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Risk-Sharing and Contingent Premia in
the Presence of Systematic Risk: The
Case Study of the UK COVID-19
Economic Losses

Hirbod Assa and Tim J. Boonen

Abstract Motivated by macroeconomic risks, such as the COVID-19 pandemic, we
consider different risk management setups and study efficient insurance schemes in
the presence of low probability shock events that trigger losses for all participants.
More precisely, we consider three platforms: the risk-sharing, insurance and market
platform. First, we show that under a non-discriminatory insurance assumption, it is
optimal for everybody to equally share all risk in the market. This gives rise to a new
concept of a contingent premium which collects the premia ex-post after the losses
are realised. Insurance is then a mechanism to redistribute wealth, and we call this
a risk-sharing solution. Second, we show that in an insurance platform, where the
insurance is regulated, the tail events are not shared, but borne by the government.
Third, in a competitive market we see how a classical solution can raise the risk of
insolvency.Moreover, in a decentralisedmarket, the equilibrium cannot be reached if
there is adequate sensitivity to the common shock events. In addition,we have applied
our theory to a case where the losses are calibrated based on the UK Coronavirus
Job Retention Scheme.

6.1 Introduction

The recent COVID-19 crisis increased the collective need for risk management tools
for financial institutions, and such tools require themanagement of systematic losses,
illiquidity, default, and the need for financial aid by the government.Most of the credit
by borrowing became uncertain, and there is an imminent demand by the clients and
the regulator to manage and mitigate the credit risk.
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Motivated by the large economic loss due to the recent COVID-19 pandemic, the
management of themacroeconomic risk has become the subject of new research. The
economic impact of COVID-19 not only emphasises the need for risk management
tools to dealwith the economic losses for each single country, but it has also shown the
need for the global measures to overcome the economic impact. In this paper we look
at this problem from an insurance perspective. We consider three risk management
platforms, namely, risk-sharing, insurance and the market platform.

In the risk-sharing platform we consider a machinery that redistributes the wealth
of the policyholders. We will see that among the three platforms, the risk-sharing
platform is the only one that can give the perfect pooling solution, which is the most
optimal solution. This means that everybody’s wealth is the average of the society’s
(or insurance cohort’s) wealth. Furthermore, this solution gives rise to the concept
of a contingent premium, which means that the premium cannot be collected ex-ante
but ex-post. As a wealth distribution mechanism, this platform is to some extent
resembling the state fiscal and monetary policies, which will be discussed in the next
section.

In the second platform we consider a regulated insurance company that offers
insurance policies. The optimal solution in this platform is a partial pooling that
shares the wealth in the non-extreme events. In this platform, the policyholders do
not pay for the extreme events which necessitates the existence of a protection to the
policyholder by providing a bail-out plan.

In the third platform, we consider two different markets: a competitive and a
decentralised market. In the competitive market, the optimal premium is the mean
of the losses that is identical to classical solutions. However, as we will discuss, this
platform significantly increases the insolvency risk. In the decentralised market, the
main objective is to reach the market equilibrium. We will see that if the systematic
event is not a tail event,1 which means that large losses occur with sufficiently large
probability, then the market equilibrium does not exist despite avoiding the risk of
insolvency. On the contrary, if the systematic event is a tail event, despite of rising
the insolvency risk, there exists an equilibrium in the market.

To study the implications of our paper, we have constructed an example based on
the economic impact of COVID-19 in the UK and particularly we use a calibration
arising from the Coronavirus Job Retention Scheme (UK furlough scheme during
the COVID-19 pandemic). In this way we can measure several things, for instance
the magnitude of the insolvency risk in a competitive market or the magnitude of
the pricing gaps in a decentralised market due to a difference in the market demand
and supply prices. We have made some observations; given the magnitude of the
economic risk generated during the COVID-19 pandemic in the UK, traditional
insurance products with ex-ante premia are not sufficient to cope with such huge
financial losses. Therefore, a new paradigm needs to be adopted where a contingent
premium can readily be incorporated to deal with substantial systematic events.

1 In this paper, the tail event and the systematic event are not necessarily identical, however, they
usually can overlap. See also footnote 2.
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This paper is organised as follows. In Sect. 6.2 we discuss five risk levels in
insurance and introduce the concept of systematic risk. In Sect. 6.3 we introduce
the mathematical setup, the preliminaries, and a classical insurance platform. In
Sect. 6.4 we define three platforms: the risk-sharing, insurance, and market platform.
In this section we obtain the optimal solution in each platform and discuss some
policy implications. In Sect. 6.5 we study the three platforms in the presence of three
common shock models and study the results of particular examples. Especially, we
construct our examples for a case that is calibrated based on the UK Coronavirus Job
Retention Scheme. In Sect. 6.6 we conclude.

6.2 Risk Levels and Systematic Risk in Insurance

The general idea in risk management is to dilute the risk by splitting it into smaller
risks, sharing, and spanning it over time. This can be called ‘smoothing’ and risk
management ‘tools’ help to do this. We can identify two approaches to risk man-
agement: diversification and risk-sharing. Diversification means that the risk of a
portfolio of assets is less than the sum of the risks of the single assets. In math-
ematical terms this can be formulated as follows: any convex combination of two
assets carries lower risk than single ones. Despite all the controversies about the
definition of diversification, and that it always can reduce the risk, the majority has
widely accepted this approach. On the aggregate risk, financial institutions need to
hold capital to be allowed to bear any remaining risk.

On the other hand, the underlying idea of risk-sharing is to exchange risk with
counterparties such as an insurer, reinsurer, or viamarket securitisation. Risk-sharing
with expected utility by maximising the agents preferences has been studied exten-
sively in actuarial science and economics, see for instance Borch (1962) and Wilson
(1968). The most popular concept of efficiency is Pareto optimality. A risk-sharing
contract is called Pareto optimal if there does not exist another feasible contract that
is better for all agents and strictly better for at least one agent. For instance, if agents
are endowedwith exponential utilities, then it is Pareto optimal to share the aggregate
risk in the market in a proportional way. On the other hand, if coherent distortion risk
measures, such as the well-known Expected Shortfall, are used, it is Pareto optimal to
share the aggregate risk in the market via tranches (Boonen 2015). Risk-sharing can
be related to the concept of hedging or reinsurance. This is closely related to market
principles, like Arrow-Debreu equilibria, no-arbitrage, and no-good-deal principles
(Assa and Karai 2012). This also has been discussed by Albrecht (1991), and prac-
tical considerations as pricing principle are discussed by Wang et al. (1997), where
an axiomatic characterisation of the insurance prices is shown.

To see how the two approaches can be used in the real application we need to
know about the risk levels. We have identified different levels of risks by the risk
trading markets as we assume the existence of a market is the main indication of the
willingness to introduce a risk management product. As such we can identify five
different levels.
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• The retail-level: At this level individuals usually share their risk with another
entity; for example, they can buy insurance policies for sharing the risk (a risk
transfer). The insurance retail market is where the risk is managed.

• The corporate level: At this level companies use a combination of diversification
and risk-sharing approaches to manage the risk e.g., an insurance company pools
the risk of its client while at the same time buys reinsurance. The (re)insurance
market is where the risk is managed.

• The catastrophic level: The main characteristic of catastrophic risk is that their
impact is in most cases independent of the pool size, and therefore cannot be
managed easily in insurance markets. Natural disasters or cyber risks are among
the most known examples of catastrophic risks. The usual ways of managing
such risks include introducing a risk transfer platform to share the risk with the
financial markets, through for example CAT bonds; or in general to introduce
Alternative Risk Transfers (ART) (Banks 2004; Olivieri and Pitacco 2011). These
arrangements can transfer the risk of systematic events and can help the managing
of the catastrophe risk by lowering the cost of reinsurance, and or the need for
capital allocation. Cyber risk includes the costs involved in the event of a data
breach or ransomware (Eling 2020).

• The systemic level: The risk of system failure is endogenous, and a result of system
failure due to the connectedness of insurers’ or banks’ lending relations. At the
theoretical level there have been some discussions how to manage the systemic
risk by Merton (1990) and Shiller (2007).

• The macro-level: The examples can include world wars and pandemics where
no market for trading risk can be considered even at the theoretical level. The
underlying probability distribution and the corresponding losses are exogenous
and hard to accurately predict. In a macro-level risk, the challenge is that since
the insurance market is not feasible even at a theoretical level, it seems there is
no efficient way for risk management. From the insurance perspective, we need to
have a deeper understanding of insurance principles as well as the time direction
of an insurance’s risk management.

At all five levels, systematic risk may exist, which can be interpreted as a market
risk factor that affects the risk variables in the same direction. Systematic risk is
usually attributed to a common shock. Examples of systematic risk include financial
market indices, but also the aging population, and epidemics. Given the magnitude
and the systematic nature, there are lots of discussions on how and in which market
to manage the risk of systematic events.

• Bilateral GDP income swaps byMerton (1990) or GDP linked securities by Shiller
(2007) are among the major “theoretical” solutions. The idea here is to introduce
some securities that can share the risk among the countries in the world. These
solutions without a doubt need international collaboration to runmarkets that trade
such instruments.

• Another way of managing the systematic risks is risk-sharing, which is claimed
to be happening by globalisation (Flood et al. 2012) and peer-to-peer insurance
(Denuit 2020; Feng et al. 2020).
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• Another option is to run a deficit and essentially transfer the systematic risk to the
same society that needs to bear the risk. This is an example of market failure as
society would not be willing to take a rather expensive and uncertain product. But
the state, including the government and the central banks, have the authority and
tools to sell the risk by running state policies such as monetary and fiscal policies.

It seems that with the current risk management tools a systematic risk has been
considered manageable, at the practical or theoretical level, as long as it does not
belong to the category of macro risks. That also includes any insurance solution. So,
it is necessary to have a closer look into the insurance risk management mechanisms
and approaches to see the problem.

In insurance, a stronger approach than diversification is risk pooling, which under
the assumption of independence of losses implies the “insurance principle”. The
insurance principle is explained as follows by Albrecht (1991):

for a growing collective the relative (i.e. divided by the number of risks) safety loading and
the relative security capital required to maintain a certain security level of the insurance
company is decreasing.

Pooling means sharing losses by aggregating the accident costs and then split
this equally. However, if there is a risk of common shocks, it is no longer clear
that pooling can imply the principle of insurance. Common shock is modelled to
include systematic risk, and heavy losses on the common shock lead to heavy losses
of the insurers. Any ex-ante risk management approach needs to render a present
value that represents the risk. This is necessary to make a correct risk assessment.
This brings us to the concept of risk valuation. Pooling can help to make such an
assessment under the independence assumption of losses. However, as we relax the
independence assumption, which means there is a risk of common shocks, pooling
no longer will be able to easily render a deterministic value. The (wide) dependency
relation can properly be related to the concept of systematic risk. The meaning of
this is that under a systematic risk circumstance, pooling would not mitigate all
randomness and the remaining randomness needs to be measured for valuation.

In a historical context there have been two major risk management institutions
i.e., the insurance and the banking industry, with more than 300years of modern his-
tory. While insurance leverages against insurable risk by collecting premia ex-ante,
banking leverages against the credit risk by collecting interest ex-post. In the past
300years, the world has witnessed a handful number of macro risks, including pan-
demics, world wars, etc. However, insurance never was part of the solution whereas
(central) banking always has played a crucial role. By far, the most well-known
ways to encounter macro risk is to introduce fiscal and monetary policies, that can
be regarded as ex-post policies.

It seems at a macro level risk, insurance may not be sustainable solution. For
insurance, we are often using a future extreme loss as a benchmark (say “once in
100years”), whichmakes us rely on themodelling aspect of a quantitative risk assess-
ment. The modelling of rare systematic events usually result in a lack of robustness
and huge risk assessment errors. However, even with reliable models, the aggre-
gate nature of common shocks, that is one of the major characteristics of systematic
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events, is amajor challenge for introducing sound insurance solutions. The alternative
solutions include the monetary and fiscal policies that are implemented by the state
institutions like central banks and the governments. Given that in a macro-level event
the whole system will be impacted, the governments will need to borrow the risk
capital from the future generations and the contributions from the past (the buffer)
are generally insufficient. So, an important point here is to distinguish the differences
in the time direction of a sound risk management solution for macro risks. This will
be more discussed in the following which constitutes part of the main contribution
of this paper by introducing insurances with contingent premia as an ex-post rather
than ex-ante policies.

In this paper we model systematic events that have an impact on a large part of
the pool of policyholders. The closest concept in the literature to this is probably
the concept of common shocks. The idea is to introduce an independent random
variable (independent from losses), that represents the losses with a common cause.
This variable can either be summed up or multiplied to the other random variables
or it can change the severity and frequency of losses. Lindskog and McNeil (2003)
use the common Poisson shock processes to model dependent event frequencies and
examine these models in the context of insurance loss modelling. Meyers (2007)
discusses an approach where the common shock variable is a multiplier of a pool
of independent losses. In this paper, the author describes some more general models
involving common shocks to both the claim count and claim severity distributions.
Avanzi et al. (2018) consider a model where the common shock is additive with the
loss variables. For the estimation of diversification benefits, they develop a method-
ology for the construction of large correlation matrices to any dimension.

The concepts of macroeconomic risk and systematic risk have been thoroughly
studied in the literature. However, to the best of the authors knowledge they are not
covering the type of risk we discuss in this paper. In the literature, macroeconomic
risk is usually referred to as the risk generated bymacroeconomic factors and political
decisions which can include GDP, inflation, unemployment and central bank interest
rate. The main objective is to manage the risk of the macroeconomic factors on
financial stock returns or global investment. For instance, Majumder and Majumder
(2002) consider the volatility ofGDP as themost common problemworldwidewhose
risk can be shared through the trading of GDP growth rate-related bond, to obtain a
mutually preferable allocation of aggregate income.

On the other hand, systematic risk in the literature is usually known as a cause of
insurance failure, that is associated with many losses that are positively correlated.
Beyond the common shock model that we study in this paper, other popular ways to
model systematic risk is via vine copulas (Aas et al. 2009) or positive dependence
constraints (Bignozzi et al. 2015).

The focus in this paper is on systematic risk rather than on systemic risk. Systemic
risk involves the modelling of the potential collapse of a system and the correspond-
ing default events and is typically modelled via interbank lending networks (see,
e.g., Eisenberg and Noe 2001). Our focus is the modelling of common shocks in
(insurance) loss variables.
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6.3 Mathematical Setup

6.3.1 Probability Space

Let us consider a non-atomic probability space (�,F , P), where � is the states
of the world, F is a sigma algebra and P is a probability measure. All random
variables are measurable with respect to F . We assume our probability space is rich
enough to introduce any sequence of i.i.d. random variables with a given distribution.
Consider a set of bounded losses X1, X2, . . . and assume that the losses are identically
distributed with a shared distribution Xi ∼ X . Let us assume that Xi is non-negative
and satisfies esssup(Xi ) = M . We also denote the cumulative distribution function
of random variable X by FX and the expectation is denoted by E . We consider a
framework with two time steps 0, 1.

Consider a set of policyholders {1, 2, . . . , n}. We assume that the policyholders
are homogeneous in that they have the same initial wealth w0 at time 0 and have loss
variable X1, X2, . . . , Xn that are identically distributed at time 1. The final wealth
of policyholder i at time 1 is given by Wi and is a measurable random variable.
In absence of purchasing insurance, the final wealth of each single policyholder i
is Wi = w0 − Xi . The policyholders are endowed with Von Neumann-Morgenstern
expected utility (see Varian 2019) functions denoted by ui , 1 = 1, 2, . . . , n, which
are assumed to be increasing and concave.

In the following, we consider a risk tolerance parameter η ∈ (0, 1), that is usually
very close to 0. This parameter will be used to measure the sensitivity against the
tail (usually unfavourable) events. This parameter specifies the tail events as events
A ∈ F such that P(A) ≤ η. This definition is motivated by Liu and Wang (2021).2

6.3.2 Insurance Preliminaries

We assume two major types of economic agents in our setup: policyholders (also
called insureds) and an insurer. The policyholders and the insurer have different atti-
tudes towards risk and insurance.

Policyholders. Policyholders are endowed with risk-averse preferences. To model
the behaviour of such agents we could consider suitable utility functions that are
applied to the agents’ final wealth, which is random. Alternatively, one can also
consider the policyholders as risk-neutral (expected profit maximising) agents; this
is often assumed in reinsurance where the reinsurance buyer is a firm itself or when
the insurance is traded as part of business risk management, for instance in a supply

2 This definition of the tail event in this paper must not be mistaken by the tail event that is
introduced in the probability theory which consists of events that can be determined if an arbitrarily
finite segment of the sequence is removed (like in Kolmogorov’s 0–1 theorem).
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chain (Assa et al. 2021). Risk aversion for expected utilitymaximising agents implies
that the utility function is concave. All policyholders maximise their own utility. A
choice is objective if all agents agree on the same choice regardless of the utility
functions they have. It is well known that a policy is objectively chosen i.e., it is
the best choice for all utility functions if and only if it is second-order stochastic
dominant. Considering two random variables X and Y , we say that X dominates Y
in second stochastic dominance if E(u(Y )) ≤ E(u(X)) for all increasing and convex
utility functions u, and this is denoted by

Y �SSD X.

In some cases, one also assumes that all policyholders have the same utility function.
In this case, one also can appeal to the well-known concept of a representative agent.

The demand for insurance with alternative (not expected utility) preferences has
been extensively studied in the literature, see for instance Schlesinger (2000) for
an overview. An interesting type of utility that is very useful for investigating the
insurance demand is the one that is promoted by prospect theory of Kahneman and
Tversky (1979) or rank-dependent utility theory of Quiggin (1993). In our work we
consider insuring against low probability events, like events that are expected to hap-
pen only once in 100years, but that have a very large impact in the insurable losses
in the market. To better understand the aspects of the problem, note that from the
demand side we are dealing with policyholders. For a policyholder, 1% is an ultra-
low probability. It is known in the literature that prospect theory and rank-dependent
utility theory provide better assessment of the demand for this situation compared
with other measures, as the policyholder is expected to overweight the probability of
1% in their mental assessment of the risk. A good study about this subject is Schmidt
(2016), who explains empirical evidence that show that people are unwilling to insure
rare losses at subsidised premia. There is also a discussion around the importance
of risk aversion and loss aversion for assessing small-probability losses (Eeckhoudt
et al. 2018).

Insurer. The insurer is an entity that offers the risk management tool to the poli-
cyholders. The insurer can be a firm (e.g., an insurance company), government or a
(guarantee) fund. The insurer’s concern is either to maximise the expected profit or
to reach a particular business objective; for instance, to reach a targeted loss ratio.
If the insurer is a government, the objective of the insurer is given by a social wel-
fare function, and the insurer can bail-out the pool of policyholders with taxpayers’
money in case of high aggregate losses. The insurer is here modelled as a mutual
insurer or a stock insurer, and we assume that the insurers are concerned with the
welfare of the policyholders or with a non-negative expected profit condition per
policy. Moreover, we assume that the insurer does not “over-insure” a risky position.
In fact, a special case of over-insuring is double insurance, and this is generally not
legally allowed. There are different objectives for the insurer in our platforms that
can be seen later in (6.1), (6.2), (6.5) and (6.11).
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Risk management platforms. In this paper we use three risk platforms: (a) risk-
sharing, (b) insurance and (c) market platforms. In the risk-sharing platform the
policyholders share the risk by introducing a fund. There is no other entity like gov-
ernment or the insurance company. In insurance platform we consider there is an
insurance company that issues the insurances for the policyholders. The policyhold-
ers are making their decision by maximising their preferences and the insurance
company is concerned with the welfare of all policyholders. Finally, we consider
two market platforms, one that sets for a competitive market solution and another
one where in a decentralised market the equilibrium needs to be reached.

In all our platforms,we assume that the following assumption holds, whichwe denote
by NDI (non-discriminatory insurance).

Assumption NDI The insurance will treat all the policyholders equally so that
their final wealth has the same distribution.

NDI explicitly tells us that there are no claim hierarchies or priority claims, and all
policyholders are treated the same. Any re-labelling (also called permutation) of the
policyholder set {1, 2, . . . , n} leads to the same insurance contract. Under NDI, if all
policyholders use the same utility function, then the utility after purchasing insurance
is the same for every policyholder. This utility can then be interpreted as the utility of
a representative policyholder. However, as we will see we do not need to assume that
the policyholders have the same utility. In the literature, optimal insurance contracts
often satisfy NDI (see, e.g., Albrecht and Huggenberger 2017; Boonen 2019), but we
are the first to impose NDI ex-ante as a property for “desirable” insurance contracts.
In addition, from a technical point of view and unlike most of the literature, NDI is
not concerned about the joint distribution of the policyholders’ final wealth i.e., the
final wealth joint distributions of the same number of policyholders do not need to
be identical. In addition, we do not need to assume that the policyholders have the
same utility functions.

As an immediate implication of NDI, we have the following useful lemma.

Lemma 6.1 Consider a set of individual identically distributed wealth, W1, . . . ,Wn

then for all j = 1, . . . , n, Wj �SSD

∑

1≤i≤n
Wi

n .

Proof Let u be an increasing, concave function that is twice differentiable and let
W = ∑

1≤i≤n Wi . We prove this for Wj , for a given j ∈ {1, . . . , n}. Using Taylor’s
theorem, we get for some ζi ∈ [min {Wi ,W/n} ,max {Wi ,W/n}]:
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E(u(Wj )) = n × 1

n
× E(u(Wj )) = 1

n

∑

i

E (u(Wi ))

= 1

n

∑

i

(

E

(

u

(
W

n

)

+ u′
(
W

n

) (

Wi − W

n

))

+ 1

2
u′′(ζi )

(

Wi − W

n

)2
)

= E

(

u

(
W

n

))

+ 1

n
E

(

u′
(
W

n

)∑

i

(

Wi − W

n

))

+ 1

2n
E

(
∑

i

u′′(ζi )
(

Wi − W

n

)2
)

≤ E

(

u

(
W

n

))

+ 1

n
E

(

u′
(
W

n

) (
∑

i

(

Wi − W

n

)))

= E

(

u

(
W

n

))

.

By a simple approximation, the same is true if we consider that the function u is
concave and not necessarily two times differentiable. Since the function u has been
chosen arbitrarily it follows that Wj �SSD

W
n .

Definition 6.1 An insurance scheme s is a set of non-negative random variables,

s = (λ1, λ2, . . . , λn, f1, f2, . . . , fn),

where λi is policyholder i’s liability to the insurer known as the premium and fi is
the insurer’s liability to policyholder i known as the insurance indemnity.

According to this definition, under the scheme s, the policyholder i final wealth
is given by

Wi = w0 − λi − Xi + fi .

If the premia are deterministic, then it is an ex-ante policy. However, in this paper
we also consider the case where both the insurance indemnity and the premium to
be random variables. For that reason, we may also use the term contingent premium
instead of premium.

An interesting example is the perfect pooling insurance scheme: we call the
insurance scheme s = (λ1, λ2, . . . , λn, f1, f2, . . . , fn) a perfect pooling scheme if
λ1 = λ2 = · · · = λn =

∑
i Xi

n and fi = Xi for all i = 1, 2, . . . , n. In that case, all risk
variables in the market are aggregated, and all policyholders bear an equal share of
the aggregated risk. Here, the premium is stochastic. We will show that if there is
infinitely many policyholders, then deterministic premia appear when the policy-
holders are endowed with i.i.d. loss variables.
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6.4 Risk Management Platforms

In this section, we study three different risk platforms. First, in Sect. 6.4.1, we pro-
pose a pure risk-sharing platform. In Sect. 6.4.2, we propose an insurance platform,
in which there is a mutual insurer that can opt to default and is protected by a govern-
ment. Finally, in Sect. 6.4.3, we propose amarket platform and consider a competitive
and a decentralised model.

6.4.1 Risk-Sharing Platform

In this part, we consider a risk-sharing platform where there is no role for the insurer,
but individuals share their risk directly with each other (for instance, via a peer-to-
peer network). Lemma 6.1 can be used to show that under NDI the best allocation
is the perfect pooling. As we have mentioned before, based on the individual’s final
wealth we can consider that the total wealth is given byW = nw0 − ∑

i Xi . Suppose
the risk-sharing platform is designed to solve3

⎧
⎪⎨

⎪⎩

max
∑

i E (ui (w0 − λi − Xi + fi )) ,

s.t. ∀ j, 0 ≤ f j ≤ X j ,
∑

i λi = ∑
i fi ,

NDI holds,

(6.1)

where
∑

i λi = ∑
i fi is a budget constraint that guarantees that the aggregate premia

are equal to the aggregate insurance indemnities. From Lemma 6.1 it follows that the
optimal allocation of total wealth is given by W

n = w0 −
∑

i Xi

n . Then, the final wealth

of individual j after risk-sharing is given byw0 − λ j − X j + f j = w0 −
∑

i Xi

n , j =
1, . . . , n, where λ j is the premium and f j is the coverage for policyholder j . This
risk exposure after risk-sharing is obtained by choosing full coverage of the losses,
f j = X j , and λ j = λ =

∑
i Xi

n . This is a general rule for the premium of insurance
with full risk coverage. So we have the following theorem.

Theorem 6.1 Consider a set of identically distributed risk variables, X1, X2, . . . ,

Xn, then the perfect pooling insurance scheme is a solution to the problem (6.1).

Note that with infinite number of policyholders if the losses are i.i.d then the
premium will converge to the mean, but in the case that we do not have the i.i.d
assumption this may no longer hold.

3 Under NDI, the objective of this problem and the other ones in the sequel can be replaced by only
a representative agent’s utility function.
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6.4.2 Insurance Platform

Another way of risk management is to introduce an insurance platform. We first
take the perspective of a mutual insurer. In mutual insurance, all policyholders share
the insurable risk with each other, and the insurer itself has no profit objective. For
a typical insurer, the major consideration is the risk of insolvency. This to some
extent hints for a different answer than the risk-sharing which is characterised in
the following theorem. But before that let us introduce the partial pooling insurance
scheme as an insurance scheme s = (λ1, λ2, . . . , λn, f1, f2, . . . , fn) where

λ1 = · · · = λn =
∑

i Xi

n
1{ ∑

i Xi
n ≤VaR1−η

( ∑
i Xi
n

)},

for some η ∈ (0, 1), and f j = X j , j = 1, 2, . . . , n, where 1A is defined as the indi-
cator function of the event A ∈ F .

Theorem 6.2 Consider a set of identically distributed risk variables, X1, X2, . . . ,

Xn, then the partial pooling insurance scheme is a solution to the following problem4:

⎧
⎪⎨

⎪⎩

max
∑

i E (ui (w0 − λi − Xi + fi )) ,

s.t. ∀ j, 0 ≤ f j ≤ X j , P
(∑

i fi ≤ ∑
i λi

) ≥ 1 − η,

NDI holds.

(6.2)

Proof Consider an insurance scheme s = (λ1, λ2, . . . , λn, f1, f2, . . . , fn), where
∀ j, 0 ≤ f j ≤ X j , P

(∑
i fi ≤ ∑

i λi
) ≥ 1 − η andNDIholds i.e., (w0 − λ j − X j +

f j )( j=1,2,...,n) are identically distributed. Let λ
′
j = λ j + (X j − f j ). Observe that

w0 − λ j − X j + f j = w0 − (
λ j + (X j − f j )

) − X j + (
f j + (X j − f j )

)

= w0 − λ
′
j − X j + X j = w0 − λ

′
j .

First, by NDI this shows that λ
′
j , j = 1, 2, . . . , n have the same distribution. Second,

we have

∑

i

λi ≥
∑

i

fi ⇔
∑

i

(λi + (Xi − fi )) ≥
∑

i

Xi ⇔
∑

i

λ
′
i ≥

∑

i

Xi .

Given the two points above, the insurance scheme s
′ = (λ

′
1, . . . , λ

′
n, X1, . . . , Xn)

respects the NDI assumption that has the same objective value as (6.2). So, we can
replace f j by X j and λ j by λ

′
j , and rewrite the problem as follows:

4 The participation condition of the insurer is here resembling the reduction of the ruin probability
that is often used in the literature on risk theory in a dynamic insurance framework.
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⎧
⎪⎨

⎪⎩

max
∑

i E
(
ui

(
w0 − λ

′
i

))
,

s.t. P
(∑

i Xi ≤ ∑
i λ

′
i

) ≥ 1 − η,

NDI holds.

(6.3)

Now let λ =
∑

i λ
′
i

n . Consider the insurance scheme s
′′ = (λ, λ, . . . , λ, X1, X2, . . . ,

Xn). It is clear that s
′′
satisfies NDI. On the other hand, based on Lemma 6.1, it holds

that
∑

i E(ui (w0 − λ
′
i )) ≤ ∑

i E(ui (w0 − λ)). Given the last two points and given
that

∑
i Xi ≤ ∑

i λ
′
i = ∑

i λ we get that the solution must satisfy:

{
maxE (u(w0 − λ)) ,

P (X ≤ λ) ≥ 1 − η,
(6.4)

where u = u1 + · · · + un and X =
∑

i Xi

n .

Let us introduce A =
{
X =

∑
i Xi

n ≤ λ∗
}
where λ∗ is a solution to (6.4). As all

utility functions are increasing, the maximum on A happens at λ∗ =
∑

i Xi

n and on

AC at 0. This means λ∗ =
∑

i Xi

n 1A. Now, let us look at AC . Since a utility function

is increasing then the values of
∑

i Xi

n on A must be smaller than the values of
∑

i Xi

n

on AC . This implies that A =
{∑

i Xi

n ≤ VaR1−η

(∑
i Xi

n

)}
. So, the solution is given

by, λ∗ =
∑

i Xi

n 1{ ∑
i Xi
n ≤VaR1−η

( ∑
i Xi
n

)}. This proves the theorem.

There are a few points that need to be discussed. First, by NDI, the risk expo-
sure after purchasing the optimal insurance scheme does not depend on the individ-
ual policyholders. Second, by setting η = 0, meaning a perfect solvency condition∑

i fi ≤ ∑
i λi , we get the perfect pooling solution, which is also optimal for the

risk-sharing platform. Third, if we moreover assume that the random losses are inde-
pendent, then for both the risk-sharing and the insurance platform, we get the same
solution in the limit: λ∗ → E(X), as n → ∞. However, the most important point is
the difference between the optimal value of the risk-sharing and the insurance plat-
form. In the insurance platform, part of the risk can be forgiven. More precisely, the

average risk above the value VaR1−η

(∑
i Xi

n

)
is not covered by the policyholders, and

the government provides protection to the policyholders. Note that such a so-called
bail-out happens with probability η, that is usually small. This is to some extent a
huge difference and is not at all desirable for the system. This is an important point to
observe that the existence of the government will shelter the agents against the part
of the risk that is the most harmful. However, at a large scale it seems the government
needs to borrow enough funds to manage the risk which indicates the necessity of
sponsorship. The sponsorship can either be in the form of a guarantee fund or can be
a social reinsurance.

Remark 6.1 With a similar proof, we get that if we assume that λ is deterministic

(an ex-ante policy), then a solution is given by λ1 = · · · = λn = VaR1−η

(∑
i Xi

n

)
.
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Remark 6.2 In light of Theorem 6.2 one may consider the insurance scheme given
by s = (λ1, λ2, . . . , λn, f1, f2, . . . , fn) where

λ1 = · · · = λn = min

{∑
i Xi

n
,VaR1−η

(∑
i Xi

n

)}

and fi = Xi , i = 1, 2, . . . , n. This insurance scheme satisfies the following condi-
tion:
If

∑
i fi >

∑
i λi , then

∑
i λi = VaR1−η

(∑
i fi

)
. This condition states that the gov-

ernment only covers losses beyond the deductible threshold, which is the threshold
for a bail-out.

Remark 6.3 In this paper, the insurance policies rely on the credit worthiness of
the policyholders. Doherty and Schlesinger (1990) and Cummins and Mahul (2004)
study insurance policies under conditions of default risk. In addition, Boonen (2019)
considers a limited liability framework where the multivariate risk of the policyhold-
ers is exchangeable and focuses on the optimal allocation of losses in default. An
interesting finding of this work is that a protection fund can be welfare-improving. A
protection fund charges levies to policyholders with low realised losses, and this is
used to compensate policyholders with high losses in case of a default of the insurer.
While limited liability in the existing literature is considered when the insurers can
default on their obligations, in this paper our focus is on a mutual insurer that can opt
to default only with a sufficiently small probability. In case of default, the insurance
claims will be covered by a government.

6.4.3 Market Platform

So far, we have discussed the risk-sharing and the insurance platforms. However,
let us look at the problem from a market perspective. We have chosen two different
market platforms; one where we consider a competitive market and another one
where we consider a decentralised market.

6.4.3.1 Competitive Market

In this part, we present a model in which a “classical” solution appears, and the
premium is deterministic. There is a competitive insurance market, in which the
policyholders seek optimal insurance contracts with a (stock) insurer that is faced
with the participation constraint to make a non-negative expected profit on each
insurance policy.

Theorem 6.3 Consider a set of identically distributed risk variables, X1, X2, . . . , Xn

then the insurance scheme s = (λ1, λ2, . . . , λn, f1, f2, . . . , fn) where λ1 = · · · =
λn = E(Xi ), and f j = X j , j = 1, 2, . . . , n solves
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⎧
⎪⎨

⎪⎩

max
∑

i E (ui (w0 − λi − Xi + fi )) ,

s.t. ∀ j, 0 ≤ f j ≤ X j , E(λ j ) ≥ E( f j ),

NDI holds.

(6.5)

Proof From NDI, it follows that (w0 − λ j − X j + f j ) j=1,2,...,n are identically dis-
tributed, and thuswe havew0 − λ j − X j + f j = w0 − λ

′
j for λ

′
j = λ j + (X j − f j ).

By NDI, it follows that λ
′
j , j = 1, 2, . . . , n have the same distribution. Moreover,

we have

E(λ j ) ≥ E( f j ) ⇔ E(λ j + (X j − f j )) ≥ E(X j ) ⇔ E(λ
′
j ) ≥ E(X j ).

Given the two points above, the insurance scheme s
′ = (λ

′
1, λ

′
2, . . . , λ

′
n, X1, X2, . . . ,

Xn) respects the NDI assumption and thus we have the same objective value as (6.5).
So, we can replace f j by X j and λ j by λ

′
j , and rewrite the problem as follows:

⎧
⎪⎨

⎪⎩

max
∑

i E
(
ui

(
w0 − λ

′
i

))
,

s.t. E(λ
′
j ) ≥ E( f j ),

NDI holds.

(6.6)

Now let λ
′′
j = λ̃ =

∑
i λ

′
i

n , j = 1, 2, . . . , n. Consider the insurance scheme s
′′ =

(λ
′′
1, λ

′′
2, . . . , λ

′′
n, X1, X2, . . . , Xn). It is clear that s

′′
satisfies NDI. On the other hand,

from Lemma 6.1 we get
∑

i E
(
ui

(
w0 − λ

′
i

)) ≤ ∑
i E

(
ui

(
w0 − λ

′′
i

))
. Given the

last two points and given that
∑

i Xi ≤ ∑
i λ

′
i = ∑

i λ
′′
i we get that the solution must

solve: {
max

∑
i E (ui (w0 − λi )) ,

s.t. ∀ j, E(λ j ) ≥ E( f j ).
(6.7)

Since the utility function is concave, it holds by Jensen’s inequality that E(ui (w0 −
E(λ̃))) ≥ E(ui (w0 − λ̃)). From this and the fact that the utility function is increasing,
(6.7) is solved by λ j = λ̃ = E(Xi ). This proves the theorem.

Theorem 6.3 describes a classic situation where deterministic premia are optimal.
The key assumption here is that the insurer is a separate firm that is able to pool
and manage risk in absence of a regulator. In absence of such an unregulated firm,
the policyholders can still decide to share risk via a variety of platforms, and then
stochastic premia may become optimal.

Since there is no regulator it is important to understand the risk associated with
such policies. We look at the probability of insolvency: P(

∑
i Xi > nλ̃). So, in the

limit for an infinite number of policyholders, we look at the following quantity:

P

(

lim
n

∑
i Xi

n
> λ̃

)

. (6.8)
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Moreover,we can alsomeasure the average relativemagnitude of the losses in default,
i.e.,

E
(
limn

∑
Xi

n − λ̃

∣
∣
∣ limn

∑
Xi

n > λ̃
)

λ̃
. (6.9)

This also can be interpreted as the average violation from solvency:

E

(

lim
n

∑
Xi

nλ̃
− 1

∣
∣
∣ lim

n

∑
Xi

nλ̃
> 1

)

. (6.10)

Now, let us compare the solutions of (6.1) and (6.5) in light of the criteria in
(6.8)–(6.10). Note that if we consider the case when the losses are independent, then
the contingent premium and the deterministic premium are equal if there is an infinite
number of policyholders, and the criteria in (6.8)–(6.10) will suggest the use of the
deterministic premium. The important issue is that in the presence of a common
shock or systematic risk the expected contingent premium λ̃ = E(λ) cannot truly be
representative of the real macro-level impact. We will show examples of this with
common shock models in Sect. 6.5.

6.4.3.2 Decentralised Market

In the decentralised market, our focus is on deterministic (ex-ante) premia, and we
solve the supply and the demand problem separately. Our main concern is to observe
if an equilibrium exists.

Let us first consider the supply side of the market. We use a very popular method
in the industry, by keeping the loss ratio below a targeted loss ratio. So, let consider
the insurance company, which is the supply side of the market, wants to keep the
loss ratio at a given level β ∈ (0, 1]. Based on Assa and Wang (2020) this value is
around 65 per cent for the industry. In the case that the only aim of the insurer is
the insurance solvency, we can consider β = 1. For instance, in the case that the
insurance is run as a state back scheme or when it is run based on a fund, we can
assume that β = 1. In this case the insurance is not supposed to make profit.

In what follows, we need to do the valuation of insurance products. We have
adopted a very simple approach by finding the premium λ as follows:

λS = inf

{

λ̃ : P
(∑

i Xi

nλ̃
≥ β

)

≤ η

}

, (6.11)

where the fraction
∑

i Xi

nλ̃
is called the loss ratio.
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Note that here we have considered the full coverage f j = X j to follow the results
of the previous sections. It is not very difficult to see that this can be done through
the following assessment:

λS = 1

β
VaR1−η

(∑
i Xi

n

)

.

On the other hand, we need to explore the market demand price. So, let us consider a
representative agent with a utility u. Using a utility indifference approach for losses
with identically distributes as X , we know that the premium for an insurance contract
with full coverage is given as follows:

u(w0 − λD) = E(u(w0 − X)),

or,
λD = w0 − u−1(E(u(w0 − X))),

where the inverse utility function u−1 exists because u is increasing.
We say that an equilibrium exists if λD ≥ λS , and an equilibrium price is given

by λ ∈ [λS, λD]. In the case that we have linear utility (i.e. risk-neutral agents) we
have that λD

Lin = E(X). On the other hand, by Jensen’s inequality we have:

λD = w0 − u−1(E(u(w0 − X))) ≥ E(X) = λD
Lin.

So as a sufficient condition for the existence of an equilibrium we can check the
following condition:

E(X) = λD
Lin ≥ λS.

We also can find the following demand price for the random variable
∑

i Xi

n :

λD
Ave = w0 − u−1

(

E

(

u

(

w0 −
∑

i Xi

n

)))

.

We claim that λD ≥ λD
Ave. To see this note that by using the Lemma 6.1 we have that

u(w0 − λD) = E(u(w0 − X)) ≤ E

(

u

(

w0 −
∑

i Xi

n

))

= u(w0 − λD
Ave),

and so λD ≥ λD
Ave. So, this can also be used to introduce the following sufficient

condition for the existence of an equilibrium:

λD
Ave ≥ λS.
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For instance, in the case that we are only concerned with the insurance solvency i.e.,
β = 1, then in the limit we can see that for i.i.d losses we get:

λD
Ave → E(X), and

λS → E(X), as n → ∞.

This readily justifies the existence of the insurancemarket for the assumptions above.

Remark 6.4 As one can see in all three platforms we studied above the indepen-
dence assumption with an infinite number of policyholders will result in the classical
solution. This explains why in many standard models when we are not facing the risk
of common shock a (non-contingent) actuarial premium can be the optimal answer.
This can be regarded from the so-called “principle of insurance” perspective, as it
was discussed in the introduction. It is not very difficult to see that by using the
central limit theorem we have that

ζ = P(Sn > n(E(Xi ) + zn)) = P

(
Sn
n − E(Xi )

σ√
n

>
zn
σ√
n

)

≈ 1 − �

(
zn
σ√
n

)

⇒ zn ≈ σ√
n
�−1(1 − ζ ) → 0,

for any ζ ∈ (0, 1), where zn is the relative risk loading Sn = ∑n
i=1 Xi , σ the standard

deviation of Xi , and � is the CDF of a standard normal distribution.

6.5 Systematic Risk Model and Common Shocks

In this section we focus on the common shock models and will study different risk
management framework in the presence of a common shock. For each framework,
we also consider specific examples to better understand the impact of the common
shocks on the risk management frameworks.

For simplicity, we have chosen the Bernoulli distribution for losses and the con-
stant absolute risk aversion (CARA, or exponential) utility function, i.e.,

u(x) = 1 − e−ax

a
, for a > 0 and u(x) = x for a = 0.

Here, a is the risk aversion parameter. Advantages of using CARA utility are the
possibility of using negative wealth, the price invariance to the initial wealth and
also additivity w.r.t independent losses. A disadvantage of using the CARA utility
is that the risk aversion parameter a depends on the currency (a scaling problem),
which makes the calibration of the parameter a challenging. In the literature the risk
aversion parameter a is a number very close to 0. However, in very particular cases it
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can even reach values close to a = 1 (see, e.g., Babcock et al. 1993). In our numerical
assessment we consider a ∈ [0, 1].

With the CARA utility we readily derive that

λD = log(E(eaX ))

a
.

In the market platform, we must essentially make sure that λS ≤ λD. With CARA
utility when the losses are i.i.d, based on what have been discussed with infinite
number of policyholders, we can verify this relation by the Jensen inequality for
a �= 0 as follows:

λS = E(X) = E(aX)

a
= log(eE(aX))

a
≤ log(E(eaX ))

a
= λD.

The case a = 0 is obvious.
However, if the above condition does hold, we also want to see the degree of

violation of this condition. In a market setup, as mainly the demand is the driving
force of the market, we scale everything with the market demand prices and assess
the relative pricing gap, i.e.,

RPG = λS − λD

λD
= λS

λD
− 1.

This value shows how large the gap is between the supply and demand sides of the
market. Another benefit of using this quantity is that it is dimension free, so we do
not have problem with scales.

In terms of the tolerance probability of the insurance company, i.e., the parameter
η, we generally consider two cases, one where the probability of the common shock
event is greater and one where the common shock is less than the VaR-parameter.
In our case study, since we assume a probability of common shock γ to be equal
to 0.01, we consider η = 0.005 and η = 0.015. In this way we can see the impact
of the risk management by checking if the insurance risk tolerance parameter is
sensitive to common shock or not. We also consider the effect of the probability of
the non-systematic (alternatively called idiosyncratic) event which we denote by p.

In the following, in three sections we consider three different common shock
examples, including the additive, multiplicative and risk rate common shock models.
Then in each section we consider the risk-sharing, insurance, and market platforms.
We use the examples of the Bernoulli loss variables along with the CARA utility and
n → ∞. One of the benefits of using a Bernoulli distribution is that we can easily
associate the common shock to the systematic event. In the following, wewill specify
the systematic event in each case. It is very important to realise if the systematic event
is regarded as a tail event. More precisely, if the systematic event probability is less
than the parameter η, then it is also a tail event.
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For the common shocks, we focus on an example of a wide-spread pandemic
event like the Spanish flu and the recent COVID-19, which we assume to be a macro
event of roughly 1 per cent of probability (“once every 100years”). We also follow
the example of the UK Coronavirus Job Retention Scheme presented by Assa (2020)
as a case-study with systematic risk. The calibration in this paper helps us to set
suitable values for the parameters. For instance, for the idiosyncratic event we can
consider p = 0.06; so for completeness in this paper we can consider a wider range
of 0.05 ≤ p ≤ 0.1. We also consider γ = 0.01.

6.5.1 Additive Common Shock Model

Let us consider an i.i.d. sequence of risk variables Y j , j = 1, 2, . . . , n and another
non-negative random variable Z , independent from all Y j , j = 1, 2, . . . , n. Let us
introduce the loss variables as X j = Y j + Z . We assume all random variables Yi
have the same distribution as Y . This additive common shock model is proposed
by Avanzi et al. (2018) and Boonen (2019) for the modelling of insurable losses. In
this setup the common shock is represented by the random loss Z . The systematic
event needs to be introduced for each case. However, in this framework a natural
suggestion is an event S ∈ σ(Z), where σ(Z) is the sigma-field generated by Z . In
our examples we consider Bernoulli distributions for Y and Z . Let us consider an
idiosyncratic loss variable Y = 1LY and a systematic loss variable Z = 1S , where
P(LY ) = p and P(S) = γ . So, naturally the systematic event that we consider is S.

1. Risk-sharing platform. As we have seen in Sect. 6.4.1, for risk-sharing we need
to be knowledgeable about the average. This is given by:

∑
i (Yi + Z)

n
=

∑
i Yi
n

+ Z → E(Y ) + Z .

This is the best allocation for a risk-sharing platform because of Lemma 6.1. As
one can see the average still includes the common shocks.
If we consider our example we can see the contingent premium to be given as
p + 1S . It is very interesting to compare this solution to the classical problem
we considered in (6.5), where the solution is just the average of the loss variable
which here is given by p + γ . So, there is a trade-off in the contingent premium,
while in the non-systematic event the contingent premium is less i.e., p < p + γ ,
but once the systemic event happens the contingent premium is much higher i.e.,
p + γ < p + 1. One can see that there is a chance of γ = 0.01 that a big loss
would hit all. This is generally not sufficient for any insurance scheme to be
considered sustainable.

2. Insurance platform. As we have seen in Sect. 6.4.1, for mutual insurance we

need to understand the event
{∑

i Xi

n ≤ VaR1−η

(∑
i Xi

n

)}
for n → ∞. This limit

is given by:
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{∑
i Xi

n
≤ VaR1−η

(∑
i Xi

n

)}

→ {E(Y ) + Z ≤ E(Y ) + VaR1−η(Z)}
= {Z ≤ VaR1−η(Z)},

and as a result, we get in limit that

λi = λ∗ → (E(Y ) + Z)1{Z≤VaR1−η(Z)},

for the solution {λ1, λ2, . . . , λn} of Problem (6.2).
Now let us consider our special case of Bernoulli distributions. Here we have
two cases. First let us consider η = 0.005 < 0.01 = γ . In this case we have
VaR1−η(Z) = 1, and as a result we get {Z ≤ VaR1−η(Z)} = �, and λ∗ =
E(Y ) + Z . This essentially means that in the case that the risk tolerance param-
eter is set at a value that is smaller than the probability of the systematic event,
which means that the systematic event is not perceived as a tail event, then, the
solution is identical to the one from the risk sharing platform. Second, let us
consider η = 0.015 > 0.01 = γ . In this case we have VaR1−η(Z) = 0, and then
we get {Z ≤ VaR1−η(Z)} = SC and λ∗ = E(Y )1SC . Thus, if the risk tolerance
parameter is larger than the probability of the systematic event, then we may end
up with a solution that will put a large burden on the government due to tail risk.

3. Marketplatform. In themarket platformweconsider the competitive anddecen-
tralised markets.
Competitive market. It is very easy to see that λ̃ = E(Y + Z). For the Bernoulli
example this is easily given by p + γ . In order to see the risk impact of the
policy we need to find out about the probability of default generated by (6.5), as
in (6.8) which is P (Z > E(Z)). For the Bernoulli model this value is equal to
P(S) = γ . The average relative magnitude of the losses in default is given by:

E

(
1S + p

γ + p
− 1

∣
∣
∣S

)

= 1 − γ

γ + p
.

If we consider the parameter values of our calibration based on the UK Coro-
navirus Job Retention Scheme, the average relative magnitude of the losses in
default is at least 1−0.01

0.01+0.1 = 9 = 900%, which is quite high.

Decentralised market. We need to find VaR1−η

(∑
i Xi

n

)
in the limit to find the

supply price as follows:

λS = 1

β
VaR1−η

(∑
i Xi

n

)

→ 1

β
VaR1−η(E(Y ) + Z) = 1

β
(E(Y ) + VaR1−η(Z)),

which holds true by continuity of the VaR risk measure (see Proposition 4.11 in
Marinacci and Montrucchio 2004). We also need the demand price

λD = w0 − u−1(E(u(w0 − Y − Z))).
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Our aim is to see when we can verify the market condition λS ≤ λD .
By considering the CARA utility we have that,

λD = log(E(eaX ))

a
= log(E(eaY ))

a
+ log(E(eaZ ))

a
, a > 0,

and,
λD = E(Y ) + E(Z), a = 0.

Now, let us look at the pricing gaps:

λS − λD =
{
E(Y ) + VaR1−η(Z) −

(
log(E(eaY ))

a + log(E(eaZ ))

a

)
, a > 0,

VaR1−η(Z) − E(Z), a = 0.

Computing this gap is not an easy job in general. When we use the Bernoulli
loss distribution, we derive with our assumptions the following:

λS − λD =
{
p + 1γ>η −

(
log(1−p+pea )

a + log(1−γ+γ ea)
a

)
, a > 0,

VaR1−η(Z) − E(Z), a = 0.

As explained in the beginning of this section motivated by the COVID-19 case
study, we use γ = 0.01. Next, we study the pricing gaps. In Fig. 6.1 we show
the relative pricing gaps for two cases, one when the risk assessment is sensitive
to the systematic risk (η < γ ), and one otherwise. As one can see that if the
systematic risk probability parameter γ is “captured” by the risk confidence
parameter η (η < γ ), then the relative price gaps in Fig. 6.1(left) are always
positive and greater than 5.5 (meaning 550%) and can become as large as 16
times (1600%) the demand price. On the other hand, one can see that if the risk
confidence parameter η is larger than the systematic risk parameter γ , then the
prices gap is negative which means that an equilibrium price exists. The VaR
may however not be an adequate measure to determine the riskiness of the loss
variable as the common shock is notmeasured. Themain problem is the common
shock that has a great impact on the valuation. Some side-observation includes
the reduction of the gap with the increase of the risk aversion parameter which
makes economic sense. However, the behaviour of the pricing gap is different
with respect to the changes in the non-systematic risk parameter p.

6.5.2 Multiplicative Common Shock Model

We consider a model, where the common shock is multiplicative, and the individ-
ual risks are given by: X j = ZY j , where Z ≥ 0, E(Z) > 0, and the risk variables
Y j , j = 1, 2, . . . , n, are i.i.d. and independent of Z . Similar to Sect. 6.5.1we consider
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Fig. 6.1 Relative pricing gap for additive common shocks

Bernoulli losses. Let us consider loss Y = 1LY and Z = 1 + z1S , where P(LY ) = p
and P(S) = γ and z > 0 is the magnitude of the systematic losses. For simplicity
we assume z = 2 and 4 for two different values of the common shock effect. We
again consider S as the systematic event.

Similar to Sect. 6.5.1, one can get that for the risk-sharing platform it holds that:

1. Risk-sharing platform. Based on discussions in Sect. 6.4.1, we need to find the
average in limit:

λ =
∑

i (ZYi )

n
= Z

∑
i Yi
n

→ ZE(Y ).

This is the best allocation for a risk-sharing platform because of Lemma 6.1. As
one can see the average still includes the common shock Z .
Now let us again consider Bernoulli distributions for the losses. We then get
that λ = ZE(Y ) = p + pz1S . Similar to the comparison we made in Sect. 6.5.1
with the solution λ̃ = E(Z)E(Y ) = p + pγ z in (6.5), one can realise the trade-
off between the two solutions. It is again important to note that the solution in
(6.5) cannot be truly representative of the real macro-level impact due to the
systematic risk.

2. Insurance platform. As we have seen in Sect. 6.4.2, for mutual insurance we

need to understand the event
{∑

i Xi

n ≤ VaR1−η

(∑
i Xi

n

)}
for n → ∞. This limit

is given by:

{∑
i Xi

n
≤ VaR1−η

(∑
i Xi

n

)}

→ {ZE(Y ) ≤ VaR1−η(Z)E(Y )}
= {Z ≤ VaR1−η(Z)},

and as a result, we get in the limit that

λi = λ∗ → E(Y )Z1{Z≤VaR1−η(Z)},

for the solution {λ1, λ2, . . . , λn} of Problem (6.2).
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Now let us consider the Bernoulli losses. Similarly to Sect. 6.5.1 we distinguish
two cases. One where the risk tolerance parameter is sensitive to the common
shock (i.e., systematic event does not belongs to the tail), in which case the
solution is identical to the risk-sharing solution; and one where the solution is
much less impactful for the policyholders and given by λ∗ = E(Y )z1SC .

3. Market platform. Like before, here we need to look at the following two mod-
els.
Competitive market. Very similar to the previous case we can see that the proba-
bility of insolvency in (6.5) is equal to P(S), and the average relative magnitude
of the losses in default is given as

E

(
p(1 + z1S)

p(1 + zγ )
− 1

∣
∣
∣S

)

= z(1 − γ )

1 + zγ
= 1 − γ

1
z + γ

.

For our case study on the UK Coronavirus Job Retention Scheme we see that
for γ = 0.01, we get 99

100
z +1

≥ 1.94 = %194. This is very high value.

Decentralised market. Now we want to see if we can verify the market condition
λS ≤ λD . In this case we have that

λD = log(E(eaX ))

a
= log(E(eaZY ))

a
, a > 0, and

λD = E(Y )E(Z), a = 0.

Let us consider the examplewith Bernoulli-distributed factors.With our assump-
tions we can see that for β = 1

λS = E(Y )VaR1−η(Z) = p1{γ>η}.

In addition, it holds that

eaY Z = ea1LY +az1LY ∩S =
⎧
⎨

⎩

ea(1+z) on S ∩ LY ,

ea on LY \S,

1 on LC
Y ,

which is equal to ⎧
⎨

⎩

ea(1+z) with prob. γ p,
ea with prob. (1 − γ )p,
1 with prob. 1 − p.

This implies that

λD = log(E(eaY Z ))

a
= log(pγ ea(1+z) + p(1 − γ )ea + (1 − p))

a
,
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and

λS − λD =
{

p(1 + z1γ>η) − log(pγ ea(1+z)+p(1−γ )ea+(1−p))
a , a > 0,

p((1 + z1γ>η) − α), a = 0.

Like before, motivated by the UK COVID-19 case study we use the calibration
γ = 0.01. We next examine the pricing gaps.
The results in Fig. 6.2 are very similar to what we have observed in Fig. 6.1,
which means there is a trade-off between correctly covering the risk via a VaR
and the existence of the market equilibrium. This observation holds true almost
regardless of the values of the risk aversion parameter, the non-systematic risk
and even the value of z.

6.5.3 Risk Rate Common Shock Model

In this example we discuss different levels of the systematic risk in the market. As it
has been discussed in the beginning of the paper, risk management solutions emerge
to take care of different level of risk. Markets that deal with less risky aggregate
losses are more likely to form and the risk would more perfectly be managed. On

Fig. 6.2 Relative pricing gap for multiplicative common shocks
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the opposite side we have the markets that are dealing with larger aggregate losses,
which are much harder to create. Here, we use a very simple setup to demonstrate
the different levels of systematic risk while still focussing on identically distributed
individual loss variables. The major difference is the aggregate risk rather than the
individual risk. This differentiates this example from the other two examples where
the aggregate risk is not the essential differentiator.

Let us consider a partition �1, . . . , �m of � where pk := P(�k) for all k =
1, . . . ,m. The elements of the partition represent different layers of the risk man-
agement market. We assume that p1 > p2 > · · · > pm > 0, associating smaller
probabilities with events with larger impact. Let us consider a sequence of loss
variables {Xn}n∈N so that {Xn|�k}n∈N is i.i.d. in the probability space (�k, P�k ),
where P�k is the conditional probability on �k for any k = 1, . . . ,m. Let us
assume that E(Xi |�1) ≤ · · · ≤ E(Xi |�m). This assumption can reflect the fact that
more harmful events cause larger expected losses. By assumption it is clear that
Ek = E(X1|�k) = · · · = E(Xn|�k), for k = 1, . . . ,m. It is also clear that the loss
distribution is given as follows:

FX =
∑

k

pk FX |�k .

To better understand the example, we also discuss a special case of this model by
assuming only a systematic and a non-systematic event. This means in a probabilistic
setup the probability space � can be partitioned into S and SC , for systematic and
non-systematic events, respectively. Let γ = P(S) be a positive number that is the
probability of the macro event (e.g., every 100years). We assume in the systematic
event the probability of the loss distribution will change. The same is assumed for
the complement set SC . Let Sys = {∅, S, SC ,�}, be the sigma-field generated by
systematic event. Let us assume E(X j |S) = δM and E(X j |SC) = αM . We assume
that α > δ which is reflecting the fact that the magnitude of the losses during the
systematic event is larger than non-systematic event.

Using the calibration by Assa (2020) on the UK Coronavirus Job Retention
Scheme, we set α = 0.27 and δ = 0.06 and γ = 0.01. However, for completeness
we consider a range for δ ∈ [0.05, 0.1].

Now let us see what will happen to the optimal strategies given by the propositions
we have discussed.

1. Risk-sharing platform. By using the law of large numbers on each conditional
space we need to specifically look at the following quantities:

λ =
∑

i Xi

n
=

∑
i Xi

n
1�1 + · · · +

∑
i Xi

n
1�m →

∑

k

E(X |�k)1�k .

Considering the special case of m = 2, we have that,

λ = E(X |SC)1SC + E(X |S)1S = δM1SC + αM1S = δM + (α − δ)M1S.
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2. Insurance platform. As we have seen we need to find the following quantity

λ∗ =
∑

i Xi

n
1{ ∑

i Xi
n ≤VaR1−η

( ∑
i Xi
n

)}

→
(

∑

k

E(X |�k)1�k

)

1{∑k E(X |�k )1�k ≤VaR1−η(
∑

k E(X |�k )1�k )}.

Let m∗ = min{k : ∑
k ′≤k P(�k ′) ≥ 1 − η}. Then it is clear that

VaR1−η

(
∑

k

E(X |�k)1�k

)

= E(X |�m∗),

and that

λ∗ =
∑

i Xi

n
1{ ∑

i Xi
n ≤VaR1−η

( ∑
i Xi
n

)} →
(

∑

k

E(X |�k)1�k

)

1�1∪···∪�m∗

=
∑

k≤m∗
E(X |�k)1�k .

Nowusing the example ofm = 2, we easily derive that if η = 0.005 < 0.01 = γ

then

λ∗ = E(X |SC)1SC + E(X |S)1S = δM1SC + αM1S,

and if η = 0.015 > 0.01 = γ we have

λ∗ = E(X |SC)1SC = δM1SC .

Hence, if the systematic risk is not a tail event then the solution is identical to
the risk-sharing solution. Otherwise, the systematic risk is fully borne by the
government, and the policyholders only pay a premium if the non-systematic
(idiosyncratic) risk is realized.

3. Market platform. Here we need to look at the following models.
Competitive market. One can realise the following trade-off between the model
(6.5) and (6.1) premium and the contingent premium:

δM ≤ λ̃ = (1 − γ )δM + γαM ≤ αM.

The probability of the insolvency is equal to p = P(S). We also find that the
average relative magnitude of the losses in default is given by:

E

(
δ1SC + α1S

δ(1 − p) + αp
− 1

∣
∣
∣S

)

= (1 − p)(α − δ)

δ(1 − p) + αp
≈ α

δ
− 1 ≥ 1.7.
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Decentralised market. We need to consider the following values.

λS →= 1

β
VaR1−η

(
∑

k

E(X |�k)1�k

)

= 1

β
E(X |�m∗),

λD = w0 − u−1(E(u(w0 − X))).

Using the Bernoulli distributions for the conditional losses we can also find the
loss distribution. Let us consider the following model: for any j let X j |�k =
1L jk , where L jk ⊆ �k , and the sequence of the sets {L jk} j are independent in
(�k, P�k ) and P�k (L jk) = Ek . So, if we consider a loss variable X with the same
joint distribution as the losses X j , it itself has a Bernoulli distribution given by
X = 1L, where P(L) = ∑

k pk Ek . Using the exponential utility, we can find the
demand price as follows:

λD = log(E(eaX ))

a
= log(1 − ∑

k pk Ek + ea
∑

k pk Ek)

a
, a > 0,

and
λD = E(1L) =

∑

k

pk Ek, a = 0.

We display the relative pricing gap in Fig. 6.3. Now let us consider our example
of the UK Coronavirus Job Retention Scheme for β = 1. Interestingly, we can
see the same results as in Figs. 6.1 and 6.2, which means regardless of all other
parameters there is a trade-off between the existence of the market equilibrium
and correct risk coverage.

Fig. 6.3 Relative pricing gap for risk rate common shocks and γ = 0.01
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Remark 6.5 In all examples, we can observe an interesting fact that is that the
optimal risk-sharing approach in the limit for n → ∞ will result in the following

λ = E(X |Sys),

where Sys is the sigma-field representing the systematic events. More precisely, for
the examples with the risk-sharing and insurance platforms, it is Sys = σ(Z), and in
the example with the market platform, it is Sys = σ(�1, . . . , �n). The observation
that the average of infinitely many exchangeable random variables reduce to a condi-
tional expectation is not surprising to us, as it is related to De Finetti’s theorem with
exchangeable risk (see Kingman 1978, for more details on De Finetti’s theorem).

6.6 Conclusion

In this paper, we considered an insurance cohort with identically distributed loss vari-
ables, and this insurance cohort sought an insurance scheme that keeps everybody’s
final wealth distributionally the same. This was called the non-discriminatory insur-
ance (NDI) assumption. We have considered a very general setting where there is
no need for any dependency structure of the wealth variables; this essentially means
that we did not assume that losses, or the wealth distributions, are i.i.d or exchange-
able. This general setup is motivated by systematic loss events such as a widespread
pandemic (e.g., Spanish flu or COVID-19) with large macroeconomic loss impact.
The idea is to provide a platform where we can properly study the risk management
of macro-level losses.

We considered three different platforms: a risk-sharing, an insurance and amarket
platform. There are some general observations from studying these platforms. First,
we showed that under NDI the most efficient final wealth is nothing but the average
wealth; regardless of the dependency structure. Second, from the first observation
we realised that there are benefits of introducing a contingent, ex-post premium. This
essentially means that ex-post policies are shown to bemore efficient than the current
ex-ante insurance policies.

For any specificplatformwealsohavemadevery interestingobservations basedon
three common shock models, which include the additive, multiplicative and the risk
rating common shock model. First, the risk-sharing platform is an efficient platform
and any insurance scheme only acts as a wealth re-distributor ex-post. Second, in the
insurance platform as the insurance companies are regulated and need to be solvent
the optimal answer is a partial risk-sharing scheme. As a result, we observe that in
this platform the risk-sharing platform the policyholders do not bear the risk of the
tail events which necessitated the existence of a social scheme run by the state or
government to bear the tail event risk. Third, we studied the market platform. In
a competitive market, we see that we will come up with a deterministic premium,
which gives an ex-ante policy. However, we observe that this platform dramatically
increases the risk of insolvency. In the decentralisedmarket platform,we realised that
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there is a trade-off between the tail risk of the insurer (supply side) and the market
equilibrium. On one hand, if the common shock is not a tail event then we have
no market equilibrium. On the other hand, if the common shock is tail event, even
though a market equilibrium exists, there is substantial tail risk. Apparently if there
is no common shock then both absence of tail risk and insurance market equilibrium
can happen at the same time.

We have calibrated our models to the Coronavirus Job Retention Scheme (the
UK furlough scheme during the COVID-19 pandemic), and all the observations are
made on that basis. The results of the paper suggest new policy implications; the
most important of which is the consideration of ex-post (contingent) premia, where
the insurance premium is collected after the observation of the realised losses. Our
observation is that in the presence of common shock, the major issue would not be
the sophistication of the loss modelling or contracting, but it is the paradigm that may
need to be changed. The insurance market needs be sustainable for systematic shock
events,which for our case studymeans that unemployment insurancepremiabecomes
contingent to the occurrence of the systematic risks such as COVID-19. This means
that to reach the optimal allocation one adjusts the premium by directing wealth from
people who did not lose to the people who have lost. In short, such insurance plans
serve as a mechanism to diversify idiosyncratic risk and to share systematic risk. The
systematic risk caused by COVID-19 is hard to insure as discussed by Richter and
Wilson (2020).

The observation from the real world to a good extent confirms our conclusions.
First, there has been a dispute5 over the insurance coverage of the pandemic losses
in the UK which has emphasised the unwillingness (or inability) of the supply-side
(insurers) of the insurance market to settle the claims. Second, the government in
the UK has introduced a generous furlough scheme6 that ran for a few months to
cover a large portion of the workforce in the UK. This has been executed in different
means but the necessary capital will increase the government deficit and need to
be paid back either by direct taxes or inflation. That can be regarded as some kind
of contingent premia. Third, the UK government has supported businesses through
the Trade Credit Insurance (TCI) guarantee, which again seems to be more like
a contingency measure. 7 However, none of these solutions are carefully planned,
and they are all based on the short-term assessments. Finding an insurance solution
consistent to what we discuss in this paper seems to be a suitable direction to consider
for further research.

5 https://www.bbc.co.uk/news/business-55661702.
6 https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeety
pes/articles/furloughingofworkersacrossukbusinesses/23march2020to5april2020.
7 https://www.gov.uk/government/news/government-to-support-businesses-through-trade-credit-
insurance-guarantee.

https://www.bbc.co.uk/news/business-55661702
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/furloughingofworkersacrossukbusinesses/23march2020to5april2020
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/furloughingofworkersacrossukbusinesses/23march2020to5april2020
https://www.gov.uk/government/news/government-to-support-businesses-through-trade-credit-insurance-guarantee
https://www.gov.uk/government/news/government-to-support-businesses-through-trade-credit-insurance-guarantee
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