Z) and the prior distribution of the

latent variable p(Z). As the goal at training is achieving the learning of the distribution of Z

it is necessary to obtain the distribution of latent variables p(Z) with respect to the input data

by using the Bayes’ theorem

P (Z|X) =
p(X|Z)p(Z)

p(X)
.

Latent variables have been refereed in different domain of statistics with different names

such as ’common factors’, ’latent factors’, ’underlying variables’, among others. These models can

be used in multiple applications, such as creating synthetic data, which resemble the original

distribution of X by simply sampling a new set new observations X ′ from the conditional

distribution p(X|Z ′), where the set of initial data points Z ′ can be obtained from sampling

the known prior distribution of Z [Dilokthanakul et al., 2016], or in dimensionality reduction

by choosing a dimensionality of Z much lower than the initial dimensionality of X .

Examples of widely used techniques which resemble the goal of latent variables for

dimensionality reduction are Singular Value Decomposition (SVD), Principal Component

Analysis (PCA) [Pearson, 1901] and Gaussian Mixture Models (GMM). For instance, PCA

aims to obtain a set of uncorrelated and orthogonal eigenvectors which capture certain

amount of variability from the original data, these eigenvectors can be seen as latent variables

as their distribution is unknown before the analysis is done and during training, although

these are not obtained with the use of the Bayes’ theorem as stated above, the eigenvec-

tors capture the main characteristics of the original data sample and its correlation with

the target variable. However, in practical applications for images and audio processing,

usually the non-correlated and linearity assumptions limit its efficiency at working with

complex data distributions. Other methods, like Independent Component Analysis (ICA)

[Hyvärinen et al., 2009] or sparse coding [Lee et al., 2006] assume independence of the ob-

tained components, but in practice they usually fail in obtaining reliable representations of

data. To relax the independency constrain in these methods, semi-parametric latent models
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like [Teh et al., 2005, Murray and Adams, 2010] implement Gaussian mixtures to allow the

existence of correlated latent factors and improve the representation learning in various tasks.

2.2.2 Embeddings

As a method to find efficient representation from textual data, word embeddings were

proposed by Mikolov et al. [Mikolov et al., 2013a, Mikolov et al., 2013b] as an efficient alter-

native to techniques previously used extensively in literature like one-hot encodings, PCA,

Latent Semantic Analysis (LSA), latent Dirichlet Allocation (LSA) and Gaussian mixtures.

Unlike previously proposed methods, the goal of embeddings is finding representations

of words that are somehow useful to predict the surrounding based on its context. Then,

word representations are mapped into dense vectors over a representation space in which

similar words vector are relatively close one to each other with respect to their context. For a

given sequence of training words [w1, w2, ..., wT ] of size T , this is achieved by maximising the

average log probability as part of a supervised learning framework

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j|wt)

where c is the size of the training context for the embedding, which is typically a function of

the center word wj and might affect the overall performance and computational time of the

process. As a result, the learnt embeddings can preserve their semantic relations under simple

linear operations [Mikolov et al., 2013b]. Embedding techniques require of large amounts

of textual data during training (potentially billions of words), and large computational

resources. Fortunately, as of today, several implementations are made available online for user

consumption, such as Word2Vec [Mikolov et al., 2013a], and GloVe [Pennington et al., 2014].

Word Embeddings

One-hot Encoding

One-hot encoding is a popular technique in machine learning to convert categorical features

into a numerical format in a way that can be easily processed by algorithms. In one-hot

encoding, each category for a feature is represented as a binary vector with a length equal

to the number of unique categories in the dataset. Only one element in the vector is set to

1, corresponding to the specific category, while all other elements are set to 0. For instance,
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suppose we have a dataset containing information about different products available in

stock, and the purchases of customers. To apply one-hot encoding to these products, we

would first create a binary vector for each unique category, with length equal to the total

number of products, then for each individual we would create a vector where each entry

will correspond to the position of the specific product in the list of unique products, if the

customer has interacted with that product in the past, and all other elements set to 0. If ’User

A’ has only interacted with product 1, and ’User B’ has interacted with products 2 and 3, their

corresponding one-hot vectors would look as follows:

User A: [1, 0, 0], User B: [0, 1, 1]

One-hot encoding offers several advantages when used in recommender systems, in-

cluding its simplicity, interpretability, and compatibility with popular techniques presented

in section 2.4. This technique allows for an easy conversion of categorical variables into

a numerical format without losing any information or introducing artificial relationships

between categories and it is particularly useful when dealing with nominal data, where

there is no inherent order or relationship between the categories. However, there are also

some drawbacks, in particular the resulting high-dimensional representation and its sparse

representation, which can lead into inefficient storage and computational processes.

Word2Vec Embeddings

Word2Vec embeddings were introduced by [Mikolov et al., 2013a] in 2013 as an approach to

learn high-quality dense vector representations of words for dictionaries with potentially

billions of tokens, while trying to keep similarity of words in terms of their semantics and

position within sentences.

Particularly, the Continuous Bag-of-Words (CBOW) [Mikolov et al., 2013a] is an unsuper-

vised neural network with a single fully connected hidden layer (a.k.a shared-projection

matrix) for all words to represent each token in the network and predict the current word

based on its context or surrounding words. Despite its simplicity, CBOWs are popularly used

in textual applications to find scalable word representations as an alternative to the highly

sparse bag-of-words representation. Although Word2Vec embeddings are considered unsu-

pervised methods, these are learned as part of a supervised framework such as classification
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or next token prediction, as in this work, by simply connecting the embedding layer within

the overall architecture and training via backpropagation as shown in figure 4.1.

GloVe embeddings

Global Vectors (GloVe) [Pennington et al., 2014] is a popular method for learning word em-

beddings, It combines the both matrix factorization and local context window methods

to capture global relationship of token within the corpus while maintaining the ability to

learn from local contexts. The main goal of Glove is to establish a co-occurrence matrix that

represents the frequency of words appearing together within a specified context window.

Then, this matrix is decomposed into lower-dimensional matrices, which serve as the word

embeddings, which are obtained by minimising the difference between the dot product of

the resulting word embeddings and the logarithm of the co-occurrence probabilities.

GloVe embeddings offers several advantages to obtain word and token representations,

such as scalability for large-scale corpus of text maintaining semantic relationships between

words, dimensionality reduction, and enabling transfer learning between application do-

mains. However, this method also has some caveats, including a fixed-size vocabulary that

cannot directly represent out-of-vocabulary words, significant memory consumption for

storing and processing large co-occurrence matrices, and the computational intensity and

time-consuming nature of training GloVe embeddings from scratch, particularly for large

datasets and high-dimensional embeddings.

ELMo embeddings

Embeddings for Language Models (ELMo) [Peters et al., 2018] is a method that learns context-

aware word embeddings by training a deep bidirectional language model on a large corpus

of text, and it has shown outstanding performance in sentiment analysis, named entity

recognition, and question answering applications [Liu et al., 2020, Liu, Wenbin et al., 2020].

Its architecture consists of a character-based convolutional neural network or a token embed-

ding, followed by two layers of bidirectional long short-term memory (BiLSTM) networks,

where its training process incorporates both forward and backwards steps, the forward step

predicts the upcoming word based on preceding words, while the backward step anticipates

the prior word considering its subsequent words.
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BERT embeddings

Bidirectional Encoder Representations from Transformers (BERT) [Devlin et al., 2018] is a

pre-trained deep bidirectional transformer model that learns contextualized word embed-

dings by predicting masked words in a sentence. BERT embeddings extend the initial

architecture proposed in ELMO embeddings by implementing the transformer architecture

[Vaswani et al., 2017] which consists of a multi-layered stack of self-attention mechanisms

and position-wise feed-forward networks, allowing for efficient parallel computing and

better handling of long-range dependencies.

BERT embeddings are pre-trained on large corpus of text using the masked language

modelling, where some words in the input sentence are randomly masked, and the model is

trained to predict the original words based on their surrounding context. After pre-training,

BERT can be fine-tuned on task-specific data for most NLP applications.

While BERT embeddings have achieved outstanding performance on word represen-

tations for several NLP tasks, there are multiple shortcomings in this approach. BERT

embeddings have a significant computational complexity and high memory requirements

due to their transformer-based architecture, which may represent a significant challenge at

training, and deployment on resource-constrained environments. Furthermore, may not

always generalise well to specific domains without extensive fine-tuning, and can overfit

when dealing with relatively small datasets.

2.2.3 Autoencoders

The autoencoder [Ballard, 1987, Hinton and McClelland, 1987], is a special type of neural

network that aims to replicate its output to its input. In its architecture, the autoencoder

contains a hidden layer h which can be interpreted as a representation of the data. This

architecture is built from two main sub-networks h = e(x) named the encoder network,

which aims compress the input data into the hidden layer, and r = d(h) called decoder

network, which reconstruct the input data from the hidden layer. Figure 2.4 shows a visual

representation of this architecture.

The autoencoder architecture has been widely explored in applications for dimensionality

reduction [Hinton and Salakhutdinov, 2006], feature engineering [Torralba et al., 2008], and

generative modelling due to its efficiency in learning data distributions and its properties
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in a relatively simple manner, particularly when the dimensionality of the input data in

considerably large. Differently to the neural networks presented in section 2.1 which are

trained via backpropagation, Autoencoders may also be trained with the use of recirculation

[Hinton and McClelland, 1987] by comparing the activation of the networks on the inputs

with respect to the reconstructed outputs, although this practice is not commonly used by

practitioners.

Figure 2.4: Visual representation of the Autoencoder architecture.

2.2.4 Bayesian Neural Networks

As presented in previous sections, neural networks and deep learning have proof their

efficiency in achieving outstanding performance in multiple domains. However, neural based

architectures also have their caveats, for instance, large architectures are prone to overfitting

when the architectures stack multiple layers and become ’too deep’ [Szegedy et al., 2014],

which could mean that the network become overconfident about their predictions during

training and its weights stop updating during the training process. Among several techniques

proposed in the literature to alleviate this issue, the Bayesian paradigm provides a robust

approach to control the uncertainty of predictions made by the networks.

Bayesian neural networks (BNN’s) are stochastic-based neural networks that are trained

from data using Bayesian inference. Their main goal is making predictions using a mapping

y = ϕ(x), where ϕ is a probabilistic distribution. This can be achieved by assigning a stochastic

activation in the output of their neurons rather than a single weight value as in the method
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presented in section 2.1.3, an illustration of this method is shown in Figure 2.5.

Figure 2.5: Visual representation of Bayesian neural network with stochastic output.

In practice, each node in the network is associated to a prior distribution p(θ), which

are then trained via variational inference [Gal and Ghahramani, 2015] or back propagation

with the reparametrization trick [Kingma and Welling, 2013, Rezende et al., 2014]. As BNN’s

make predictions using probability density function in each of their nodes, these architectures

can be considered as an infinite ensemble of neural networks [Doshi et al., 2011],

2.2.5 Variational Autoencoder

In just few years, Variational Autoencoders (VAE’s) [Kingma and Welling, 2013] have emerged

as one of the most popular approaches in unsupervised learning for complex probabilistic

distributions, as their main goal is to express the generative process from which the data

was extracted by using a set of latent factors. Surprisingly, the structure of VAEs has little to

do with traditional autoencoders [Ballard, 1987, Hinton and McClelland, 1987] presented in

section 2.2.3 or to similar architectures like sparse autoencoders [Lee et al., 2006] or denoising

autoencoders [Bengio et al., 2014, Vincent et al., 2008], and the reason why the VAE is called

an "autoencoder" is due to the fact that their final training objective function is obtained from

a encoder-decoder setup, that somehow, resembles a traditional autoencoder shape shown in

Figure 2.4.

VAE’ s estimate the data distribution p(X) of a random variable X by introducing an

unobserved latent variable Z and define a conditional distribution p(X|Z) for the data, also
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known as likelihood. Each of the elements of the observed variable X depends only on the

latent variable Z. By introducing a prior distribution p(Z) over the latent variables, the joint

distribution over observed and latent variables can be obtained with the use of the Bayes’

theorem pθ(X,Z) = pθ(X|Z)p(Z), where the likelihood pθ(X|Z) is known as decoder from

the latent representation of Z, p(Z) is the prior distribution of Z, and parameter θ are the

weights and biases of the decoder neural network. Typically, the decoder network is assumed

to be distributed as a multivariate Gaussian with mean vector µ and covariance matrix v,

i.e. pθ(X|Z) ∼ N(µ,v), and two neural networks are used independently to estimate its

parameters, i.e., µ = NN1(Z) and log (v) = NN2(Z). For simplicity, the prior distribution of

Z is often considered a multivariate Gaussian with zero mean and identity covariance matrix,

i.e p(Z) ∼ N(0, I), although it does not necessarily need to be the case.

Unfortunately, introducing a non-linear mapping from Z via neural networks induces

intractable inference for the posterior distribution, as it is necessary to obtain
∫
∞ p(x|z)p(z)dz.

Instead, VAE uses variational inference to approximate the true distributions of latent factors

p(Z) with a distribution qΦ(Z|X) which can be obtained by maximising the Evidence Lower

Bound (ELBO) defined as

log pθ(X) ⩾ −KL[qΦ(X)||pθ(X|Z)] + EqΦ(Z)[log pθ(X|Z)]

where KL is the Kullback-Leibler divergence expressed as follows

KL[qΦ(x)||pθ(z|x)] = −EqΦ(z)

[
log

pθ(z|x)
qΦ(z)

]
,

and where EqΦ(Z) denotes the expectation over qΦ(Z). In a very similar manner, VAE uses

two additional neural networks to parametrise the inference network of latent factors qΦ(Z|X)

known as encoder, which is usually chosen to be again Gaussian with mean vector µq and

covariance matrix vq . i.e qΦ(Z|X) ∼ N(µq,vq), with µq = NN3(X) and log(vq) = NN4(X),

where parameters Φ are the weights and biases of NN3 and NN4

As both generative model pθ(X|Z) and inference model qΦ(z|x) are defined from neu-

ral networks, gradients of the ELBO with respect to θ and Φ can be computed with back-

propagation by using the reparametrization trick [Kingma and Welling, 2013, Rezende et al., 2014]

expressing Z = µθ+σθ⊙ ξ, where ξ ∼ N(0, I). The reparametrization trick allow us to obtain

a low-variance differentiable unbiased estimator of the ELBO that simplifies the training

process and allows us to back-propagate through a random node in the network. Figure 2.6



2.2 Representation learning 35

shows a visual representation of the reparametrization trick.

Figure 2.6: Visual representation of reparametrisation trick applied to a random node in of the

network.

Finally, at inference time predictions can be obtained simply by computing the expectation

from the model with respect to the latent variable Z, i.e. pθ(Y |X) =
∫
pθ(Y |Z)pθ(Z)dZ where

the integration can be estimated via Monte Carlo sampling from the latent layer.
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2.3 Survival Analysis and Time-to-event modelling

Survival analysis (SA) is the field of statistics focused in modelling time-to-event data over

future lifespans, i.e. estimating the probability of an event occurring beyond a certain time

in the future. In contrast to Machine Learning methods such as regression and tree-based

models, where all events have already occurred at observation time, survival analysis assumes

that the event might not have happened at the time of evaluation for some individuals, but

it could happen in the future if the observation period were to be extended, this effect is

known as right censoring. Survival analysis estimates the probability of the outcome event

not occurring up to a time t and accounts for the presence of censoring in data with a survival

function S(t) defined as

S(t) = P (T > t) = 1− F (t),

where T is a random variable defined from the distribution of events over time, and

F (t) is the cumulative distribution of the event times, which is usually modelled with

respect to a set of subject attributes X (a.k.a covariates, or predictors, or features), i.e.,

S(t | X) = P (T > t | X) = 1 − F (t | X). For a survival function S(t), the hazard ratio, or

hazard function γ(t) defines the event rate at time t, if the event has not occurred up to time t

the hazard functions is expressed as

γ(t) = lim
△t→0

P (T < t+ △ t | T ⩾ t)

△ t
=

S ′(t)

S(t)
,

with S ′(t) = −f(t) and f(t) probability density function of the events time distribution.

Survival analysis methods can be classified into three main different categories: 1) Para-

metric methods, which assume a specified distribution of survival times as well as a functional

form for model covariates. 2) Semi-parametric methods, which enforce a functional relation

between covariates and the survival function, but do not impose a specific form of the hazard

function. And 3) Non-Parametric methods, which do not impose any assumption on the

survival function nor the covariates distributions. Out of all different techniques proposed

in the literature, two common methods used in industry applications are the Cox Propor-

tional Hazard (CPH) model [Cox, 1972] and the [Kaplan and Meier, 1958] estimator due to

their flexibility and easiness process at implementation. The CPH semi-parametric form

allows to linearly combine distributions from multiple covariates with a baseline hazard
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to obtain time-dependant probability estimates of individuals’ risk at time t. Whereas the

Kaplan-Meier non-parametric structure allows companies and researchers to have a robust

baseline and reliable predictions of individuals’ risk over time in an easy and scalable way.

The Kaplan-Meier estimator Ŝ(t) of the survival function of individuals is defined by

Ŝ(t) =
∏

k:tk<t

(
1− dk

nk

)
,

where dk is the number of individuals that experienced the event at the time tk and nk is the

total number of individuals at risk at time tk.

Survival models have been widely used by several companies and marketers around the

world to predict customer churn due to their simplicity and flexibility to include multiple

covariates into the hazard function estimation. [Van den Poel and Lariviere, 2004] explored

the use of proportional hazards to model customer attrition in European financial services.

[Wong, 2011] used the Cox regression to identify demographic and temporal covariates

that impact customer retention in a telecommunication company with base in Canada.

[Jamal and Bucklin, 2006] linked time-dependant covariates from customer service, pay-

ments, and recovery systems with the use of a Weibull hazard to identify churning customers

for a satellite TV service in South America. [Mavri and Ioannou, 2008] examine potential

predictors in customer switching behaviour for the Greek banking sector.

However, CPH does not directly model survival probabilities, but the hazard function of

individuals at time t as γ(t | X) = γ0(t)exp(X
Tβ), which is the probability that an individual

will experience the event of interest within a time interval given that the event has not

happened up to the beginning of the interval, and it is obtained from a baseline hazard that

only depends on time γ0, and a time-independent function obtained from the individual’s

covariates as XTβ, where β is the n-dimensional weights vector associated to each individual

covariate. Once the hazard function is known, the survival function can be retrieved with the

use of the cumulative hazard function Γ(t) =
∫ t

0
γ(s)ds, as Ŝ(t) = exp(−Γ(t)).

Typically, the CPH model is fitted in two steps [Kvamme et al., 2019]. Firstly, the para-

metric part of the model that only depends on individual’s covariates exp(XTβ) is fitted by

maximising the Cox partial likelihood, as it does not depend on the baseline hazard function

γ0, then, the non-parametric baseline is estimated based on the parametric results obtained in

the previous step.

Although survival techniques have proofed their efficiency to predict customer churn
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accurately in several applications, these methods also have their drawbacks. Firstly, these

techniques commonly assume that the event of interest can occur only once and it will

happen with probability of one if individuals are observed for enough time, which is not

the case in modelling customer behaviour where inherently individuals can make sev-

eral purchases over their lifetimes [Mavri and Ioannou, 2008, Spanoudes and Nguyen, 2017,

Tamaddoni et al., 2010] or not come at all again after certain time. A pragmatic approach to

model these issues is by resetting the customers’ survival probability to 1 immediately after

they make a new purchase and introduce a cure factor which represents the probability that

individuals will not make any further purchase [Amico and Van Keilegom, 2018].

Secondly, performance assessment of survival models applied to purchasing behaviour

might not be straightforward, as survival techniques estimate the probability of events

occurring over time, whereas evaluating traditional customer purchases is modelling a binary

classification problem ’customer will make a purchase eventually vs customer will not make

a purchase ever again’. Allowing solutions which can be optimal point-wise, but not overall.

Finally, CPH still enforce the use of a constant hazard function for all individuals,

which is an unrealistic assumption at modelling purchases for the non-contractual retail

industry, where customers can change their buying patterns at any time. Different stud-

ies have looked to overcome this challenge by using mixture models on top the origi-

nal Cox model [Nagpal et al., 2019], by training CPH models in adversarial frameworks

[Chapfuwa et al., 2018] or using time-dependant hazard functions [Fisher and Lin, 1999], or

combining survival models with network-based architectures, for instance, [Nagpal et al., 2020]

propose a fully parametric mechanism called Deep Survival Machines to learn non-linear rep-

resentations of covariates without the need of the strong hazard assumption. Whereas

[Ren et al., 2019] propose a deep recurrent survival model to predict the likelihood of an

event without assuming any specific distribution on the survival function while accounting

censorship presence in data.

2.3.1 Neural Networks in Survival Analysis

Recent research have proposed methods to combine RNN with survival analysis to outper-

form traditional CPH models and its variants. In these methods, typically the survival model

is fully parameterised with the output of a recurrent network to predict the empirical distri-

bution of future events and make use of time-dependant covariates. [Giunchiglia et al., 2018]
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proposed RNN-SURV for the medical field, this method takes characteristics of patients over

a period of time, at each time-step the model computes both, the risk score, and the survival

function of each patient in a personalised manner. [Martinsson, 2017] proposed WTTE-RNN

(Weibull Time-to-Event RNN) which consist mainly in the use of a recurrent network to esti-

mate the parameters of a Weibull distribution, then this estimated Weibull distribution is used

to predict engines time-to-failure in the field of machinery maintenance. [Chen et al., 2018]

proposed MAT-RNN (Multivariate Arrival Times RNN) to extend prediction of survival

frameworks to multiple arrivals setting, such as prediction purchases in demand forecasting.

[Bennis et al., 2020] proposes a recurrent architecture to model the parameters in a mixture

Weibull distribution for time-to-event analysis.

2.3.2 Performance Metrics in Survival Analysis

This section introduces briefly the main methodologies used to evaluate models where cen-

soring is present in the evaluation data. As mentioned previously, accounting for censoring

in predicting customer churn induces further challenges in model evaluation overall, as we

are not able to fully distinguish customers who are already churned and will not make any

further purchase against the ones that are taking a pause between transactions but will return

eventually.

Brier Score

The Brier score introduced by [Graf et al., 1999] is a common evaluation metric used in sur-

vival analysis to evaluate the accuracy of survival probabilities. It represents the average

squared distance between the observed survival status against the predicted survival proba-

bility for all subjects. In the absence of censoring, the expected brier score can be obtained

as

BS(t) =
1

K

K∑
k=1

(1{t∗k>t} − Sk(t))
2,

where t∗k represents the first arrival time for customer k in the validation period. However,

to account the presence of censoring in survival models, it is necessary to adjust the score

with the inverse probability of censoring weights. For each individual it is considered

t′k = min(tk, Ck) along with δ∗k = 1{t∗k⩽Ck}, where Ck represents the current time under
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observation for each individual k. Let G(t) = P (C > t) be probability of censoring for a

time t, usually obtained via Kaplan-Meier estimation [Graf et al., 1999]. The estimated time-

dependant brier score for censored data under the assumption that the event of interest will

happen con probability of one if individuals are observed for long enough time is defined as

BS(t) =
1

N

N∑
k=1

(
(0− Sk(t))

2 · 1{t∗k≤t,δ∗k=1}

G(tk)
+

(1− Sk(t))
2 · 1{t∗k>t}

G(t)

)
Finally, the Integrated Brier Score (IBS) provides an overall estimation of model perfor-

mance for all times up to a given time tmax.

IBS(tmax) =
1

tmax

∫ tmax

0

BS(t)dt

Concordance index

Harrell’s Concordance index, also known as C-index or C-statistic [Harrell et al., 1982], is

one of most used performance metrics for survival models due to its inherent design to

account censoring in data. Contrary to metrics that assess the predictive power of a model by

measuring the error in predictions, such as brier score, the C-index assess the discriminating

power of a risk score by comparing the correlation between predicted scores Ŝ(t) and true

observed times for pairs of comparable individuals ki and kj , with i ̸= j, who experienced

the event at different times tki and tkj respectively. The C-index is defined as:

C-Index = P (Skj(tkj) > Ski(tki) | tki > tkj)

where large values of C-index indicate a more informative prediction of which individuals

are more susceptible to experience the event of interest.

Time-dependant Area under the ROC curve

The receiver operating characteristic (ROC) is a well-established technique in machine learn-

ing to assess classification power of binary classifiers, particularly when the time horizon

of the target variable is fixed [Fawcett, 2006]. For an arbitrary classifier Ŷ : X → [0, 1] with

binary outcome Y = {0, 1} and classification threshold c, the ROC curve compares the classi-

fier sensitivity, obtained as sensitivity(c) = P (Ŷ1 > c | Y = 1) a.k.a True Positive Rate (TPR),

against the one minus the specificity, where specificity(c) = P (Ŷ0 ≤ c | Y = 0) a.k.a. False
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Positive Rate (FPR), over all possible values of Ŷ , where Ŷ1 is the predicted probability for a

positive instance, and Ŷ0 is the predicted probability for a negative instance for the defined

classification threshold c. Thus, the AUC (Area Under the ROC Curve) can be defined as the

total area under the ROC curve, and can be interpreted as the probability that a randomly

selected pair of observations are correctly classified by Ŷ [Kamarudin et al., 2017], i.e :

AUC = P (Ŷ1 > Ŷ0)

AUC is an aggregated performance metric over all possible classification thresholds

in a model, a large AUC indicates that the classifier possesses a high predictive power to

distinguish between different classes.

Different methods have been proposed to extend this metric to consider variable time-

horizons and the probability of event occurrence non-constant, such as in survival models pre-

sented in [Kamarudin et al., 2017, Heagerty and Zheng, 2005, Lambert and Chevret, 2016].

In simple terms, when extending the ROC curve to a time-dependent outcome, both sensi-

tivity and specificity become time-dependent measures with respect to a time-dependant

random variable T , which are defined by ’cumulative cases at t’, individuals who experienced

the event before t, i.e., t∗k ≤ t, and ’dynamic controls at t’, individuals who experienced the

event after time t, i.e., t∗k > t. As such, sensitivity and specificity can be expressed as a

function of time t [Heagerty and Zheng, 2005] as follows:

sensitivity(c, t) = P (Sk(t) > c | t∗k ≤ t)

specificity(c, t) = P (Sk(t) ≤ c | t∗k > t)

Thus, the Cumulative/Dynamic ROC (C/D ROC) measures how well a model can classify

subjects who experienced the event at different points in time, and the Cumulative/Dynamic

AUC (C/D AUC) [Heagerty et al., 2000, Hung and Chiang, 2010] provides a single aggre-

gated measure of the total area under of the C/D ROC curve, which represents the proba-

bility that the estimation of the non-event will be larger for individuals who have already

experienced the event at time t compared against those who have not. The estimated C/D

AUC is defined at time t as
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AUC(t) = P (Ski(ti) > Skj(tj) | ti ≤ t < tj)

As mentioned previously, most survival analysis techniques assume that the event of

interest will happen eventually for all individuals, leading into a potential evaluation bias

when considering AUC(t1, t2) as a performance metric when t2 < ∞, which happens po-

tentially in every real-world application. Thus, if the event of interest might or might not

happen for all individuals, metrics like Brier score and C-index might be more useful than

the time-dependent AUC in survival applications.
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2.4 Recommender systems

Recommender systems are perhaps one of the most successful applications in Machine

Learning and Artificial intelligence in the last two decades. These systems have been de-

signed, tested, and implemented successfully in a wide range of application domains to

expose users to a large collection of relevant items, and are particularly helpful when the

catalogue of potentially recommendable items is large enough to make it impossible to do

recommendations manually for humans. Recommender systems in general are recognised as

an efficient approach to provide users with personalised content. For example, the streaming

service Netflix displays user-level predicted movie ratings to its customers to help them in

deciding which content is more suitable and interesting to watch. The global online retailer

Amazon provides predicts item ratings to users based on the previous purchase history of

similar customers. As the final goal of these tools is to suggest which items are more suitable

to individual users or which items will be liked by customers, these systems are typically

categorised as recommender systems.

Recommender systems have their roots in the field of information retrieval; identifying

which online written content might be most relevant with respect to a given user query,

and then sorting the retrieved list of top relevant documents based on easy user consump-

tion. However, although this approach was widely used in the ’90s by different companies

for recommending specific items, it was quickly replaced with more advanced techniques.

These include content-based Collaborative Filtering (CF) [Balabanovic and Shoham, 1997]

and Matrix Factorization (MF) [Koren et al., 2009] recommender systems, which aim to learn

a relationship between user preferences and items by using historical information of user’s

actions and purchases in a matrix-completion framework, such as Singular Value Decom-

position (SVD) [Zhou et al., 2015], where the goal is to predict future user preferences in a

user-item rating matrix. These well-established techniques also have their strengths and

weaknesses, and many researchers, companies, and AI practitioners have chosen to combine

techniques in different ways to provide better recommendations for users and increase either

overall revenue, customer engagement, or model performance. This led into the develop-

ment of Hybrid Recommender systems [Burke, 2002], where techniques such as weighted

recommenders [Claypool et al., 1999], mixed recommenders [Smyth and Cotter, 2000], and

feature combined recommenders [Basu et al., 1998] are perhaps the most popular methods
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used in the industry. Although these techniques usually can deal with some of the issues

in recommender systems, such as the cold-start problem of adding new items or users

into the system [Jazayeriy et al., 2018], they still have several performance issues in several

application domains [Marchand and Marx, 2020].

Across industry, recommender systems are powerful tools to enhance user experience

via personalisation and increase sales and overall revenue by identifying which items

are most likely to be relevant for users [Aggarwal, 2016, Gunawardana and Shani, 2009,

Zhao et al., 2014]. Mirroring its use in other applications such as computer vision and natural

language processing (NLP), deep learning is capable of great achievements in the field of rec-

ommender systems, where uncovering non-linear complex relationships between user-items

interactions with the use of deep neural networks can easily outperform longer-standing

techniques, and these models are capable of learning complex user-item relationships from

the usually-abundant data itself [Zhang et al., 2019]. Implementation of deep learning for

recommender systems have proven to significantly outperform other techniques without

requiring major efforts at the deployment stage. Further detail of these kind of approaches is

included in the third section.

Despite techniques such as CF and MF empowered with the use of deep learning have

achieved tremendous success in real-world applications at being able to capture nonlinear

user-item relationships, these still have their caveats and tend do not perform well when

users’ preferences change over time, or when users interact several times with only a few

items within the total catalogue, which is commonly the case for many specialised retailers

and small and medium enterprises (SMEs) settings. Furthermore, as CF and MF are matrix

completion approaches, these commonly make the assumption that the exact user preference

of items, a.k.a user rating, is known for all user-item interactions in the data. There has

been research to propose synthetic ratings for user-items pairs [Su and Khoshgoftaar, 2009,

Sidana et al., 2021], such as by creating functions which only depend on how many times

users have purchased or interacted different items. The construction of these synthetic

ratings is often completely arbitrary and can lead to unrealistic assumptions and inaccurate

predictions when the systems are tested in real-world scenarios .
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2.4.1 Notation

In the typical recommendation setting, there is a set of users U = {u1, u2, ..., u|U |} with

size | U |, and a set of items I = {i1, i2, ..., i|I|} with size | I |, although most of the time

due to business constraints, it is useful to focus on ranking only a subset of potentially

recommendable items I ′ ⊂ I , due to the fact that items might not be available at all times

or are discontinued from stock. Generally speaking the goal of a recommender system is to

produce a list of relevant items Luj
⊂ I for each user uj ∈ U . This is typically achieved by

learning a mapping function r(XU(uj), XI(ik)) : XU ×XI → R that can assign a prediction

of how relevant the item ik is for user uj , where XU and XI represent the feature space of the

total information available for users and items respectively, such as user’s ratings, user and

item characteristics, and hand-crafted features from data.

Once predictions are computed, the recommendation list Luj
can be obtained by sorting

items from highest to lowest relevancy for each user uj . The following sections explore

different methods used in research and industry applications to learn this function r from

implicit feedback settings.

2.4.2 Implicit Feedback Recommender Systems.

In the early 90’s, recommender systems relied heavily on the use of explicit feedback of recom-

mendations collected from user’s ratings and reviews for each item [Balabanovic and Shoham, 1997,

Resnick et al., 1994, Claypool et al., 1999], which typically are a clear indicative of the like-

ness or preference to a product of its characteristics, and an indicator of customer loyalty

[Ravula et al., 2022]. However, with the large scaling and overwhelming use of recommender

systems by companies, obtaining reliable explicit feedback is getting more difficult over time.

Furthermore, for some domains, it is inherently difficult or impossible to obtain explicit

feedback from users. For example, in the retail environment users typically include a large

number of items in their shopping basket for a single visit to the store. Asking a user to

provide feedback for each of the items after the purchase was made would not be practical for

the user or beneficial in terms of user experience. In this case, we must rely solely on implicit

feedback. This may be obtained as a pseudo-rating or estimated with a function typically

defined arbitrarily during the data pre-processing phase and computed from different data

user’s signals, such as number of purchases for an item or different types of events carried
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during an online session.

Several implicit feedback-based recommender systems have been proposed due to the

scarcity of reliable explicit ratings provided by users. For instance, [Nunez Valdez et al., 2018]

explore different alternatives to recommend electronic books using implicit feedback obtained

from the logging information of users in an e-commerce platform, such as duration of

the session, number of clicks, users reading time, number of comments. [Hu et al., 2008]

proposed obtaining information about the positive or negative preference of users associated

via an association with varying confidence intervals to recommend television shows at large

scale. [Lee et al., 2008] performed item recommendation on an e-commerce platform with

the use of a pseudo-rating and introducing temporal information by including the time that

users interact with items and the time elapsed since the item was initially introduced in the

platform, affecting the recommender accuracy by promoting brand new items to users.

2.4.3 Matrix-Completion Recommender Systems

Collaborative Filtering

Collaborative filtering was proposed in the late 90’s as a convenient alternative to content-

based and feature-based recommender systems. These had mostly focused on extracting

human-engineered characteristics of users and/or items data, aiming to find similarities

between purchases to predict future users’ relevant items. Instead, collaborative filtering

methods such as GroupLens [Resnick et al., 1994] aim to estimate how much a user will like a

specific item based on how much a set of users liked similar items previously. In Collaborative

filtering, ratings are estimated from the user-item matrix shown in Figure 2.7, where the

known previous user ratings are denoted as ru,i for user u and item i, and future unknown

ratings ˆru,i are estimated as

r̂u,i =

∑
j∈I ru,i · wi,j∑

j∈I wi,j

,

where wi,j is the similarity between the item i and an item j ∈ I , which can be obtained via

any similarity function such as cosine similarity, Jaccard similarity, KL divergence, among

others.

In practice, estimated ratings r̂u,i are obtained only from a subset of items J ⊂ I usually

called neighbourhood of item i rather than from the whole set of items, this to improve scalability
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Figure 2.7: User-item matrix of ratings representation for a set of users u ∈ U and a set of items

i ∈ I

and reduce variability at using only the most similar items.

Several successful applications in industry have used collaborative filtering to improve

sales and revenue. For example, [Linden et al., 2003] deployed an item-item collaborative fil-

tering recommender in the large e-commerce Amazon.com to personalise the content that

is displayed for each of the millions of users visiting the website for shopping on a daily

basis regardless of the number of ratings or purchases made by previous customers. Ad-

ditionally, collaborative filtering methods can be easily combined with a large number of

machine learning techniques such as clustering [Ungar and Foster, 1998], latent semantic

analysis [Hofmann, 2004], or Markov decision processes [Guy Shani, 2005] to improve rating

estimation performance and scalability.

Although CF techniques are relatively easy to implement in production environments

and have proven to improve revenue and customer satisfaction in several applications for

different industries, these methods have several limitations. Firstly, the fully known user

ratings should explicitly and reliably express users’ preferences for items, which is usually

difficult to achieve in implicit feedback settings, as typically the rating is only obtained

from users’ signals. Secondly, as future users’ ratings are directly estimated from items

similarities wi,j highly sparse datasets where only few items are rated by individuals induce

extra variability in estimated ratings, leading into overall lower performance and miss leading

recommendations.
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Matrix Factorisation

To overcome the data sparsity issue in recommender systems, different approaches implement

dimensionality reduction techniques such as Singular Value Decomposition (SVD) and Principal

Component Analysis (PCA), to compress the highly sparse user-item interactions matrix into a

low-dimensional dense representation of users and items.

Matrix Factorisation [Koren et al., 2009] characterises both users and items by latent fac-

tors of dimension k directly inferred from the user-items interactions matrix, in such a way

that unknown ratings can be easily estimated by the inner product of users and items latent

factors. Mathematically, each item i ∈ I is associated with a hidden latent vector qi ∈ Rk, and

each user u ∈ U to a vector pu ∈ Rk, where for each user and item, the corresponding vectors

pu and qi measure to what extend the u and i associate to the corresponding latent factors

positively or negatively, and typically k << min(| U |, | I |). Thus, the estimated user rating

for an item, can be estimated as the ’similarity’ between user and item latent factors, i.e.,

r̂(u, i) = qTi · pu

At training phase, latent factors can be learnt through minimising the error between ob-

served and predicted ratings for which the rating is fully known, typically by using the mean

squared error (MSE = 1
|U |×|I|

∑|U |
j=1

∑|I|
k=1(ruj ,ik − r̂uj ,ik)

2) as loss function. Then, recommen-

dations can be made by selecting the predictive ratings for which the inner product of latent

factors is the largest. Several pieces of research have extended this concept: [Bell et al., 2007]

combine a neighbourhood-based collaborative filtering with SVD MF at a higher level to

improve estimation performance on large datasets without performing any imputation

for missing ratings and avoid parameter shrinkage at training. [Paterek, 2007] proposed a

weighted SVD by including additional biases to SVD and additional post-processing via ker-

nel ridge regression for each item.[Salakhutdinov and Mnih, 2007] introduced probabilistic

matrix factorization (PMF) which includes adaptive priors in model parameters to outper-

form SVD while maintaining model scalability for large datasets even for users with few item

interactions.
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2.4.4 Deep learning-based recommender systems

As mentioned in the first section, recommender systems and neural networks such as feed-

forward neural networks (FNN), convolutional neural networks (CNN), and recurrent neural

networks (RNN) can be combined in order to find nonlinear and non-trivial user-items inter-

actions and provide better recommendations to users [He et al., 2017, Covington et al., 2016,

Hariri et al., 2012, Zhang et al., 2019]. These types of architectures typically built from mul-

tiple neural building blocks can be defined into single differentiable function, and trained

end-to-end with classification or ranking losses to foster recommendation performance and

item lists sorting, besides having the ability to incorporate data from multiple shapes like

users reviews, tweets, item images, or sound in their input data, aiming to resemble the

behaviour and benefits of hybrid-recommender systems while avoiding expensive human-

based feature engineering.

Thanks to the easy accessibility to deep learning frameworks such as Tensorflow and

Pytorch, and the increasing computational power available in modern computers, deep

learning-based recommender systems have been applied in several research and commercial

applications for different industries over the last decade. For example, [He et al., 2017],

replaced the inner product in collaborative filtering with a multi-layer perceptron (MLP) that

can learn an arbitrary function from data and find non-linear relationships in the user-item

matrix and outperform several Collaborative filtering methods. [Covington et al., 2016], used

two neural networks combined in a candidate-ranking classification framework to produce

highly scalable recommendations for users of the large video streaming platform YouTube,

and reduce the ranking space from several millions of items to just a few thousand. In this

work, authors use information about different types of users’ actions combined with item

embeddings to produce a list of relevant items with high precision. [Volkovs et al., 2017]

proposed a method called DropoutNet that combines matrix factorisation and neural networks

to address the cold-start problem under the assumption that not having information of users

is similar to handling performance missing data efficiently.

2.4.5 Sequence-aware recommender systems

Sequence-aware recommender systems have emerged as a powerful approach for modelling

and predicting user behaviour by leveraging the order of user-item interactions, provide



2.4 Recommender systems 50

personalised recommendations based on users’ preferences, and overcome many of the

caveats of matrix-completion and deep learning-based systems, which often fail to capture

the sequential nature of user behaviour. Over the last few years, there has been a vast amount

of research around sequence-aware recommender systems, [Guy Shani, 2005, Wu et al., 2017,

Quadrana et al., 2018, Zhang et al., 2019, De Souza Pereira Moreira et al., 2021] particularly

in the context of implicit feedback, which is when the exact user rating of items is unknown

for all or most user-item interactions in the data.

Sequence-aware recommenders have been widely researched over the last years for mul-

tiple application domains powered by several ML methods like Markov chains, recurrent

neural networks, or transformer-like architectures. For instance, [Guy Shani, 2005] proposed

a recommender system based on a Markov Decision Process (MDP) in a reinforcement

learning framework to improve revenue of recommended items in an online bookstore.

[Baeza-Yates et al., 2015] studied how to improve mobile application usage to provide per-

sonalised user experience via prediction of which application is likely to be used in the near

future by the user, with the use of popular recommendations and session-based feature engi-

neering authors can outperform different prediction methods like Naive Bayes and Support

Vector Machines (SVMs), besides approaching the cold-start problem of having new apps

constantly. [Hariri et al., 2012] presented a context-aware recommender system for music

recommendations by analysing sequences of previous songs listened by the user within the

current session and a database of human-compiled playlist mapped into sequences of topics,

achieving better recommendation performance than collaborative or content-based filtering

methods. [Wang and Zhang, 2013] proposed a repeated-interaction recommender system for

the e-commerce industry which combines the proportional hazard assumption from survival

analysis to model the joint probability of user interacting with items over a period of time.

Taking inspiration from NLP, sequence-aware recommender systems are inherently differ-

ent from the traditional matrix-completion approaches. Sequential methods process customer

transactions as sequential information by considering each item in the catalogue of products

as a single word in a dictionary or token [Quadrana et al., 2018], and taking all transactions

made by each customer to build a sequence of tokens, similarly to processing sequences of

words. Then, the new sequences generated for each user can be used to embed customers

into a common representation space and make predictions of the most likely token or item to

appear next in the sequence, and item recommendations can be as simple as selecting the
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most next likely item to be part of the sequence of purchased items. [Quadrana et al., 2018]

categorise the sequence-aware recommendation setting into four different categories: Context

adaptation, when it is important to understand the context of the user, such as geographic

location, the current weather, or the time of day to make relevant recommendations. Trend

detection, where it is critical to have information about community and individual trends of

popular items. Repeated recommendations, which is when users might interact repeatedly with

each item in a single or multiple sessions. Order constrained, where the actual order on which

user’s actions were made reveal the inherent most likely action to be taken next by the user.

Advantages of sequence-aware recommender systems

Due to their inherent ability to capture user preference over time, sequence-aware rec-

ommender systems offer several advantages over traditional collaborative filtering and

content-based approaches:

Model temporal dynamics in data: As user preferences and item popularity might change

drastically over time, such as in social media recommendations, sequence-aware recom-

menders can capture these temporal dynamics by considering the order of user-item interac-

tions, allowing them to make more relevant item recommendations [Hidasi and Karatzoglou, 2018].

Contextual Information: By incorporating the order of user-item interactions over time,

these systems can better understand the context in which a user is likely to be interested in

an item, leading to more personalized and accurate recommendations [Quadrana et al., 2018,

Kim et al., 2022].

Handling Cold-Start Problem for users: Matrix-completion methods typically rely on

past user-item interaction, which might be an issue in cases where limited or no historical

data is available for new users or items. Sequence-aware recommenders can overcome this

by incorporating short-term interaction sequences within a session, providing meaningful

recommendations even for new or anonymous users [Quadrana et al., 2018].

Handling short-term user preferences: Matrix completion recommender systems typ-

ically focus on long-terms user preferences, and although the scope of the training data

can be modified to capture shorter user preferences, in most cases final predictions may

not accurately reflect users’ current interests. Sequence-aware recommender systems can
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capture short-term preferences by analysing recent interaction sequences, allowing them to

recommend items that better reflect immediate users’ needs or changing preferences.

Cross-domain Recommendations: Sequence-aware recommender systems can identify

sequential user preferences across different domains, enabling cross-domain recommenda-

tions. For example, users’ browsing history could potentially be used to recommend relevant

videos on a streaming platform, providing targeted recommendations and enhancing user

experience [Fernandez-Tobias et al., 2012].

Disadvantages of sequence-aware recommender systems

Nevertheless, sequence aware recommender systems have their drawbacks against other

methods. Despite their ability to provide more accurate and incorporate efficiently the context

available, they also face challenges related to computational complexity, data sparsity, and

sensitivity to hyperparameters [Quadrana et al., 2018]:

Computational Complexity: These systems often require complex models to capture

the sequential patterns in user preferences, leading to increased computational complexity

that can result in longer training times and higher resource requirements, particularly when

dealing with large-scale datasets.

Sensitivity to Hyperparameters: Many sequence-aware recommenders, especially those

based on deep learning models or transformer-like architectures, have numerous hyperpa-

rameters that need to be fine-tuned for optimal performance. Leading into requiring extensive

experimentation and validation to find the right combination of hyperparameters for each

application domain.

Data Sparsity: Although sequence-aware recommender systems can overcome the cold-

start problem for new users in the system, they still face challenges at dealing with sparse

data. Sparse interaction data can make it difficult to identify meaningful sequential patterns

and generate accurate recommendations, particularly for items with few interactions.

Simultaneous Events: When there are event ties in the training data, i.e., item interactions

for the same user that happened simultaneously, sequence-aware recommender systems may

face challenges in accurately modelling the user behaviour. This effect might be present in
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data due to multiple factors, including the granularity of timestamps available in data, which

may not be capture the exact order of events, and inherent user behaviour that involves

performing multiple actions concurrently, such as users listening multiple songs on a music

streaming platform, or interacting with multiple chatbots sessions within a short period of

time.

There are some alternatives to handle simultaneous events in training data, such as

aggregating them into a single interaction, or randomising the order of simultaneous events

within interaction sequences. However, these approaches may result in the loss of sequential

information captured by the system and potential decrease in recommendation performance.

Some attention-based mechanisms or transformer models, may inherently handle event ties

due to the masking process at training to mask randomly a proportion of items in the input

sequence during training, and predict those based on the surrounding context within the

user-item sequence in both directions [Zhou et al., 2020].

2.4.6 Performance Metrics in Recommender systems

Evaluating recommender systems introduces an extra level of complexity compared to

evaluating traditional classification or regression techniques for a number of reasons: The

potential absence of knowledge about the real user preference over items in implicit feedback

settings may induce algorithmic bias in model evaluation, as it is not possible to compare

model predictions against the explicit user-item rating via error metrics like MSE used in

matrix-completion techniques. Different techniques used to perform recommendations may

also perform significantly differently depending on some characteristics of the dataset like

number of users and items, data sparsity, rating scale, among others. This may lead to having

to depend on scenario-specific metrics and manual analysis for evaluating recommendations.

Finally, popular evaluation metrics used for recommender systems completely ignore the fact

that most users have not had the opportunity to interact with products due to unfamiliarity

to them, and not due to a lack of preference. Furthermore, these metrics are designed only

for off-line evaluation from previous user-item interactions and might not be scalable to

production settings where efficiency must be tested immediately, and designing on-line

evaluation experiments to assess recommendation performance might require much more

effort and usually these are more expensive.

[Fouss and Saerens, 2008] propose performance evaluation of recommender systems by
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taking into account different characteristics like coverage, to measure the percentage of the

dataset for which the recommender is able to provide recommendations, computing time

to measure how quickly the system can make recommendations for large set of users, and

robustness to assess how good the model is in presence of added noise in the data.

For the purpose of this work, some of these metrics might or might not apply in our case,

as we are trying to estimate the probability of user interaction with items, rather than item

relevance or how much the user will like each item. The following sections briefly outline the

performance metrics used to evaluate model performance and user recommendations for our

approach from a technical perspective.

Normalised Discounted Cumulative Gain

Introduced by [Järvelin and Kekäläinen, 2002] the normalised discounted cumulative gain

(NDCG) is a popular ranking quality metric widely used in information retrieval and rec-

ommender systems to evaluate list of items with length p, it takes into account the degree of

relevance of items via an information gain function (Discounted Cumulative Gain) defined as

DCGp =

p∑
k=1

relevanceik
log2(k + 1)

,

as well as the ranking of relevant items in the list via a discount function with respect to

the best ranking possible (Ideal Discounted Cumulative Gain).

IDCGp =

RELp∑
k=1

relevanceik
log2(k + 1)

,

where RELp represents the list of all possible relevant items up to position p and relevanceik =

1 if the item is considered relevant for the user, and 0 otherwise. Thus, the normalised

discounted cumulative gain is defined as

NDCGp =
DCGp

IDCGp
,

which ranges from 0 to 1, and where higher values of NDCG are associated with a better

ranking of items in the recommendation list.
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Mean Average Precision

The Mean Average Precision (MAP) is a metric originated in the field of information retrieval,

it provides insight about how relevant a list of items is with respect to all possible user queries.

In recommender systems evaluation, this metric evaluates how good recommendation lists

of K items are by obtaining the mean of the Average Precision (AP@K) for each each list

defined as

AP@K =
1

relK

K∑
k=1

# of relevant items at k
k

,

where relK is the number of total relevant items in the top K results, and can be interpreted

as the proportion of relevant items for the user in the recommendation list.

Sales and Revenue

As mentioned in section 2.4, one of the main goals of recommending the right items to users is

aiming to increase overall sales and revenue of the businesses [Gunawardana and Shani, 2009],

this can be achieved either by cross-selling relevant items during the purchase order, by re-

newing a subscription to a service due to the highly personalised offering, or by displaying

advertising with the right offers to customers to encourage them to take an action, such as

purchase an item that they were not thinking in buying or by staying shopping longer. A

common practice to test recommender systems performance in production settings is via

A/B testing, where two recommenders are in charge of pushing item recommendations to

users automatically and overall sales and revenue are tracked for both samples of users.
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Modelling customer churn for the retail industry

in a deep learning based sequential framework

3.1 Introduction

Finding innovative methods to mitigate customer churn and improve retention has his-

torically been an active task for businesses across a wide range of sectors such as finance,

technology, banking, insurance, among others. Particularly, in the retail sector, different

studies such as the ones conducted by [Reichheld, 1990, Van den Poel and Lariviere, 2004]

have shown that acquiring new customers is usually between 5 to 12 times more expensive

for companies than retaining existing ones. Although this ratio varies across companies. Mar-

keters recognise several advantages of dedicating major efforts to identify which customers

are likely to churn in order to design more competitive marketing strategies for customers.

[Reichheld, 1990] showed that an improvement of just 5% in customer retention leads to

an increase of 85% in profits for the banking sector, 50% for insurance brokerage, and 30%

in the automotive industry. Unfortunately, the underlying reasons that lead customers to

churn might vary for different businesses and industries, although marketers have identified

that bad customer service, poor value proposition, low-quality communications, and lack of

brand engagement as the main four reasons for voluntary customer churn.

A common approach used by companies to identify future churning customers in non-

contractual settings such as retail, where customers are not subject to a subscription model
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and can change their purchasing habits without informing the company, is by using statistical

and machine learning methods to predict which customers are likely to stop doing business

with the company within a certain time window. Then, individuals with high probability

of churning can be targeted in one or several retention campaigns which commonly offer

product promotions specifically designed to provide an incentive to customers to make a

purchase and keep them engaged with the brand, as noted by [Borah et al., 2020]. While

the concept of predicting customer churn is relatively intuitive, the realities involved in

designing such systems can be challenging for multiple reasons. Firstly, in a non-contractual

setting such as retail, customers can change their purchasing habits at any moment, and

typically the longer a customer takes to make their next purchase, the lower the probability is

of that customer returning at all. Secondly, the use of multivariate statistical methods and

machine learning techniques involves the extraction of hand-crafted characteristics for each

customer that are usually proposed by subject matter experts. The quality, quantity, and type

of these characteristics will have a direct impact on the final performance of any classification

method used to find churning customers [Bengio et al., 2013]. Furthermore, as customers’

behaviour differ in different sectors and in different companies, finding a relatively good set

of characteristics that generalizes well across companies may be difficult to find and would

thus lead one to the time-intensive task of finding such characteristics in each new context.

To overcome these issues, several research have explored the use of methods such as arti-

ficial intelligence, artificial neural networks, and representation learning to obtain customer

representations without the need of human intervention, with the main goal of avoiding

the time-consuming feature engineering step that companies need to carry while design-

ing machine learning models and assuming that AI will change marketing strategies and

customer behaviours over the next decade as noted by [Davenport et al., 2019]. For in-

stance, [Spanoudes and Nguyen, 2017] use abstract feature vectors in a 4-layer neural net-

work to predict which customers are likely to churn in a monthly defined horizon. However,

this and similar methods like the ones proposed by [Coussement and Van den Poel, 2008,

Hung et al., 2006, Tamaddoni et al., 2010] do not take into account that the event of interest

might have not happened yet for all individuals at observations period, as it is considered

in survival-based techniques proposed in the literature, such as the Kaplan-Meier estimate

that has also been used to predict customer churn due to their inherent design to model

probabilities of an event occurring over a lapse of time without the extra complexity of
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obtaining large amounts of features to represent customers as in [Jamal and Bucklin, 2006,

Wong, 2011, Gul et al., 2020].

To effectively predict customer churn and design targeted marketing campaigns, it is

important to design more effective methods that consider both, the inherent purchasing

behaviour of individual customers and the censoring effect induced by the uncertainty of

not being capable to identify customers that have already ended their relationship with the

business against the ones that simply are during a pause between transactions. Traditional

techniques to predicting which customers are likely to churn soon, usually approach just one

of these two desired characteristics.

This chapter suggests a new approach for modelling customer churn in non-contractual

settings, such as the retail industry, with two main goals. Firstly, outperform traditional

machine learning and survival-based methods that use hand-crafted features extracted from

behavioural information of customers, this is achieved by replacing the feature engineering

phase with a deep learning-based approach that performs model parameters estimation with

the use of recurrent neural networks. Secondly, obtain reliable time-to-event models capable

of capturing the real buying patterns of customers over time by obtaining individual-level

distributions of each customer’s arrival times.

3.2 Customer churn prediction methods

Predicting and mitigating customer churn has become an essential activity of modern market-

ing strategies for businesses that operate in non-contractual settings, such as retailers, as in

these types of environments, customers have the freedom to stop their relationship with the

business at any point [Tamaddoni et al., 2010]. By making use of machine learning models,

businesses can obtain valuable insights of customer’s behaviours, identify potential churn

risks, and develop retention campaigns to provide customers with tailored products and

services and minimise revenue losses [Lu, 2002].

There are numerous methods widely used to predict customer churn in research and

industry, each with its strengths and limitations, although ultimately the quality of the

final predictive model is highly dependent on the quality of data used [Hashmi et al., 2013].

Broadly speaking, churn prediction methods can be classified into three different categories

depending on their underlaying goals and processing of the data:
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Behavioural Techniques: These methods focus on analysing customer behaviour patterns

to identify potential churn risks. They typically involve segmenting current customers based

on their past interactions with businesses and specific customer related attributes, such as

purchase frequency, amount spent in a recent period of type, income level, age, and gender.

For example, a widely used technique by marketers in this category is the Recency, Frequency,

Monetary (RFM) analysis, a simple technique that segments customers based on their current

purchase behaviour [Naz et al., 2018].

Although behavioural methods are relatively simple to implement in production envi-

ronments and their outputs are typically highly interpretable, these techniques have their

disadvantages, such as their limited predictive power due to their structure being based on a

simple segmentation and not beings able to capture complex relationships between various

customer attributes, or their lack of adaptability as these methods typically do not account

for changes in customer behaviour over time and new market conditions [Naz et al., 2018].

Probabilistic techniques: These methods focus on estimating the probability of cus-

tomers making their next purchase based on past transactions, statistical distributions, and

time-to-event data. For example, the Pareto/Negative Binomial Distribution (P/NBD) esti-

mate the probability of customer churn based on the frequency and recency of past transaction

by assuming a gamma-distributed purchase rate of time between customer purchases and

a Pareto distribution for the customer drop-out rate [Schmittlein et al., 1987]. Alternatively,

Markov Models model the transition probabilities between different states of customer be-

haviour, such as active, inactive, or churned to predict their churn status, and the prediction of

the next customer churn status only depends on the current state [Rothenbuehler et al., 2015],

and survival models estimate the probability of a customer making their next purchase based

on the time elapsed since the last event and the total duration of a customer’s relationship

with the company, as highlighted in section 2.3

However, these methods come with certain caveats. Probabilistic models are typically

assumption-driven, relying on specific assumptions about customer behaviour and data dis-

tributions of event times. If these assumptions do not align with a particular business or data

available, predictions may be inaccurate and difficult to implement due to the computational

challenges associated to their parameter estimation [Fader et al., 2005]. Additionally, these

techniques often have limited feature consideration, focusing primarily on frequency and

recency of transactions while potentially ignoring other factors influencing customer churn
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like customer demographics or current engagement.

Classification-based techniques: These methods leverage supervised machine learn-

ing and classification algorithms to classify customers into different churn risk categories

by identifying complex patterns and relationships in customer data. These techniques

can handle large-scale, high-dimensional data and often provide more accurate predic-

tions than probabilistic and behavioural methods[Naz et al., 2018]. Decision Trees and Ran-

dom Forests, Support Vector Machines, Gradient Boosting Machines (GBM), and neural

networks are the popular choices among practitioners due to their flexibility to incorpo-

rate a variety and large volumes of data easily [Hadden et al., 2006, Shaaban et al., 2012,

Spanoudes and Nguyen, 2017].

For example, survival trees [LeBlanc and Crowley, 1993] are a class of decision tree-based

models specifically designed for analysing time-to-event data, where the primary objective is

to predict the time until an event of interest occurs. Their main difference against conventional

decision trees lies in the splitting criteria used to determine the optimal branch partitions,

while standard decision trees typically rely on criteria such as Gini impurity or information

gain, survival trees implement integrated squared error of the Kaplan-Meier estimator to take

into account the main characteristics of time-to-event data. Particularly in customer churn

prediction, Survival trees offer a non-parametric and flexible approach to modelling survival

data aiming to estimate the time until this event occurs for each individual.

Most modern machine learning approaches are inherently designed to handle multiple

features simultaneously. By incorporating hand-crafted customer attributes such as de-

mographics, product preferences, engagement metrics, and historical purchase data, these

models can identify patterns and relationships that may not be apparent to behavioural and

probabilistic approaches. Although as aforementioned, the overall effectiveness of the churn

prediction will ultimately depend on the effectiveness, quality, relevance of the attributes.

Unfortunately, classification-based techniques often require of large amounts of high-

quality data for training and validation, and features typically hand-crafted by domain

experts, which can be challenging to obtain for businesses with limited historical data or those

without well-developed data culture, strategy, and governance. Additionally, interpretability

challenges arise with many advanced machine learning techniques, such as deep learning

models and support vector machines, making difficult for businesses to understand the

factors driving churn predictions and develop targeted retention strategies accordingly.
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The process to select the appropriate method to make customer predictions commonly

involves several factors to ensure the effectiveness and accuracy of their predictions, such as

the type and quality of the available data, the complexity of customer behaviour patterns,

and the desired level of interpretability for the results. For instance, when dealing with small

datasets characterized by limited features, simple models such as RFM (Recency, Frequency,

Monetary) analysis and segmentation methods may prove to be adequate choices. However,

when the data available is high-dimensional or highly available, more advanced techniques

like neural networks and survival models may be required to effectively capture the intricacies

of complex customer behaviour.

3.3 Methodology

This section describes the mathematical representation of customer transactions data and

the model architecture used to estimate how likely individuals are to make purchases over

time. We aim to train a bayesian neural network capable of estimating the parameter of

exponentially distributed arrival times by using the information of previous observed and

censored event times. Then, this network can be used to predict the next event time and

therefore, estimate the survival distribution for future events at customer level.

3.3.1 Data Representation

Let’s DK be the set of all purchases made by K customers in a portfolio. In the non-contractual

setting, purchases can happen at any date and time, thus, let’s denote the date that customer

k ∈ K made its i− th purchase as dk,i as shown in Figure 3.2. Typically, transnational data of

all customers is arranged in a single dataset with three columns ’Customer id’, ’Order Number’,

and ’Purchase date’ as shown in Table 3.1. This dataset is sorted by each customer id in date-

ascending order, which means that dk,i1 ⩽ dk,i2 for all i1 ⩽ i2 for a fixed customer k. Although

some of the time-to-event methods described in section 2.3 approach the churn prediction

problem with this form of data, in this work it is necessary carry an extra transformation

by defining a random variable Tk as the time difference between consecutive customer

transactions, i.e., tk,i = dk,i − dk,i−1 for i ⩾ 2. This new random variable Tk is assumed to be

exponentially distributed at customer level, i.e., Tk ∼ Exp(λk) as illustrated in Figure 3.1.

To account for right censoring of purchasing events, we consider the time elapsed since
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customers made their last purchase against the observation date, and define this distance as

tk,nk+1 = analysis date− dk,nk
as the censored time for all customers.

Figure 3.1: Distribution of time between consecutive customer purchases tk,· in logarithmic scale.

Table 3.1: Original Transactional data

Customer ID Order No. Purchase date

1 0 d1,0

1 1 d1,1

2 0 d2,0

... ... ...

k i dk,i

k i+1 dk,i+1

... ... ...

Table 3.2: Customer sequential-transactions

Customer Arrival-times Sequence δk-sequence

1 [t1,1, t1,2, ..., t1,n1 , t1,n1+1] [1,1, ..., 1, 0]

2 [t2,1, t2,2, ..., t2,n2 , t2,n2+1] [1,1, ..., 1, 0]

... ... ...

k [tk,1, tk,2, ..., tk,nk
, tk,nk+1] [1,1, ..., 1, 0]

In order to model the k − th customer inter-arrival time tk in a sequential framework,

we compress all the arrival times tk,j of each customer into a new sequential vector tk =
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[tk,1, tk,2, , tk,nk
] for each customer k ∈ K, where each arrival time tk,j is assumed to be

exponentially distributed. As expected, each sequence has a different length depending how

many purchases customers have made in the company over their lifetime, thus length(tk) =

nk, where nk is the total number of purchases made by customer k. Then, to consider right

censored event times, which are event times that are only partially observed due the fact that

customers may make their next purchase after the time of the analysis, we concatenate the

time since each customer was last observed with respect to the time of the analysis tk,nk+1 at

the end of the sequence, and create a binary identifier δk,j for each event time in the sequence,

which take the values δk,j = 1 when the event is fully observed and δk,j = 0 for censored

or partially observed times, by construction, the sequence δk for each customer k will only

contain one single censored event at the last position of the sequence. Then, the training data

TX is defined as the union set of all independent tk vectors, i.e., TX =
⋃

k∈K(tk ∪ tk,nk+1) as

shown in Table 4.2, with their corresponding δk,j identifiers. In practice, these vectors tk can

be padded at both, training and serving to an arbitrary length vector.

3.3.2 Training process

The training goal is developing a neural network based in machine learning assuming that

the arrival times tk are exponentially distributed with some specific parameter λk for each

customer k ∈ K. To achieve this, we implement a Recurrent Neural Network followed

by a Multilayer Perceptron with a single output unit with sigmoid activation to estimate

λ̂k = NNTX
(tk), which is then used to parameterise the exponential density function g of

the arrival-times for each customer. At each j-th time-step the input data for the model is

the sequence tk,j = [tk,j−s, tk,j−s+1, , tk,j] with target tk,j+1, where s is the sequence-padding

parameter which can be set arbitrary for each application, and it is usually lower than max(nk)

and fine-tuned during model training. Figure 3.3 shows the final model architecture proposed,

where estimation of model parameters can be performed in two different ways, firstly, by

minimising a weighted asymmetric loss function which considers censored events by using

the identifier δk created for each observation, with δk = 1 for fully observed event-times and

δk = 0 for censored times, at the same time of penalising for large predicted values of t̂ for

censored observations:
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Figure 3.2: Data transformation required to obtain the exponentially distributed tk,j = dk,j−dk,j−1.

Each customer sequence is observed up to time j to predict tk,j+1.
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Loss =

(
1

Kδ=1

K∑
k=1

nk∑
j=1

ωtk( ˆtk,j − tk,j)
2 · 1{δk,j=1} +

1

Kδ=0

K∑
k=1

nk∑
j=1

(1− ωtk)( ˆtk,j − E[t])2 · 1{δk,j=0}

)

where the weighting factor ωtk = P (δk = 1 | Tk = t) represents the probability of fully

observed events at time tk in the training data for customer k, and E[t] is the estimated

expected value of the target distribution of T which can be obtained by estimating the

parameter of the exponential distribution under the presence of censored events via maximum

log-likelihood in each training batch as

λ̂ =
Kδ=1

K · t
,

where t is the mean of observed and censored event times [Kalbfleisch and Prentice, 2002].

Alternatively to the aforementioned asymmetric loss function, as it is commonly seen in

similar methods mentioned in section 3.1, the model can be also trained by maximising the

partial likelihood function of the model for censored data given by

L =
K∏
k=1

nk∏
j=1

f(tk,j | λ̂k)
δk,j · S(tk,j | λ̂k)

1−δk,j

which is commonly transformed for training into a minimisation task where the objective

is minimising the negative log-likelihood for censored events denoted as

LL = −
∑K

k=1

∑nk

j=1

(
log(f(tk,j | λ̂k))1{δk,j=1} + log(S(tk,j | λ̂k))1{δk,j=0}

)
Although the model can be trained with two different methods, by using an asymmetric

loss function or maximum likelihood as loss function. For our experiments presented in

section 3.5, we decided to train the model by using the negative log-likelihood as loss function,

which takes into account that the distribution of errors is not symmetric.

Finally, at serving phase, the survival probability at time t for a customer k can be easily

estimated once λ̂k is known, as

Sk(t) = 1− P (Tk < t)

= 1−
∫ t

0

λkexp(−λkx)dx

= exp(−λkt)
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Then, we define the estimator of Sk(t) at customer level by

Ŝk(t) = exp(−λ̂kt)

Sk(t) = P (Tk > t | λk)

Furthermore, to compute the survival status of each customer at an specific serving date

we evaluate Ŝk(t) at the current recency time of each customer, i.e, the time elapsed between

last customer purchase and the serving date. Additionally, it is also possible to obtain a future

deferred event probability over a period simply by computing Ŝk(t1)− Ŝk(t2), which is the

probability that the next customer purchase will happen between the time interval (t1, t2). A

pseudo-code description of training and prediction steps is sketched in Appendix A.

Figure 3.3: Proposed Neural Survival model. The input transactional sequences are passed through

a Long-Short Term Memory cell (LSTM) and a Multilayer Perceptron followed by an exponential

activation of size 1 to parameterise the customer lever exponential model tk. The survival model

Sk at customer level is drawn from the posterior distribution with Hamilton sampling.

3.4 Advantages and Limitations of the Method

The model architecture presented in figure 3.3, uses a Recurrent Neural Network architecture

to estimate the parameter of a survival distribution, this architecture is particularly well-

suited to predict customer churn in non-contractual settings due to its ability to process

sequential data, handle variable-length sequences, and learn features automatically:

Sequential Data Processing: In non-contractual settings, customer purchases occur at

irregular intervals, and the time between these transactions may provide valuable information
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about a customer’s likelihood of churning. RNN architectures can process data sequences

effectively by maintaining a hidden state that captures the temporal dependencies within

the data. Leading into capturing information about the arrival times, or purchases for every

individual.

Handling Variable-Length Sequences: In most applications, customers have different

transaction histories, resulting in variable-length sequences of purchase data. RNN’s can

naturally accommodate variable-length input sequences without requiring any additional

data pre-processing or padding. This flexibility enables the proposed method to learn from the

individual transaction patterns of each customer, leading to more accurate and personalized

churn predictions.

Capturing Long-Term Dependencies: Customer churn prediction may be influenced

by long-term dependencies in the factors. RNN architectures can capture long-term depen-

dencies in data [Bengio et al., 2003], allowing the model to better predict churn based on

historical transaction patterns.

Feature Learning: As mentioned in section 3.2, most machine learning methods to predict

customer churn often require extensive feature engineering to extract information from raw

data to be processed by the algorithm. In contrast, RNNs automatically learn a data represen-

tation from the input data during the training process [Hochreiter and Schmidhuber, 1997,

Szegedy et al., 2014]. This not only the time required for making churn predictions but allows

the model to discover hidden customer behaviours that may not be apparent through manual

feature engineering.

However, while the proposed methodology presented in this section using Recurrent

Neural Network offers several advantages for customer churn prediction in non-contractual

settings, there are also some caveats to consider if this model is applied in commercial

settings, including model complexity in compared to approaches presented in section 3.2,

computational resource requirements, hyperparameter tuning challenges, and sensitivity to

data quality:

Model Complexity: Architecture shown in figure 3.3, involves a relatively complex model

to estimate the parameters of a survival distribution for every individual, which may be

difficult to implement in many applications.

Hyperparameter Tuning: Similar to many other machine learning techniques, the perfor-

mance of the model strongly depends on the choice of hyperparameters, such as the number
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of hidden layers, learning rate, and the choice of the survival function. Finding the optimal

set of hyperparameters can be a time-consuming process, involving trial and error or grid

search techniques. Furthermore, inadequate hyperparameter tuning may result in suboptimal

model performance or overfitting.

Sensitivity to Data Quality: This technique may be sensitive to the quality of the input

data, its sequential dependencies, and the amount of data available. Thus, it is essential to

ensure that the input data is clean and reliable before using this method for customer churn

prediction.

3.5 Experiments and Results

This work aims to improve classification power at making customer churn prediction for

a large retail company in the UK. Due to confidentiality constrains, name of this company

will not be shown, and it will be denoted as company. Additionally, model performance is

also assessed in a synthetic dataset which resembles the main characteristics of transactional

data in the retail industry. To compare our methodology, we established two baseline models,

an initial transactional only CPH model, and an individual-level Kaplan-Meier estimator.

Although CPH allows to include customer level characteristics as model covariates, such as

age, gender, and type of customer, with the purpose of having a fair comparison in model

performance at assessing transactional-only input data, the CPH baseline used in this work is

based only on the time elapsed between consecutive events, ignoring all additional customer-

level information available for individuals. Similarly to the process presented previously, a

censored event time obtained from the distance between customer last purchase and analysis

dates is assumed for each customer.

As mentioned, CPH does not model directly the event time, but the hazard function of

individuals at time t, which is the probability of individuals experiencing the event of interest

at time t, and once the hazard function is known the survival function of individuals can be

estimated as Ŝ(t) = exp(−Γ(t)), where Γ(t) is the cumulative hazard function.

Additionally, we compare model performance against an individual Kaplan-Meier base-

line, for this, we estimated the survival function Ŝk for each customer by considering all

the observed and censored event times for customer k, and made predictions of its current

survival status with respect to its current censoring time.
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3.5.1 Dataset 1: Retail data

The first dataset contains transactional data of company, a large retailer in the UK with almost

200 physical stores and online ordering. Between 29/03/2016 and 20/04/2021, the company

had a total of 17.8 million transactions made by 2.8 million customers, with an average time

between observed events of 80 days for customers with at least 2 purchases, i.e., the estimated

λ parameter for the time-to-event exponential model considering all customers is λ̂ = 0.012.

Although some demographic information about individual customers is available, such as

type of customer and location, in order to model customer churn as described in section 3.3.1,

we only include the customer id and the purchase date in our analysis to obtain times between

events. Due to the non-contractual setting of the retail industry, this dataset presents an

estimated monthly customer drop-out of 14.7% after 1400 days, i.e., 14.7% of customers will

not make any further purchase in the company. Figure 3.4 shows the cumulative logarithmic

survival probability of this dataset for a 12 different months sliding-window.

Figure 3.4: Estimated survival function of retail dataset via Kaplan-Meier curve for 12 monthly

cohorts of customers who made a purchase in the last 30 days.

Finally, in model training we consider all transactions made by a random sample of

100,000 customers.

3.5.2 Dataset 2: Synthetic data

Following [Bender et al., 2005] a synthetic dataset of realistic multi-event survival data with

known λk for each individual can be obtained. To obtain a large enough dataset, we simulate

a set of 100,000 customers where λk for each customer is drawn from a Gaussian distribution
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with mean µ = 0.08, and standard deviation σ = 0.02, i.e., the expected customer return

time for this synthetic dataset is every 12.5 days. To avoid negative values of λk we specify

a minimum threshold of 0.01, thus, λk = max(0.01, N(µ, σ2)). Then, to introduce the effect

of customers not making any further purchase due to the inherent non-contractual setting

present in the retail industry, a stopping probability of 15% is introduced for every customer

at each sampling iteration of tk,j ∼ exp(λk). For this dataset in which the estimated monthly

customer drop-out is 8.7% after 120 days. Figure 3.5 shows the cumulative logarithmic

survival probability of this dataset for a 6 different months sliding-window. And Table 3.3

presents a list of main summary statistics for both experimental datasets, including dataset

size, frequency of the events in the data, training and performance periods, and testing split

size.

Figure 3.5: Estimated survival function of synthetic dataset via Kaplan-Meier curve for 12 monthly

cohorts of customers who made a purchase in the last 30 days.

3.5.3 Results

As stated previously, the time between purchases is exponentially distributed for both

datasets analysed. In all cases, the probability of a customer making its next purchase

decreases significantly as time passes, and just few transactions have happened after a period

of 100 days after the last purchase. Table 3.3 presents a list of summary statistics for each

datasets.

The data pre-processing for all datasets is carried as stated in section 3.3.1. For each

dataset, we compress the transactional data prior to an arbitrary analysis date into customer

level sequential representations to obtain a dataset with a similar form than in table 4.2, i.e.,
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for each dataset we create the training data as TX =
⋃

K [tk,nk−s, tk,nk−s+1, ..., tk,nk
∪ tk,n′

k
] for

every k ∈ K, where s is the sequence-padding parameter used to consider all sequences to

be of the same length at training, these padding parameters are shown in table 3.3 for each

dataset. As it is commonly done in modelling sequential data, the analysis date for training

should be chosen in a way that the performance period excludes completely the first date

available for serving. In our experiments, analysis dates for all dataset are set to at least

6 months before the model serving date, besides we specify a validation set of customers

completely disjoint to the customers used at training for each model. Figure 3.2 shows a

visual representation of the overall data processing needed to create the the vectors tk for

each customer.

Table 3.3: Main summary statistics for both experimental datasets.

Retail Dataset Synthetic Dataset

Number of customers 2.8 M 100 K

Training size 10% 80%

Validation size 5% 20%

Observation period (MM/YYYY) 03/2016 - 05/2020 N/A

Performance period (MM/YYYY) 06/2020 - 04/2021 N/A

Median customer purchases 2 12

Median time between purchases 32 days 12.5 days

Length of padded sequences (s) 5 7

At prediction time, we create the input sequences [tk,nk−s, tk,nk−s+1, ..., tk,nk
, tk,nk+1] as

described in section 3.3.1 to estimate λ̂k for each customer k ∈ K in the performance dataset,

which is set to be the complement of the training dataset for both experiments. Then, the

survival probabilities Sk(T > t) for any time t can be estimated by integrating the exponential

model parameterised by λ̂k for each customer. Figure 3.11 shows the estimated survival

curves obtained for individual customers belonging to four different segments with respect

to their frequency of purchase at the time of the analysis. Figure 3.6 shows the overall

estimation of the survival function for customers with high and low purchase frequency in

the corresponding validation datasets using all three different methods to estimate survival

probabilities. Additionally, Table 4.4 shows the performance results obtained in both datasets

of the metrics mentioned previously in section 2.3.2, as shown, the recurrent model can
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outperform both baseline methods in terms of the brier score, however, both the C-Index and

the time-dependant AUC are significantly higher for the Cox model.

Figure 3.6: Estimated function S(t) for an average customer in both validation datasets with

respect to low and high customer purchase frequency.

As expected, it is seen from Figure 3.6 and Figure 3.7 that the Recurrent Neural Network

model can learn somehow efficiently a survival distribution of event times close to the

Kaplan-Meier estimate of S(t), although due to the exponentially distributed assumption

under the event times distribution, the overall survival function S(t) estimated with the NN

will never match perfectly the Kaplan-Meier estimated survival function. As the synthetic

dataset was designed in a way that frequency of events and recency (time since last event)

do not affect customer’s churn rate, it is expected to not see a large impact in the estimated

survival curves for customers with different frequency of purchase, as it is shown in Figure

3.6 for synthetic dataset.

Additionally, we carried an analysis with the retail dataset to analyse how our method

using neural network to estimate survival probabilities captures changes in the frequency of
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Figure 3.7: Point-wise average of estimated survival functions S(t) at customer level by proposed

neural network and baseline Kaplan-Meier estimator.

Figure 3.8: Point-wise average of estimated survival functions S(t) at customer level by proposed

neural network and baseline Kaplan-Meier estimator with respect to high and low frequency of

purchase.

purchases for single customers. For this, we analyse the slope of a linear regression obtained

from the event times of each single customer, and check whether this slope is high, indicating

that the time to events increase and the frequency of purchase decreases, low, indicating that

the time to events decreases and the frequency of purchase increases, and constant, indicating

that there is no change in frequency of purchase with the sequence. Figure 3.9 shows the

estimated lambda distribution for these three different groups of customers, and Figure 3.10

shows the estimated survival distribution S(t) for customers belonging to these three groups

of customers.

Finally, we evaluate models’ performance in terms of accuracy, sensitivity and specificity

by assessing models as binary classification tasks, where the goal is using the estimated

survival probability of customers to predict if the event occurs before time t. For this, we

compute the median survival probability of the event at time t, denoted by m(t) and use a
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Figure 3.9: Distribution of estimated parameters λk in retail dataset by customers with observed

change in frequency of purchase.

Figure 3.10: Point-wise average of estimated survival function of retail dataset by customers with

observed change in frequency of purchase.

classification rule that predicts a positive event for observations with Sk(t) < m(t), i.e., the

event might happen sooner than later for customer k, and a negative prediction otherwise.

Table 3.5 shows results obtained for this evaluation.

3.6 Comparison against hand-crafted feature-based techniques

The rapid evolution of the retail industry in customer-driven marketing, has led to a growing

interest in accurately predicting customer churn driven by technological advancements and

increased focus on analytics-based and machine learning approaches, particularly in those

that make use of hand-crafted features in their construction. This section aims to compare

the performance of the proposed methodology in section 3.3, which combines recurrent

neural networks and survival analysis to predict the next purchase time of customers, against

methodologies widely-used in industry to predict customer churn, such as Cox proportional
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Table 3.4: Model performance obtained in the experiments carried for both datasets in testing and

validation splits. Large C-index, large time-dependant AUC, and small Brier score indicate high

model performance.

Retail data Synthetic data

Test Validation Test Validation

Brier Score at 180 and 100 days

RNN 0.303 0.369 0.350 0.431

CPH 0.070 0.197 0.021 0.186

Ind - KM 0.384 0.437 0.378 0.292

C-Index

RNN 0.391 0.545 0.500 0.498

CPH 0.580 0.233 0.675 0.421

Ind - KM 0.555 0.574 0.495 0.465

Time-dependant AUC

RNN 0.348 0.458 0.487 0.493

CPH 0.259 0.307 0.364 0.482

Ind - KM 0.591 0.590 0.494 0.468

hazard (CPH) and survival trees with hand-crafted features, particularly using RMF-based

attributes (Recency, Frequency, and Monetary value), as these are commonly available in the

marketing industry.

Cox Proportional Hazard Model with Hand-Crafted Features

As mentioned in section 2.3, the Cox Proportional Hazard (CPH) and survival trees models

are popular techniques in the marketing industry to analyse survival data. CPH assumes that

the hazard function for each individual is proportional to a baseline hazard function, with the

proportionality constant determined by a linear combination of the individual’s covariates.

In the context of churn prediction, CPH models can be applied by adding hand-crafted and

customised features that capture various aspects of customer behaviour for the application
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Table 3.5: Model performance obtained in the experiments carried for both datasets considering

using the expected survival function to predict whether the event will happen before or after a time

t, t = 180 days and t = 100 days for retail and synthetic data respectively. As a binary classification

problem, larger values of accuracy, sensitivity and specificity indicate higher model prediction

capabilities.

Retail data Synthetic data

Test Validation Test Validation

Accuracy

RNN 0.654 0.525 0.560 0.210

CPH 0.485 0.462 0.366 0.511

Ind - KM 0.592 0.646 0.712 0.322

Sensitivity

RNN 0.659 0.457 0.883 0.833

CPH 0.539 0.541 0.491 0.427

Ind - KM 0.664 0.616 0.780 0.769

Specificity

RNN 0.325 0.683 0.147 0.115

CPH 0.419 0.436 0.146 0.623

Ind - KM 0.560 0.718 0.258 0.227

domain of interest, such as recency, frequency, and monetary value of transactions, customer

demographics, engagement level metrics, or variations of these attributes.

Survival trees with Hand-Crafted Features

Survival trees [LeBlanc and Crowley, 1993] use the Kaplan-Meier estimator to identify

the best splitting point for each feature that maximizes the separation between the resulting

subgroups in terms of their survival patterns. For each candidate splitting point, the survival

tree computes during training the KM estimator for the two resulting subgroups and evaluates

the difference between their survival functions. The optimal splitting point for a given

feature is the one that maximizes the separation between the subgroups with respect to their
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Figure 3.11: Estimated survival function at customer level up to 200 and 100 days for customers

belonging to different groups in the dataset with respect to their frequency of purchase and current

recency at the time of the analysis.

estimated survival probability. Once the survival tree has been constructed, the survival

tree can be used to make prediction by first, determining the terminal node to which the

individual belongs based their input features. Then, the Kaplan-Meier estimator is used to

compute the survival function for this terminal node, which is obtained by averaging the

survival functions of all individuals within the node.

To compare the model performance of the recurrent model presented in section 3.3 against

hand-crafted based models, a CPH and a survival tree with hand-crafted attributes were

trained to estimate the survival probability of individuals for both datasets presented in

sections 3.5.1 and 3.5.2. Table 3.6 describes the attributes used during model training, which

include slight variations of RFM features, as well as features that may indicate the distribution

of time elapsed between purchases for individuals, these features may provide valuable

insights into the purchasing patterns and engagement levels of customers, which are crucial

factors in determining the likelihood of churn.
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Table 3.6: Hand-crafted attributes used to train CPH and survival tree baselines.

Attribute Description

Recency Time since last customer purchase

Time observed Time since fist customer purchase.

Number of purchases Total number of purchases made by the customer.

Minimum event time Minimum time elapsed between purchases.

Maximum event time Maximum time elapsed between purchases.

Average event time Average time elapsed between purchases.

Recency, or the time since the last customer purchase, is a commonly used feature as

it usually reflects the current engagement level of the customer with the business. In non-

contractual settings, typically customers that have not made a recent purchase are typically

more likely to churn in compared to those with recent transactions. Time observed, or the time

since the first customer purchase, provides information about the customer’s relationship

duration with the business, which may be indicative of individual’s loyalty and engagement

levels with the business. Number of purchases captures the overall transactional activity

of the customer, where a higher number of purchases may generally suggest a stronger

engagement with the business and lower churn risk. Minimum event time, maximum event

time, and average event time are features that describe the distribution of time elapsed

between purchases. These features may help to identify patterns in customer behaviours,

such as regularity or seasonality in their purchasing habits.

While these features offer valuable insights for predicting customer churn, additional

features could also be considered to enhance the CPH model’s performance. For instance,

demographic and psychographic variables, such as age, gender, and preferences, might also

help identify specific customer segments with varying churn risks. However, these attributes

are not included during model training to perform a more realistic comparison against the

recurrent approach with only has access to the time between purchase events. Table 3.7

shows the results in terms of model performance for the recurrent method against a CPH

model and a survival tree using hand-crafted features. Figure 3.12 shows the estimation of

the survival functions for these methods with respect to the baseline Kaplan-Meier estimator,

showing that for the two datasets included in this work, the survival function generated by

the survival tree method is closer to the baseline Kaplan-Meier.
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Table 3.7: Model performance obtained in experiments for both datasets using hand-crafted

features in the training of a Cox proportional hazard model and a survival tree.

Dataset 1: Retail datataset

Brier Score C-index Time-dependent AUC Accuracy Sensitivity Specificity

RNN 0.369 0.545 0.493 0.525 0.457 0.683

CPH with features 0.080 0.828 0.883 0.839 0.607 0.896

Survival Tree 0.248 0.579 0.707 0.337 0.809 0.222

Dataset 2: Synthetic datataset

Brier Score C-index Time-dependent AUC Accuracy Sensitivity Specificity

RNN 0.369 0.545 0.493 0.525 0.457 0.683

CPH with features 0.115 0.766 0.807 0.528 0.202 0.986

Survival Tree 0.278 0.640 0.740 0.658 0.841 0.402

Figure 3.12: Estimated survival functions in the validation set for methods including hand-crafted

features with respect to the Kaplan-Meier estimator baseline.

Naturally, the choice of the most appropriate model for predicting customer churn de-

pends on the specific needs and constraints of the business, the level of interpretability

desired, the computational capacity available in production environments. While each tech-

nique offers unique advantages and limitations, as shown in table 3.8, and considerable

differences in performance, as results of table 3.7 suggest, the data available plays a crucial

role in determining the most appropriate choice.

If the dataset contains strong temporal dependencies or sequences of customer inter-

actions, or no additional data about individuals is provided but the purchase times, the

combined RNN-survival model approach be a good approach to predict customer churn by
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Table 3.8: Advantages and disadvantages of hand-crafted feature-based approaches at predicting

customer churn.

Benefits of Recurrent Approach Benefits of CPH Model Benefits of Survival Trees

Modeling Temporal Dependencies:

RNNs are particularly useful to capture

complex temporal patterns in data, as

their hidden state stores information from

previous time steps. This ability allows

them to identify patterns that may be

missed by other survival models, leading

to more accurate event-time predictions.

Flexibility: CPH models allow inclusion

of multiple explanatory features or covari-

ates, this flexibility enables the model to

capture complex relationships between

features without making strong assump-

tions on the hazard function.

Non-parametric approach: Survival trees

do not make assumptions on the func-

tional form of the baseline hazard func-

tion, making them more robust to devia-

tions from the assumed model.

Automatic Feature Learning: RNN can

automatically learn a data representation

for event-times without the need of man-

ual feature engineering. This can poten-

tially uncover hidden patterns in data that

might be overlooked in a feature engineer-

ing process.

Interpretability: CPH models provide in-

terpretable frameworks for understand-

ing the relationship between features and

the hazard function, allowing for mean-

ingful insights into the factors driving cus-

tomer churn.

Ability to handle non-linear relation-

ships: Survival trees can capture non-

linear relationships between features and

the time-to-event distribution, which may

be difficult to model using other tech-

niques.

Scalability: RNNs can be trained on large

datasets which are increasingly common

in today’s business environments. Fur-

thermore, these techniques can be de-

ployes with minimal human supervision.

Proven performance: CPH model are

popular choices in multple industries for

predicting time-to-event outcomes, and in

many cases they outperform other more

comeplex ML methods.

Interpretability: The structure of survival

trees allows for easy interpretation of the

relationships between features and the

time-to-event outcome. This can be partic-

ularly valuable in situations where trans-

parency is a key requirement for decision-

making or regulatory compliance.

Caveats of Recurrent Approach Caveats of CPH Model Caveats of Survival Trees

Complexity: The combination of RNNs

and survival models can result in complex

models that may be unecessary difficult

for many application domains. Further-

more, they typically lack of transparency

and interpretability.

Feature engineering: The CPH model

relies on hand-crafted features to cap-

ture various aspects of customer behavior,

such as RFM attributes. These features

require domain knowledge and manual

engineering and may not always capture

all relevant information.

Instability: Due to their training process

to create partitions of data, survival trees

can be sensitive to small changes in the

data, leading to different tree structures

and predictions.

Overfitting: RNNs, like other deep learn-

ing models, are prone to overfitting

when dealing with high-dimensional data,

which will require of regularisation tech-

niques to control the complexity of the

model.

Limited capacity to model non-linear re-

lationships: CPH models may not be able

to always capture complex non-linear re-

lationships between features and the time-

to-event outcome. In such cases, more ad-

vanced ML techniques or non-linear trans-

formations of the input features may be

required.

Overfitting: Like other tree-based mod-

els, survival trees are prone to overfit-

ting, especially when dealing with high-

dimensional data. In which case, regular-

isation technqies such as pruning, cross-

validation are required.

leveraging RNNs’ ability to capture intricate temporal patterns without the need to compute

hand-crafted features. Alternatively, if the dataset primarily consists of static features, such
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as demographic information or aggregated behavioural metrics, the CPH model or survival

trees might be more suitable choice. The CPH model is particularly useful when interpretabil-

ity of results is a key requirement, as it provides a transparent framework for understanding

the relationship between each feature and the hazard function. Survival trees, in contrast, can

handle non-linear relationships in data and automatically select important features during

training but may suffer from instability and overfitting issues.

3.7 Conclusion

Companies around the world are interested in knowing which customers are likely to churn

in order to make proactive retention efforts in keeping them engaged with the brand and

incentive interaction between customers and products. By predicting the probability of

customers making their next purchase over time, our model is capable of estimating the

individual-level survival function for each customer instead of an overall survival model for

the entire population.

Using recurrent neural networks in time-to-event modelling to predict customer churn

allows to model customer purchasing behaviour entirely from transactional data, leaving

aside all customer level characteristics, such as age, gender, and income, which are commonly

used by companies to estimate how likely is a customer to engage with the brand, and

therefore, to purchase again. Additionally, by modelling the time-to-purchase as a sequential

problem with a recurrent network architecture, such as the LSTM, the model can learn

dependencies in historical interactions to match or improve churn prediction performance

of well-established survival techniques with a minimum effort in performing a feature

engineering phase or obtaining expensive hand-crafted characteristics from the input data,

particularly in cases where the data may be subject to temporal dependencies or seasonality.

Furthermore, treating item purchases and customer churn as sequential information enable

more effective targeting of marketing efforts, allowing businesses to tailor their strategies

based on individual customer behavior patterns.

However, our approach also has its limitations, firstly, assuming an exponential distribu-

tion over the event times for every customer can potentially lead into an underestimation of

the survival probability remaining at time t for some the most loyal segments of customers,

in which the probability of the next purchase should remain high even after long observation
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periods without purchases. Secondly, our method requires a large number of purchases

made by each customer to provide reliable predictions and the model might be less accurate

in customer with short purchasing history, as seen in the experimental results, the model

achieved better performance for the synthetic dataset, in which the frequency of purchases is

considerably larger than in the retail data. Therefore, this method is more suitable for retail

companies where the frequency of customer purchases is high. Nevertheless, our methods is

capable to provide estimation of customer churn status and survival probability at individual

level for customers with only few event times, which is not possible or not using other

methods such as individual Kaplan-Meier, or not accurate in methods such as CPH.

Future work can explore the generalization of this method by combining multivariate

time series from different signals as input data for the LSTM layers in the model, as well as

compressing seasonal information of purchases or incorporating context information about

the purchased items, which is most often easy available in the retail industry.
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Sequence-aware item recommendations for multi-

ply repeated user-item interactions

4.1 Introduction

Modern recommender systems deployed in production environments rely significantly on the

use of matrix-completion techniques combined with users and item characteristics to detect

long-term user preferences. However, most of the time these techniques do not perform well

in settings where user preferences can change significantly over time, or when users interact

repeatedly with the same set of items. Sequence-aware recommender systems typically

consider user-item interactions in sequential frameworks to detect drifts in user preferences

over short periods of time, and to identify short-term popularity trends quickly and efficiently

[Quadrana et al., 2018]. Typically, the input for these systems is an ordered and timestamped

list of past user actions and the output is an ordered list of items most likely to be relevant for

the user, just as in the traditional item recommendation setup introduced in section 2.4.3.

Over the last few years, there has been a vast amount of research around sequence-aware

recommender systems [Guy Shani, 2005, Wu et al., 2017, Quadrana et al., 2018, Zhang et al., 2019,

De Souza Pereira Moreira et al., 2021] particularly in the context of implicit feedback, which

is when the exact user rating of items is unknown for all or most user-item interactions in

the data. As aforementioned in section 2.4.5, sequence-aware recommender systems offer

several benefits against matrix completion techniques, including improved recommendation
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performance for multiple applications, adaptability to adapt to changing trends and user

behaviours over time, context-awareness by incorporating additional contextual informa-

tion, such as seasonal trends, promotional events, or time of day, cold-start mitigation for

new users by identifying similar patterns in the sequences of existing users, and real-time

responsiveness by processing variable-length sequences for each individual.

Inspired in the approach that NLP applications takes to process and analyse sequences

of tokens or words, this chapter suggest a new approach to process sequences of user-item

interactions to make predictions of future products that users might be likely to buy in future,

with three main goals. Firstly, being able to predict efficiently repeated interactions of users

with items, a behaviour that is commonly seen in industries such as retail, where customers

interact with the a single product multiple times over time, but not considered in matrix-

completion recommender systems [Quadrana et al., 2018]. Secondly, achieve comparable

recommendation prediction performance to matrix-completion techniques, particularly in

the top of the recommendation list. Finally, make recommendations faster and capture

dynamic user preferences, which is achieved by leveraging the sequential nature of user-item

interactions and is a crucial factor in domains where customer preferences change rapidly

over time.

4.2 Methodology

This section describes the mathematical formulation of modelling user-item interactions over

time and the architecture used to estimate how likely users are to interact with a specific set of

items I ′ ∈ I over a defined horizon. Sequential modelling techniques are such as Markov De-

cision Processes (MDP), Latent Dirichlet Allocation (LDA), and Recurrent Neural Networks

(RNNs) are useful approaches for tasks where the data to be analysed has a temporal depen-

dency or a inherently sequential form, like in natural language process and understanding

tasks such as sentiment analysis, text classification, and next token prediction. Although

the problem of performing item recommendations for users has typically not been seen as a

sequential task, there are several sequential techniques that can be implemented to achieve

better recommendation performance. In this work, we aim to process user transactions in a

sequential framework using inspiration and data pre-processing techniques from the field of

NLP, such as tokenisation and sequential embeddings, in a recurrent neural network to make
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probability estimations for each user interacting with specific items in the dataset.

Following notation introduced in section 2.4.1, we can describe the problem of sequential

recommendation as follows, let U = {u1, ..., u|U |} be the set of users, and I = {i1, ..., i|I|} the

set of items. In contrast to matrix-completion methods presented previously where the goal

is estimating the overall user estimated rating r̂(uj, ik) for each user uj ∈ U and item ik ∈ I ,

our goal is finding the probability that the user uj interacts with the item ik in a defined

horizon, represented as Puj
(ik) = P (ik | Seq(uj)), where Seq(uj) is the ordered sequence of

items previously bought by the user uj , and its detailed construction is presented in section

4.2.1.

To estimate the probability Puj
(ik) we use the recurrent neural network shown in Figure

4.1, which consists of an embedding layer followed by two Long-short Term Memory (LSTM)

units and a five-layer feed-forward network with sigmoid activation and output size | I ′ |

corresponding to all potentially recommendable items.

Figure 4.1: Proposed recurrent model to estimate probability of interactions of future tokens. The

input transactional sequences Seq(uj) are processed through an embedding layer and two Long-

Short Term Memory cell (LSTM) followed by a Multilayer Perceptron with sigmoid activation of

size | I ′ | to obtain the probabilities of user-item interaction Puj
(ik).

4.2.1 Data Representation

Inspired by the approach that NLP techniques take to compress and process sequential

data, we aim to process user-items interactions as a sequential task. To achieve this, we

take the original transactional data shown in Table 4.1, which is typically used to build

the user-item matrix presented in section 2.4.3, and build a sequence of item interactions

Seq(uj) = [iuj ,1 iuj ,2 ... iuj ,unj
] for every user uj ∈ U as shown in table 4.2, where the elements

of this list are the space-separated and timestamp-ordered item ids that the user uj has
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interacted with. Like this, it is straightforward to process the sequence Seq(uj) as a textual

sequence where each item id would simply resemble a single word in a dictionary for an

NLP task, assuming that tuj ,n ̸= tuj ,n+1 for every user uj and interaction n, i,e. there are no

simultaneous user-item interactions in the data.

Table 4.1: Original Transactional data

User ID Item ID timestamp

u1 i1 t1,0

u1 i2 t1,1

u2 i1 t2,0

... ... ...

uj id tj,d

uj id+1 tj,d+1

... ... ...

Table 4.2: Customer sequential-transactions

Customer ID Seq(uj)

u1 [iu1,1 iu1,2 ... iu1,n1]

u2 [iu2,1 iu2,2 ... iu2,n2]

... ...

uj [iuj ,1 iuj ,2 ... iuj ,nk
]

... ...

Then, the target vector for the model for a user uj is built as Yuj
= [yuj ,i, yuj ,2, , yuj ,|I′|],

where yuj ,k = 1, if the user uj interacted with the item ik over the performance period, and 0

otherwise.

This method of representing user-item interactions has several advantages over the matrix-

completion representation presented in figure 2.7. This approach orders item ids based on

timestamps, accounting for the temporal dynamics of user behaviour. By doing so, it enables

the model to learn patterns and trends in user preferences over time, leading to more accurate

predictions. As each user’s sequence is processed independently, this method can efficiently
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handle large datasets with numerous users and items without compromising performance.

This makes it a practical solution for businesses dealing with increasing amounts of data. Fi-

nally, the resulting sequences of user-item interactions are easily interpretable and visualized,

allowing for better understanding of user behaviour and preferences. This interpretability

can be valuable for both model development and business insights, providing a robust and

scalable approach to representing user-item interactions while providing valuable insights

into user behaviour as an alternative to the matrix-completion representation.

4.2.2 Tokenisation

Tokenisation is a simple but powerful technique in NLP to transform a sentence of text and

split it into the different elements or ’tokens’ that compose it. For example, given the textual

sentence ’recommendations for different users and items’, the tokenisation returns a sequence of

six tokens [’recommendations’ ’for’ ’different’ ’users’ ’and’ ’items’], with each single word as its

own token. Dictionary-based tokenisation is perhaps the most common type of tokenisation

used in the AI industry, this method uses a pre-defined dictionary of mapped words into

tokens, typically learnt from a large set of textual sequences, which allows to tokenise every

new given sentence to be processed. However, there are different tokenisation methods such

as rule-based tokenisation, regular expression tokenisation, or sub-word tokenisation in the NLP

literature that are not covered in the scope of this work.

As in this work the tokens to be processed do not correspond to real words in a pre-trained

dictionary but to item identifiers, it is necessary to learn a new dictionary from the data

during model training and use it to compress the sequences of purchases at prediction phase.

4.2.3 Token Embeddings

As mentioned in section 2.2.2, word embeddings are powerful methods used in natural

language processing and information retrieval to overcome the high-dimensionality problem

of dealing with large corpus of text by obtaining representations of words contained in

documents [Bengio et al., 2003]. Embeddings are essential for transforming discrete tokens

into continuous vectors that can be fed into machine learning models. Several types of

embeddings can be employed for sequence-aware recommender systems and the choice of

each method may have an impact in the final performance of the system. Table 4.3 summarise
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multiple benefits and caveats of for three popular embedding methods with the task of

encoding item ids instead of typical words, word2vec, GloVe, and BERT embeddings.

Table 4.3: Advantages and disadvantages of word embedding methods to represent items into

dense vectors.

Method Description Main Advantages Main Misadvantages

Word2Vec Word2Vec [Mikolov et al., 2013a] can be

applied to user-item interaction sequences

by treating item ids as words. This tech-

nique learn dense representations of to-

kens by predicting either the context items

given a target item or the target item given

its context items.

• Efficient and scalable, making it suit-

able for large datasets.

• Captures semantic relationships be-

tween items based on their co-

occurrence patterns within user

interaction sequences.

• Sensitive to the choice of hyperpa-

rameters

• Cannot capture subword informa-

tion, which may be relevant for

certain types of item ids or meta-

data.

GloVe GloVe [Pennington et al., 2014] can be

adapted for user-item interactions. It

learns embeddings by factorizing the co-

occurrence matrix of items, capturing

both global and local context information.

• Combines global and local context in-

formation, leading to more com-

prehensive item embeddings.

• Can be more robust to variations in

the frequency of item occurrences

compared to Word2Vec.

• Requires constructing and storing

a large co-occurrence matrix,

which can be computationally ex-

pensive for large datasets.

• Does not account for the order of

items within a sequence.

BERT BERT [Devlin et al., 2018] can be adapted

for user-item interaction sequences by pre-

training the model on masked item pre-

diction tasks. Fine-tuning the pretrained

BERT model on the specific recommen-

dation task can result in powerful dense

representations.

• Bidirectional context representation

allows for capturing complex

item relationships and dependen-

cies.

• Pretraining on large datasets can lead

to powerful and expressive em-

beddings.

• Requires substantial computational

resources and time for pretrain-

ing and fine-tuning.

• May be prone to overfitting on

smaller datasets, and more chal-

lenging to interpret and explain

compared to simpler embedding

methods.

Experiments presented in this work are based on the use of Word2Vec [Mikolov et al., 2013a]

to encode sequences of item ids into dense vectors. This method offers several advantages

for the task at hand and overcomes some of the limitations of other methods for the specific

available data. First, Word2Vec is an efficient and scalable technique, making it suitable

for handling large datasets with numerous users and items. This scalability ensures that

as the dataset grows, due to the business acquiring more customers and products, the em-

bedding process remains computationally manageable without compromising performance.

Furthermore, Word2Vec can capture semantic relationships between items based on their

co-occurrence patterns within user interaction sequences. By learning these relationships, the
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model can effectively understand users’ preferences and make more accurate recommenda-

tions.

In contrast, methods like BERT [Devlin et al., 2018] and GloVe [Pennington et al., 2014]have

certain disadvantages that make them less suitable for the particular data available for these

experiments, although these could be suitable for the same recommendation task with a

different dataset. Both BERT and GloVe require pre-training on specific dictionaries before

they can be applied to the task, which can be time-consuming and computationally expen-

sive. Additionally, these methods are prone to overfitting when dealing with small datasets,

leading to suboptimal performance and reduced generalization capabilities.

While there are some disadvantages to using Word2Vec, such as sensitivity to hyperpa-

rameter choices and lack of ability to capture item information or metadata, these drawbacks

can be mitigated through careful experimentation and tuning. Additionally, incorporating

other techniques or model architectures alongside Word2Vec may help address its limitations

and further enhance the recommender system’s performance.

4.2.4 Loss function

For model training we use binary cross-entropy as loss function and stochastic gradient

descent with backpropagation for optimisation of the model architecture shown in Figure 4.1,

therefore the optimisation problem can be written as minimising the loss function defined as

Loss = − 1

| U |

|U |∑
j=1

|I′|∑
i=1

yi,j · log(Puj
(ik))

where yi,j is the binary target variable introduced in section 4.2.1 which corresponds to

the indicator function of user-item interaction over performance period, and Puj
(ik) is the

estimation of the probability of the neural network.

4.2.5 Ranking Mechanism

As the final goal of a recommender system is to output a list of potentially relevant items

for users, a wide range of techniques incorporate ranking methods and ad-hoc ranking

losses during training to stream model training and testing and mitigate serving biases

[Covington et al., 2016, Zhang et al., 2019, Guy Shani, 2005]. The ranking process also allows

incorporation of additional business-related information about the items without affecting
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the estimation of probabilities, for example, in a real-world scenario we might be interested

in recommending an item which has slightly lower probability of interaction with users, but

that it is more profitable for the company that is making recommendations.

In this work we keep the ranking process separated from the overall model architecture

at training, as it allows higher flexibility to react to business rules and item offers that can

be promoted by companies. The process to obtain the final item list is straightforward

by recommending the items which obtain the highest uplift R(uj, ik) in terms of user-item

interaction probability against the baseline probability of interactions for an item ik.

R(uj, ik) =
Puj

(ik)

P (ik)

where P (ik) represents the probability that a random user interacts with item ik. R(uj, ik)

can be interpreted as how many times a user uj is more likely to interact with item ik against

a random user.

4.2.6 Training process

The training process of the neural network shown in Figure 4.1 is carried by minimising the

binary cross-entropy introduced above via backpropagation. To create the input sequences,

we decided to split transactions into two disjoint sets to obtain the observation and per-

formance data with respect to an arbitrary analysis date which can be set according to the

business needs and frequency of interactions. Then input sequences Seq(uj) can be created

for all users by using only transactions contained in the observation period (prior to the

analysis date), whereas targets are built out of transactions in performance (after the analysis

date), as shown in in the data pre-processing method stated section 4.2.1. Once sequences

are obtained for all users, we split further this data into 80% of the sequences for model

training and 20% for validation of results. Pseudo-code included in Appendix B details the

full procedure for data pre-processing and model training.
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4.3 Experiments and Results

4.3.1 Dataset 1: Company 1 - Retail

The first dataset contains transactions made by customers of company 1, a retailer in the UK

specialised in selling alcoholic beverages. The total volume of transactions in the sampled

data consists of nearly 80 millions of purchases made by over 3 million customers between

March 2016 and February 2022. Although there are 10,000 different items available for

customers over the whole observation period, in average, customers only interact with 24 of

these items over their whole customer life cycle, and rarely provide explicit feedback about

the purchased items, which induces several challenges at training recommender systems due

to the highly data sparsity, the lack of any explicit feedback, and the repeated interactions of

customers with the same set of items over time.

For our off-line experiments we used 80% of the total transactional data prior to a defined

analysis date (September 2021), allowing to have 6 months of customer transactions for

performance, and the 100% of the data after the analysis date for evaluation purposes. Results

of the tests for company 1 are presented in Table 4.4.

Unfortunately, this dataset does not contain a detailed user-item interaction timestamp at

minute and second level, but rather purchase events are stored by the company only at event

day level (dd/mm/yyyy), which raise the challenge of dealing with simultaneous events

stated in section 2.4.5, at not being able to identify the exact order of items in which these

were added to the shopping basket or shopping session. Moreover, due to several company’s

discounts for bulk shopping, i.e., discounts for purchasing multiple items within the same

session, 55.5% of the total sequences contain simultaneous events. To assess the effect of

not having the correct granularity of data, an experiment was conducted by sorting item ids

in ascending and descending order for simultaneous user-item interactions and compare

recommendation performance against a recommender system trained with sequences without

applying any specific order so simultaneous events. The results of this experiment, presented

in table 4.6, show a slight decrease in recommendation performance at enforcing a specific

order in interactions due to the lack of granular data, particularly in MAP@10. However,

despite not fulfilling the assumption stated in section 4.2, which states that event times do

not occur simultaneously for users, it does not necessarily result in a significant deterioration
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of recommendation performance for the top ranking of the recommendation list.

4.3.2 Dataset 2: Company 2 - Retail

The second dataset contains information of transactions in company 2, a large building

equipment retailer in the UK with nearly 80 million of purchases made by 1.2 million

customers between June 2020 and March 2022. The dataset contains 73,000 potentially

recommendable items, although on average each user interacts with only 51 different items

over their life cycle.

Similarly to the first dataset, we consider only 80% of customer transactional data prior

to a defined analysis date (September 2021) to allow a 6 months performance window, and

the rest of transactions for model testing. Model performance for this dataset is presented in

Table 4.4. Unlike he first dataset, this dataset contains information of the exact timestamp

in which items were added to the shopping basket, for all purchased items, thus model

training can be implemented with this timestamp rather than the purchase date in format

dd/mm/yyyy.

4.3.3 Dataset 3: Open dataset: Movielens 25M

The MovieLens dataset [Harper and Konstan, 2015] is widely used in research and industry

to benchmark recommender systems performance. The version of the data used in this

work, MovieLens 25M provided by GroupLens Research, contains 25 million movie ratings

for 62,000 movies and 162,000 users during January 1995 and November 2019. Each of the

users in this data have rated at least 20 movies, which mitigates the cold-start problem of not

having enough information. As mentioned previously, the data pre-processing needed does

not make use of ratings, thus we only consider the interaction between users and items in

the data which is stored at timestamp level and no further aggregation is required. Model

performance for the MovieLens dataset is presented in Table 4.4.

4.3.4 Results

In this section we empirically demonstrate the effectiveness of our approach by comparing the

ranking metrics presented previously: MAP@1, MAP@10, and NDCG for the three mentioned

datasets in the retail industry against collaborative filtering and matrix factorisation, Table
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4.4 include the details of this performance assessment. Additionally to the off-line evaluation,

we evaluate the impact in overall revenue by conducting a live A/B experiment for Company

1 at comparing sales made with our method against another recommender system based on

matrix factorisation used by Company 1, further detail of this test is presented in table 4.7.

It is worth mentioning that metrics obtained in this section, MAP and NDCG are computed

only from previous purchases made by customers over a period of six months, which do

not take into account the fact that customers might not be aware of the existence of all the

possible recommendable items in the product catalogue and have only knowledge of popular

items, this might induce a bias of equal opportunity in assessing performance of user-item

interaction for unpopular items in recommender systems, at these items being inherently

less likely to be purchased by users even when in cases where the items are highly relevant.

To evaluate our method against CF and MF techniques, while overcoming this issue, we

conducted off-line recommendations by training all recommender systems with a sampled

dataset which do not considers purchases of the top 10% more popular items in each dataset.

Performance results of MAP@1, MAP@10, and NDCG for this experiment are presented in

Table 4.5.

Table 4.4: Recommendation performance obtained from off-line experiments with 20% of un-

observed customers at training in the validation dataset and allowing 6 months of user-item

interactions as the performance period.

Company 1 Company 2 MovieLens

MAP@1 MAP@10 NDCG MAP@1 MAP@10 NDCG MAP@1 MAP@10 NDCG

Sequence-aware 0.0119 0.0233 0.0314 0.0354 0.1003 0.1559 0.0085 0.0124 0.0160

Collaborative Filtering 0.0111 0.0265 0.0215 0.0139 0.1016 0.0607 0.0016 0.0046 0.0067

Matrix Factorisation 0.0014 0.0144 0.0265 0.0146 0.1143 0.0643 0.0021 0.0046 0.0063

Live A/B test results.

As mentioned, evaluating of recommender systems is usually carried with off-line metrics

such as Mean Average Error (MAE) when information about user ratings is known, and

ranking metrics like MAP@K and NDCG when there is no information available about real

user preferences. Additionally to the off-line evaluation carried for MAP@K and NDCG, we

conducted a live A/B test item for item recommendations included in an email marketing
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Table 4.5: Recommendation performance from a subset training dataset obtained by removing the

10% most popular items at training and evaluating performance for 20% unobserved customer in

the validation dataset with a 6 months of transactions in the observation window.

Company 1 Company 2 MovieLens

MAP@1 MAP@10 NDCG MAP@1 MAP@10 NDCG MAP@1 MAP@10 NDCG

Sequence-aware 0.0051 0.0078 0.0095 0.0050 0.0092 0.0141 0.0010 0.0081 0.0177

Collaborative Filtering 0.0015 0.0091 0.0058 0.0000 0.0186 0.0013 0.0210 0.0403 0.0535

Matrix Factorisation 0.0026 0.0055 0.0069 0.0000 0.0053 0.0162 0.0000 0.0130 0.0090

Table 4.6: Recommendation performance for dataset 1: retail dataset at sorting simultaneous

transactions in ascending and descending order.

MAP@1 MAP@10 NDCG

Sequence-aware 0.0194 0.0233 0.0314

Sequence-aware ascending order 0.0165 0.0001 0.0137

Sequence-aware descending order 0.0165 0.0001 0.0137

campaign for company 1. In this test, we tested our method against an in-house recommender

system for which we cannot provide further details other than that overall performance

compares to a matrix factorisation model. This test only considered the top 1 item recommen-

dation from a universe of 8 recommendable items that the company wanted to promote in an

email marketing campaign for over 500,000 customers. Six of these items are considered pri-

ority for company 1 and should be ranked first if possible, the other two items are considered

popular items and should be sent as a default in case there is no better recommendation for

customers. The top 1 recommendation for both systems, as well as the default items were

presented as the main banner in the email sent to customers, as illustrated in Figure 4.2, and

the rest of the email components such as the header, images, and any other items promoted

in the email remained the same for both systems.

Although we cannot compare these systems at ranking level due to confidentiality con-

straints, we can provide the average ranking probability of purchase for each in the selection

of eight items used for the live test. As shown in Figure 4.3, our recommender system could

identify the best item to be recommended to customers and rank customers with 20-40 times

higher precision at the top of the ranking list. Besides the overall sales results showed that the
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Figure 4.2: Email template sent to customers in live A/B test. 50% of customers were selected for

recommendation of system A using Matrix factorisation and the rest 50% with sequence-aware

recommendations. Only customers without transaction history were selected to be included as

part of the default template with popular items.

average customer revenue for users targeted with our system increased by 51% in comparison

to users revenue targeted by the company system. Further detail of the A/B test revenue

results is presented in Table 4.7.

Figure 4.3: Mean Average Precision for Sequence-aware recommendations for 6 products in each

dataset selected at random.
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Table 4.7: Revenue results of A/B test carried for Company 1 using our sequence-aware method to

make item recommendations against an in-house recommender system based on matrix factori-

sation. Due to confidentiality constraints with the company providing data and settings for the

experiments, sales amounts multiplied by a random number to be presented in this report and

preserve confidentiality.

System A: In-house recommender system System B: Sequence-Aware recommender system

Item Volume of Users Response Total Revenue Revenue p/c Volume of Users Response Total Revenue Revenue p/c

item 1 7.0% 1.75% £13,622 £37.73 4.4% 0.99% £9,030 £69.44

item 2 8.8% 1.17% £13,720 £45.15 8.9% 0.95% £20,440 £81.76

item 3 3.7% 0.88% £2,149 £22.12 16.4% 0.88% £24,472 £57.05

item 4 11.5% 1.81% £35,105 £56.70 8.1% 1.02% £21,042 £85.54

item 5 8.2% 1.49% £17,003 £46.97 9.2% 0.88% £20,517 £85.47

item 6 10.6% 0.88% £14,294 £51.80 6.1% 0.99% 12,719 £70.28

item 7 9.8% 1.27% £16,079 £43.54 38.9% 0.48% £25,578 £46.62

item 8 40.5% 0.60% £15,981 £22.33 7.9% 0.56% £672 £5.11

Total 100% 1.05% £127,953 £41.23 100% 0.73% £134,470 £62.37

4.3.5 Comparison against sequence-aware approaches

Recommender systems have become an essential part of various online platforms, providing

personalised experiences to users based on their preferences and behaviour [Quadrana et al., 2018,

Baeza-Yates et al., 2015, Covington et al., 2016, Tang and Wang, 2018]. This section aims to

present a comparative analysis between the proposed methodology to make sequence-

aware recommendations with the use of recurrent neural networks presented in section 4.2,

against other three sequence aware recommender systems proposed in the literature, Caser

[Tang and Wang, 2018], SASRe [Kang and McAuley, 2018], and Bert4Rec [Sun et al., 2019].

Besides presenting only comparative metrics in terms of recommendation performance, this

analysis shows the advantages and disadvantages of each approach, highlighting the impor-

tance of considering temporal dynamics and user-item interactions in developing effective

recommender systems.

Caser: Convolutional Sequence Embedding Recommendation Model

Caser (Convolutional Sequence Embedding Recommendation Model) [Tang and Wang, 2018]

combines both collaborative filtering and sequence-based recommendation models by using

convolutional neural networks (CNN) to learn representations of the user-item interactions

presented in figure 2.7. Caser takes into account all the items what a given user has interacted
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with, alongside their respective interaction order to build an embedding matrix that is used

to search for sequential patterns as local features with the use of convolutional filters. Then,

the convolutional output feature maps are concatenated and fed into a fully connected layer

to generate a representation of the entire sequence, which captures the essential information

about the user-item interactions and can be used to make predictions by applying a softmax

activation function to produce a probability distribution over all possible recommendable

items.

Caser offers several notable advantages over matrix-completion recommendation meth-

ods, making it a highly flexible tool for several applications. Its adaptability allows it to

handle different types of sequential data, including implicit feedback and explicit ratings,

making it suitable for diverse use cases such as e-commerce and media consumption. With

the use con convolutional filters, Caser can learn complex patterns and dependencies within

the data, resulting in more accurate and personalised recommendations. Finally, its scalability

allows it to manage large-scale datasets and make prediction efficiently, ensuring optimal

performance even when dealing with millions of users and items.

Nevertheless, Caser also presents certain limitations at implementing it in real-world

scenarios. For example, the convolutional architecture used to organise data and extract

embeddings, avoids it to handle efficiently the cold-start problem that affects most recommen-

dation models, and provide accurate recommendations for new users or items with limited

interaction data. Additionally, Caser requires careful tuning of various hyperparameters,

such as the number of convolutional filters used at training, filter sizes, and learning rate,

which is require larger efforts and experimentation when used in real-world environments

and can lead to time-consuming and computationally expensive processes.

SASRe: Self-Attention based Sequential Recommendation model

SASRe (Self-Attention based Sequential Recommendation model) [Kang and McAuley, 2018]

is inspired in the Transformer architecture [Vaswani et al., 2017], which has shown outstand-

ing performance in several NLP and sequential modelling applications. SASRe is designed to

capture both short-term and long-term user preferences by analysing the sequential patterns

in users’ interactions history with an architecture that consists of multiple layers of self-

attention blocks, followed by position-wise feed-forward networks. Each self-attention block

contains multi-head attention and normalisation layers, which allows it to capture complex
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patters in data and weigh the importance of different items by computing the attention scores

between all pairs of items in the sequence.

SASRec offers several advantages as a sequential recommendation technique, its attention-

based architecture is scalable and can be efficient at handling large datasets without suffering

from the vanishing gradient problem commonly found in deep RNN-based models, besides

significantly improving the training time in compared to sequential RNN-based models

[Kang and McAuley, 2018]. Furthermore, item-pair attention scores obtained during SASRec

training process may insights into item relationships over time, which can then be used to

enhance model’s interpretability.

However, the SASRe approach faces several disadvantages when implemented in produc-

tion environments. SASRe self-attention mechanism leads to high memory consumption due

to the storage of attention scores for all item pairs in the sequence, potentially limiting its

applicability on devices with restricted memory resources. And like most recommendation

systems, SASRec faces the cold-start problem, struggling to provide accurate recommenda-

tions for new users or items with limited interaction history.

BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from

Transformer

BERT4Rec (Sequential Recommendation with Bidirectional Encoder Representations from

Transformer) [Sun et al., 2019] is a transformer-based model built upon the BERT architecture

specifically designed for sequential recommendation tasks and has achieved outstanding

recommendation performance against matrix-completion and deep learning-based recom-

mender systems [Sun et al., 2019] it uses pre-training and fine-tuning mechanisms of BERT

(Bidirectional Encoder Representations from Transformers) [Devlin et al., 2018] to learn rep-

resentations for items in a user’s interaction sequences and capture both short-term and

long-term user preferences. In Bert4Rec, each item in a sequence is represented as embed-

dings, which are then fed into the transformer architecture with typically additional positional

encodings to enable the mechanism to add information related to users or items features.

During embedding pre-training, a percentage of items in the input sequence are masked

and the model learns to predict these masked items based on the context provided by the

unmasked items. Once this process is completed, the embedding model can be fine-tuned on

a specific recommendation task using user-item interaction data.
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Bert4Rec offers multiple advantages as a recommendation system. Its ability to capture

both short-term and long-term dependencies in user-item interactions allows it to provide

highly accurate and context-aware recommendations. Additionally, BERT4Rec architecture

based on transformers allows to parallelisation during training, making it suitable to handle

very large data. However, Bert4Rec also presents some drawbacks as a recommendation

system, its architecture is particularly computational complex during the pre-training phase,

which may restrict its applicability in resource-constrained settings and may require spe-

cialised hardware like GPUs for efficient training. As most sequence-aware recommender

systems, Bert4Rec’s performance can be sensitive to hyperparameter choices, requiring care-

ful tuning and experimentation to achieve optimal results. Finally, like many deep learning

models, Bert4Rec lacks recommendation interpretability, which might be a concern for several

commercial applications where transparency is crucial.

Performance and applicability comparison

While attention-based sequence-aware methods for item recommendation presented in

this section may outperform the RNN-based approach presented in section 4.2 in several

applications, the RNN-based approach is a competitive alternative to several sequence-aware

recommender systems, like Caser, SASRe, and BERT4Rec. It addresses the temporal dynamics

of user behaviour interacting with items with the use of recurrent neural networks, provides

scalability to handle large datasets efficiently, allows to incorporate additional user and

item features during training, and offers higher levels of interpretability in compared to

attention-based models, making it a practical solution for businesses dealing with increasing

amounts of data.

Although, due to data usage limitations, it is not possible to make a direct performance

comparison against attention-based recommender systems with the retail datasets presented

section 4.3. Table 4.8 shows prediction performance reported in the literature of alternative

sequence-aware recommender systems mentioned in this section, applied to the Movielens

dataset [Tang and Wang, 2018, Sun et al., 2019]. To obtain these metrics, in compared to

results presented in tables 4.4 and 4.5, where all users are considered regardless of if they

made an interaction over the performance period, table 4.8 show performance metrics for

user who made at least one interaction with an item of the recommendable set of items during

the performance period.
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Table 4.8: Recommendation performance reported in literature of sequence-aware recommender

systems for the Movielens 25m dataset [Tang and Wang, 2018, Sun et al., 2019]. Performance is

obtained considering users that made an interaction with a recommendable item over the perfor-

mance period.

MAP@1 Recall@1 Recall@10 NDCG

Caser 0.2502 0.1232 0.5427 0.3062

SASRe 0.4026 0.2544 0.7136 0.4665

BERT4Rec 0.4785 0.344 0.7473 0.534

Sequence-aware RNN 0.2705 0.2705 0.87352 0.532

Furthermore, it is essential to consider the specific requirements and constraints of each

application when choosing the most suitable sequence-aware recommender system. While

attention-based methods offer several advantages, they may not always be the best choice for

every scenario. For instance, if computational resources or data are limited. Some relevant

factors to consider in the choice of the right approach include:

Problem domain and data characteristics: The choice of the recommendation approach

requires a thorough understanding of the problem domain and main data characteristics.

For instance, if the dataset exhibits strong temporal patterns or if the application requires

capturing the evolution of user preferences over time, RNN-based methods might be more

appropriate, as this method is more flexible to adjust to quick changes in user preferences.

Alternatively, if the main goal is capturing complex relationships between items or users,

methods like Caser or SASRe might be more suitable, as these focus on the relationship

between items embeddings.

Data availability: Attention-based models like BERT4Rec and SASRe require of extensive

pre-training to capture meaningful relationships in data, which is not possible for small and

medium size datasets. Alternatively, RNN-based methods and Caser require less data during

training and might be more effective where data is not vast.

Computational Resources and Training Time: The availability of computational resources

is a key constrain in the selection of a recommendation approach. While RNN-based methods

can efficiently handle large datasets, the training time of these can typically be performed in

commercial hardware. In contrast, although methods like SASRe and BERT4Rec may provide
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higher accuracy, these might require specialised hardware like GPUs for efficient training,

particularly in the pre-training phase of the embedding layers.

Recommendation Performance and Accuracy: While RNN-based methods can provide

accurate recommendations by capturing temporal dynamics and sequential patterns, as

shown in table 4.8, other methods like BERT4Rec might achieve better recommendation

performance in several scenarios.

Interpretability and Transparency: RNN-based methods offer more transparent insights

into user behaviours and preferences compared to attention-based models. Which might be

an important consideration where transparency and explainability are key requirements in

the application.

Ease of Implementation and Maintenance: While RNN-based methods can be relatively

straightforward to implement and maintain, other methods like BERT4Rec or Caser might

require more complex architectures and careful tuning of hyperparameters over time. How-

ever, the RNN-based approach might be more sensitive to changes in the underlying data

distribution and user preferences, requiring more frequent updates and retraining.

Robustness to Cold-start Problem: While most sequence-aware recommender systems

like RNN-based, and BERT4Rec alleviate the cold-start problem for new users in the system

due to their architecture to process sequential information in user-item interactions. Methods

like Caser might struggle more with the cold-start problem in compared to other sequential

approaches, due to its structure based in convolutional filters. Furthermore, attention-based

recommender might be the most flexible at handling new items in the system due to their

structure to effectively capture item-to-item relationships through the pre-training process.

Flexibility and Adaptability: Sequence-aware recommender systems are inherently

flexible and adaptable, making them suitable for various types of sequential data, including

implicit feedback and explicit ratings. In particular, the RNN-based proposed in section 4.2

does not require the extensive pre-training process that attention-based system like BERT4Rec

need. Making it suitable for faster implementations in production environments.

4.4 Conclusion

This work presents an innovative approach to make item recommendations for individual

customers while considering the order than previous purchases were made, all by using
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recurrent neural networks and data pre-processing methods traditionally used in the field

of natural language processing to make predictions of words. Although sequence-aware

recommender systems have been widely explored and used in fields where customer prefer-

ences change drastically in short periods of time, such as mobile app usage, and video games

applications such as the ones mentioned in section 4.1, to the best of our knowledge there are

no applications of sequence-aware item recommendations for the retail industry as the ones

presented in the datasets used section 4.3.4.

The main motivation of this work is performing item recommendations in settings such

as retail where matrix-completion like collaborative filtering and matrix factorisation ap-

proaches presented in section 2.4.2 do not perform well for to several different reasons, while

recommendation performance is at least still similar to the mentioned and widely used

methods, specially for the top of the recommendation list. For instance, user preferences

might change rapidly over time, or users may interact repeatedly with specific items without

providing explicit ratings.

The proposed sequence-aware recommender system in this work overcome these issues

and maintain predictive performance comparable to other recommendation techniques by

inherently assuming that items may be present in the purchasing sequence multiple times,

and all items, including the ones previously bought by users, may be contained in the

set of recommendable items. This change allows us to achieve two main goals: firstly,

improve customer engagement by identifying the best products for users, regardless of

whether these have been already purchased by users. Secondly, improve customer journey

by identifying which items are most likely to be purchased in sequential order, and provide

tailored recommendations with special offers.

Additionally, the cost of maintaining our recommender system in production environ-

ments is lower than maintaining matrix completion methods, at these need to be constantly

updated to account for new user-item interactions, whereas our method only considers this

change in the input data fed into the network, which is extremely convenient for businesses

and machine learning engineers. Furthermore, our method generates item recommendations

considerably faster than matrix completion techniques, at not needing to estimate preferences

for all users and all items simultaneously, but one user at the time instead.

However, although our method has achieved great performance in compared to the

baselines models outlined in section 4.3, and comparable performance against alternative
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sequence-aware recommendation techniques,it still has its limitations. As the final probability

for user-item interactions is estimated from the soft-maxed output layer of the recurrent neural

network, our methodology is prone to suffer selection bias induced from highly popular

items. This effect occurs at observing an extremely imbalanced number of interactions for

a specific item during training, which might not persist at prediction phase, and therefore

affecting the item ranking overall. Additionally, our methodology suffers severely from

cold start problems at introducing new items for ranking, as training targets introduced in

section 4.2.1 during data pre-processing are built from a specific period for each item. Finally,

as shown in table 4.5, our method might not be the best performing where the size of the

recommendation list for each customer is large, but rather in recommendation scenarios

where the goal is finding the top 1 best item to recommend based in the most recent data.

Our methodology presented in this work could be easily extended in different ways

to improve item recommendation performance, as the main focus of our approach is just

encoding and capturing information of previous purchases for each customer, we are so far

ignoring information from users and items characteristics, as well as potential hand-crafted

features that can be easily added to the input of the neural network or to any other model

that could be used to perform token prediction.
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Final Conclusions

5.1 Contributions

The first part of this thesis introduces the concepts of deep learning and representation

learning, and it explores several techniques used in research and industry to represent data

efficiently with the use of neural networks such as recurrent neural networks, bayesian

neural networks, and autoencoders. These techniques offer several advantages in data

representation with respect to hand-crafted feature engineering:

1. Reliability: These techniques can obtain reliable representations of complex high-

dimensional data distributions. This by simple connecting either probabilistic or recurrent

layers to the model to perform automatic feature extraction.

2. Scalable and flexible: Since the representations are obtained without human inter-

ventions, it is relatively simple to replicate these methods in multiple applications where

high volumes of data are available without requiring to allocate human labour to process

and analyse data, which is the case is most marketing applications.

3. Easy to implement: Representation learning techniques can be easily implemented

with the use of popular deep learning libraries such as Tensorflow or Pytroch which can

automatically perform the learning process with backpropagation for any differentiable

architecture.
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The second part of this thesis introduces two novel applications to obtain data represen-

tation for customer interactions and how these can be used to predict whether customers

are likely to make a next purchase (customer churn in Chapter 3), or likely to interact with a

specific item in the products catalogue (item recommendation in Chapter 4). These two chap-

ters show how customer transactions can be seen as sequential information to be analysed

with Bayesian and recurrent neural networks to produce insights about customers’ future

behaviour, without the need of creating additional hand-crafted attributes for customers as it

is traditionally done in most marketing applications.

However, although several representation learning methods have been proposed in the

literature, there are several challenges while implementing these techniques:

1. Interpretability: As almost all the methods presented in section 2.2 are based on the

training of either bayesian or recurrent neural networks, it is inherently difficult to associate

the distribution of network weights to particular characteristics of data, thus making it almost

impossible to give interpretable results of the representation space with respect to the data

itself.

2. Evaluation: There has not been enough research on how representation space methods

perform against hand-crafted feature engineering, besides comparing final model perfor-

mance in terms of accuracy and precision. And in general, achieving a unified framework

for comparison is still not clear. Although representation learning methods make sure that

data representations learnt to match the input data distribution and models trained with

representation only achieve good performance, it is still not clear which method is better in

general and for particular applications.

3. Experimentation: Most representation learning methods require large efforts of design

and experimentation, and the choice of model hyper-parameters and/or prior distributions

impacts directly the data representation obtained. Therefore, although these methods are

inherently robust and allow streamlining the analysis of complex high-dimensional data,

there is still some level of ambiguity and human input in the development of machine

learning applications with the use of representation learning.



5.2 Open questions for future work 106

5.2 Open questions for future work

It is well known that every new advancement in science starts with a new set of open

questions that are often harder to answer than the initial ones. This work introduces two

novel methodologies to obtain customer churn and item recommendation predictions for the

retail industry with the use of representation learning and deep learning techniques. Along

the way in the development of this work, several questions for further research were raised:

Use of attention mechanisms to find representations:

In just a few years the attention mechanism and transformers presented by Vaswani et

al. [Vaswani et al., 2017] have reshaped the way that most machine learning applications

work, their flexibility in finding general data representation in NLP and CV tasks allows

practitioners to implement these techniques as out-of-the-box solutions for several scenarios.

It is inevitable asking if the attention mechanism could be modified to find specific data

representation that led to customer insights, without necessarily having a specific application

in mind.

A unified framework to assess effectiveness of hand-crafted features against data

representations:

Nowadays, most of the research focuses in only one or the other approach to develop

new ML applications, without a robust comparison of which method is better at training

machine learning models besides comparing the final model performance of the task at hand,

and under which scenarios and applications which approach is better. Having a unified

framework to compare the effectiveness and efficiency of different approaches will lead to a

much better understanding of the field and its potential caveats for different applications,

and particularly when it is useful to combine both methods to maximise performance.

Multi-objective model predictions from data representations:

Several modern machine learning techniques aim to learn multiple objectives simultane-

ously during training, particularly deep learning techniques achieve this by modifying the

architecture presented in section 2.1.2 and include multiple output layers in their structure

and perform backpropagation with two or more loss functions simultaneously which can

be combined depending the task at hand. The learning of data representation for multi-task
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neural networks is not a widely explored field aside applications in NLP for document re-

trieval and text classification and summarising. Future work in marketing applications could

potentially explore the connection of learning representation to predict multiple customer

insights simultaneously, such as customer churn, customer lifetime value, and item purchase

intent with the use of the same model architecture.

The use of variational autoencoder to learn data representations in marketing se-

quences:

As stated in section 2.2.5 the variational autoencoder is a popular unsupervised learning

technique to learn data representations from complex data distribution, such as images.

Particularly the variational recurrent neural network (VRNN) [Chung et al., 2015] extend the

concept of the VAE to learn representations of sequential data, which could be particularly

useful in the applications presented in chapters 3 and 4 which analyse customer transactions

as sequential information via embeddings and neural networks. Further experimentation

with VAE and VRNN could potentially replace these layers in the proposed architectures to

achieve robustness in the work presented in this thesis, and their seamlessly extension to

other applications domains out of marketing sciences.
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Appendix 1: Pseudo-code for modelling customer

churn with bayesian neural networks.

Profusion is a data consultancy company based in London, UK, that provides data and

analytic services to a wide range of businesses in the retail and financial sectors across the UK.

Profusion uses different statistical and machine learning methods to identify customers likely

to churn and make item recommendations. The data used for the experiments in this work

is provided by Profusion, and the code and detailed methodology is restricted to Profusion

use only. Nevertheless, pseudo-code with all the necessary details for the methodologies

presented in Chapters 3 and 4 is provided in this section.
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Algorithm 1 Pseudo-code for modelling customer churn with bayesian neural networks.

Input: Customer transactional data presented in table 3.1 including ’Customer id’ and

’Purchase date’.

Output: Recurrent Neural Network to predict next customer event time.

Split data into training, testing, and validation datasets:

- Split customer set into two disjoint training and validation sets containing 80% and 20%

of customer’s data respectively.

- Split training customer transactions into two disjoint training and testing datasets w.r.t.

the selected analysis date.

Data processing:

1. Obtain time between subsequent purchases for each customer as tk,i = dk,i − dk,i−1.

2. Obtain sequence input vectors for each customer as TX =
⋃

k∈K tk ∪ tk,n′
k

3. Pad sequences the same length with a sliding window over each customer sequence and

assign the target event time as the immediate next arrival time in the sequence.

Model Training:

Repeat until convergence:

1. Initialise recurrent neural network with randomised weights and biases.

2. Apply network forward pass to the input sequences to obtain the estimated next arrival

time or each customer.

3. Compute the model loss by using the real observed and censored arrival times and the

estimated next arrival times.

4. Update weights and biases in the network.

Model Prediction:

1. Create input sequences for validation dataset as TX =
⋃

k∈K tk ∪ tk,n′
k

2. Apply forward pass of the recurrent model to obtain the next estimated time events.

3. Sample estimated next event time tk,j+1 from the posterior distribution of event times

for each customer to estimate λ̂k for each customer

4. Make predictions of estimated customer survival probability by obtaining Ŝk(t) =

exp(−λ̂kt)
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Appendix 2: Pseudo-code for modelling probabil-

ity of user-item interactions in a sequential-aware

framework.
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Algorithm 2 Pseudo-code for modelling probability of user-item interactions in a sequential-

aware framework.
Input: Customer transactional data presented in table 4.1 including ’Customer id’, ’Purchase

date’, ’Item id’.

Output: Item list recommendations for users.

Data Split:

- Split training w.r.t the set analysis date to get observation and performance transactional

data.

- Split total data into two disjoint sets of customers for training (80%) and validation (20%).

Data Pre-processing:

- With the observation transactional data, for each user in the dataset create Seq(uj) with

the time-ordered product ids of previous items purchased by user uj as stated in the data

pre-processing method in section 4.2.1.

- With performance data, for each user create the target vector

Yuj
= [yuj ,i1 , yuj ,i2 , ..., yuj ,i|I| ],

with user-item interactions in the performance period as stated in data pre-processing

section 4.2.1.

Model Training:

- Train the sequence-aware model via backpropagation with the architecture presented in

figure 4.1, the data obtained from the pre-processing step, and the binary cross-entropy

outlined section 4.2 as loss function.

Model Prediction:

- For each user, obtain the probability of interaction with each potentially recommendable

item P̂u = [P̂uj
(i1), ..., P̂uj

(i|I|)].

Ranking Process:

- For each user uj and item ik ∈| I ′ |, obtain the estimated uplift R(uj, ik) in probability

interaction as stated in the ranking mechanism section

R(uj, ik) =

[
P̂uj

(i1)

P (i1)
, ...,

P̂uj
(i|I′|)

P (i|I′|)

]

- For each user, recommend the top K items for which R(uj, ik) is the largest.
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