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a b s t r a c t

Performance in visual search tasks is frequently summarised by “search slopes” - the

additional cost in reaction time for each additional distractor. While search tasks with a

shallow search slopes are termed efficient (pop-out, parallel, feature), there is no clear

dichotomy between efficient and inefficient (serial, conjunction) search. Indeed, a range of

search slopes are observed in empirical data. The Target Contrast Signal (TCS) Theory is a

rare example of quantitative model that attempts to predict search slopes for efficient

visual search. One study using the TCS framework has shown that the search slope in a

double-feature search (where the target differs in both colour and shape from the dis-

tractors) can be estimated from the slopes of the associated single-feature searches. This

estimation is done using a contrast combination model, and a collinear contrast integra-

tion model was shown to outperform other options. In our work, we extend TCS to a

Bayesian multi-level framework. We investigate modelling using normal and shifted-

lognormal distributions, and show that the latter allows for a better fit to previously

published data. We run a new fully within-subjects experiment to attempt to replicate the

key original findings, and show that overall, TCS does a good job of predicting the data.

However, we do not replicate the finding that the collinear combination model out-

performs the other contrast combination models, instead finding that it may be difficult to

conclusively distinguish between them.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Visual search, where participants are asked to find a target

within a cluttered scene, has been extensively studied within
k (A.E. Hughes).

y Elsevier Ltd. This is an o
psychology. Several models have been developed that can

generate testable predictions about how different types of

distractors and targets affect search efficiency. One of the key

distinctions in the field has been between efficient (also

referred to as parallel or pop-out) and inefficient (serial)
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search. These are often studied in the context of the regres-

sion slope between the number of distractors and mean re-

action time, which has been termed the search slope. When the

search slope is shallow (usually positive, but occasionally

negative e.g. (Rangelov et al., 2017)), the search is called effi-

cient or parallel, and the addition of more non-target dis-

tractors has little impact on an observers difficulty in finding a

target. When the slope is steeper, each additional distractor

has a noticeable impact on increasing difficulty, and the

search is described as inefficient or serial. However, the

distinction between these types of search is often less clear in

real experimental data, with a range of different search slopes

being seen for different types of targets and distractors (Cave

& Wolfe, 1990; Duncan & Humphreys, 1989; Liesefeld et al.,

2016; Wolfe, 1998). Recent work has also attempted to model

the variation in search slopes at the boundary between inef-

ficient and efficient search (Liesefeld et al., 2016).

In the current study, we are interested in what has tradi-

tionally been termed efficient or parallel search, and the fac-

tors that affect search slope in these conditions. Recent work

has suggested that for efficient search, there is a logarithmic

relationship between distractor set size and reaction time,

and that this relationship can be modified by target-distractor

similarity (Buetti et al., 2016), providing evidence that search

behaviour in parallel search is more complex than has previ-

ously been assumed. This observation has formed the basis of

the ‘Target Contrast Signal (TCS) Theory’ (Lleras et al., 2020),

which aims to provide a means of predicting observer search

slopes for new search arrays by quantifying target-distractor

differences. For example, by measuring search slopes for

conditions in which the distractors differ from the

target along a single feature (e.g. colour or shape), it has been

shown that you can predict search times for arrays in which

the target differs from the distractors along two features (e.g.,

colour and shape) which we refer to here as double feature

search (Buetti et al., 2019) (but similar paradigms have been

known by other names e.g. ‘redundant feature search’

(Krummenacher & Müller, 2012; Mordkoff & Yantis, 1991)).

Here, we aim to replicate and extend this work both theoret-

ically and empirically, to test the generalisability of the TCS

model, and to suggest ways in which the TCS model could be

modified to generate better predictions.

1.1. Previous work

Many different forms of visual search models have been

proposed. One well developed class of models are the saliency

models, which aim to predict eye movements during scene

viewing, including visual search. They rest on the assumption

that fixations are directed to objects or locations that are most

dissimilar to the background or other objects in the visual

display (Itti et al., 1998; Itti&Koch, 2000; Koch&Ullman, 1987).

While the original saliency model was able to predict fixation

allocation in a visual search task above chance (Parkhurst

et al., 2002), further research demonstrated that a compara-

ble level of performance could be achieved using a simple

central fixation bias heuristic (Tatler, 2007). The saliency

models have since been extended and improved (see for

example Zhang et al. (2008)): however, the main issue with

this family of models remains their limited usability in
complex real-life search arrays (Koehler et al., 2014; Tatler

et al., 2011), and even in abstract laboratory search arrays

(Kotseruba et al., 2020). In addition, inmost instances of visual

search, the target is clearly defined (i.e. the goal is to find a

specific object) and inspecting the most salient areas of the

display may in these cases be inefficient. Finally, by focusing

on eye movements, these models do not necessarily provide a

theoretical framework for the cognitive processes underlying

visual search.

Perhaps the most established class of models of visual

search are based around Feature Integration Theory

(Treisman & Gelade, 1980), which has been modified and

extended byWolfe and colleagues in the Guided SearchModel

(Wolfe, 2014; Wolfe et al., 1989). These theories have been

developed using data from visual search tasks with discrete

sets of abstract items. These models combine top-down in-

fluences (how closely an item resembles the observer's goal)

with bottom-up image properties. For example, if one's goal

(top-down processing) is to find a red horizontal bar, all the

red and horizontal items in a visual search display will be

given greater weight than distractors (e.g. vertical and blue

items) in the model. The salience of a given object in the

display (how distinctive it is from the surrounding objects)

also activates bottom-up processing. For instance, a blue item

among red items is ranked higher than red among orange

items. In such cases, a salient item can capture attention even

without resembling the target. Combining bottom-up and top-

down sources of activation generates an activation map

which generates a prediction of the order in which stimuli are

processed in visual search. Other extensions to these models

have been proposed, such as the Dimension Weighting Ac-

count, in which saliency weightings are assigned to different

target ‘dimensions' (e.g. colour or shape), helping to explain

results where varying the target dimension within blocks of

trials leads to longer reaction times thanwhere the dimension

remains consistent within a block (Krummenacher & Müller,

2012). Thus, these models aim to produce a representation

of the visual properties of the distractors at each location in

the visual field. However, these are predominantly qualitative

models, and thus it is difficult to use them to make specific

quantitative predictions.

TCS falls under a class of models that take a different

approach, in that they focus solely on representing the dif-

ference between targets and distractors. For example, in work

on eye movement patterns, it has been proposed that per-

formance in inefficient (serial) visual search is mostly deter-

mined by the size of the ‘functional viewing field’, whose size

varies as a function of target-distractor similarity (Hulleman&

Olivers, 2017). Similarly, work on attention has proposed the

notion of ‘relative features’, where attention is tuned to

feature relationships i.e. the appearance of the target relative

to distractors in the environment (Becker, 2010; Becker et al.,

2014). TCS also has features in common with other models

that propose parallel identification of all items in a scene, with

diffusion based mechanisms for identifying targets from dis-

tractors (Moran et al., 2013, 2016). However, TCS (Lleras et al.,

2020) aims to provide a unifying framework that can make

quantitative behavioural predictions for visual search based

on this general assumption. As such, it is an attractive

candidate model for a formal registered replication.

https://doi.org/10.1016/j.cortex.2023.10.014
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A key assumption of the TCS model is that behaviour is

determined by comparing the target template (held in mem-

ory) with every element present in the scene in parallel. This

allows the visual system to reject peripheral non-targets

quickly; the speed at which items are evaluated is deter-

mined by how different the item is from the template through

an evidence accumulation process (formally, the slope of the

logarithmic function is assumed to be inversely proportional

to the overall magnitude of the contrast signal between the

target and distractor). The model thus focuses on an initial,

efficient processing stage of search; if sufficient evidence is

not accumulated during this process, the model posits that a

second stage is entered, requiring a sequence of eye move-

ments to search for the target in a serialmanner. TCS has been

successful in predicting a number of empirical results,

including search performance in heterogeneous scenes based

on parameters estimated in homogeneous scenes, both with

artificial stimuli (Buetti et al., 2016; Lleras et al., 2019) and with

real-world objects visualised on a computer display (Wang

et al., 2017). Table 1 provides an overview of studies investi-

gating the TCS framework to date.

The original version of the TCS model is essentially a

(natural) log-linear model in the number of distractors. The

full model contains a variable L, which represents the number

of different types of distractors present in the display. How-

ever, in our paper, we will follow Buetti et al. (2019) and only

consider the specific case of L ¼ 1, of a target among a ho-

mogeneous set of distractors. In this case, the TCS model can

be represented in the following way:

cRT ¼ aþ DlogðNT þ1Þ (1)

The intercept, a, corresponds to search arrays in which

only the target is present and there are no distractors.NT is the

total number of distractors.
Table 1 e An overview of work on the Target Contrast Signal Th

Reference

Buetti et al. (2016) For efficient search with a specific target, there

time. The steepness of this relationship is mod

similar distractors.

Wang et al. (2017) Data from homogeneous search arrays can be

containing images of real-world objects, using

processing, and independence of inter-item pr

Madison et al. (2018) Logarithmic efficiency in efficient search cann

Ng et al. (2018) Logarithmic efficiency in efficient search cann

Lleras et al. (2019) Validation of previous results showing data from

heterogeneous displays. Distractoredistractor

similar to each other.

Buetti et al. (2019) Data from search arrays where the distractors a

search reaction times in displays with compou

using a collinear contrast integration model, w

the contrasts from the two feature vectors sep

Lleras et al. (2020) Full proposal of the Target Contrast Signal The

difference signal between each item in the scen

scene are unlikely to be the target.

Ng et al. (2020) Attention works in a two stage process, first di

Focused spatial attention then visits target-sim

Xu et al. (2021) Extension of Buetti et al. (2019) to new features

(orthogonal contrast integration model).
1.2. Rationale for proposed work

While many aspects of the TCS framework have been tested,

with extremely promising results, there remains a great deal

of scope for verification of some of the key findings to date,

and extensions of aspects of the model. In all implementa-

tions of TCS so far, predictions of search efficiency (e.g. in

heterogeneous scenes) have been made on the average of a

group of participants, using data from a different group per-

forming a different task (e.g. searching in homogeneous

scenes). Thus, we know that TCS can replicate group-level

averages between subjects in search well, but we do not

know to what extent it is also able to make predictions at the

individual level. This is particularly important given that

conclusions based on aggregate data can be different from

those that take individual differences into account; in one

study where participants searched for a target in an array of

randomly oriented line segments, aggregating the data sug-

gested that participants were using a stochastic search model

(Nowakowska et al., 2017). However, when considering each

participant individually, it became clear that there was a high

level of heterogeneity in responses, with some participants

performing close to optimally, and others actually performing

worse than chance (Nowakowska et al., 2017). Similarly

striking variability has also been reported in other search

studies (Clarke, Irons, et al., 2022; Irons & Leber, 2016, 2018).

Taking search time distributions into account is also

important for constraining theories of visual search (Liesefeld

&Müller, 2020; Wolfe et al., 2010): for example, they have been

used to help distinguish between models that make similar

predictions at the level of average reaction times (Moran et al.,

2016, 2017). Including subject and trial level data into our

implementation of the TCS will therefore further aid model

development and assumption testing.
eory. The key paper for our replication is highlighted.

Overview

is a logarithmic relationship between distractor set size and reaction

ulated by distractor-target similarity, with steeper slopes for more

used to predict search reaction times in heterogeneous displays

an equation assuming parallel, unlimited capacity, exhaustive

ocessing.

ot be explained by crowding in peripheral vision.

ot be explained by eye movements.

homogeneous search arrays can be used to predict reaction times in

interactions can also facilitate processing when nearby items are

re distinguished from the target by one feature can be used to predict

nd stimuli, defined by two features. Reaction times can be predicted

hich assumes that the overall target-distractor contrast is the sum of

arately.

ory, proposing that the initial stage of processing computes a

e and the target template, using this to determine which items in the

scarding target-dissimilar distractors in a distributed, parallel way.

ilar items at random.

(shape and texture), which combine according to a Euclidean metric
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We also extend the TCS model into a Bayesian framework,

where we begin with existing ‘prior’ beliefs that are updated

with data to give ‘posterior’ beliefs that can be used for

inference (McElreath, 2020). We think this has a number of

advantages over frequentist approaches. Perhaps most

importantly, Bayesian models are highly flexible. We

demonstrate howwe are able to specify a model that is able to

more accurately represent the distribution of responses (for

example, by specifying a response distribution that avoids

predicting negative reaction times) with a relatively complex

model structure, that can be fit to a relatively small amount of

pilot data: something that would be challenging within a fre-

quentist framework. We also believe that Bayesian models

offer very intuitivemethods formodel testing and comparison

and straightforward interpretation of results, and we hope

that this manuscript can act as a demonstration of these

benefits, showing how they can be applied to real scientific

questions beyond the simplified examples often found in

textbooks or tutorials.

In the current manuscript, we focus on replicating and

extending findings from Buetti et al. (2019). In their study,

participants searched for a target in a scene of homogeneous

distractors (see Fig. 1). First, parallel search efficiency

(measured by the logarithmic search slope) was estimated for

cases where the distractors varied from the target in one

dimension: either colour (e.g. a cyan target being searched for

in either yellow, blue or orange distractors) or shape (e.g. a

semicircle target in either circle, diamond or triangle dis-

tractors). New participants then searched for the same targets

in displays where the distractors were compounds, differing

from the target in both colour and shape (e.g. searching for a

cyan semicircle in either blue circles, orange diamonds or

yellow triangles). The logarithmic search slopes in the initial

experiments were then used to predict the logarithmic slopes

and reaction times using a number of models. The authors

found that the bestmodel was a ‘collinear contrast integration

model’ where the distinctiveness scores were summed along
Fig. 1 e Example stimuli from Buetti et al. (2019) Top left: Expt

homogeneous (yellow semicircle) distractors. Top right: Expt 1B

Bottom left: Expt 2A. The target is a blue semicircle in orange d

blue semicircle in dark blue triangle distractors. Bottom right: E

distractors.
each attribute in the unidimensional experiments, creating an

overall contrast score that was used for compound stimuli

predictions. In our registered replication, we will attempt to

verify the conclusions of Buetti et al. (2019), that the collinear

contrast integration model does indeed offer the best char-

acterisation of contrast signal combinations in visual search

within the TCS framework.

We begin by verifying the analysis of Buetti et al. (2019). We

then describe our proposed replication study, showing with

pilot data howwe are able to extend theirmodel of howmulti-

dimensional contrasts are calculated, both by incorporating a

multi-level design to predict within-subjects effects and by

utilising a Bayesian generalised linear model framework to

better represent the distribution of responses (e.g. avoiding

predicting negative reaction times, accounting for uncertainty

in model predictions).
2. The Target Contrast Model

We first describe the original Target Contrast Model, as pre-

sented in Buetti et al. (2019) and verify that we can succesfully

replicate the original analysis (both using frequentist model-

ling and Bayesian modelling; see Supplementary Materials -

Computational Verification).

2.1. TCS modelling overview

In Experiment 1a of Buetti et al. (2019), participants searched

for a cyan semicircle target among blue, yellow or orange

semicircular distractors i.e. they searched for a target that

differed from the distractors by a single feature (colour). The

experiment was then repeated (1b) using a different single

feature (shape, with participants searching for the semi-

circular target within triangle, circle or diamond distractors).

In Experiments 2a, 2b and 2c, participants again searched for a

cyan semicircle, but this time, the distractors differed in both
1A. Here, the target is a blue semicircle within a set of

. The target is a grey semicircle in circular grey distractors.

iamond distractors. Bottom middle: Expt 2B. The target is a

xpt 2C. The target is a blue semicircle in yellow circular

https://doi.org/10.1016/j.cortex.2023.10.014
https://doi.org/10.1016/j.cortex.2023.10.014
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shape and colour. We will refer to these conditions as double

features. Note, unlike in standard conjunction searches, in this

paradigm, the distractors are all identical with respect to these

features (i.e, orange triangles). Examples of all these stimuli

are shown in Fig. 1. Buetti et al. (2019) also carried out a

replication of their basic results using slightly different target

and distractor stimuli (Experiments 3 and 4).

The Target Signal Contrast theory is built around a linear

model for predicting mean reaction times from the logarithm

of the number of distractors (see Equation (1)). In particular,

the TCS theory allows us to predict the value of the logarith-

mic slope, Dc,s, in this condition based on the corresponding Di

in the single feature search experiments.

2.1.1. Calculating the intercept, a, and the logarithmic slope
parameter, Di

Experiments 1a and 1b and 3a and 3b were used to calculate

the logarithmic slope parameter Di. In all experiments, the

number of distractors varied, allowing the data to be used to fit

a log-linear model for reaction times, where reaction times

increase logarithmically with NT, the number of distractors

(see Equation (1)). In the original model the error distribution

was assumed to be normal. Thus the results of Experiments 1

and 3 were used to calculate Di, for each type of distractor.

When colour varied, we will refer to Dc, for c ¼ 1, 2, 3. Similarly

for shape we will denote this (Ds), and the compound features

are denoted as (Dc,s).

Fitting the model specified in Equation (1) to the data, we

obtain the values forDc andDs given in Table 2. As can be seen,

the more similar the distractors are to the target, the steeper

the slope parameter is.

2.1.2. Estimating Dc,s, the logarithmic slope parameter for
compound features
In the context of the current experiments, the core idea of TCS

theory is that we can estimate the (natural) logarithmic slope

parameter for a double feature visual search from the slopes

parameters in the two independent single feature searches

i.e., Dc,s ¼ f (Dc, Ds). Buetti et al. (2019) tested three different

models for predicting D for compound colour-shape stimuli.

The best feature guidance model (Equation (2)) suggests that

when the target and lures differ in two dimensions, partici-

pants will choose to attend to whichever feature dimension is

the most discriminable (i.e. has the smallest D value):

Dc;s ¼ minðDc;DsÞ (2)

The orthogonal contrast combination model instead sug-

gests that independent feature dimensions comprise a

multidimensional space, where an object can be described by

the overall vector in this space, and thus Dc,s can be repre-

sented as:
Table 2 eA table ofDi values for Experiment 1a and 1b. See
Supplementary Materials - Computational Verification for
full values for all experiments.

feature Dc feature Ds

blue 76.8 triangle 141.1

yellow 16.0 diamond 77.2

orange 9.8 circle 62.1
Dc;s ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1
Dc

�2

þ
�

1
Ds

�2
s (3)

Finally, the collinear contrast integration model also as-

sumes independence of feature dimensions, but assumes that

while the visual features create amultidimensional space, the

contrast between them is unidimensional. As D is assumed to

be inversely proportional to contrast, the equation can be

written as follows:

1
Dc;s

¼ 1
Dc

þ 1
Ds

(4)

Buetti et al. (2019) found that with their dataset, the

collinear contrast integration model was best able to predict

Dc,s from Dc and Ds, with R2 ¼ .915. We verified we were able to

replicate this result using the dataset available onOSF (https://

osf.io/f3m24/)1 and using the exclusion criteria originally

applied; see Fig. 2 (left panel) and Supplementary Materials -

Computational Verification for details. We show that we are

able to do this using both the frequentist modelling ap-

proaches used in the original paper, and using Bayesian

modelling.

2.1.3. Estimating a, the intercept parameter for compound
features
As a is the intercept of the model, it represents how long ob-

servers take to find a target when NT ¼ 0, i.e., there are no

distractors. As such, it should be independent of both shape

and colour, and can be thought of as the role of non-search

processes (such as motivation, motor preparation etc.) that

influence reaction time. In Buetti et al. (2019), awas calculated

for each sub-experiment. Here, we follow that method in

order to replicate their results exactly.

2.1.4. Estimating mean reaction times
Finally, we can use Equation (1) to predict mean reaction

times. As can be seen in Fig. 2 (centre panel), these predictions

are essentially identical to the empirical RT results: R2 ¼ .93%.

2.1.5. Discussion
While TCS theory offers a good prediction of search slopes and

corresponding mean reaction times for double feature search,

there are two related limitations. Firstly, it is unable to ac-

count for individual differences between observers, only the

changes to the sample average. Secondly, it cannot account

for the distribution of reaction times overmultiple trials. Fig. 2

(right panel) shows clearly that these factors generate high

levels of variability within the individual trial-level data. To

address these issues, we propose adapting TCS to make use of

multi-level modelling techniques. Multi-level models allow us

to take into account the hierarchical structure of the data (i.e.

that each participant completes multiple trials) in a way that

does not require averaging, meaning that we are able tomodel

participant variability as well as group-level effects (Gelman&

Hill, 2006).
1 downloaded on 28th August 2020.

https://osf.io/f3m24/
https://osf.io/f3m24/
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Fig. 2 e (left) The collinear method for calculating D offers a good prediction. (centre) Using the TCS to predict reaction times.

(right) Each dot now represents a randomly sampled reaction time from an observer. Note that there is greater spread in the

data points here, due to the fact that there will be trial-to-trial variability due to target position, inter-item distances,

observer differences and so on.
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2.2. A multi-level TCS

Switching from a linear regression model to a multi-level

model will allow us to compute D for each participant,

while simultaneously estimating the trial-to-trial variance.

We also switch from a frequentist to Bayesian framework, as

this allows us to naturally account for the uncertainty in the

model's predictions. However, switching from linear regres-

sion to a multi-level model raises the problem of which dis-

tribution to use for modelling reaction times. Using a normal

distribution is unlikely to be satisfactory, as it is unable to

account for the skew frequently seen in reaction time dis-

tributions, and also allows the possibility of negative reac-

tion times. We can account for both of these problems by

using a log-normal distribution. We will also test whether a

slightly more complex extension of this model, the shifted

lognormal model (which allows the distribution to be offset

to the right i.e. mimicking the patterns seen in reaction time

data, where valid responses begin at around 100 ms) offers

any improvement in model fit. Note that a Wald, or inverse

Gaussian distribution, would also be a reasonable distribu-

tion choice for this data given that TCS is based on a diffusion

process e.g (Moran et al., 2013), and this distribution has been

argued to be psychologically more plausible (e.g. Kieffaber

et al. (2006), though see Matzke and Wagenmakers (2009)):

we chose not to use this distribution as it often leads to

computational issues, which wouldmake it harder for others

to reproduce or build on our approach later.
3. Hypotheses

We plan an experiment to test the extent to which the original

results in Buetti et al. (2019) replicate and generalise, using our

new modelling approach.

3.1. Proposed modifications to experimental design

In order to better test the above, and increase sensitivity, we

propose to make the following changes to the experiment

described in Buetti et al. (2019).
1. Within-subjects design.This modification should give us

greater power to detect differences between different

models, as well as allowing us to investigate how individ-

ual differences in the single-feature task might explain

differences in the double-feature task.

2. Increase target-distractor similarity. If the distractors are a

very different colour from the target, they may not distin-

guish well between different contrast models. We will

therefore run a version of the experiment where the target

is a red semicircle, with distractors being either orange,

purple or pink.
3.2. Registered hypotheses

1. Shifted lognormal model. We hypothesise that a shifted

lognormal model will give the best fit to our single-feature

data, when compared to a lognormal and a normal model.

2. Log-linear effect of NT. We will test the TCS model

assumption that NT has a log-linear effect by testing

models with and without the log of this term. We expect

that this will confirm the results previously seen in papers

testing TCS i.e. that the log-linear approach will be best.

3. Contrast model comparisons. We will test the hypothesis

proposed by (Buetti et al., 2019): specifically, that the

collinear contrast integration model outperforms the best

feature guidance, and orthogonal contrast combination models

for the calculation of D, by calculating and comparing the

mean absolute prediction error for each model.

4. Reaction time predictions. We will further test the hy-

pothesis proposed by (Buetti et al., 2019) by testing which

model gives the best prediction at the trial-by-trial RT level.

We will test each of these hypotheses by calculating the

marginal likelihood of the relevant models, and then calcu-

lating the posterior probabilities. This will give us a probability

for each model that represents the likelihood that the model

gives the best prediction. We will consider there to be evi-

dence for one model over the others if a given model has a

probability above 90%. We will consider there to be strong

evidence for one model over the others if that model has a

https://doi.org/10.1016/j.cortex.2023.10.014
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posterior probability above 99%. This approach is most

appropriate for our model: other measures of model fit, such

as AIC, require an assumption of flat priors (which is not valid

for multi-level models) and are based on point estimates

(which is not valid for Bayesian models) (McElreath, 2020).

3.3. Planned Explorations

We plan to investigate the effect of individual differences in

this paradigm: to what extent performance in the single-

feature task can predict performance in the double-feature

task for a given individual (Buetti et al. (2019) were not able

to investigate this due to the between-subjects design of their

study). We plan to do this by specifying a more complex

random effects structure for the model, that allows for indi-

vidual differences across different slopes for different fea-

tures. This allows us to then study the random effect

correlation structure. However, given these models can be

challenging to fit, we will do this in an exploratory manner

after carrying out our formally registered analysis.

One of the benefits of using a multi-level modelling

approach is that it is relatively easy to extend to incorporate

other factors that may contribute to reaction times, such as

eccentricity and inter-item distance, which may help to

explain behaviour further. To demonstrate this, we will also

run exploratory analyses including a factor for which ring the

target is in to assesswhether this improvesmodel fit or affects

any of the conclusions that can be drawn from the model.

3.4. Pilot experiment

Full details of a pilot experiment with n ¼ 4 participants (960

trials each) using our proposed analyses can be found in

Supplementary Materials - Pilot Analysis. This suggests that

even with a small sample, we can convincingly demonstrate

H1 and H2. However, more data will be required to discrimi-

nate between the models, particularly for H4. Given that our

methods are within-subject, we have reduced the number of

trials per condition compared to Buetti et al. (2019) (12 in our

pilot study, 20 in our proposed, compared to 40 in theirs). It is

therefore possible that the increased noise in our estimated D

single-feature parameterswillmake itmore difficult to predict
Fig. 3 e (left) The dark line shows the distribution we sampled

samples of 20 data points. (right) Plot showing how the distribu

the 50%, 80% and 95% confidence intervals.
double-feature Ds accurately. However, we think this is un-

likely to be the case as we can see that even in a small amount

of pilot data, we can verify H3, with the collinearmodel having

the lowest mean absolute prediction error.
4. General methods

4.1. Sample size: participants and trials

We tested 40 participants during the experiment. Our pilot

experiment showed that H1 and H2 are easily demonstrated

with 10 times less data, and Buetti et al. (2019) used 20 par-

ticipants per experiment. Our sample size is therefore in line

with previous work testing H3 and H4. Ethical approval for the

study was granted by the University of Aberdeen (application

number PEC/4677/2021/2).

Our pilot study above suggested that just 12 trials per

condition may be sufficient to fit our models. To be conser-

vative, we proposed using 20 in our experiment. We have

demonstrated that using just half the data (20/40 trials per

condition) from Buetti et al. (2019) makes no difference to our

computational verification (see Supplementary Materials -

Computational Verification).

Finally, we carried out a simulation experiment to estimate

the confidence intervals on the mean when sampling from a

log-normal distribution. We defined our distribution to have a

mean-log of 6.135 and a standard deviation of .32. These

values were loosely based on the distributions of reaction

times in Buetti et al. (2019). The results are shown in Fig. 3.

Based on these simulations, we found that a sample of n ¼ 20

led to a 95% confidence interval that is approximately 1.4

times larger than n ¼ 40. We felt this was a suitable compro-

mise given that we collected our data within-subjects.

4.2. Stimuli

The targets and distractors were randomly assigned to the

display based on an invisible grid.Within each quadrant of the

screen, there were three ‘spokes' each with four possible

target positions (starting from the centre of the screen and

moving outwards), creating 36 different target positions in
from. The blue lines show distributions fitted to different

tion of sample means vary with n. Shaded regions indicate

https://doi.org/10.1016/j.cortex.2023.10.014
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given in the Stan forums, to enable the bridge sampling process
to work properly.
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total, in three concentric circles. A small amount of jitter was

added to each possible position to make the target locations

less predictable.

Distractor and target types: we replicated the distractor

types used in Buetti et al. (2019), apart from that we changed

one distractor colour (from blue to pink) to allow us to

discriminate better between different models of the data (see

above). There were six single-feature conditions (purple, or-

ange and pink distractors and triangle, circle and diamond

distractors) and nine double-feature conditions (all possible

pairings of the single-feature conditions). The target was al-

ways a red semicircle, except in the trials where the dis-

tractors were single-feature shapes (triangles, circles and

diamonds) in which case the target was a white semicircle.

Set sizes: we ran all the distractor set sizes used in Buetti

et al. (2019) (1, 4, 9, 19 and 31). We also ran target-only ‘zero

distractor’ trials (60 in total, with 12 being thewhite semicircle

target and the remainder the red semicircle target).

The experiments were programmed in PsychoPy and Pav-

lovia (Peirce et al., 2019). Stimuli were pre-made to generate

search array images with 1920 � 1080 resolution.

4.3. Procedure

Participants completed the experiment in the laboratory,

sitting at a viewing distance of 45 cm from the screen (viewing

distance will be fixed by using a chin rest). They viewed a

fixation cross before viewing a search array: they pressed the

space bar to continue to the trial. Participants were told to

search for the target among distractors (either a red semicircle

or awhite semicircle, depending on the block) and report if the

semicircle target pointed to the left or right, by pressing either

the left or right button on a button box (Cedrus RB-540). They

first completed 16 practice trials where they received feedback

immediately after completing each trial. In the real experi-

mental trials, participants received feedback on their average

accuracy and reaction time after each block of 320 trials.

Participants completed 5 blocks of trials (1600 trials overall i.e.

320 trials in each of 5 experiments, consisting of 5 set sizes x 3

distractor conditions x 20 repeats þ20 zero distractor trials).

The trials where the distractors were single-feature shapes

(i.e. the target was a white semicircle - Experiment 1b in Buetti

et al. (2019)) all appeared in one block (which appeared at a

randomly selected position within the experiment). All other

trials (where the target was red semicircle) were fully rando-

mised i.e. all different conditionswere completely intermixed.

This approach was taken as TCS requires the participant to

have a well-defined target template in mind in order to

compare this to the stimuli in the display. Thus, participants

were cued to search for the relevant target at the beginning of

each block.

In both the practice and experimental trials, the search

display always remained on screen until a response was

made, or until 5 s had passed.

4.4. Data pre-processing

Only participants who complete the full experiment were

considered candidates for inclusion in the data analysis. We

applied the same inclusion criteria as the original paper:
participants were only included if their search accuracy was

over 90% and their average response time was not smaller or

larger than two standard deviations from the group average

response time.

For participants included in the analysis, we applied the

data cleaning used in the pilot data analysis i.e. removing

incorrect trials and removing the top and bottom 1% of their

data.2

4.5. Analysis plan

All analysis was carried out using R (v4.2.0), brms (v2.17.0) and

rStan (v2.26.11) As discussed above, we used mixed-effect

models with either normal, lognormal or shifted lognormal

distributions.

Please see the analysis of our pilot data for a full imple-

mentation of our analysis pipeline, including all code (avail-

able on Github at https://github.com/Riadsala/single_double_

feature_search).

4.6. Registered report

The original Stage 1 registered report for this manuscript is

available at https://osf.io/f9sua/. All study data, materials and

analysis code for both Stage 1 and Stage 2 are available at

https://github.com/Riadsala/single_double_feature_search.

We report howwe determined our sample size (see Section

4.1), all data exclusions (if any), all inclusion/exclusion

criteria, whether inclusion/exclusion criteria were established

prior to data analysis (see Section 4.4) all manipulations, and

all measures in the study (see Section 4.2).
5. Results

All 40 participants had accuracy over 90% (minimum

93.1%). One participant had an average response time

(1100 ms) over two standard deviations from the group

average response time (781 ms) and was removed. Incor-

rect trials were then removed, and the data was trimmed

(only including response times between the 1% and 99%

quantiles) leaving us with 39 participants completing a

total of 59,587 trials.

All Bayesian models were fit to the new data using exactly

the same procedure3 as the pilot data presented in the Stage

One review process. We checked for convergence of our

models by visually inspecting the chains as well as verifying

that the bR was close to 1 for all parameters of all the fitted

models (see Supplementary Material - Main Analysis for full

model fit information).

https://github.com/Riadsala/single_double_feature_search
https://github.com/Riadsala/single_double_feature_search
https://osf.io/f9sua/
https://github.com/Riadsala/single_double_feature_search
https://doi.org/10.1016/j.cortex.2023.10.014
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Table 3 e A summary of the posterior estimates of Dc and
Ds values from our Experiment. Note that our values are
reported in seconds, in contrast to Table 2, which follows
(Buetti et al., 2019) and reports the slopes in milliseconds.

feature Dc 95%HDCI feature Ds 95%HDCI

orange .156 [.139, .173] triangle .253 [.230, .275]

pink .042 [.028, .057] diamond .187 [.171, .205]

purple .015 [.002, .030] circle .191 [.175, .204]
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5.1. Hypothesis 1: shifted-lognormal model

Our first hypothesis concerns which distribution best fits the

single feature response time data. We fit multi-level models

with a i) normal, ii) lognormal, and iii) shifted-lognormal dis-

tribution. The models all used the same model formula that

estimated search slopes in terms of log Nt for each feature.

Maximal random effect structures were used.

After each of these models had been fit to the data, leave-

one-out (LOO) model comparison was used to calculate pos-

terior probabilities for each. The results of this procedure

allocated � 100% of the weight to the shifted-lognormal

model, so we can conclude that, in accordance with our

registered hypothesis, it is the best distribution (out of the

three we tested4) to use for modelling response times in this

paradigm. This model is shown in Fig. 2.2 of the Supplemen-

tary Materials - Registered Analysis.

5.2. Hypothesis 2: log-linear effect of NT

We then used the samemethods to verify that using log NT for

the search slope does indeed give a better fit to the data than

simply using NT. The results are again conclusive with � 100%

of the model weight being assigned to the model that is log-

linear in NT, again in accordance with our original hypothesis.

5.3. Hypothesis 3: contrast model comparison

Now that we have confirmed that the shifted-lognormal

multilevel model (with a log-linear effect of NT) is indeed the

best fit to the data we will extract the search slopes for each

feature. These are summarised in Table 3. We can see that we

have successfully obtained a range of values for both Dc and

Ds. As with Buetti et al. (2019) we find that the values for Ds are

larger than Dc (see Table 2), meaning that search slopes for

colour features are shallower than shape.

We now combine the single-feature search slopes,Dc and Ds,

to predict the double-feature conditions (Dc,s) using Equations

(2)e(4) and above. The results are summarised in Fig. 4. We

find that while the collinear contrast model has the highest R2

(.922, compared to R2 ¼ .884 for best feature, and R2 ¼ .916 for

orthogonal contrast), the orthogonal contrast model is the

most accurate, both in terms of mean absolute error (.165,

compared to .185 for best feature and .271 for collinear) and

having a regression slope closest to 1 (1 compared to .753 and

1.48). Therefore, Hypothesis 3 does not hold: orthogonal

contrast rather than collinear contrast offers the best predic-

tion of search slopes in the double-feature condition.

5.4. Hypothesis 4: reaction time predictions

Upon reflection, the approach to model comparison we out-

lined in our registered analysis was limited in a number of

ways. Our original plan was to use the posterior predictions

from a model trained on the single-feature data to act as a

prior for the double-feature data. While we initially thought

this would be an elegant approach, there are a large number of

parameters that are outside the main focus of this paper yet
4 See discussion for Wald, Weibull, etc.
still require priors (intercepts, group level variance and re-

sidual variance). Furthermore, while the methods for esti-

mating Dc,s presented above give good predictions in terms of

the mean value, it is not clear that the standard deviation for

these distributions will be accurate. As such, we have devel-

oped a new, simpler method for this final comparison. To

maintain full transparency, we present both methods here.

5.4.1. Registered method
Our final hypothesis concerns how well the different feature

combination models performwhen predicting reaction times.

We find very little difference between the three methods in

terms of LOO model weights: .318 for best feature, .346 for

collinear and .336 for orthogonal contrast. Thus, according to

this analysis, we find no conclusive answer to hypothesis 4: all

models give similar predictions at the trial-by-trial RT level.

5.4.2. Updated method
Our newmethod for exploring this hypothesis involves taking

n ¼ 100 samples of the fixed effects from both themodel fitted

to the single-feature data and the model fitted to the double-

feature data. Each of these samples includes an intercept (a),

slope (D), non-decision time (ndt), and residual variance (s).

We then take the parameters from the double-feature model,

but replace the D values with our predicted D using the single-

feature model. Finally the predicted mean log (rt) is calculated

for each feature and number of distractors. These are then

compared to the empirical reaction times andwe compute the

absolute error.

We can also calculate an upper-bound by carrying out the

above process, but without replacing the fitted Dc,s with the

predicted. This allows us to report ‘relative absolute error’. As

all of the methods under consideration make identical pre-

dictions for trials with no distractors, these are omitted from

this calculation.

The results of this procedure are in-line with the registered

analysis presented above: all three methods perform well

relative to our baseline (see Table 4), and thuswe cannotmake

any strong conclusions related to hypothesis 4. All three

contrast combinationmethods do a good job of accounting for

the reaction time data collected.
6. Planned Explorations

Our interpretation of the null/neutral results for Hypothesis 4

(the prediction of reaction times) is that the differences in

predictions from the three contrast combination methods are

small relative to the (i) individual differences between par-

ticipants and (ii) trial-to-trial variability due to target
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Fig. 4 e Predicting Dc,s from Dc and Ds. The x-axis shows our predictions, Dp, using the best feature, collinear contrast, and

orthogonal contrast models.

Table 4 e How well can we predict RTs using Dp (collinear,
best feature or orthogonal contrast) comped to using De? A
value of 1 means that our estimates of D derived from the
single-feature trials does an equally good job at predicting
the double-feature trials as using the D fit to the data.

metric abs error

lower median upper

orthogonal .994 1.00 1.02

collinear .990 1.01 1.05

best feature .999 1.01 1.02
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eccentricity. Thus, in our exploratory analysis, we investigate

how incorporating these factors affects our conclusions.

6.1. Individual differences

We start this exploratory analysis looking at how the Dc and Ds

values vary from participant to participant. From Fig. 5 (left) we

can see that there is considerable variation between observers -

in fact, thevariation fromoneobserver to thenext isoften larger

than thevariationacross features. To investigate this furtherwe

calculated the correlations between each of the features, by

calculating Pearson's r for each sample from our posterior,

which gives us a full posterior distribution for the correlations.

We can see in Fig. 5 (right) that while both the Dc and Ds are

correlated within feature classes ð� 0:75Þ, there is no correla-

tion of any of the colour featureswith any of the shape features.

The individual differences for the double-feature conditions are

much less pronounced - these conditions are easy and the

search slopes are quite close to flat. Hence, the correlations are

all much weaker, presumably due to range restriction.

Given these results, it is perhaps unsurprising that our

analysis for Hypothesis 4 leads to an inconclusive result for

distinguishing between the three contrast combination

methods. Perhaps taking these individual differences into

account when we predict reaction times will lead to improved

power to discriminate between the models. However, before

we do so, we will also investigate incorporating information

about target eccentricity into the model.
6.2. Target eccentricity

It is well known that there are eccentricity effects in visual

search, with reaction times being longer for targets that are

further away from fixation (Carrasco et al., 1995; Wang et al.,

2017). To investigate this in our dataset, we will use the

same methods as above (fitting a multi-level shifted-

lognormal model) but now including an additional factor that

represents how far the target was from the fixation cross. This

is coded as a three-level categorical factor representing which

ring contained the target (see stimulus details, above).

Allowing for interactions with the feature and log NT increases

the number of fixed effect parameters in the model from 8 to

22, with the model equation becoming the following:

y � 0þ rþ r : f : logðNTÞ þ ð1jidÞ (5)

We experimented with including r in the random effect

structure, but this proved difficult to fit. We also had to revise

the priors used in our registered analysis, in order to lower the

intercept. Full details can be found in Supplementary Mate-

rials - Planned Explorations.

After obtaining a model that passed all convergence

checks, we examined the posterior distribution for the effect

of ring. Fig. 6 paints an interesting and complex picture in

which some features (e.g. some colours, particularly those

that are more distinct from the target colour) are clearly

leading to ‘pre-attentive search‘ in which response times are

unaffected by either the number of distractors or target ec-

centricity. However, shape features seem to be strongly

affected by eccentricity, particularly when there are multiple

distractors in the stimulus.

We can now compute our predictions (Dp) forDc,s taking the

ring into account. Doing so leads us to a similar result as before

with orthogonal contrast outperforming the best feature and

collinear measures in terms of absolute error (.023 compared

to .025 (best feature) and .034 (collinear)). However, the

regression slopes are all relatively similar (.90 for best feature,

1.58 for collinear and 1.15 for orthogonal contrast). Thus,

adding ring into the model does not drastically change our
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Fig. 5 e Individual differences in Dc and Ds. (left) Posterior probability distributions for Dc and Ds for each individual. (right)

Estimated correlations between each of the Dc and Ds.

Fig. 6 e Fixed effects for predicting the effect of ring, feature and number of distracters on response times. Shaded regions

represent the 53% and 97% HDCIs. We can see that ring has an effect on search slopes, and that this effect is more

pronounced for some features (i.e., triangles) than others.

Table 5 e How well can we predict RTs using Dp (collinear,
best feature or orthogonal contrast) comped to using De

when using a model containing the ring of the target? A
value of 1 means that our estimates of D derived from the
single-feature trials does an equally good job at predicting
the double-feature trials as using the D fit to the data.

metric abs error

lower median upper

orthogonal 1.01 1.00 1.04

collinear 1.03 1.00 5.15

best feature 1.03 1.00 1.07
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overall conclusions, with the orthogonal contrast model still

giving the best prediction of search slopes in the double-

feature condition.

6.3. Predicting response times

We will now test to see if we can discriminate between the

three contrast combination methods when we take target

eccentricity (ring) and individual-level slopes into account.

We use the same model comparison as before (see Supple-

mentary Materials - Planned Explorations for full code) and

find orthogonal contrast performs best, closely followed by

best feature.

6.3.1. Issues with the collinear contrast method
In the previous model, the upper bound on the error in the

collinear contrastmethod is high (see Table 5). To explain this,

we can look back at Equation (4): when search slopes are close

to 0, it is possible that we will observe negative values in the

empirical data. Breaking down our data to compute search
slopes for each person and each target eccentricity increases

the chances of this being observed. Looking at Equation (4) we

can see that in the casewhere bothD1 andD2 are small but one

is negative (i.e. D1 ~ � D2), then 1/D1 þ 1/D2 ~ 0. This leads to

our estimated D ¼ 1
1=D1þ1=D2

[>D1;D2 i.e. our estimated D is

much larger than the slopes that were used to generate it,

which is clearly incorrect. However, we do note that the main

https://doi.org/10.1016/j.cortex.2023.10.014
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conclusions of our analyses still hold even if we remove these

negative slopes (by restricting our analyses only to certain

colours and rings of the data - see Supplementary Materials:

Suggestions from Reviewers for more details), suggesting that

addressing this mathematical issue may not necessarily lead

to the collinear contrast method being preferred.
5 See: https://discourse.mc-stan.org/t/model-fails-to-converge-
when-using-brms/9062.
7. General discussion

In this paper, we aimed to test the extent to which the results

of Buetti et al. (2019) replicate and generalise, using a new

modelling approach. Our results allow us to confirm our pre-

registered hypotheses 1 and 2. Firstly, a shifted-lognormal

distribution of response times outperforms normal and

lognormal distributions, demonstrating that reaction time

data are bestmodelled by a skewed distributionwith an offset.

Similarly, we confirmed that the number of distractors has a

log-linear effect in this model, in line with the predictions of

TCS theory. We also replicated other aspects of the original

Buetti et al. (2019) paper with a different experimental set up,

such as to observing shallower search slopes for colour fea-

tures compared to shape features.

We do not find support for our pre-registered hypotheses 3

and 4. For predicting D in the double-feature conditions, our

analyses found that the orthogonal contrast model was fav-

oured over collinear, which is not in line with the registered

hypothesis, which predicted that the collinear contrast model

would be best (in line with Buetti et al. (2019)). Similarly, for

hypothesis 4, we found that there was relatively little differ-

ence between the three combination methods for prediction

of trial-by-trial reaction times. Our exploratory analyses sug-

gest that incorporating additional factors (e.g. individual dif-

ferences in participant Dc and Ds values, and the eccentricity

of the target) allows better discrimination between models,

but again suggests that the orthogonal contrast combination

method gives the best predictions.

7.1. Modelling of reaction times

In much of the literature on visual search, mean reaction

times are modelled using a simple linear model ȳ ¼ bNTþ a

(e.g. Treisman and Gormican (1988); Rosenholtz et al. (2012);

Hughes et al. (2016)). The b coefficients are often referred to as

“search slopes” and are often treated as measurements of

theoretical importance. Our results indicate that a shifted-

lognormal model that is loglinear in NT offers a much better

fit to the data (log(y) � ndt ¼ b log (NT) þ a), which is perhaps

not surprising, given the properties of reaction time data,

where valid responses normally begin at around 100 ms, and

the distribution often has a long “tail” of slower responses.

However, there have been concerted efforts within the

literature to model reaction time distributions more effec-

tively: indeed, Buetti et al. (2019) use log NT when computing

their search slopes. In terms of reaction time distributions, log

transformations are frequently taught as a way to normalise

reaction time data (although oftenwith caveats regarding how

this can change the interpretation of the results e.g. Osborne

(2002)) and are frequently used in analysing reaction time
data e.g (Clarke, Anna, & Hunt, 2022). Researchers have also

looked at other distributions to assess which offer the best fit

to empirical response times in visual search. For example,

Palmer et al. (2011) compared ex-Gaussian, ex-Wald, Gamma,

and Weibull distributions and found that the distributions

with exponential components offer a better fit to the data. Our

results are in line with this. However, we opted to use a

shifted-lognormal distribution in our analysis above for

mostly pragmatic reasons, as these more complex distribu-

tions are often computationally difficult to fit.5 It has also been

argued that trying to select a “correct” distribution is likely to

be problematic for empirical data, which is probably amixture

of multiple components (Wolfe et al., 2010). Similarly, some

recent approaches make use of drift-diffusion methods (e.g.

Wolfe and VanWert (2010); Yu et al. (2022); Corbett and Smith

(2020)), though again these models can be challenging,

particularly when considering how to interpret the parame-

ters (Bompas et al., 2023; Evans & Wagenmakers, 2019). While

important, these debates are outside the scope of the present

Registered Report.

Despite these previous findings, the use of linear search

slopes is still prevalent in the visual search literature. Our

work shows that these choices of distribution can influence

results and conclusions (see section 7.2 below), and therefore

we recommend that other researchers consider carefully how

they want to model their data. Even in the case where the

search slopes are the primary outcomemeasure of interest (as

opposed to the potentially more ‘cognitive’ parameters of e.g.

Wald distributions, or drift diffusionmodels), we demonstrate

that approaches that better account for the data distribution

can be taken with relative ease. While trying to decide on the

best model may be a challenging task, our view is that the

better the underlying statistical model does in accounting for

the data, the more credence we can give to the inferences we

draw from model parameters such as the slope.

7.2. Discriminating between combination methods

In Buetti et al. (2019), the collinear contrast integration model

was found to provide the best fit for their data, providing a

more precise prediction than the orthogonal contrast combi-

nation model (as measured by both the closeness of the slope

of the regression line to one, and the mean average prediction

error). Accepting this model of how the combination process

works has theoretical implications e.g. it implies that colour

and shape contrasts independently contribute to attentional

guidance. However, we did not find strong support for this

model, instead finding that the orthogonal contrast combi-

nation model provides the best fit with the data.

One possibility is that our small modifications to the

experimental stimuli changed the strategy that participants

used. However, this seems unlikely given that we only made

changes to the colour of the stimuli (see Table 6), a manipu-

lation that Buetti et al. (2019) also used, with no changes to

their overall conclusions, although it is of course possible that

different colour combinations may lead to (for example)

different relative saliences, which could change the

https://discourse.mc-stan.org/t/model-fails-to-converge-when-using-brms/9062
https://discourse.mc-stan.org/t/model-fails-to-converge-when-using-brms/9062
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Table 6 e CIELAB colour values used for targets and
distractors in the experiment.

colour L a b

orange 66.7 30.5 86.5

purple 24.6 2.8 �17.5

pink 60.2 44.2 �44.5

red 52.2 78.8 76.2
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combination method used by the participant. However, our

reanalysis of the original Buetti et al. (2019) data using our new

methods also suggested that the orthogonal contrast model

was best supported. Thus, we suggest that the choice of

modelling distribution (e.g. shifted-lognormal v. s. lognormal)

affects the conclusions drawn, and thus we should aim to use

the models that best align with the data in order to better

understand the theoretical implications of our findings.

We also modified the way stimuli were presented in our

experiment compared to Buetti et al. (2019): rather than

running each experiment separately, we (mostly) intermixed

conditions. Models of attention presume that we hold a target

template in our memory (Duncan & Humphreys, 1989), and

thus we ensured that the trials where the target was the white

semicircle were blocked separately from the trials where the

target was the red semicircle, to try to avoid conflict between

maintainingmultiple target templates inmemory. However, it

is possible participants used strategies such as shifting the

target representation away from the distractors, or generally

using relational strategies (Becker, 2010; Navalpakkam & Itti,

2007; Yu et al., 2023), which would be more challenging in

our experimental set up where participants viewed a larger

number of distractors compared to Buetti et al. (2019). In

relation to the models, this type of target representation shift

could occur more strongly for one feature dimension (e.g.

colour) than the other, perhaps changing the relationship

between the contrasts for different feature dimensions and

therefore the preferred model. If future work were to confirm

this hypothesis, it would suggest that observers are able to

cognitively shift their strategy based on the information

available in the task.

Another possibility is that because some participants had

negative search slopes, the collinear contrast model predicts

implausibly large reaction times, due to the mathematical

formulation of this model, leading to worse predictions.

Despite the fact that our exploratory analyses suggested that

removing these negative slopes would not change our con-

clusions, we suggest that a future improvement for the

collinear contrast integration model would be to modify it to

be able to give sensible predictions in these situations, given

that negative search slopes do occur in some situations

(Rangelov et al., 2017; Utochkin, 2013).

Finally, wewould argue that it is difficult from these results

to definitively make a decision about which model is best: all

three models give very similar predictive weights during our

model evaluation process. One challenge is that in general,

the double feature searches are easy, and therefore the search

slopes are fairly flat and there is not much variability to allow

differentmodels tomake different predictions. For the current

paradigm, a fruitful approach for future research could be to

consider using different feature sets, and in particular,
moving away from colour as feature, which may be a partic-

ularly salient cue (see Section 7.2.3 below).

7.2.1. Individual differences
Our (planned) exploratory analysis of the individual differ-

ences in search slopes suggests that there are large differ-

ences from one observer to the next. Indeed in some cases,

these are larger than the differences from one feature to

another. The difference between the steepest and shallowest

search slopes (fixed effects) is .238 (Dtriangle ¼ .253, while

Dpurple ¼ .015). If we compare this to the range of observer

search slopes within a feature, we find this varies from .242

(Dtriangle per-observer ranges from .395 to .152) to .149 (Dpink

ranges from �.065 to .092). This suggests a challenge for

modelling based on average performance: can we be sure that

averages represent a meaningful summary of the data, given

that we see very clear individual differences? It could certainly

be argued that observers might be using different strategies,

and thus some members of the sample population might use

(for example) a collinear combination strategy, while others

use an orthogonal contrast strategy (and we can see some

hints of this when we plot the predictions of D separately for

each participant in the Supplementary Materials - Planned

Explorations). Variable strategies have been found for other

search behaviour (Clarke, Irons, et al., 2022; Kristj�ansson et al.,

2014; Li et al., 2022; Proulx, 2011), highlighting the importance

of considering individual differences when understanding

behaviour.

We also found that search slopes were correlated within

feature, but not between: i. e, knowing that an observer's
search slope for a colour condition allows us to predict their

search slopes for the other colour conditions, but not any of

the shape conditions. However, given the block design of our

experiment, it is possible that this reflects a type of priming

effect: knowing the search slope for a feature in the first block

tells allows us to predict the search slopes of the other fea-

tures in that block, but tells us nothing of the observer's
behaviour in the second block. Post-hoc analyses looking at

correlations within the colour condition by block suggest that

this seems unlikely to explain our results fully, as we still

observe good correlations between different colour search

slopes across blocks (see Supplementary Materials - Sugges-

tions from Reviewers for further details). However, to test this

fully we would need to design the experiment differently in

order to avoid block confounds, allowing us to disentangle

whether these correlations reflect something about an ob-

server's behaviour with different features, or instead how an

observer's behaviour changes over time.

7.2.2. Eccentricity
Buetti et al. (2019) argues that the processing undertaken in

this type of task can be done in parallel, with observers using

peripheral vision to distinguish between target and dis-

tractors, and that there is systematic variation in reaction

times as a function of set size associated with parallel pro-

cessing. Target Contrast Signal Theory incorporates eccen-

tricity effects into this type of parallel processing via a

timeeout parameter (T0) (Lleras et al., 2020; Ng et al., 2018;

Wang et al., 2018). Here, we confirm in our exploratory ana-

lyses that we are able to detect relatively strong eccentricity

https://doi.org/10.1016/j.cortex.2023.10.014
https://doi.org/10.1016/j.cortex.2023.10.014
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effects, as a model with target ring number included was a

better predictor of the data than one without. However,

including this factor did not change our overall conclusions

about which model best predicted D in the double-feature

condition, or which model best predicted reaction times.

In our experiment we followed Buetti et al. (2019)'s original

methods, with participants freely viewing the displays. It is

therefore likely that in some cases, observers felt that pe-

ripheral information was insufficient to make judgements,

and thus made eye movements, moving into a more serial,

focused-attention processing stage. Future work could more

exclusively investigate peripheral effects in parallel process-

ing by ensuring fixation when viewing the displays.

7.2.3. Limitations
One limitation of the experimental approach may be the

feature dimensions chosen. We kept these the same as in

Buetti et al. (2019) (colour and shape), but there is good evi-

dence that colour may in some ways be a ‘basic’ feature

dimension that is particularly salient, especially in peripheral

vision, whereas guidance of attention by shape may be more

complex (Wolfe, 2021). Mathematically, it would be better to

have features where the slope values across the two di-

mensions are more similar, as all of the contrast combination

formulae essentially consist of sums of inverse values, and if

the slope values are highly dissimilar, the inverse sumswill be

disproportionately determined by one feature. This may

indeed reflect how participants are approaching this task, as it

may be the case that they preferentially attend to the more

discriminating feature (colour) and the contribution of shape

to their behaviour in the double-feature condition may be

negligible. However, for the purposes of discriminating be-

tween the models, it would be beneficial in future experi-

ments to adjust the target set, perhaps by making the shape

dimension more salient (e.g. by increasing the size of the

targets), or by selecting a different pair of features (e.g. shape

and orientation).

7.3. Conclusions and future directions

In the current paper, we have independently reproduced the

findings of Buetti et al. (2019) by extending theirmodelling to a

multi-level framework. We have used a Bayesian approach,

but note that this is in many ways entirely arbitrary: all of the

modelling decisions we have taken would be possible within a

frequentist framework as well. We also aimed to replicate the

previous findings by running a within-subjects experiment,

and broadly find that the Target Contrast Signal Theory does a

good job of predicting the data. When using single-feature

search slopes to predict double-feature search slopes, we do

not replicate the previous finding that the collinear contrast

integration method outperforms other options, but instead

find that all combination methods do reasonably well, and in

this particular experimental design, it may be difficult to

conclusively distinguish between them.

One of the clear benefits of Target Contrast Signal Theory

(Lleras et al., 2020) is its quantitative nature, allowing it to be

empirically tested in a straightforward manner. Here, we

demonstrate that we can independently replicate many as-

pects of TCS, while also offering extensions to the model that
we hope will stimulate more research and refinement of this

theory. Some suggestions for possible future directions and

hypotheses that could be tested include.

1. It is relatively straightforward tomake predictions about the

mean reaction time per participant in the double-feature

search condition: however, we have not attempted to pre-

dict an individual's trial-to-trial variance for different fea-

tures, which could improve the model fit further.

2. We find correlations within feature classes (i.e. Dc and Ds)

but not between: however, thesemay be a side-effect of the

block design of the experiment. A future experiment could

randomise trial type in order to more fully understand the

nature of these correlations.

3. To more fully explore which combination model best pre-

dicts the data, we suggest a) modifying the collinear

contrast model to accommodate negative search slopes b)

attempting to find experimental conditions that best

differentiate between themodels, perhaps by using feature

dimensions other than colour and c) modifying the exper-

imental design to enforce parallel processing e.g. by mak-

ing the display gaze contingent.

Computational modelling approaches alongside detailed,

quantitative theory building has been argued to be one way to

improve the reliability of psychological research (Guest &

Martin, 2021; Oberauer & Lewandowsky, 2019). By combining

this approach with fully open datasets and analysis scripts,

we can hopefully begin to take a more “distributed collabo-

rative network” approach (Moshontz et al., 2018) to our sci-

entific questions. As such, we would like to conclude by

encouraging other researchers to critique, build on and

improve the approach we have taken in this manuscript, in

order to further improve our ability to model performance in

visual search tasks.
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