
VARIABLE RANKING IN BIVARIATE COPULA
SURVIVAL MODELS

Danilo Petti 1, Marcella Niglio2 and Marialuisa Restaino2

1 Department of Mathematical Sciences, University of Essex, (e-mail:
d.petti@essex.ac.uk)
2 Department of Economics and Statistics, University of Salerno, (e-mail:
mniglio@unisa.it, mlrestaino@unisa.it)

ABSTRACT: We propose a variable ranking procedure based on copula bivariate time-
to-event margins under a general censoring scheme. The procedure identifies the im-
portant variables influencing the two time-to-events in a high dimensional setting in-
troducing a proper metric able to take into account the probabilistic copula structure.
The proposal is the first attempt to apply a variable selection method to a copula bi-
variate time-to-event domain. The advantages of the proposed approach are illustrated
in a case study based on AREDS dataset.
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1 Introduction

Technologies have had a deep impact on society and on data collection in a
wide range of scientific areas. With a relatively low cost, we are able to collect
massive amounts of information (and noise). This has led to the high dimen-
sional data phenomenon where the variable selection plays a central role. This
is even more true in the case of bivariate copula survival models under a cen-
soring scheme (presence of two outcomes and missing information). Under
this domain, we are interested in identifying two sets of relevant covariates for
two random times to event (T1 and T2). This can be achieved by ranking the
covariates in order of importance through a given metric ω to assess the con-
tribution of each feature in the dataset. As far as the authors are aware, there
is no valuable variable selection or variable ranking method nor implementa-
tion available in the literature for Bivariate Copula Survival models. In Sect.
2 we shortly present the model under analysis, and in Sect. 3 we sketch the
algorithm of variable ranking. The application to AREDS data is presented in
Sect. 4.



2 The model

Let us consider the pair of survival times (T1i,T2i), a vector of covariates xi,
for i = 1,2, . . . ,n, and an associated generic parameter vector δ ∈ Rw of di-
mension w. We assume that T1i and T2i have marginal survival functions given
by Sv(tvi|xvi;βv) = P(Tvi > tvi|xvi;βv) ∈ (0,1), for v = 1,2, and a joint survival
function expressed as follows S(t1i, t2i|xi;δ) = C(S1(t1i|x1i;β1),S2(t2i|x2i;β2)

;m{η3i(x3i;γ)}), where δ
T = (βT
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T
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T ), x1i, x2i and x3i are vectors of covari-
ates, with associated coefficient vectors β1 ∈ Rw1 , β2 ∈ Rw2 and γ ∈ Rw3 such
that w = w1+w2+w3, C : (0,1)2 → (0,1) is a uniquely defined 2-dimensional
copula function with coefficient θi = m{η3i(x3i;γ)} modelling the potentially
varying dependence of (T1i,T2i) across observations, η3i(x3i;γ) ∈ R is a pre-
dictor which includes generic additive covariate effects, and m is a monotonic
and differentiable one-to-one transformation function. The marginal survival
functions can be written as

gv [S(tvi|xvi;βν)] = ηvi(tvi,xvi; fv(βv)), ν = 1,2 (1)

where gv : (0,1)→R is a monotone and twice continuously differentiable link
function with bounded derivatives, ηvi(tvi,xvi; fv(βv)) ∈ R is an additive pre-
dictor which models the baseline hazard and several types of covariate effects,
and fv(βv) has the role of imposing a monotonicity constraint. Equation 1
can be written as S(tνi|xνi;βν) = Gν(ηνi(tνi,xνi, f(βν))) where Gν is an inverse
link function. The key difference between ηvi (tvi,xvi; fv (βv)), for v = 1,2, and
η3i (x3i;γ) is that the two former predictors must include smooth functions of
times tvi which can be treated as regressors. We, therefore, consider a generic
ηνi(ν = 1,2,3), where the dependence on the covariates and parameters is mo-
mentarily dropped, an overall covariate vector zνi containing xνi and tνi when
ν= 1,2, and z3i = x3i. For simplicity, the dimensions of z1i and z2i are assumed
to be W1 and W2. A generic additive predictor is specified as follows

ηνi = βν0 +
Kν

∑
kν=1

sνkν
(zνkνi), ν = 1,2,3 (2)

where βν0 ∈ R is an overall intercept, zνkνi denotes the kth
ν sub-vector of the

complete vector zνi and the Kν functions sνkν
(zνkνi) represent generic effects

which are chosen according to the type of covariate(s) considered (Wood,
2017). The above formulation allows for many types of flexible covariate ef-
fects. For more details see Marra, 2020.



3 The Variable Selection Algorithm

We extend the variable selection procedure proposed by Baranowski, 2020 to
the bivariate survival data. Given the set of w covariates, the variables with
higher influence on ηνi(xνi,βνi), (ν = 1,2) are those that even in presence of
randomly selected sub-samples exhibit consistent relationship to explain the
dependence of the two survival functions.

Let Zi = {T1i,T2i,Xi1,Xi2, . . . ,Xiw}, for i = 1,2, . . . ,n and with w that grows
with n, be the observed dataset used to select the subset of covariates {X1, . . . ,Xw}.
Further, let Aν ⊂ (1, . . . ,wν) for ν = 1,2 be the indices that identify a subset
of covariates for the ν-th margin and let |Aν|= k be the cardinality of Aν, for
k = 0,1, . . . ,wν. Let Rs

n j (Z1, . . . ,Zn) be the ranking of the j-th covariate, based
on a metric ω̂ν

j = ω̂ν
j (Z1, . . . ,Zn) assessing the importance of each covariate of

each margin, such that ων

Rs
n1
≥ ·· · ≥ ων

Rs
n|Aν |

. The probability of the set of |Aν|
top-ranked variables in Aν is:

πn,m(Aν) = P
({

Rν
n1 (Z1, . . . ,Zm) , . . . ,Rν

n|Aν| (Z1, . . . ,Zm)
}
= Aν

)
,ν = 1,2

(3)
that is obtained from a subset of m observations, with 1 ≤ m ≤ n. To estimate 3
a bootstrap approach is proposed in Baranowski, 2020. It follows that πn,m(Aν)
is the probability that the covariates in Aν are ranked at the top, using a subset
of m observations. The selection can be then performed on the set of top-
ranked variables Aν from which the number of terms ŝν can be determined
using equation (2.5) in Baranowski, 2020. In practice, given the estimated
probabilities of π̂n,m

(
Âν

k,m

)
, for k = 0, . . . ,kmax − 1, with kmax a fixed large

integer, the number of relevant variables is related to the evaluation of the
magnitude of the estimated probability.

4 Application to AREDS dataset

The performance of the algorithm in Sect. 3 is assessed using the AREDS data
(available in the R package CopulaCenR). The dataset includes 629 Cau-
casian participants. The event of interest is late-AMD progression, which is a
disease affecting both eyes. Less than 50% of the subjects had late-AMD in
both eyes (bivariate interval-censored). Around 20% had late-AMD in one eye
but not the other by the study end (mixed interval- and right-censored). More
than 33% did not develop late-AMD in either eye (bivariate right-censored).
The variables are Severity score, values that reflect the progression of the dis-
ease in the eyes (SevScale1E SevScale2E), enrollment age (Age), and a



genetic variant (rs2284665), factor variable with levels 0 (GG), 1 (GT) and
2 (TT), respectively). Furthermore, the AREDS dataset has been perturbed by
adding 100 independent realizations of a standard Gaussian distribution. For
sake of completeness, the algorithm has also been evaluated through a Monte
Carlo study (not included in the paper), which confirmed the effectiveness of
the method returning false positives and negatives close to zero.

We carried out some preliminary fitting from which emerged that {C0,
POPO} is the combination with the lowest BIC (4330.08) considering a full
model specification (all features included in all three margins). The procedure
has been applied on a standardized version of the dataset, where rs2284665
has been encoded as 0/1, resulting in three new covariates. The tuning parame-
ters has been specified as follows: kmax = 10, m = ⌊n/2⌋, τ = 0.5, 50 bootstrap
replicates, Clayton copula (C0) and Proportional odds (PO,PO). We have con-
sidered two metrics: ων = β2

j i(β j) (with i(β j) be the associated element of the
Fisher information matrix) and ψν = |β j|. In pseudo code (ignoring the smooth
functions of times tν) ην = βν0 +βν jx j for j = 1, . . . ,w. The former metric is
proposed specifically for the class of Bivariate Copula Survival models while
the latter is the absolute value of the coefficient.

Comparing the variable selected with the two metrics, the selection with
β2

j i(β) has greater cardinality and is able to select those characteristics consid-
ered relevant for the event of interest in the literature (see Sun, 2021), giving
empirical evidence of its goodness.

Table 1. Results of the algorithm in Sect. 3 using Clayton copula, proportional haz-
ard margins and using ων = β2

j i(β) and ψν = |β j|, for j = 1, . . . ,w, as metrics. The
covariates are ordered according to their importance. The BIC and AIC are obtained
by applying gjrm() function to a non-standardized AREDS.

Â1 Â2 BIC AIC
Mω {SevScale1E,SevScale2E,GG,TT} {GG,SevScale2E,TT,SevScale1E,GT} 4325.849 4225.385

Mψ {SevScale1E,SevScale2E} {SevScale2E,SevScale1E,GG,TT,GT} 4324.518 4220.659
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