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Abstract

Facial neuromuscular electrical stimulation (fNMES), which allows for the non-invasive and physiologically sound activation
of facial muscles, has great potential for investigating fundamental questions in psychology and neuroscience, such as the
role of proprioceptive facial feedback in emotion induction and emotion recognition, and may serve for clinical applications,
such as alleviating symptoms of depression. However, despite illustrious origins in the 19th-century work of Duchenne de
Boulogne, the practical application of fNMES remains largely unknown to today’s researchers in psychology. In addition,
published studies vary dramatically in the stimulation parameters used, such as stimulation frequency, amplitude, duration,
and electrode size, and in the way they reported them. Because fNMES parameters impact the comfort and safety of volun-
teers, as well as its physiological (and psychological) effects, it is of paramount importance to establish recommendations
of good practice and to ensure studies can be better compared and integrated. Here, we provide an introduction to fNMES,
systematically review the existing literature focusing on the stimulation parameters used, and offer recommendations on how
to safely and reliably deliver INMES and on how to report the fNMES parameters to allow better cross-study comparison. In
addition, we provide a free webpage, to easily visualise INMES parameters and verify their safety based on current density. As
an example of a potential application, we focus on the use of fNMES for the investigation of the facial feedback hypothesis.
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Introduction

Facial neuromuscular electrical stimulation (fNMES)
has a long and fascinating history that can be traced back
to the pioneering work of nineteenth-century French
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electrophysiologist Duchenne de Boulogne. In his book
“Mécanisme de la physionomie humaine”, Duchenne (1862)
documented the use of faradic currents to elicit different
types of facial expressions (see Fig. 1). Charles Darwin
recognised the significance of Duchenne's use of electrical
stimulation for the study of facial expression and included
drawings made after Duchenne’s photographs in his book
“The Expression of the Emotions in Man and Animals”
(Darwin & Prodger, 1998).

More recently, fNMES (also called functional electrical
stimulation, FES, or transcutaneous electric nerve stimula-
tion, TENS, although these terms refer to partly different
frequencies and stimulation parameters) has evolved into a
versatile technique with a broad range of applications in both
clinical and non-clinical domains. For example, it has been
utilised as a therapeutic intervention to reduce pain (Johnson
et al., 2022) and to support recovery from idiopathic facial
nerve paralysis (Hyvirinen et al., 2008; Fargher & Coulson,
2017; Puls et al., 2020), where it is often paired with elec-
tromyography (EMG) to develop facial “pacing” technology
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Fig.1 A mid-eighteenth-century photograph depicting Duchenne de
Boulogne applying fNMES to his patient, from Duchenne (1862)

that matches the activation of paralysed muscles with that
of the unaffected half of the face (Rantanen et al., 2016;
Ilves et al., 2019). Non-invasive cosmetic procedures have
also been explored with fNMES to improve muscle thick-
ness and reduce age-related reductions in muscular mass
and collagen (Kavanagh et al., 2012; for review see, Abe &
Loenneke, 2019). Moreover, fNMES has emerged as a prom-
ising medium for artistic expression. For example, Arthur
Elsenaar’s performances involve the real-time control of
facial movements through the use of electrical stimulation,
often paired with a computer-generated voice, resulting in
a surreal and interactive performance experience (Elsenaar
& Scha, 2002). In addition, researchers have explored the
integration of fNMES with virtual reality applications to
enhance realism through combinations of visual, mechani-
cal, and electrical feedback (Kono et al., 2018; Khamis et al.,
2019).

Despite the groundbreaking and influential nature of
Duchenne’s early work and its many clinical, cosmetic, and
artistic applications that have since emerged, fNMES has
not been employed by modern-day psychologists—with
notable exceptions, such as the replication of Duchenne’s
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work in humans and its extension to chimpanzees, albeit
using invasive needle electrodes (Waller et al., 2006), and
the reduction of symptoms of depression through fNMES
over smiling muscles (Kapadia et al., 2019). This is regret-
table, as fNMES holds considerable potential for the inves-
tigation of many aspects of human cognition, such as the
facial feedback hypothesis’ (FFH) proposal that propriocep-
tive feedback from facial muscles to the brain can gener-
ate and/or modulate felt and perceived emotion (Hatfield
et al., 1993; Coles et al., 2019, 2022b). Indeed, in combina-
tion with surface electrodes, fNMES offers a non-invasive
means of selectively activating specific facial muscles, at
precise points in time, and for variable durations. In light
of this anatomical and temporal precision, fNMES may be
regarded as a methodological advancement compared to
other means that have so far been used to test the FFH, e.g.,
asking healthy participants to voluntarily pose facial expres-
sions (Ekman et al., 1983) or to hold a pen between the lips
or teeth (Strack et al., 1988; Wagenmakers et al., 2016), or
investigating felt emotion and emotion recognition in indi-
viduals presenting temporary (i.e., Botox, see Baumeister
et al., 2016; Davis et al., 2010; Neal & Chartrand, 2011) or
long-term (Moebius syndrome, see Rives Bogart & Matsu-
moto, 2010; Sessa et al., 2022) facial paralysis.

To encourage the use of fNMES to investigate aspects of
cognition and emotion, we provide an introduction to the
method, as well as detailed recommendations on how to
safely and reliably deliver fNMES using surface electrodes.
These recommendations are based on a systematic review
of the literature (published until November 2022) about
fNMES applied using surface electrodes to live humans, as
well as on our experience in the artistic (Elsenaar, 2010;
Elsenaar & Scha, 2002) and laboratory setting (Baker et al.,
2023). We also provide a Shiny app to easily calculate cur-
rent density based on a handful of stimulation parameters,
allowing researchers to verify the safety of their method-
ology and allowing the field to better compare parameters
between and analyse findings across fNMES studies. As an
example of a potential application of fNMES, we focus on
its use for the investigation of the FFH. We hope that these
recommendations will contribute to introducing fNMES to
a wider audience of psychologists and neuroscientists, thus
enlarging and enriching the toolset of techniques allowing
the investigation of the role of proprioceptive feedback and
other peripheral physiology signals in the formation and
modulation of affective and perceptive phenomena.

Delivering fNMES

From many points of view, the administration of electrical
stimulation to the face is no different from that to the body
(Maffiuletti, 2010; Doucet et al., 2012). As a result, the same
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underlying principles can be used with fNMES as well. Two
electrodes are placed over a facial muscle of interest and a
current is delivered which depolarises the muscle cell mem-
branes; once a threshold is passed, a motor action potential is
induced. However, despite its name, fNMES typically targets
the facial nerve innervating a muscle rather than individual
muscles themselves, as the former can be depolarised with
lower electrical intensities (Peckham & Knutson, 2005).

Reducing or limiting users' discomfort and muscu-
lar fatigue should be a top priority while using fNMES.
To achieve this, electrode placement over selected mus-
cles should be guided by careful consideration of muscle
anatomy and physiology (Cattaneo & Pavesi, 2014; Korb
& Sander, 2009; Pessa et al., 1998; Rinn, 1984), as well as
electrical stimulation parameters (pulse width, frequency,
intensity, waveform; see section “Systematic review”) for
an extensive list). In addition, it is advisable to take into
consideration and manage volunteers’ concerns about the
comfort of fNMES and its possible side effects in terms of
pain induction and loss of muscle control (Efthimiou et al.,
2022). The following section will provide an overview of the
electrical parameters, hardware, and safety considerations
when using fNMES.

Once the electrodes have been positioned and fNMES is
applied at intensities of motor threshold (MT, i.e., inducing
visible muscle contractions), participants typically report
no pain and low to medium discomfort levels. For exam-
ple, in a recent experiment (manuscript in preparation), 58
participants received 5 seconds of fNMES at MT (current
density 0.96) and were asked to report their level of discom-
fort on a scale ranging from O (“no discomfort at all”’) to 100
(“extremely uncomfortable”). When fNMES was applied
to the zygomaticus major muscle, the average discomfort
was 34.31 (SD=28.57), and when it targeted the depressor
anguli oris muscle it was 34.81 (SD =28.37). Similarly, Safi
(2020) found that fNMES delivered at MT was well toler-
ated over 12 sessions by eight patients, who on average rated
its level of discomfort as 47.8 out of 100. It is thus clear that
although there is large variability in the amount of discom-
fort reported by participants and depending on which facial
muscle is targeted, INMES delivered at MT is normally well
tolerated and only mildly uncomfortable.

Stimulation device

The stimulation device is an important component of a
safe and effective fNMES, and it should follow the IEC
60601-1 Medical Electrical Equipment Guidelines (bit.
ly/3YVpbFz). To administer fNMES, a simple handheld
TENS unit may suffice (Warren, 2021), which typically
allows for the stimulation of two facial areas at the same
time and costs approximately £30-100. For greater control
over stimulation parameters, it is however recommended to

use a computer-controlled current density stimulator per
muscle—their cost is in the range of £7000. It is worth not-
ing that while these costs may surpass those associated with
alternative facial manipulation techniques, these devices are
reusable and serve diverse research purposes, including pain
research and the identification of motor-evoked potentials
(Pilurzi et al., 2013; Vanden Bulcke et al., 2013).

The strength of INMES is determined by electrical resist-
ance (or impedance), which varies primarily by tissue type,
tissue health, tissue cleanliness, electrode quality, and elec-
trode application quality. The electric conductivity between
the skin and the electrode may decrease over time as the
conductive gel covering the electrode dries or the electrode
partially detaches from the skin. The electric stimulator
automatically following Ohm’s law (Prutchi & Norris, 2005)
can account for changes in electrode impedance.

Two types of stimulators exist: Constant-current stimula-
tors maintain current by adjusting to changes in impedance
by increasing or decreasing the voltage. Voltage-regulated
stimulators, on the other hand, maintain a constant voltage
while changing the current as the impedance changes fol-
lowing Ohm’s law. Because it tackles the issue of charge
balancing, constant-current stimulation is a safer technique
of electrical stimulation, but eventual changes in electrode
attachment/impedance can result in unwanted increases in
current density. Furthermore, when subjects receive con-
stant-current rather than constant-voltage stimulation, they
report lower levels of discomfort (Nag et al., 2015; Wash-
burn et al., 2014). Therefore, constant-voltage stimulators
such as BIOPAC’s STM200 (bit.ly/3Fa3xGh) may be better
suited for research investigating pain induction. In contrast,
we have been using the DS5 isolated bipolar constant-cur-
rent stimulator by Digitimer (bit.ly/30XyLDL), in com-
bination with an Arduino-controlled digital-to-analogue
converter. Nearly identical stimulators have also been used
for fNMES by others (Paracampo et al., 2017; Pilurzi et al.,
2013, 2020; Ramalho et al., 2022), and descriptions of simi-
lar control modules have been presented elsewhere (Pfeiffer
et al., 2016).

Muscle selection

The human face comprises 17-20 paired muscles (depend-
ing on how they are counted; for a comprehensive review,
see Cattaneo & Pavesi, 2014). The intricate and often subtle
movements of these facial muscles can be systematically
classified into distinct “action units” (AUs) through the
use of the Facial Action Coding System (FACS; Friesen &
Ekman, 1978). Individual AUs, or specific combinations of
AUs, correspond to prototypical emotional facial expres-
sions. For instance, AU12, represented by the zygomaticus
major muscle, consists in the pulling of the mouth corners
upwards and backwards and is typically associated with
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happiness, especially if it occurs together with AU6, rep-
resented by the orbicularis oculi, and results in the lifting
of the cheeks. Therefore, when researchers are tasked with
selecting specific facial expressions to generate or target
particular facial muscles, FACS serves as an invaluable
research tool. It offers guidance to researchers by providing
a clear framework for understanding the general location
and expected movements of the facial muscles, facilitating
the precise depiction of emotions and expressions in their
studies. Finally, it has been used to guide researchers in sev-
eral studies applying fNMES to the face (Baker et al., 2023;
Kapadia et al., 2019; Warren, 2021; Zariffa et al., 2014).
We note that an advantage of fNMES, compared with the
more commonly used facial EMG technique, is that correct
electrode placement can be verified immediately through
visual inspection.

Electrodes

Surface fNMES can be delivered with adhesive, plate, con-
ductive rubber, or vacuum electrodes—although adhesive
single-use electrodes may be preferred, as they also do not
require the application of a conductive gel. A current flow
requires at least two electrodes, namely a positive (anode)
and a negative (cathode) pole. Smaller electrodes provide
greater precision, but increase the danger of skin burns, as
they lead to greater current density. When using fNMES in
pulsed patterns, the total current delivered into the body over
a given period must be taken into account. Experimenters
should be cautious when calculating the heat generated by
their parameters, as this could result in skin burns (see sec-
tion “Safety recommendations for fNMES”). To increase
adhesion of the electrodes, male participants should be
clean-shaven, and the skin of all participants where the
electrodes are to be placed should be gently cleansed with
alcohol wipes. Furthermore, individual differences should be
considered, for example, participants who have high levels
of subcutaneous fat over the muscle requiring larger elec-
trodes (Doheny et al., 2008, 2010).

The configuration of electrodes determines where they are
to be placed. In a monopolar configuration, the cathode is
placed on the muscle of interest, and the anode is put on the
neighbouring fascia or tendon. As a result, the monopolar
arrangement is better suited to stimulating a wider surface
area, but this configuration can nevertheless lead to highly
effective and circumscribed muscle activations (Elsenaar,
2010). In contrast, both electrodes are situated closer to
each other in the bipolar design, around the targeted mus-
cle, and specifically near the motor point (MP), where the
motor nerve enters the muscle (Mortimer & Bhadra, 2018;
Peckham & Knutson, 2005). As a result, the current from
the negative electrode is more concentrated and reaches the
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closest positive electrode. The bipolar design is more effec-
tive for localised stimulation, as it is the most commonly
used for fNMES (see Table 1).

Motor point identification

It is recommended that experimenters target the muscle
motor point (MP), which is where the nerve innervates the
muscle belly, to minimise discomfort and promote maximal
muscular contraction (Peckham & Knutson, 2005). This is
because the muscle has a higher threshold than the nerve,
requiring a higher current/voltage to elicit action potentials
(Gilman & Arbor, 1983). With the smallest stimulation
input, activation of the skin area corresponding to the MP
induces the strongest contraction. Gobbo et al. (2014) pro-
posed a reliable approach for locating the MP on trunk and
limb muscles, which involved applying low-frequency and
low-intensity stimulation to different parts of a muscle using
a pen electrode and visually inspecting and identifying the
spot with the highest visible contraction—targeting the MP
will also increase current, compared to adjacent areas of the
skin, when using a constant-voltage stimulator. However,
it may be difficult to detect a specific MP in facial mus-
cles, since they have complex over- and under-lapping in
the nerve branches and neuromuscular junctions, that also
vary in clusters among the different muscles (Happak et al.,
1997; Kehrer et al., 2018; Lapatki et al., 2006). In case the
MP cannot be located—due to a lack of a pen electrode,
lack of preparation time, or unusual anatomical configura-
tion—the recommended position for surface EMG recording
may be used instead, as it should generally correspond to
the MP. For information on how to position electrodes for
EMG, see Fridlund and Cacioppo (1986) and Fig. 2. Bear

Frontalis

Orbicularis Oculi

Zygomaticus
major

Depressor Anguli
Oris

Fig.2 Ideal electrode positions for bipolar fNMES are similar to
those for facial EMG (see guidelines by Fridlund & Cacioppo, 1986).
For a monopolar configuration, the active (cathode) electrode should
be placed in the centre of these ideal locations (on the motor point),
while the reference (anode) is placed distally
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in mind, however, that electrode positions and distances
between electrodes might have to be changed slightly due
to intra- and inter-individual differences in face anatomy, age
(D’Souza & Ng, 2020), and gender differences (Paes et al.,
2009), and depending on the electrode size. For example, the
positioning on the left side of the face will not exactly repli-
cate on the right side, as the muscle size and nerve innerva-
tion may differ (Waller et al., 2006, 2008).

The correct placement of fNMES electrodes can be deter-
mined by gradually increasing stimulation intensity until
twitches of the intended muscle are seen. This can be done
easily and rapidly by visual inspection by the experimenter,
for example at the beginning of an experiment. Another
solution is to video-record the participant’s face (e.g. with
a webcam) and to analyse the video with automatic facial
action coding, for which several software packages—includ-
ing some open-source ones—exist (Baltrusaitis et al., 2018;
Cheong et al., 2021; Dupré et al., 2020). Finally, additional
electrodes might be placed near the fNMES electrodes to
record EMG, although this can be a challenge given the
small facial area and will require cleaning the signal from
the important fNMES-induced artefacts (Rantanen et al.,
2018; Baker et al., 2023).

fNMES parameters

In the following section, we introduce some of the fun-
damental parameters that affect the efficacy and safety of
fNMES, and that should always be reported in the NMES
literature (Maffiuletti, 2010): waveform shape, frequency,
pulse width, and intensity. These parameters were then
extracted, when they were reported, from published studies
and collected in a systematic review (see section “Systematic
review” and Table 1). It will be followed by our recommen-
dations to help the inexperienced user.

Waveform

Three types of currents are typically used to deliver charge
to organic tissue (see Fig. 3): direct (unidirectional, or
monophasic), alternating (bidirectional or biphasic), and
polyphasic (repeated uni- or bidirectional). The choice of
current influences the effectiveness and tolerability of the
stimulation. Monophasic waveforms stay in a single phase
with a unidirectional pulse from baseline to positive or nega-
tive—although this resembles direct current, periodic inter-
ruptions can be included. Biphasic waveforms, on the other
hand, are bidirectional, with one positive and one negative
phase. Lastly, polyphasic waveforms are similar to bipha-
sic waveforms but have three or more phases in a burst.
Monophasic and biphasic waveforms have been reported to
induce stronger muscle contractions and to be less fatiguing
than polyphasic ones (Laufer et al., 2001). In addition, the

biphasic waveform is considered safer than the monopha-
sic one, as the charge is balanced, and the chance of tissue
damage due to reverse electrolysis is minimised (Nag et al.,
2015). Biphasic waveforms should therefore be preferred
over monophasic ones for {NMES.

The waveform can be sinusoidal, rectangular (i.e., square;
both symmetrical or asymmetrical are possible in the case of
bi- and polyphasic stimulation), or of sawtooth shape (Laufer
et al., 2001). However, few studies have investigated this
issue with facial muscles. Ilves et al. (2020) investigated
four waveforms (square wave, square wavelet, sine wave,
and sinusoidal wavelet) on the frontalis muscle in terms of
subjective comfort and magnitude of forehead movement.
The authors report that all waves performed equally well
and did not differ significantly in terms of reported com-
fort—other facial regions may differ due to anatomical dif-
ferences, such as the amount of subcutaneous fat (Petrofsky,
2008). Another study from the same group also found no
differences between a square wave and a sinusoidal wavelet
in movement production or perceived discomfort (Makela
et al., 2020). To date, square wave signals are the most com-
monly used, as they can be implemented by most commodity
NMES devices (Pfeiffer et al., 2016).

Frequency

The frequency of NMES describes the number of pulses
per second and is measured in hertz (Hz) for alternating
current. Frequency is an important parameter for comfort,
quality of muscle contraction, and rate of muscle fatigue.
The choice of frequency depends on the targeted muscle,
the type of fibres, and fNMES stimulation parameters. High
frequencies (> 50 Hz) are typically more comfortable and
produce stronger and smoother contractions, but can lead
to faster muscle fatigue (Lynch & Popovic, 2008; Reed,
1997). Low frequencies (< 20 Hz) should be avoided, as
they lead to greater discomfort (Sluka & Walsh, 2003) and
the pulses can be individually perceived by the partici-
pant—low frequencies induce transient tension (twitches).
Recently, there has been growing interest in very-high-fre-
quency NMES outside of the face, such as the trunk and
limbs of the body, using 100250 Hz (Doucet & Mettler,
2018; Grosprétre et al., 2017; Papcke et al., 2018) as well
as frequencies in the kilohertz range (Vaz & Frasson, 2018),
as they may evoke greater central nervous system (CNS)
changes by primarily recruiting sensory axons (Mang et al.,
2010). To date, there is no consensus on the best frequency
for fINMES, with studies using 25 Hz (Pilurzi et al., 2013,
2020), 60 Hz (Zariffa et al., 2014), and up to 250 Hz (Ilves
et al., 2019); see Table 1. Based on the literature and per-
sonal experience, we recommend frequencies in the 50-100
Hz range, as they are well studied and elicit a smooth vis-
ible motor contraction.
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A.  Pulse width B.  Biphasic pulse width C.
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Fig.3 An example of a square wave in three different phases: A monophasic, B biphasic, C polyphasic

Pulse width

To depolarise the axons of the facial nerve, a minimum
amount of current must be delivered over time. This is
defined by the pulse duration, also called the pulse width.
The pulse width is the time a pulse is “on”, delivering the
current, which is visualised as an increase from baseline
to maximum amplitude (Fig. 3). In monophasic stimula-
tion, the pulse duration is the on-time for a single pulse
in the positive phase, whereas for biphasic stimulation the
pulse duration combines both positive and negative phases
(referred to as “biphasic pulse width” below). Pulse width
varies across studies but typically ranges between 50 and
400 microseconds (ps), which is considered a short pulse
width. Outside of the face, short pulse widths are thought
to mainly recruit motor axons, whereas wide pulse widths
(> .400) are thought to primarily recruit sensory axons
and therefore engage the CNS to a larger extent, and more
accurately mimic voluntary muscle movement (Arpin et al.,
2019; Bergquist et al., 2011; Lagerquist & Collins, 2008;
Maffiuletti, 2010). Further, there is an interest in pairing
wide pulses with high frequencies (Baldwin et al., 2006;
Blouin et al., 2009; Neyroud et al., 2019). How this applies
to facial muscles remains unknown, as this research has been
conducted on skeletal muscles outside of the face, and there-
fore it is currently unclear whether and how its results also
apply to facial muscles. In addition, one should be careful to
combine wide pulse widths with high stimulation frequen-
cies, as this also increases current density and therefore can
quickly lead to exceeding safety limits (see below).

Intensity

The intensity of NMES is generally reported in milliamperes
(mA). Three levels of intensity are of particular interest:
(1) at low intensities, subjects report tingling sensations
when their sensory threshold is reached; (2) higher inten-
sities result in visible muscle twitching, which marks the
motor threshold; and (3) the functional threshold is reached
at even higher intensities, leading to full muscle contractions
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and (depending on the site of stimulation) limb movement
(Insausti-Delgado et al., 2021; Smith et al., 2003). The
greater the intensity of NMES, the greater the number of
motor units recruited, leading to stronger muscle contrac-
tions and stronger afferent feedback (Carson & Buick, 2019;
Insausti-Delgado et al., 2021).

For fNMES, between 3 and 9 mA is typically employed
(Zarifta et al., 2014), although higher intensities have been
used—for example, Safi et al. (2017) used up to 78 mA. The
intensity of fNMES largely depends on other parameters,
such as waveform, pulse width, duration, and electrode size.
In line with this, Ilves et al. (2019) investigated the toler-
ability, perceived sensation, and visible muscle contraction
of fNMES at different intensities. fNMES was applied to
four different facial muscles (orbicularis oculi, frontalis,
zygomaticus major, and orbicularis oris), and intensity was
increased in steps of 0.5 mA to a maximum of 10 mA. Par-
ticipants started to perceive the stimulation at 1-1.5 mA
(sensory threshold) and did not begin to experience discom-
fort until 7 mA was reached. Further, muscle contractions
were observed in the forehead, cheek, and mouth at 2, 4, and
3 mA, respectively. In our research (Baker et al., 2023), we
have applied fNMES at the motor threshold level, typically
in the range of 10 to 35 mA (current density 0.39-1.36),
which was well tolerated and resulted in low to medium
levels of discomfort.

Safety recommendations for fNMES

In this section, we summarise the main risks to participants
when receiving fNMES. In the Supplementary Materials,
we provide the necessary formulas to compute current den-
sity as the root mean square of instant current per cm?, as
international guidelines recommend not exceeding a wave-
form power of RMS [root mean square] 2 mA/cm?. Finally,
we provide a webpage (bit.ly/31v78Z1) that allows users to
rapidly verify, by entering a handful of parameters (pulse
amplitude, width, and frequency, as well as electrode area),
how much current is injected by a specific NMES procedure,
and whether it follows safety guidelines.
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fNMES is a technique that poses certain risks, as is the
case with any technique applying an electrical current to
the body (Kono et al., 2018). First, to ensure safety, it is
recommended to abstain from using fNMES on individuals
who are pregnant, have implanted electrical devices such
as pacemakers, have a history of epilepsy, have recently
undergone facial surgery, or have sensitive or broken skin.
Second, the parameters, i.e., the voltage/current amplitude,
pulse width, waveform shape, and duration of the conduc-
tion, must be carefully considered to provide safe and com-
fortable stimulation.

The most common risk associated with fNMES is the
potential to induce skin irritation resulting in temporary
marks due to heating. From our experience and according
to the literature, the most common side effect of fNMES is
skin irritation. Indeed, when using fNMES, Kavanagh et al.
(2012) reported redness of the skin (under the electrode) in
all subjects, which faded and disappeared completely within
20 minutes, whereas other electrical stimulation techniques,
such as transcranial altering/direct current stimulation, have
been known to induce phosphenes, skin lesions, and con-
tact dermatitis (for review see Matsumoto & Ugawa, 2017).
Therefore, INMES may be considered safer than other elec-
trical stimulation techniques.

In extreme cases, there may be burns due to joule heating:
when electricity meets resistance to flow, the area begins
to heat, thereby causing electrical burns (Balmaseda et al.,
1987; Walls et al., 2018). To minimise this risk, an appropri-
ate electrode should be considered (see below). Given that
the concern for burns is of significant importance to partici-
pants (Efthimiou et al., 2022), it should also be addressed
early in the laboratory session to ensure that participants
feel at ease.

To ensure participants’ safety, one must follow the gen-
eral guidelines that have been proposed by the Interna-
tional Electrotechnical Commission (IEC) and the Interna-
tional Commission on Non-Ionizing Radiation Protection
(ICNIRP)—specifically, that a waveform does not exceed a
power of RMS 2 mA/cm?. The RMS per electrode area of
fNMES should be calculated to stay within safety param-
eters (2 mA/cm?, as described by the safety guidelines, EN
60601-2-10:2000) and to facilitate comparison across stud-
ies. (See the app below, and Supplementary Material for
corresponding formulas.) As an example, a researcher may
utilise disposable electrodes of Ag/AgCI measuring 1.6 X
1.9 cm (3.04 cm? surface area) to administer INMES. During
each trial, a 500 ms-long pulse train of 30 biphasic pulses
of a square waveform is delivered at 60 Hz, with a sym-
metrical pulse width of 50 ps (biphasic pulse width 100 ps)
and an off period of 17 ms between each biphasic pulse. The
total input for the stimulation period at the motor threshold
(25 mA, averaged over participants) will then be .64 RMS
mA/cm?. Increasing the frequency to 70 Hz will result in

35 biphasic pulses with shorter off periods of 14 ms and a
greater current density of 0.69 RMS mA/cm?. As a rule of
thumb, human fNMES research aiming to produce visible
muscle movements should use electrodes with a surface area
of at least 2.5 cm?. This is because most fNMES applications
will use a minimum pulse width of 50 ps, a frequency of 50
to 100 Hz, and amplitudes between 10 and 50 mA. For these
parameters, electrodes should have a surface area of 0.36
cm? (up to 10 mA at 50 Hz) to 2.5 cm? (up to 50 mA at 100
Hz); within that range, we recommend the larger electrodes
for safety reasons. Most importantly, current density levels
should be below the RMS 2 mA/cm? threshold and verified
using the Shiny app provided (see below).

Note that since the RMS of a waveform is the square
root of the mean of the square of each sample, adding more
pulses with the same characteristics does not affect the
RMS value. Therefore, the RMS will remain constant inde-
pendently of the number of pulses in a train. Nevertheless,
care should be taken when estimating the safety of fNMES
applied for long periods, as joule heating (see Formula 1
in Supplementary Material) might occur. Therefore, the
total duration of the stimulation should be multiplied by the
power of the waveform as described by its RMS. The IEC
standard also provides a useful guideline for the safety zones
according to stimulation time and current applied to the skin.
Following these guidelines provides an initial account of the
most common risks and enables us to stay within interna-
tional guidelines.

A Shiny app for designing and visualising
safe fNMES parameters

To facilitate the computation of the current density as RMS
mA/cm?, and to help visualise a train of fNMES pulses, we
have created a user-friendly app running in Shiny, an open-
source R package. The app (see Fig. 4) can be accessed
under this link: bit.ly/31v78Z1, and the source code of the
app is available on GitHub (bit.ly/3JPvOou).

On the top left-hand side of the Shiny app [1], enter
the stimulation intensity in mA, the pulse width in ps,
the electrode area in cm?, the duration of the pulse
train in seconds, and the sampling rate for plotting (the
default is 100,000); pick between cycle duration and
cycle frequency and enter the corresponding value; pick
between the pulse width modulation (PWM) and sample-
wise method (PWM should be preferred, although both
methods will give the same mA RMS/cm?). The bottom
left-hand side [2] shows a graphical representation of
the stimulation parameters—be aware of the difference
between pulse width and biphasic pulse width. As soon
as you enter your parameters, the plots on the centre of
the app [3] will visualise the form of a biphasic pulse with
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NMES parameter calculator

=== .
Curront amplitude of the pulses in mA: i A Calculation results:

Pulse Width in microseconds:
Biphasic pulse:
Electrode Area in cm2.

Duration of the pulse train in seconds:

Sampling rate for plotting:

urrentWave

Choose a your preferred input:

Cycle_duration @ Cycle_trequency

Input value:

Choose a method:
PWM @ Sample-wise

Train of pulses:
Graphical of the

L=t |
19
Biphasicpulse 1 2 '
Width [us e

. H
Current amplitude [mA] 3

— -

' '
' 4 '
' '
PWM current per DutyCycle (mA} Lrms per slectrode area (mAcm2)

(1) 0.5505443

Biphasic pulse and off period:

Pulse train duration [s]

Fig.4 A screenshot of the Shiny app allowing us to compute current density and to visualize stimulation waveforms

and without the off period, as well as the whole train of
pulses. Finally, the top right part of the app [4] outputs
the calculation results: the delay between biphasic pulses,
the RMS of the current in mA, the current per duty cycle,
and most importantly the RMS of the current per elec-
trode area. The latter output is the current density—be
aware that if this exceeds 2 mA RMS/cm?, extra atten-
tion should be paid not to cause damage to the skin. Be
aware that the app assumes a mono- or biphasic square
waveform—it does not work for other waveforms, like
the square wavelet and sinusoidal wavelet used by Ilves
et al. (2020).

Systematic review

To gain an overview of the stimulation parameters used
in the field, and to compute current densities allowing a
better cross-study comparison, we conducted a systematic
review of the fNMES literature using surface electrodes in
humans, published up to November 2022. We also coded
the goal of each study using rough categories, allowing us
to investigate which aspects of cognition and/or emotion
were studied the most/least. The Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
statement guided the conduct of this systematic review
(Page et al., 2021).

@ Springer

Search strategy

We searched two databases, the Web of Science and Scopus,
for the terms ( ( TITLE-ABS-KEY ( functional AND electri-
cal AND stimulation ) OR TITLE-ABS-KEY ( neuromuscu-
lar AND electrical AND stimulation ) OR TITLE-ABS-KEY
( nmes ) OR TITLE-ABS-KEY ( electrical AND muscle
AND stimulation ) OR TITLE-ABS-KEY ( electrical AND
nerve AND stimulation ) ) AND TITLE-ABS-KEY ( face )
OR TITLE-ABS-KEY ( facial ) ), which resulted in a total
of 2109 manuscripts (see Fig. 5). This number was reduced
to 885 after filtering, removal of duplicates, and manuscripts
with no abstract.

Eligibility criteria

The systematic review employed a two-round screening pro-
cess conducted by three coders (authors TE and SK, plus
a trained research assistant). Initially, the coders reviewed
the abstract of each manuscript, adhering to specific criteria
for rejection. Manuscripts were rejected if they (1) did not
involve human subjects, (2) did not involve surface electrical
stimulation on the face (excluding the neck and scalp), or
(3) only presented results from cadavers or fully anaesthe-
tised patients. Manuscripts that were deemed uncertain in
relevance were included for further evaluation in the second
round of screening.
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J { Identification of studies via other methods
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Records identified from:
Authors own knowledge = 2

Records excluded (n = 584)
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Fig.5 PRISMA flow diagram depicting the information at the different phases of the systematic review. The parameter table and R code to com-

pute current density are available on OSF (bit.ly/3faUYkP)

Out of the initial 885 articles, 190 were assessed for eli-
gibility by all three coders, resulting in a substantial level
of inter-rater agreement (calculated in R, average Cohen's
kappa=.65). Any discrepancies were resolved through dis-
cussion. Among the initial 885 manuscript abstracts, 301
were considered relevant, but only 254 were accessible. The
second screening phase was carried out on these 254 articles,
with 64 of them being triple-coded. This round also resulted
in substantial inter-rater agreement (Cohen's kappa=.71).
We then added two additional articles that were known to
the authors, bringing the total number of articles to 136.

Data extraction

Next, information related to fNMES parameters was
extracted from these 136 articles and divided among the
three coders. A number of decisions were taken for manu-
script coding: (1) We restricted the study goal categories

CLINT3 LEIT3

to “facial paralysis/weakness treatment”, “cosmetic”, “pain
relief/induction”, “emotion/mood modulation”, “bruxism
relief”, “blink reflex”, and “other”. (2) If several electrode
sizes were used, we noted the smallest one; (3) if electrode
size was not provided, we tried to recover it from other

sources—for example, Ilves et al. (2019) and Safi et al.

(2017) show photos allowing us to estimate the approxi-
mate electrode size, while other manuscripts provided the
brand name of the electrodes, allowing us to verify the exact
size with an online search. (4) When the waveform was not
specified, e.g., it was only described as “symmetrical” (e.g.
Safi et al. 2018), nothing was entered in the table unless we
were able to verify what waveform the stimulating device
delivered (e.g., Ferreira et al. 2017 used Neurodyn Sapphire,
which according to its user manual uses a square wave). (5)
In the case of polyphasic waveforms (Rantanen et al. 2018;
Ilves et al., 2020), we provided the frequency of the pulse
train, and not of the pulses inside of polyphasic “packages”.
(6) If several amplitudes were used, we noted the largest
one. (7) Due to the large variety in stimulation sites, some
specifying muscles and others nerves, we used a broad clas-
sification system of upper, middle, and lower face (Nguyen
& Duong, 2023).

To ensure accurate information extraction across all cat-
egories in the table, we had all three coders extract data
from the same set of 35 articles. Disagreements in categoris-
ing the experimenter's goal accounted for 34.29% of cases,
while identifying the stimulation device yielded a 5.71%
disagreement rate. The discrepancy for electrode surface
area reached 11.43%, and the average disagreement for all
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stimulation parameters (including pulse width, shape, and
duration) was 25.36%. In the case of the stimulation site,
where various muscles were listed, we employed a com-
prehensive classification system grouping them into upper,
middle, and lower facial regions as per Nguyen and Duong
(2023). All disagreements were settled by verifying descrip-
tions in the articles and through discussion among the cod-
ers. The full table was also verified by the first author. Once
completed, the table was loaded into R, where we computed
the duty cycle, Irms/cm?® based on the formulas provided
below (section “Formulas”). Unfortunately, because most
manuscripts failed to report one or more of the stimulation
parameters, we were only able to compute the current den-
sity in eight cases.

Findings

We first report an overview of the review’s findings based
on study goals and muscles targeted, before summarising
the focus of the review, i.e., the extraction of stimulation
parameters and the computation—when possible—of cur-
rent densities.

We found that most studies (33 out of 136, i.e., 24.26%)
had used fNMES for pain relief; 22 studies (16.17%) used it
to recover muscular function after facial paralysis; 18 studies
used it to invoke a blink reflex (13.24%), five studies (3.67%)
used it for bruxism recovery, three studies (2.20%) to induce
modulation of mood and/or emotion (Goto et al., 2018; Kapa-
dia et al., 2019; Zariffa et al., 2014), and three studies (2.20%)
to ameliorate facial appearance (Kavanagh et al., 2012). The
majority of studies (51, 37.5%) had various goals, e.g., they
investigated the effects of variations in fNMES parameters
on physiology and subjective reports (Ilves et al., 2020; Ran-
tanen et al., 2018), and were thus classified as “other”.

Various muscles were stimulated, including the fronta-
lis, orbicularis oculi, orbicularis oris, zygomaticus major,
depressor anguli oris, and masseter muscles. Overall, most
studies (36, 26.47%) stimulated a combination of the upper,
middle, and lower face, followed by 31 studies (23.13%)
that stimulated the upper face (mainly eye region and fore-
head), 22 studies (16.17%) that stimulated the middle face
(focusing mainly on the cheek area), and finally 18 studies
(13.28%) that stimulated the lower face (mostly around the
chin and lower mandibular branch of the trigeminal nerve).
The most popular choice of pulse type was biphasic (25,
18.38%), followed by the monophasic pulse (19, 13.97%),
although the majority of studies did not report the pulse
type used. Electrode surfaces varied greatly from 0.03 to
78.5 cm?, with no common size observed. The preferred
biphasic pulse width was between 10 and 100 ps (11 studies,
8.08%), and the second most frequent biphasic pulse width
was between 101 and 200 ps (10 studies, 7.35%). Cycle
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frequencies varied from 0.1 to 10,000 Hz, but most studies
employed a frequency between 10 and 100 Hz.

A major goal of this review was to compute the maximum
current density utilised by each study, as this provides a unit
of stimulation intensity that is comparable across studies.
However, only 8 out of 136 studies (5.88%) provided the
information necessary to compute current density. In con-
trast, 90 studies (66.17%) did not provide electrode surface
in cm? (nor could it be otherwise recovered, e.g., by esti-
mating based on figures), and 91 studies (66.91%) did not
provide the stimulation amplitude in mA (only stating that
stimulation was at motor threshold). The inconsistency and
variability with which the NMES parameters are typically
reported is a known problem which has been pointed out
before (Maffiuletti, 2010). Scholars are therefore urgently
invited to always provide as much information as possible
about their INMES methods (Pfeiffer et al., 2016), especially
about muscle or muscle group targeted; type, size (in cm?),
and placement of electrodes; stimulation amplitude in mA;
pulse type; waveform; pulse width and (if it applies) biphasic
pulse width; frequency of the stimulation train (unless single
pulses were provided); and duration of stimulation train in
seconds. Moreover, with the help of the Shiny app we pro-
vide, authors can compute and provide the maximum current
density of their fNMES, which serves both as a measure of
effect size allowing cross-study comparison, and as a verifi-
cation of participant safety in terms of international thresh-
olds (see Table 1 or the table following bitly.ws/UINU).

Recommended fNMES parameters

Based on the literature (see Table 1), our own experience
(Baker et al., 2023; Elsenaar, 2010; Elsenaar & Scha, 2002),
and the characteristics of most commodity NMES devices,
we recommend the use of the following parameters to reli-
ably and safely induce facial muscle contractions with
fNMES, while minimizing the risk of inducing discomfort in
participants: disposable Ag/AgClI electrodes with an approx-
imate surface area of 3 cm? (e.g., see 1.6 X 1.9 cm Ambu
blue sensor electrodes bit.ly/3yVRr05), a pulsed biphasic
current with square waveform, a frequency of 50-70 Hz,
pulse width of 10-100 ps, and a current that is large enough
to induce visible contractions but not so high as to induce
discomfort or pain. Importantly, changes in one or several
of these parameters (both in isolation and in combination)
can have dramatic effects on the efficacy, comfort, and safety
of fNMES. For example, the same current will have greater
effects when increasing pulse width and/or stimulation fre-
quency. Therefore, caution should be used when setting up
a new experiment, and the greatest care must be taken to
verify that safety thresholds are not exceeded (see section
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“Safety recommendations for INMES”). However, at times
it can be challenging to obtain localised muscle contractions
where the electrical current remains confined to the targeted
muscles without spreading to adjacent ones. This can be
assessed through visual inspection or by asking participants
to self-report their sensations and pinpoint whether they feel
the muscular response exclusively in the desired area. None-
theless, in certain instances, achieving such precision in
muscle contractions may prove difficult due to variations in
nerve branching and the presence of subcutaneous fat in the
participant's face (Maffiuletti, 2010). Experimenters should
therefore oversample and expect that some participants can-
not be tested, or if tested will produce low-quality data.

Testing the FFH with fNMES

As shown in Table 1, the majority of studies have used
fNMES as a method of acute or chronic pain relief—the
underlying neurological mechanism was suggested by the
gate control theory (Melzack & Wall, 1965). Five studies have
investigated the use of fNMES to recover muscular function
after Bell’s palsy or other forms of facial paresis (Cui et al.,
2021; Makela et al., 2020). The goal of some studies was
to further explore the physiological and subjective effects
of varying fNMES parameters, such as the waveform (Ilves
et al., 2020; Rantanen et al., 2018). Surprisingly, only three
studies have used fNMES to modulate mood and/or emotion
(Goto et al., 2018; Kapadia et al., 2019; Zariffa et al., 2014),
and thus investigate aspects of the facial feedback hypothesis
(FFH), despite the great potential that this technique has to
help investigate aspects central to psychological mechanisms
and theories, such as embodied cognition and sensorimotor
simulation (Halberstadt et al., 2009; Niedenthal, 2007; Wood
et al., 2016). In the following section, we briefly review the
FFH and outline why fNMES may be useful to study it.

The FFH posits that the engagement of facial muscles
conveys proprioceptive information to the brain, where it
can have (at least) two types of effects (Coles et al., 2019,
2022b; Hatfield et al., 1993). First, the feedback from facial
muscles can initiate or modulate one’s emotional experi-
ence; for example, you may feel happier when posing a
smile and sadder when frowning (Adelmann & Zajonc,
1989; Coles et al., 2022a, b). Second, facial feedback can
alter the processing of affective stimuli and can contribute
to the accurate and efficient processing of someone else’s
emotional facial expressions, as well as neural correlates
(Mclntosh, 1996; Niedenthal, 2007; Sel et al., 2015). Con-
sequently, other people’s faces appear happier when you are
smiling yourself, and the impact of this facial feedback effect
becomes stronger when the observed face is one of neutral
or emotionally ambiguous expressions (Beffara et al., 2012).
Although fNMES can be utilised to test both aspects of the

@ Springer

FFH, we believe that its greatest contribution might be to the
investigation of this second aspect of the FFH.

Support for the FFH in relation to the processing of emo-
tional face stimuli comes, for example, from studies showing
that facial mimicry is emotion-specific (Wingenbach et al.,
2020), and spontaneous smile mimicry predicts judgements
of smile authenticity (Korb et al., 2014), as well as from
studies that blocked or interfered with spontaneous facial
responses, by restricting or over-engaging certain facial mus-
cles, e.g. by instructing participants to hold a pen between
their lips to inhibit smiling (Neal & Chartrand, 2011; Strack
et al., 1988, but see Hess & Fischer, 2022; and Wagenmakers
et al., 2016). Past studies aiming to block or interfere with
facial feedback were however limited in their ability to pre-
cisely control which muscles were activated/inhibited, and
at what point in time. These limitations can be overcome
using fNMES. Therefore, we suggest that fNMES is a new
and powerful means to clarify the role of facial feedback in
emotion processing.

Only three studies so far have used fNMES to investigate
the first effect of the FFH mentioned above, i.e., whether
facial feedback can induce and/or modulate one’s felt emo-
tions. The study by Goto et al. (2018) constitutes prelimi-
nary work that did not include any quantitative measures
(similarly for Yen-Chin et al., 2017). The other two are of
note. Zariffa et al. (2014) applied fNMES to the zygomati-
cus major and orbicularis oculi muscles while participants
simultaneously produced voluntary smiles and performed
a visual n-back test. In contrast to the authors’ hypotheses,
fNMES did not improve mood, although participants in the
NMES group did report feeling more determined, daring,
and concentrated, compared to a control group that under-
went the same procedure but did not receive fNMES. A later
study by the same group (Kapadia et al., 2019) explored
the use of fNMES as a method to improve symptoms of
depression. fNMES was applied in depressed patients to the
zygomaticus major and orbicularis oculi muscles three times
per week, for a minimum of 10 and a maximum of 40 ses-
sions. The stimulation was delivered in alternating 15-sec-
onds-long periods of stimulation and rest, while participants
posed a voluntary Duchenne smile and viewed comedy vid-
eos. After 10 or more fNMES sessions, participants reported
reduced symptoms of depression—assessed with the Inven-
tory of Depressive Symptomatology and the Hamilton
Rating Scale for Depression—as well as improvements in
sleeping patterns. These results are promising but should be
considered preliminary evidence, due to the small sample
size of 10 patients, the absence of a control group, and the
lack of fNMES effects on self-reported mood. Importantly,
no study to date has employed fNMES to investigate the
second effect stipulated by the FFH, i.e., that facial feedback
can alter the processing of affective stimuli, such as other
people’s emotional facial expressions.
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Classical Visual stimulus
manipulation onset
onset T

Memory

Facial feedback

I Emotion
recognition

| Facial mimicry |

Visual processing

ioceptive manipulation

en lips to prevent smiling, Botox injections to paralyze muscles)

fNMES-induced proprioceptive input can be delivered at any time

Fig.6 Classical proprioceptive manipulations, e.g., preventing smil-
ing by holding a pen between the lips or inducing a smile by holding
a pen between the teeth, are in place before the onset of the visual
stimulus. This is not fully in line with theories of embodied cogni-
tion, which conceive facial mimicry and its accompanying change in

In summary, research testing the FFH with fNMES is in
its infancy and has so far tested (with mixed success, likely
due to the small sample sizes) only one aspect, namely
whether facial feedback modulates emotional experience.
The question of whether fNMES modulates perception
and recognition of others’ emotions has, to the best of our
knowledge, never been investigated. This is unfortunate, as
fNMES promises to provide excellent opportunities to test
important aspects of the FFH, such as the chronological rel-
evance of visual and proprioceptive events during embodied
emotion recognition. Indeed, if it is the case that theories of
embodied cognition assume that spontaneous facial mim-
icry contributes to emotion recognition, it is also true that
they expect it to follow the onset of a visual stimulus (the
encounter with an emotional face). However, experimental
manipulations of proprioceptive facial input used in research
to date (e.g., holding a pen between the lips) suffer from the
limitation that the proprioceptive modulation precedes the
visual presentation of facial expressions, and is typically
kept in place for many trials (when it comes to studies on
people who received Botox injections, the change in facial
input even precedes testing by many weeks). Instead, an
adequate test of the role of proprioceptive input for emotion
recognition requires precise control of its onset with respect
to the onset of a visual stimulus. fNMES seems better suited
for this goal, as it can activate facial muscles in a controlled
manner and at different time intervals (e.g., before, during,

time

facial feedback as a reaction to the visual stimulus. fNMES, on the
other hand, allows us to provide physiologically sound proprioceptive
inputs that can be targeted in both time (before, during, and after the
visual stimulus) and space (congruent or incongruent muscles)

or shortly after stimulus presentation; see Fig. 6). Further,
fNMES allows researchers to have greater control—com-
pared with instructing participants to pose an expression or
hold a pen in their mouth—over the duration and intensity
of the facial muscle activation. One caveat is that we do not
yet know exactly what duration and amplitude of stimulation
are required to produce reliable facial feedback effects on
perception and mood—a point that should be addressed by
systematically varying these and other fNMES parameters.

Conclusion

fNMES is a valuable and exciting (pun intended) tool for
psychophysiology and other related fields, allowing for pre-
cise control over which muscles are activated and at what
intensity and duration. This bears enormous potential for
investigating questions of interest to psychologists, such as
aspects of the FFH, and multisensory integration. The pur-
pose of this paper was to bring attention to this emerging
technique and to provide researchers with an overview of
considerations for using it in their research. We have pro-
vided step-by-step recommendations based on our expe-
rience and a systematic review of the literature. We also
provide a free companion app that can be used to verify
the waveform and safety of a large number of stimulation
parameters. It is our hope that these recommendations and
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tools will contribute to introducing fNMES to a wider audi-
ence of psychologists. Although many questions remain, we
are convinced that the future looks bright for fNMES in the
psychophysiological laboratory.
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