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Abstract—Alterations in the human Gut Bacteriome (GB)
can be associated with human health issues, such as type-2
diabetes and obesity. Both external and internal factors can
drive changes in the composition and in interactions of the
human GB, impacting negatively on the host cells. This paper
focuses on the human GB metabolism and proposes a two-layer
network system to investigate its dynamics. Furthermore, we
develop an in-silico simulation model (virtual GB), allowing us to
study the impact of the metabolite exchange through molecular
communications in the human GB network system. Our results
show that regulation of molecular inputs strongly affects bacterial
population growth and creates an unbalanced network, as shown
by shifts in the node weights based on the produced molecular
signals. Additionally, we show that the metabolite molecular
communication production is greatly affected when directly
manipulating the composition of the human GB network in the
virtual GB. These results indicate that our human GB interaction
model can help to identify hidden behaviours of the human GB
depending on molecular signal interactions. Moreover, the virtual
GB can support the research and development of novel medical
treatments based on the accurate control of bacterial population
growth and exchange of metabolites.

Index Terms—Biological network systems, graph analysis,
molecular communications, human gut bacteriome, metabolic
interactions.

I. INTRODUCTION

THE Gut Bacteriome (GB) is an ecosystem of a massive
number of bacterial cells which play a vital role in

maintaining the stability of the host’s metabolism [1]. The
bacterial populations of the GB build complex interaction
networks by exchanging metabolites with the host and/or
other bacterial populations [2], resulting in the production of
new metabolites, such as Short Chain Fatty Acids (SCFAs),
proteins, and other molecules [3].

External factors such as the availability of nutrients, an-
tibiotics, and pathogens can affect this interaction network
[4]. These factors mainly alter the compositional balance
of the human GB, subsequently disrupting the metabolite
production [5]. In humans, these GB changes have a significant
impact on the host’s health and may lead to many diseases,
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including inflammatory bowel disease, type-2 diabetes, obe-
sity and cancers [6], [7]. Although studying complex causal
metabolic networks is challenging [8], several studies have
been undertaken to precisely identify the causes for microbial
behavioural alterations and their consequent health effects
in humans and animals [9], [10]. For example, Yang et
al. [11] performed a cross-sectional whole-genome shotgun
metagenomics analysis of the microbiome and proposed a
combinatorial marker panel to demarcate microbiome-related
major depressive disorders from a healthy microbiome. From
a different perspective, Kim et al. introduced a split graph
model to analyse the microbial compositions of healthy or
Crohn’s disease microbiome compositions [12]. Inspired by
these works, we propose a novel tool to further characterise
the interactions among the bacterial populations often found
in the human GB.

In this paper, we propose a two-layer interaction model sup-
ported by the exchange of molecular signals, i.e. metabolites,
to model the human GB. Here, we identify the interactions
between bacterial cells as Molecular Communications (MC)
systems and their collective behaviour as a MC network.
MC aims to model the communication between biological
components [13] using molecules as information [14], [15] and
it is fundamental to characterise the exchange of metabolites
in our two-layer interaction model.

In the graph network, bacterial populations act as nodes
while the edges represent the interactions between them. This
interpretation allows quantifying the behaviours of the human
GB using graph theoretical incorporating MC analysis to un-
derstand impacts from distances between different graph states
and variations of node/edge weights. Moreover, conducting
in-vivo or in-vitro experiments on the human GB to extract
data related to each interaction of the network often requires
a significant number of resources and time. On the other hand,
calculating them theoretically using Flux Balance Analysis
(FBA) is extensively complex due to the large number of
variables that prompt the same number of equations to be
solved (see in Section IV for further details). On top of that,
FBA is known as a static approach that fails to capture the
stochastic nature of biological networks. Hence, we designed
an agent-based simulator (henceforth named virtual GB) to
simulate the human GB, which produces the same set of data
that we expect by conducting in-vivo or in-vitro experiments
or FBA calculations. The virtual GB performs the behaviours
of the human GB considering natural characteristics. Hence,
the generated data represents bacterial behaviours that are
influenced by the aforementioned stochastic parameters.
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(a) (b)

Fig. 1: Illustration of the system model. (a) We recreated the human GB functionalities on virtual GB using voxel architecture
and parallel processing dedicating one GPU block for each bacterial cell to produce quantitative data on the MC layer, and
(b) we propose a two-layer system model to investigate the molecular interactions simulated in the virtual GB.

Our main contributions are as follows:
• Design of a two-layer interaction model of the human

GB: The collective gut bacteria metabolism forms a
complex interaction network among the different bacterial
populations. Hence, in this study, we design a layered
interaction model to investigate the dynamics of the
human GB based on the exchange of metabolites.

• Analysing molecular communication impact on the
human GB graph structure: Deviations of bacterial
populations’ metabolism cause alterations in molecular
interaction within the human GB, which may impact
the graph layer structure. We analyse this relationship
between the MC measures and the graph structure of the
human GB in terms of graph nodes and edges behaviours.

• Development of a human GB simulator to perform
in-silico experiments: We design and utilise an in-silico
simulation model of the human GB to investigate the di-
rect and hidden interactions among bacterial populations
based on the exchange of metabolites.

In the next sections, we detail our approach to model the
human GB and assess its network performance. In the section
II, we describe the basics of the human GB and highlight
the existent gaps that this research aims to address. Our
proposed model is detailed in Section III. Then, the metrics
considered in this paper are introduced in Section IV, and our
analysis results are presented in Section V. Further, in Section
V-A, we introduce the simulation environment built to utilise
metagenomics data and perform in-silico experiments with the
human GB. Finally, our conclusions are shown in Section VI.

II. BACKGROUND ON THE HUMAN GB MODEL

The human GB is the bacterial ecosystem residing inside
the human digestive system, comprising approximately 1000
species interacting with each other and carrying out crucial
functions such as nutrient metabolism and immunomodu-
lation of the host [16]. These bacteria utilise products of
host metabolism, metabolites produced by other bacteria or
dietary components from the gastrointestinal tract to convert

into various products essential for the host through different
metabolic pathways [17]. Bacteria in the human GB manifest
their cellular functions by exhibiting various social behaviours
such as commensalism [18], and competition by interacting
with other populations mainly using molecules (e.g., proteins,
metabolites and quorum sensing) rather than individual entities
[19]. We identify these interactions as MC system and assert
that the communication process in the GB is quite similar
to routing and relaying information in a conventional network
system which has inspired different network models (including
ours) of the human GB interactions. For example, Naqvi
et al. used a network-based approach to characterise the
human gut microbiome composition and analysed healthy vs
diseased states using network statistics [20]. Another study
focuses on the use of Boolean dynamic models that combines
genome-scale metabolic networks to determine the metabolic
deviations between community members, which was used to
characterise their metabolic roles of interactions [21].

The composition of the human GB is a crucial driver for
the processing of metabolites (i.e., small molecules produced
and used in metabolic reactions) in the lower intestine, which
significantly impacts the health of the host [22]. Human
GB composition differs among individuals, and it depends
on various factors, including dietary patterns, gut diseases,
exercise regimes, antibiotic usage, age, and genetic profiles
[23].

III. TWO-LAYER HUMAN GB INTERACTION MODEL

In this paper, we represent the metabolic interactions of
select representative bacterial genera of the human GB as
a two-layer interaction model, as shown in Figure 1. First,
the compositional and behavioural data on the human GB is
extracted from the databases and literature and implemented
the virtual GB (Figure 1a), see Section V-A for further details.
The virtual GB then simulates the human GB functionalities
according to various experimental setups (later explained in
section V), producing data on bacterial, molecular and gut
environmental behaviours. The produced data is analysed
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according to the introduced two-layer interaction model as
shown in Figure 1b.

The upper layer of this model, which is the bacterial pop-
ulation graph layer, defines the interconnections and overall
structure of the human GB, where we model the bacterial
populations and host as nodes and interactions between them
as edges. To minimize the complexity of the model, this graph
layer considers bacterial genera as nodes, as species in the
same genus share a common ancestral origin and the data
availability. Further, the edges of the network represent the
direct connections between the nodes that produce a particular
metabolite and the nodes that consume the corresponding
metabolite. In this layer, we can investigate the network
topology of the human GB.

The bottom layer consists of the cascading molecular
communications systems created by the bacterial populations
to establish their exchange of metabolites and support their
network structure. Here, each node is viewed as a molecular
transceiver, and the edges are the communications channels
interconnecting the nodes. Furthermore, this model extends
to the molecular signals that reach the human GB from the
environment, as well as, the ones that are output from the
human GB and return to the environment. The interactions
represented in this layer are dynamic and will depend on
several environmental conditions, such as media characteristics
and human GB composition. Please note that this is the layer
where we initially observe the impacts of any alterations on
the human GB composition (we further model and analyse this
effect in Section IV-A). The upper layer and the bottom layer
are further described in the following sections.

A. Upper Layer - Bacterial Population Graph Layer

Bacteria display a wide variety of social behaviours, and this
can lead to processes such as the metabolism of molecules or
coordinated biofilm formation [24]. The bacteria’s ability to
consume and produce multiple metabolites results in dense
interaction patterns that can lead to challenges in the analysis.

Our human GB interaction model aims to provide a better
global view of the functionality of the human GB, leading to
the understanding of the causes and effects of its imbalance
and to propose precise alterations to fix such issues. Therefore,
we model the human GB as follows. We first consider that
all bacterial cells bBk of a bacterial population Bk (where k
is the bacterial population identifier) perform the same series
of metabolic functions to process the metabolite inputs in
the human gut. Each node of the proposed graph layer is a
bacterial population, and each edge is an interaction between
two bacterial populations through metabolite exchange. The
nodes of this layer comprise the collective metabolic functions
of all cells within the corresponding population. Let Ω be the
set of all agents in this study, i.e. host cells and bacterial
populations, Ω = {host, Bk}. In this case, the molecular
intake of particular bacterial population Bk′ from Ω, C(Ω,Bk′ )

is considered C(Ω,Bk′ ) '
∑
c(Ω,bBk′ ) where C represents pop-

ulation interactions, c represents the intercellular interactions
and c(Ω,bBk′ ) is the molecular reception of bacterial cell bBk′

(a cell from the bacterial population Bk′ ) from a Ω source.

In the same way, molecular emission of the population is
considered the combined molecular emission of all bacterial
cells of the particular population, C(Bk′ ,Ω) '

∑
c(bBk′ ,Ω),

where C(Bk′ ,Ω) is the molecular emission from population
Bk′ to any receiver (host or other bacterial populations),
and c(bBk′ ,Ω) is the molecular emission of a single bacterial
cell of the population Bk′ to any receiver. Additionally, the
metabolite consumed by the bacterial cell bBk′ , MCon(bBk′ )
is obtained as MCon(bBk′ ) = c

(Ω,bB
′
k )
− c

(bB
′
k ,Ω)

. Hence the
metabolite consumption of a bacterial population is defined as
MCon(Bk′) '

∑
MCon(bBk′ ).

Next, we map the interactions between bacterial populations
to a directed multi-graph network, Γ = (B,C,Bs, Bd,M),
where B is the set of all bacterial populations, C is the set
of all interaction in the human GB, Bs ∈ B is the bacterial
population interaction sources, Bd ∈ B is the bacterial popu-
lation interaction destinations, and M is the set of metabolites.
In this work, we consider SCFAs production as the use case
for our model on the bacterial population interactions.

B. Bottom Layer - MC System

As detailed in the previous section, the metabolism of
nutrients by the human GB involves the reception, processing,
production of metabolites. These activities are fundamental
for the maintenance of the human GB, and this is modelled as
the MC layer shown in Figure 1b. Our aim of having the two-
layer model is to determine how the changes due to molecular
signals of the metabolites will affect the relationship of the
bacterial population graph layer. Therefore, any changes in the
bottom layer directly affect the upper layer and vice-versa.

Here, we define the metabolites as the molecular signals that
are exchanged by the nodes, which can assume different func-
tions depending on the MC network structure. For example,
when the node receives molecular signals, we model it as a
receiver, and when processing and secreting molecular signals,
we define them as transmitters based on the MC paradigm. The
edges of the proposed MC network are represented as the MC
channels to model the physical transport of molecular signals
between the nodes by diffusion. Figure 1b shows a visual
representation of the proposed bottom layer and its relationship
with the upper layer.

The diffused molecular signal is received by the nodes
which have the membrane receptors that will allow the
metabolites to bind. The performance of this network node
function (i.e., molecular reception) relies on many factors such
as molecule size [25], ligand-receptor maximum attraction
length and bond equilibrium [26], binding noise due to the
Brownian motion of molecules near the receptors [27], and
the minimum required concentration to be detected [28]. After
receiving the molecular signals, the node will process them
internally, which may result in the production of a new
molecular signal to be transmitted to the next node (focus
of this paper).

Received molecular signals are processed through signalling
pathways and produce different metabolites that will be trans-
mitted to the next node [29]. Even though we only focus
on the genus level, the signal processing occurs in each
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Fig. 2: Illustration of the analysis structure of this study.
Analysis 1: Influence of inputs on the graph structure and
Analysis 2: Behaviours of graph output against structural
deviations.

bacterial cell. Accordingly, we present the signalling process
performance of a bacterial cell bBk related to any metabolite
Mj as SPPbBk (Mj). Let’s assume that the cell bBk pro-
duces Mj by consuming another metabolite Mj′ . Then the
signal process performance SPPbBk (Mj) can be modelled by
considering the metabolite Mj′ reception process (defined as
RbBk (Mj′)), the encoding/decoding process from metabolite
Mj′ to Mj (defined as EbBk (Mj′ ,Mj)), and Mj metabolite
secretion process by the cells in the bacterial population bBk

(defined as LbBk (Mj)). Hence, we represent the signal process
performance as follows,

SPPbBk (Mj) = f(RbBk (Mj′), EbBk (Mj′ ,Mj), LbBk (Mj)).
(1)

Therefore, the SPP of the populations Bk can be modeled as
follows,

SPPBk
(Mj) =

∑
SPPbBk (Mj). (2)

Since the output of the molecular signal processing is the
emission of a particular molecular signal, it is fair to say,

SPPBk
(Mj) = Cr

(Bk,Ω)(Mj) (3)

where Cr
(Bk,Ω)(Mj) is the rate of molecule Mj production by

the bacterial population Bk to any node (either other bacterial
populations or host cells).

IV. SYSTEM DYNAMICS

We investigate the system dynamics of the human GB
through a series of simulations using the virtual GB and
propose a two-layer human GB model. First, we recreate the
digital form of the human GB on the simulator, which is
explained in depth later in Section V-A. Then we perform
two main sets of experiments, as depicted in Figure 2. In the
first set, we analyse the impact of the system’s inputs on the
connectivity structure of the virtual GB, and in the second set,
we manipulate the composition of our virtual GB to investigate
the impact on the metabolite production of our MC network.
Through this second set of experiments, we aim to identify
the nodes that can play a pivoting role in the GB imbalances.

In our analyses, first we define a standard graph state S0,
which represents the functionality of an average healthy human
GB with the intention of quantifying structural changes and
behavioural deviations relative to the standard structures. The
average composition, interactions, and metabolite production
dynamics were mainly considered in defining the S0. The

average composition and the interactions of S0 for the case
study of this paper is presented in Section V

A. Molecular input impact on the human GB structure

Due to the variety of bacterial behaviours induced by the
exchange of molecules, some of the molecular input signals
have a significant impact on the structure of the human GB
(our focus), while others are directly converted into output
metabolites. In this section, we detail how the molecular
input signals impact the structure of our MC network. As the
structural deviations of the graph is a crucial measurement
in understanding the deviation of the human GB behaviour,
the structural deviation is evaluated in terms of edges and
nodes weight using the rates of the interaction of the nodes.
Hence, we explain how the interaction rates can be calculated
theoretically using FBA and are represented as follows,

F[k×q] · ~C = ~MCon(Bk) (4)

where F[k×q] is the stoichiometric matrix of k number of
bacterial populations and q number of interactions based
on the flux of metabolites between the nodes in the MC
network. Here ~C = [Cr

1 , C
r
2 , ..., C

r
q ]1×q and Cr

q is the rate
of interactions for Cq . We can solve (4) as follows,


B1 a1,1 a1,2 ... a1,q

B2 a2,1 a2,2 ... a2,q

...
...

...
. . .

...
Bk ak,1 ak,2 ... ak,q

·




Cr
1

Cr
2
...
Cr

q

=




dMCon(B1)
dt

dMCon(B2)
dt
...

dMCon(Bk)
dt

(5)

where, ak,q is the stoichiometry of the interaction Cr
q for

bacterial population Bk.
Based on (5), we can extract the relationship between rates

of interactions starting from the node Bk using Mass Balance
Equation (MBE), which is based on the following relationship

dMCon(Bk)

dt
=
∑
q

a(k,q)C
r
q . (6)

On the other hand, the rate of molecular consumption can be
modeled as follows [30],

dMCon(Bk)

dt
= −U1

(
µk

MCon(Bk)

MCon(Bk) +KS1

)
NBk

(7)

where NBk
is the bacterial concentration, µk is maximum

growth rate, KS1 is the half-saturation constant of the bacteria,
and U1 is an utility parameter. Hence,

−U1

(
µk

MCon(Bk)

MCon(Bk) +KS1

)
NBk

=
∑
q

a(k,q)C
r
q . (8)

By solving the series of MBEs, all the interaction rates can
be calculated. This is a highly complex calculation due to
the massive number of nodes, edges of the network, and
a large number of parameters associated with the structural
connections. The introduced virtual GB produces data on the
rates of interactions avoiding complex FBA calculations.

The extracted rates of interactions are then used to quantify
the graph structural changes in two ways. First, we investigate
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the graph structural changes considering the behaviours of
the node weights. Here, the statistical distances between the
weights of the same node in different graph states are mea-
sured. The node weight, Bw

k (Sg) of the bacterial population
Bk in the graph state Sg is considered as the collective SPP
and can be evaluated as follows,

Bw
k (Sg) =

∑
j

SPPBk
(Mj). (9)

Alternatively, using (3) we compute the node weight as
follows,

Bw
k (Sg) =

∑
j

Cr
(Bk,Ω)(Mj). (10)

Based on this, d(Bw
k : Sg, S0) represents the distance of node

Bk between the two graph states S0 and Sg is evaluated as
follows,

d(Bw
k : Sg, S0) = Bw

k (Sg)−Bw
k (S0). (11)

Next, we quantify the structural deviation of the graph
using the interaction changes. In this study, we consider static
snapshots of different graph states that can enable the use of
the Hamming Distance to evaluate graphical distances for two
states [31] among other techniques. The Hamming distance
dh(S0, Sg) between the graph states Sg and the standard
state S0 is defined as the difference of two adjacent matrices
corresponding to the two graph states. First, we define the
adjacency matrix of the graph state Sg as follows,

B1 B2 ... Bk


B1 Cw
(B1,B1) Cw

(B1,B2) ... Cw
(B1,Bk)

B2 Cw
(B2,B1) Cw

(B2,B2) ... Cw
(B2,Bk)

...
...

...
. . .

...
Bk Cw

(Bk,B1) Cw
(Bk,B2) ... Cw

(Bk,Bk)

(12)

where Cw
(∗,∗) is the weight of the interaction C(∗,∗). Note that

the weights of interactions in the main diagonal of the above
matrix represents the interactions that take place within the
same bacterial population, which is a type of interaction that
cannot be observed in the metabolic network we considered
in this study. Further, we define the weight of the interaction
C(Bk,Bk′ )(Mj) between any bacterial population Bk and B′k
through metabolite Mj as follows,

Cw
(Bk,Bk′ )(Mj) =

Cr
(Bk,Ω)(Mj)∑

k C
r
(Bk,Ω)(Mj)

·
Cr

(Ω,Bk′ )
(Mj)∑

k′ Cr
(Ω,Bk′ )

(Mj)
.

(13)
Moreover, from released molecules by a bacterial population,
only a fraction is consumed directly by the other populations
and the rest will get accumulated in the environment. This
means the most significant portion of molecular consumption
by the bacterial populations is from the environment. We
define this process with the help of a memory component
concept as depicted in Figure 3. Since the metabolites are
accumulated in the environment, we consider it a memory, then
model the metabolite accumulation as an interaction starting
from a bacterial population that releases the metabolites and

Fig. 3: Illustration of the environment working as a memory
of molecules.

ending with the memory, C(Bk,Mem). In the same way, the
metabolite consumption from the environment is modelled as
an interaction starting from the memory and ending with a
bacterial population that consumes the particular metabolite,
C(Mem,Bk). Hence, we modify (13) by applying the memory,
which is represented as follows,

Cw
(Bk,Bk′ )(Mj) =

Cr
(Bk,Mem)(Mj)C

r
(Mem,B′

k)(Mj)∑
k C

r
(Bk,Mem)(Mj)

∑
k′ Cr

(Mem,B′
k)(Mj)

.

(14)

Then, the Hamming distance, dh(S0, Sg) can be represented
as,

dh(S0, Sg) =
∑
k,k′

|Cw
(Bk,Bk′ )(Sg)− Cw

(Bk,Bk′ )(S0)| (15)

where, Cw
(Bk,Bk′ )

(Sg) and Cw
(Bk,Bk′ )

(S0) are the weights of
interaction C(Bk,Bk′ ) in graph states Sg and S0 respectively.

B. Human GB structure impact on the molecular output

This analysis explores the impact of interaction variations
of the human GB on the output. Here, we keep the inputs
at an optimal level and manually alter the graph structure
by changing the population sizes, which leads to variations
in the SPP of the nodes. Then the output of the system is
measured in different graph states and the weights of the edges
are calculated using (13) to determine the molecular output of
the MC layer using graph theory.

The ratio between the three SCFAs can be identified as
a critical measurement to evaluate the metabolite production
accuracy of the bacteriome. We adopt the signal to noise ratio
(SNR) to evaluate the consistency of the output signal ratios.
In this analysis, we calculate SNR of any signal SNR(Mj),
considering the other output signals, Mj′ as noise. This SNR
value directly indicates the ratio between the molecular signal
Mj and other metabolite signals Mj′ . Then SNR(Mj) is
calculated as follows,

SNR(Mj) =
∑
k

C(Bk,host)(Mj)∑
j′ C(Bk,host)(Mj′)

. (16)

Moreover, some bacterial populations do not produce spe-
cific SCFAs, but have an indirect influence on them. For
example, Bacteroides cells do not produce butyrate, but the
acetate produced by the Bacteroides cells is a substrate for the
butyrate production by Faecalibacterium and Roseburia cells.
Hence, the Bacteroides population indirectly influences the
butyrate production. Considering the above mentioned effect,
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a correlation matrix is generated for variation of node weights
vs the collective SCFA output of the human GB to analyse the
impact of various bacterial populations in SCFA production.
Here, we denote the rate of SCFA Mj output by all the
bacterial populations as Or(Mj) where

Or(Mj) =
∑
k

Cr
(Bk,host)

(Mj). (17)

Then, the correlation coefficient r(Bk) of node weight Bw
k

versus the collective output of Mj is calculated as follows.

r(Bk) =
∑
g

Bw
k −Bw

k (Sg)(Or(Mj)−Or(Mj))√
(Bw

k −Bw
k (Sg))2

√
(Or(Mj)−Or(Mj))2

(18)
where, Or(Mj) is the standard collective output rate for Mj

by all the bacterial populations and Bw
k is the weight of the

node Bk in the standard state S0.

V. ANALYTICAL RESULTS

In this section, we describe the development of the virtual
GB and the results from our analysis that is based on the
models presented in Section IV.

A. Virtual GB Design

We developed the virtual GB using metagenomic data to
characterise the bacterial populations signalling interactions
and their impact on the network relationships. The virtual
GB is inspired by the BSim agent-based cell simulator [32].
The virtual GB is written in C++ with CUDA platform for
parallel processing to increase the simulation performance
and most importantly, mimic the parallel processing typically
executed by the bacterial populations. We dedicate one GPU
block for each bacterial cell, and the threads of that block to
intracellular functions of the corresponding cell. To simulate
the bacterial interactions, we model the exchange of molecules
using metabolic flux in a diffusive media. The simulator has
a 3D environment with voxel architecture (Figure 1a), which
provides the ability of extracting data on each metabolite and
bacterial cell separately. Moreover, we can introduce any new
cell type by creating their internal metabolic pathways and
other physiological characteristics such as motility, shape, size,
etc. Therefore, the simulator can be used for a range of setups
including other metabolic functions, microbial ecosystems
in different habitats or targeting specific bacterial behaviour
like quorum sensing. Further, the simulator can log data
on the metabolite consumption/production/accumulation and
bacterial proliferation. In this study, we setup the virtual GB
to simulate the SCFA production using metagenomic and
metabolomic data obtained in [29], KEGG [33]–[35], NJS16
[36], and MetaCyc databases [37].

Here, we present a series of analyses conducted on SCFA
production within the human GB using the two-layer model.
First, we defined the average composition of the human GB
using the average relative abundance (RA) (see Table I)
calculated based on data extracted from 352 samples of the
MicrobiomeDB [38].

Fig. 4: Representation of the subgraph, ΓSCFA considered in
the case study which contains the nodes and edges related to
SCFA production.

Fig. 5: Combined and simplified SCFA production pathway of
converting fucose and glucose, into SCFAs.

TABLE I: Average RAs of bacterial populations

Genus Average RA
Bacteroides 0.4899173
Alistipes 0.05960802
Faecalibacterium 0.04329791
Parabacteroides 0.04096428
Ruminococcus 0.03320183
Roseburia 0.01039938
Eubacterium 0.0093219
Bifidobacterium 0.00179366
Escherichia 0.00185639

Using these RA data along with the extracted interaction
data from the databases mentioned earlier, we created a
graph network for SCFA production, ΓSCFA following the
definitions presented in Section III-A. We only considered nine
bacterial populations based on their RA, their metabolic activ-
ities, and data availability. We include Bacteroides, Alistipes,
Faecalibacterium, Parabacteroides, and Ruminococcus in the
model as they are the most abundant bacterial genera. To add
further metabolic diversity to the network, we include other
bacterial genera used in this study as they perform different
metabolic functions compared to the most abundant bacterial
genera. Figure 4 illustrates the ΓSCFA where node sizes
indicate the RAs of the respective bacterial genera shown in
Table I. Furthermore, the edges are colour-coded to highlight
the strengths of the interactions which are quantified using
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TABLE II: Parameters utilised in Section V-B and V-C.

Parameter Value Description
Standard setup
Bacteroides cell count 7.3×105

Calculated based on the RA (see Table I) and to keep the total cell count
lesser than 1.5× 106 (maximum number of cells was limited by the memory
availability of our GPU server).

Alistipes cell count 8.9×104

Faecalibacterium cell count 6.4×104

Parabacteroides cell count 6.1×104

Ruminococcus cell count 4.9×104

Roseburia cell count 1.5×104

Eubacterium cell count 1.3×104

Bifidobacterium cell count 1.5×103

Escherichia cell count 1.5×103

Maximum GPU blocks utilised 1.7×106 Calculated based on number of voxels.
Maximum threads per utilised per block 24 Calculated based on number of metabolites used in the simulations.
Analysis 1: Molecular input impact on the human GB structure
Glucose input rate (min-max) 0.000-16.605µmol/m3s Calculated the using the number of cells and the stoichiometry

of metabolic pathways [37], [39].
All bacterial population cell count Fixed at standard values Values are same as the standard setup.
Analysis 2: Human GB structure effect on the graph outputs
Glucose input rate 6.642µmol/m3s (Fixed) Obtained from simulations to match SCFA production of average human GB.
Bacteroides setup
Bacteroides cell count (min-max) 0-1.6×106 Calculated using the stoichiometry of metabolic pathways of Bacteroides

and the number of cells to obtain results range with significant changes [37].
Other bacterial population counts Fixed at standard values Values are same as the standard setup.
Faecalibacterium setup
Faecalibacterium cell count (min-max) 0-1.4×105 Calculated using the stoichiometry of metabolic pathways of Faecalibacterium

and the number of cells to obtain results range with significant changes [37].
Other bacterial population counts Fixed at standard values Values are same as the standard setup.

(13).
For illustration purposes, we combine the metabolic pro-

cesses executed on different bacterial cells and simplify the
SCFA pathway to focus on the most important steps that
leads to the production of the three most abundant SCFAs in
the human GB, namely acetate, butyrate and propionate (see
Figure 5) [40]. The parameters utilised in V-B and V-C are
presented in Table II. As we explained earlier, the bacterial
cell counts for the standard setup are calculated based on
the calculated RA and to keep the total cell count less than
1.5×106. The number of GPU blocks equals to the number of
voxels in the system and the maximum number of threads per
block calculated based on the number of metabolites in the
environment. Further, the glucose input rate is extracted by
an array of iterative experiments to match the ratio of SCFA
abundance of an average human GB. Please note that in a
typical human GB, SCFA abundance ratios range from 3:1:1 to
10:2:1 [41]. The maximum glucose input rate of the Analysis
1, and the maximum Bacteroides and Faecalibacterium cell
counts of the Analysis 2 are fixed at certain values to obtain
results with significant behaviours. Beyond those maximum
values, the results only continue the trends without significant
changes.

B. Analysis 1: Molecular input effects on the graph structure

Here, we present the results for the analyses mentioned
in Section IV-A. The analyses are conducted by regulating
the input glucose rate Cr

(host,Mem)(Mglu) and fucose rate
Cr

(host,Mem)(Mfse) from the host cells to the system that
contains the memory of existing metabolites and evaluating the
human GB compositional changes. The simulation for these
experiments only contains growth dynamics of Faecalibac-
terium, Eubacterium and Escherichia bacteria as their growths

are supported by the metabolites involved in the same SCFA
production. Further, with the data availability, the model can
be extended to analyse the growth dynamics of other bacterial
genera as well.

Figure 6 illustrates the impact of glucose on the three
bacterial populations based on Γglu (Γglu ⊆ ΓSCFA), shown
in Figure 6a. The colours used in Figures 6b and 6c follow
the same colour scheme as in Figure 6a. Figures 6b and
6c shows the behaviours of edge weight and variation of
population sizes as a fraction of that in S0 due to the
changes in Cr

(host,Mem)(Mglu) respectively. The variations
of the input rate Cr

(host,Mem)(Mglu) alters the intermedi-
ate interaction from any bacterial population Bk to other
population Bk′ through acetate, C(Bk,Bk′ )(Mace) and lac-
tate C(Bk,Bk′ )(Mlact), which are required for the growth of
Faecalibacterium and Eubacterium, respectively. Figure 6b
explains the graph theoretical behaviour of indirect influence
on the growth dynamics of the respective bacterial populations.
The growth of Eubacterium keeps increasing steadily until
the Cr

(host,Mem)(Mglu) is twice the standard level, while the
growths of the other two bacterial populations converge to the
standard static level. This is due to the stoichiometry of the
metabolite conversion, where an acetate molecule is produced
by one glucose molecule while a lactate molecule requires two.
The growth of Escherichia and Faecalibacterium are directly
altered by the variations of glucose inputs and the behaviours.
We calculated the maximum Mean Standard Error (MSE) as
0.03374 for any metabolite by iterating the experiment 20
times.

Deviations of a bacterial population concentration refer to
deviations in node weights according to the (2) and (9).
Figure 7 represents the node weight deviation compared to
standard graph state S0 due to the variability in inputs. This
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(a) (b) (c)

Fig. 6: Deviation of population sizes of Faecalibacterium, Eubacterium and Escherichia from the standard levels due to different
input concentrations of glucose: (a) subgraph for the glucose consumption, (b) edge weight behaviours of the intermediate
interactions, and (c) population growth behaviours.

Fig. 7: Changes of node weights due to the variations in
molecular signal inputs.

Fig. 8: Behaviours of overall graph weights against the
changes in inputs and their concentrations.

analysis reveals the impact of different input conditions on the
molecular signal performance SPP of bacterial populations.

While Figure 7 explains the node weight variations, Fig-
ure 8 focuses on the overall interaction weight behaviours
compared to S0. This graph provides an insight into how the
structure is being modified by the input variability. When the
Cr

(host,Mem)(Mglu) is low compared to the standard level, the
graph deviates significantly from the standard level, and when
the Cr

(host,Mem)(Mglu) exceeds the standard level, the graph
starts to deviate again from the standard structure, but with a
lesser magnitude compared to a weaker signal (the standard
level is 1.0). This reveals that the human GB is more sensitive

to low glucose concentrations. The experiment is repeated for
the fucose input rates Cr

(host,Mem)(Mfse) as well, but the
impact is minimal compared to Cr

(host,Mem)(Mglu).

C. Analysis 2: Human GB structure effect on the graph
outputs

In this section, we analyse the direct and indirect impacts
of the human GB compositional changes on the network be-
haviours. The analyses are conducted by altering the bacterial
population sizes manually on the virtual GB and extracting the
metabolite production data with respect to each alteration. The
resulting behaviours of the MC layer are explained using the
graph analyses. Although we conduct similar experiments for
all the nine populations, we only show results on Bacteroides
(Figure 9) and Faecalibacterium (Figure 10) populations as
they provide a better understanding of the metabolite produc-
tion dynamics of the human GB.

Figure 9 shows the impact of Bacteroides population size
variation on the human GB SCFA production. In this ex-
periment, we focus on the graph ΓBct (ΓBct ⊆ ΓSCFA)
considering only the interactions that are related to the Bac-
teroides population, as shown in Figure 9a. The colour scheme
used in Figures 9b and 9c follow the same colour scheme
as in Figure 9a. The metabolite inputs to the graph and the
population sizes are maintained fixed at the standard level
except for the Bacteroides population size. We modify the
population size of Bacteroides (|BBct|) from zero cells to
2.2 times the standard population size. Figure 9b explains
the behaviours of the intermediate links from Bacteroides
to Faecalibacterium node through acetate, Bacteroides to
Eubacterium populations through lactate, and Bacteroides to
Roseburia populations through acetate, while Figure 9c shows
SCFA production behaviours in the MC layer due to changes
in the population size. From Figure 9c, it is evident that
all the SCFAs have strong positive relationships with the
population size of Bacteroides. Acetate and propionate are
direct products of Bacteroides cells. As a result of that, acetate
and propionate outputs show steady trends against the increase
of Bacteroides population sizes. Moreover, the edge weight
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(a) (b) (c)

Fig. 9: Behaviours of SCFA production for various in Bacteroides population sizes: (a) subgraph of Bacteroides population
interactions, (b) edge weight behaviours, and (c) SCFA output.

(a) (b) (c)

Fig. 10: Behaviours of SCFA production for various in Faecalibacterium population sizes: (a) subgraph related to the interactions
of Faecalibacterium population, (b) edge weight behaviours, and (c) SCFA output.

(a) (b)

Fig. 11: Simulation results for SNR of three output signals
with the changes in population sizes of Bacteroides and
Feacalibacterium. (a) SNR results for Bacteroides population
and (b) SNR results for Feacalibacterium population.

variations are shown in Figure 9b justify the butyrate signal
behaviour in the MC layer shown in Figure 9c. To be more
precise, the butyrate output curve starts to become flat when
the Bacteroides population size |BBct| is greater than 0.8
times the standard value. The graph theoretical quantification
of links also shows the same trend in Figure 9b, emphasizing
that the graph theoretical measures can be used to explain the
metabolite production behaviours.

In the same way, Figure 10 illustrates the results for a sim-
ilar experiment on Faecalibacterium population. Figures 10a,
10b and 10c represent the subgraph ΓFae (ΓFae ⊆ ΓSCFA),
edge and the MC layer behaviours, respectively. Similarly

to the previous analysis, we modify the population size of
Faecalibacterium |BFae| ranging from zero cells to 2.2 times
the standard population size. As the Faecalibacterium cells
consume acetate and produce butyrate, the rate of acetate
consumption from the environment increases when the |BFae|
is increased. Hence, the weight of interaction between environ-
ment and Faecalibacterium population increases, which can be
observed in Figure 10b, and the resulting reduction in acetate
output is visible in Figure 10c. Moreover, since Faecalibac-
terium population is one of the key butyrate producers, there
is a clear positive relationship evident between |BFae| and
butyrate. Due to the smaller population size of the Roseburia
population, the influence on the metabolite production is
relatively low, which can be observed from Figure 10b. For all
the graphs, the maximum MSEs are calculated below 0.03087.

The MC layer results presented for the two analyses on
Bacteroides and Faecalibacterium populations (Figures 9c and
10c) are then interpreted in terms of SNR in Figure 11.
In the plots of this figure, SNR values are shown as ratios
of the SNR value at the standard state of the human GB,
and the bacterial population sizes are increased similar to
the previous analyses. Here, we show the three SNRs of
acetate, propionate, and butyrate of two bacterial populations:
Bacteroides and Faecalibacterium. Figure 11a shows the SNR
behaviours of the three SCFAs against the |BBct|. It is clearly
evident that the acetate production is higher compared to the
other two SCFAs when the |BBct| is increased. This means,
when the composition of human GB is changed as the |BBct|
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Fig. 12: Pearson correlation heat map of the impact on the three output signals by nine bacterial populations.

increases, the output of the GB also loses balance and tends
to produce more acetate compared to the other two SCFAs.
On the contrary, the propionate production rate reduces when
the |BBct| increases. When the population size of Bacteroides
|BBct| is smaller than the standard level, the system tends
to produce molecular signal with higher deviated ratios, but
when |BBct| is greater than the standard level, the deviation
is relatively low. Figure 11b shows the SNR behaviours of the
three SCFAs against the |BFae|. Since Faecalibacterium is
the main butyrate producer of this network, the butyrate SNR
increases with the |BFae| increment. Hence, compositional
imbalance related to Faecalibacterium causes a significant
imbalance in output molecular signal ratios. Furthermore, due
to the acetate consumption of Faecalibacterium, the acetate
signal becomes weaker, resulting in the acetate SNR deviating
from the standard level.

Figure 12 explains the correlation between each bacterial
population and the SCFA abundance in the gut environment.
Although Bacteroides are the biggest producer of all the SC-
FAs, it has a weak correlation with SCFAs compared to other
producers such as Alistipes and Parabacteroides. This reveals
that the reduction of glucose consumption by Bacteroides
increases the other bacterial population, resulting in boosted
SCFA production. Note that, even the SCFA production of
the other bacterial population is boosted in the absence of
Bacteroides, the overall production is low. Since the Fae-
calibacterium and Roseburia consume acetate, the heat map
shows a strong negative correlation with acetate. Interestingly,
this heat map indicates metabolic switching by Escherichia,
from a SCFA producer to a high acetate concentration con-
sumer. This is the same for the Ruminococcus when the fucose
concentration is not sufficient for the increased population, it
switches from fucose to glucose consumption reducing the
intermediate metabolite production, which causes a reduction
in butyrate production.

VI. CONCLUSION

The gut bacteriome has been largely investigated due to its
importance to the human health. We contribute to this research
topic by introducing a two-layer GB interaction model to
investigate the impacts of bacterial population compositional
changes on the overall structure of the human GB utilising
data collected from MicrobiomeDB and NJS16 databases. Our
proposed human GB interaction model combines a bacterial
population graph layer, which models the structure typically
found in the human GB (i.e. bacterial populations genus and
sizes), with a molecular communications layer, which models
the exchange of metabolites by the bacterial populations in

this structure. Supported by these models, we also developed a
virtual GB to simulate the metabolic interactions that typically
occurs in the human GB. These simulations allowed us to
study the impacts caused by the metabolite exchanges on
the human GB structure (i.e. nodes weight and hamming
distance). Through our analyses, we found that the molecular
inputs affect the bacterial populations in the human GB
differently by modifying the nodes and edges weights of our
GB interaction model. Our results also show that modifications
in the human GB structure, specifically changing the sizes
of Bacteroides and Faecalibacterium populations can lead to
improvement/reduction in the production of SCFA, which may
result in metabolic diseases in humans. Based on our results,
we also infer that there is an intrinsic relationship between the
investigated bacterial populations sizes, the increase/decrease
of specific metabolites (SCFAs), and the overall balance of
the human GB. These results can support the development
of novel strategies to treat unbalanced human GB, and can
provide insights on the role of other metabolites and molecules
on the maintenance of a healthy gut bacteriome.
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