
1

Sustainable Edge Node Computing Deployments in
Distributed Manufacturing Systems

S. Goudarzi, Senior Member, IEEE, S. A. Soleymani, Member, IEEE, M. H. Anisi, Senior Member, IEEE, A.
Jindal, Senior Member, IEEE, F. Dinmohammadi, Senior Member, IEEE, Pei Xiao, Senior Member, IEEE

Abstract—The advancement of mobile internet technology has
created opportunities for integrating the Industrial Internet of
Things (IIoT) and edge computing in smart manufacturing. These
sustainable technologies enable intelligent devices to achieve
high-performance computing with minimal latency. This paper
introduces a novel approach to deploy edge computing nodes
in smart manufacturing environments at a low cost. However,
the intricate interactions among network sensors, equipment,
service levels, and network topologies in smart manufacturing
systems pose challenges to node deployment. To address this,
the proposed sustainable game theory method identifies the
optimal edge computing node for deployment to attain the desired
outcome. Additionally, the standard design of Software Defined
Network (SDN) in conjunction with edge computing serves
as forwarding switches to enhance overall computing services.
Simulations demonstrate the effectiveness of this approach in
reducing network delay and deployment costs associated with
computing resources. Given the significance of sustainability,
cost efficiency plays a critical role in establishing resilient edge
networks. Our numerical and simulation results validate that
the proposed scheme surpasses existing techniques like shortest
estimated latency first (SELF), shortest estimated buffer first
(SEBF), and random deployment (RD) in minimizing the total
cost of deploying edge nodes, network delay, packet loss, and
energy consumption.

Index Terms—Game theory, smart manufacturing, edge node
selection, SDN.

I. INTRODUCTION

INDUSTRY 5.0 pertains to a smart manufacturing set-
ting where people, technology infrastructure, and sensor-

equipped machinery work together to produce and transmit
a large volume of data, commonly known as Big Data. The
development of networking and communication technologies,
artificial intelligence, distributed computing, and beyond 5G
is giving rise to a new era known as Industry 5.0. Within
the realm of technological progress, Industry 4.0 witnesses a

S. Goudarzi and F. Dinmohammadi are with the School of Comput-
ing and Engineering, University of West London, St Mary’s Rd, Eal-
ing, London, W5 5RF, UK. (e-mail:shidrokh.goudarzi@uwl.ac.uk; e-mail:
fateme.dinmohammadi@uwl.ac.uk).

S. A. Soleymani is with the Centre for Vision Speech and Signal Pro-
cessing (CVSSP), University of Surrey, Guildford GU2 7XH, U.K. (e-mail:
s.soleymani@surrey.ac.uk).

M. H. Anisi is with the School of Computer Science and Electronic
Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom (e-
mail: m.anisi@essex.ac.uk).

A. Jindal is with the Department of Computer Science, Durham University,
Durham DH1 3LE, United Kingdom (e-mail: anish.jindal@durham.ac.uk).

P. Xiao is with the 5G&6G Innovation Centre, Institute for Commu-
nication Systems (ICS), University of Surrey, Guildford, U.K. (e-mail:
p.xiao@surrey.ac.uk).

heightened incorporation of robotics in manufacturing. Nev-
ertheless, Industry 5.0 is regarded as a progression in the
partnership between humans and automation, accentuating a
cooperative and safe alliance where both humans and machines
actively cooperate in order to fulfil objectives, rather than
machines completely supplanting humans.

Numerous research have delved into the progress and obsta-
cles entailed by Industry 5.0 [1]–[4]. However, these preceding
inquiries have either adopted a broad overview or specialized
in particular domains. As an illustration, a framework that
integrates edge AI was suggested for scrutinizing electricity
data originating from smart meters [5]. The results of the
experiments demonstrated that deploying the AI engine at
the edge not only simplifies system intricacies and reduces
processing latencies but also heightens the precision of electric
load forecasts. Nonetheless, the limited computational capa-
bilities of edge devices present challenges when conducting
learning tasks directly on them. Moreover, establishing secure
environments for model learning on edge devices is a com-
plex endeavor. Privacy apprehensions among data proprietors
restrict data exchange in edge AI, diverging from cloud-based
learning tasks where data sharing is more prevalent within a
secure setting. In response to this challenge, an E-Tree learning
framework was introduced in [6], employing decentralized
model aggregation to empower edge devices in conducting
localized and gradual model aggregation. On-device AI, also
recognized as embedded AI, empowers data processing and
computation at the point of data origination. Given the escalat-
ing data generation at IoT endpoint devices, the imperative to
maximize insights without necessitating data transit becomes
evident. Nonetheless, on-device AI grapples with challenges
such as the resource-intensive demands of ML algorithms and
the limited longevity of IoT end-device batteries. The adoption
of tinyML, an emerging subset of on-device AI, addresses
these concerns by enabling ML processing on low-power IoT
devices [7]. A distinctive aspect of TinyML is its ability
to incorporate pre-trained machine learning models onto the
edge, thus providing ML-as-a-Service (MLaaS) to IoT end
devices.

Also, the advanced information technologies, including the
Industrial Internet of Things (IIoT) [8], [9], cloud computing
[10], and digital twin [11], have gained significant traction
within the manufacturing industry. As a result, there has
been rapid development and widespread implementation [12]
of these technologies, leading to various applications and
advancements in the sector. This shift from digital to intelligent
enterprise manufacturing paradigms has been accelerated by

2

the Industry 4.0 initiative, leading to significant advancements
in group-distributed manufacturing across various areas such
as hardware and production facilities. Smart objects enabled by
IoT are integrated with intelligent production processes in the
Industry 4.0 context, allowing for real-time communications
and collaborations among humans, machines, and sensors to
make informed decisions [13]. The IIoT smart objects generate
vast amounts of data that contain valuable information, which
can be utilized to improve production processes.

Sustainable manufacturing, widely adopted as an econom-
ically efficient approach in contemporary manufacturing sec-
tors, empowers manufacturers to execute their development
strategies effectively while minimizing environmental impact
and optimizing resource utilization throughout the product
development lifecycle [14]. Researchers have conducted ex-
tensive investigations into the integration of IIoT, cloud com-
puting, automation, and artificial intelligence in smart man-
ufacturing, enhancing both machine and product intelligence
[15]. Nevertheless, traditional cloud computing falls short in
meeting the real-time demands of production processes. To ad-
dress this challenge, edge computing is seamlessly integrated
into the IIoT, enabling timely execution of specialized tasks
within the premises of smart factories or industries [16]. Edge
computing encompasses a platform strategically positioned
in close proximity to device or data sources, amalgamating
computing, storage, networking, and applications to deliver
intelligent edge services. These services encompass dynamic
connectivity, real-time data processing, data analysis, and
privacy protection. In the realm of intelligent manufacturing,
where swift detection, control, and execution hold paramount
importance, the deployment of edge computing nodes emerges
as an indispensable solution to facilitate enhanced operational
efficiency.

Numerous studies have examined edge computing and the
deployment of edge computing nodes in intelligent manu-
facturing, with significant findings. For instance, Li et al.
[14] suggested a flexible transmission structure that combines
software-defined networks (SDN) and edge computing. Their
method solves issues related to exchanging data with various
delay streams among multiple smart devices in the IIoT sys-
tem. This architecture integrates global centralized SDN and
edge computing. In [17], a method for placing virtual machine
clusters in software-defined data centres was presented that
takes into account energy efficiency and ensures the quality of
service (QoS) and service level agreement (SLA) management.
Their approach involves considering the similarities among
virtual machines and formulating the deployment process as
a weighted directed graph. By placing requests on energy-
efficient virtual machines, the algorithm aims to provide better
QoS to users.

Mobile edge computing (MEC), as a subset or specific
implementation of edge computing, plays a crucial role in
supporting numerous IIoT applications by offering advantages
such as low latency, high resilience, affordability, robust
connectivity, and security for M2M communications within
the IIoT domain [14]. The combination of MEC and IIoT
has gained significant attention from researchers. For instance,
an adaptive transmission architecture utilizing SDN and edge

computing was proposed in [18] to enable data exchange
among smart devices in IIoT scenarios with varying delay
requirements. Another work introduced a smart resources par-
titioning scheme based on service popularity for IIoT enabled
by edge computing [18]. Furthermore, the study [19] presented
an SDN-based edge-cloud interplay to handle streaming big
data in the edge computing-enabled IIoT environment. Authors
in [20] examined the applicability of edge computing as a
middleware to various industrial scenarios. They emphasized
the capability of edge computing to process unstructured big
data locally in the industry premises before transmitting it
to the cloud. Similarly, Mike Jia et al. [21] investigated the
distribution of users and the placement of a limited number
of micro-clouds in metropolitan area networks to reduce task
offloading’s average waiting time.

However, previous research efforts have not addressed the
crucial challenge of deploying edge computing nodes in
intelligent manufacturing settings. Deploying these nodes is
particularly challenging due to constraints such as limited
computing power, equipment heterogeneity, varying service
levels, and complex network topologies. These complexities
arise from the intricate network interactions among equip-
ment controllers, sensors, and diverse machinery [22]. Con-
sequently, there is a clear need for a robust and real-time
data processing approach to effectively deploy edge computing
nodes within the context of smart manufacturing [23]. This
highlights the fact that the deployment strategies discussed
in prior studies are ill-suited for the specific requirements of
smart manufacturing. In contrast to earlier research, which
primarily focused on energy optimization for mobile devices,
it is worth noting that in intelligent manufacturing, the devices
are predominantly stationary, and energy consumption is not
the primary concern under consideration.

The goal of this study is to use edge computing nodes in
smart manufacturing, and it proposes a method to select the
best edge nodes for computing tasks while minimizing delay
and deployment cost. The edge nodes will act as computing
nodes and provide edge computing services to the network
nodes. To achieve this, the study suggests using game theory
to optimize the selection of edge nodes and ensure effective
task computation for all network nodes.

The objective of this research is to improve the performance
of data processing on a network node by optimizing the
placement of edge computing nodes in edge networks. The
main focus is on smart manufacturing in Industry 5.0. To
achieve this, the study proposes a game theory model, where
the edge nodes compete to win the connection of the source
node. The model considers the quality of service requested
by the node, including the minimum network delay and com-
puting resources deployment cost. By solving a cooperative
game for the edge computing node selection problem, the
study aims to identify the best edge node selection policies
for intelligent manufacturing, taking into account competition
among different edge nodes to ensure effective task processing.
The ultimate goal is to improve the efficiency and stability of
data processing in smart manufacturing environments.

The key achievements of this research are twofold. Firstly,
it examines a method for deploying edge computing nodes

3

in manufacturing environments. Secondly, it enhances the
efficiency and reliability of data processing. To summarize,
the main contributions of this study are:

1) We design an SDN-based architecture that is efficient for
edge computing in smart manufacturing. This architec-
ture can be used to implement and test their proposed
approach to selecting the optimal edge computing nodes.

2) We propose an adaptive model based on game theory,
which helps select the most suitable edge node among
multiple edge nodes in smart manufacturing during the
production process.

3) We create an SDN-edge node architecture that can ad-
dress the data processing constraints. By leveraging SDN
technology, which provides a comprehensive network
view, we formulate end-to-end policies with high compu-
tational capability. Using this approach, we identify SDN-
edge node configurations that improve both network delay
and computing resource deployment cost automatically.

The remainder of the paper is structured as follows. In
Section II, we present an architectural design that includes
all the design requirements of the proposed model. Section III
presents the edge computing node selection as an optimization
problem and explains the designed game theory model. Then,
in Section IV, we describe the proposed model for selecting
the best edge node. Next, Section V discusses the simulation
results. Finally, Section VI concludes the manuscript with final
remarks and future research directions.

II. NETWORK MODEL

The proposed model requires an architectural design that
satisfies specific requirements. Figure 1 illustrates an SDN-
edge-based system where each edge node performs task com-
putation for the network nodes. The bottom layer consists of
edge devices in Industry 5.0, e.g., Internet of Things devices,
sensor nodes, mobile phones, high-end vehicles, etc. This
system is comprised of two parts: a centralized control part
with controllers, and a distributed data part. The controllers
sit between the application layer and the physical device,
performing and simplifying various network tasks. They act
as bridges and provide a pathway for the upper layer to
communicate with the device. Network devices must pass
through the controller for messages to reach the application
plane.

Our approach employs the utility-game theory and SDN to
optimize task computation in a multilayer data flow processing
system. The SDN controller consists of two main modules.
The first module keeps track of the tasks and stores the mission
data of all network nodes. It decides which tasks are processed
by the edge for optimization. The second module is the edge
server module, which contains data on the server’s available
memory and CPU, as well as its current load.

The key component of a smart manufacturing system is the
SDN controller, which uses SDN protocols such as OpenDay-
light and ONOS to centrally manage and allocate resources
through sub-controllers. The production line consists of several
network access points that act as switches and connect to the
SDN controller via OpenFlow API to receive management

information. In a smart manufacturing environment, devices
are connected by wired or wireless networks to interact and
send data processing requests to nearby access points, which
in turn transmit the request situation and resource utilization
to the SDN controller. The SDN controller then evaluates
and predicts congestion and load status before sending control
information to optimize routing and resource utilization. The
private cloud computing center provides additional application
services to supplement the edge service resources.

The suggested edge computing system based on SDN
provides greater flexibility in defining network equipment for-
warding functions through software programming, surpassing
previous systems. The centralized control plane enables swift
customization and software upgrades. Deploying edge comput-
ing nodes in a factory requires multiple access points to ensure
timely detection, control, and execution of equipment. The
QoS of the edge nodes may be affected by the transmission
delay between the access points and the edge nodes.

The network layer includes different devices like switches,
routers, gateways, and access points. These devices are impor-
tant for building the edge computing network and providing
advanced edge computing features. On the other hand, the
edge computing layer consists of embedded devices that have
specific ports, interfaces, and modules for data transfer and
communications [24]. These devices cater to a diverse set of
downstream devices. The edge computing node serves as an
edge gateway, responsible for collecting, filtering, transferring,
storing, analyzing, and processing device data while simulta-
neously uploading it to the cloud.

By deploying edge computing nodes in close proximity to
factory equipment, several benefits can be achieved, including
the utilization of a rule engine and function calculation, en-
abling efficient arrangement of application scenarios and busi-
ness expansion. Additionally, it enables the execution of data
processing tasks such as analysis, filtering, format conversion,
and control logic at the edge, resulting in reduced network
latency, minimized data loss, and improved real-time business
continuity. Consequently, optimizing the deployment of edge
computing nodes and carefully selecting the most suitable
edge node for task computation are pivotal in enhancing the
performance of real-time data processing.

III. PROBLEM STATEMENT

This section explains the topology of an edge network,
which is represented by G = (N,L), where N is a set of
network nodes, L is a set of links, M is a set of edge nodes,
and U is a utility function of edge nodes. The network consists
of n nodes labeled as ni, and each link between two nodes
(i, j) has a bandwidth of Bij .

Each edge node’s computing capability is denoted by xij ,
where a value greater than zero (xij > 0) indicates that the
edge node (j) serves the network node (i). A value of zero
(xij = 0) indicates that it is not an edge computing node. In
the edge network, there are s data source nodes (where s is
less than n). Each node collects data at a specific rate of aj
per unit of time, and the response time for each edge node is
tj . The computing ability of edge nodes represented as xj , is

4

Centralized

controller

C
lou

d com
puting

 layer

E
dge com

putin
g

 layer

D
evice layer

 Controller 1 Controller 2 Controller 3

GatewayEdge Computing

Node
MicrocellData

link

Control

link

Computing

resource

Storage

resource

Communicating

resource

Figure 1. Network model.

always greater than zero, and the computing ability of network
nodes cannot be negative.

In the proposed utility-game theory model, the primary aim
is to maximize the overall reward achieved by all the edge
nodes collectively. This game is mathematically expressed by
Equation 2. To reach fact convergence, it is recommended that
multiple players update their actions simultaneously during
each iteration. However, to avoid interference among players,
it is necessary to ensure that a player and its neighboring nodes
do not update their actions simultaneously. Consequently,
determining the neighboring nodes for each player becomes
crucial.

To accomplish this goal, we create a graph that shows the
connections between nearby nodes for each player. This graph
is based on how close the network node is to its neighboring
edge nodes. We use the Euclidean distance formula to calculate
the normalized distance between the network node and its
neighboring edge nodes.

We have a set called A = {d11, d22, d33, · · · dij} that
contains the distances between the network node and its nearby
edge nodes. Each distance, represented by dij , tells us how
far the network node is from a specific neighboring edge
node. Using this information, we can calculate the normalized
distance as:

fN
dis =

dij
max(Ai)

(1)

where max(Ai) compute the maximum distance from the set
Ai. The problem can be stated mathematically as follows
[25].

max
P1

Payoff
tot

=

M∑
j=1

sj ×
(
Uj − wj × Uj

2
)
, (2)

argmin
ζ

Σ
m∈M

ζ(m,n), (3)

subject to

(C1) :

M∑
j=1

Uj = 1, (4)

(C2) : P(
∑
m∈M

ζ(n,m)) ≤ P th
m (5)

(C3) :
∑
k∈K

ζ(n,m) ≤ 1 (6)

(C4) :
∑
k∈K

ζ(k,m) ≤ Uj ∀k ∈ K, (7)

(C5) : ζ(n,m) ∈ {0, 1} (8)

In the problem’s formulation, the vector ζ consists of binary
elements. When ζ(n,m) = 1, it implies that the edge node
m has been chosen to carry out a task computation for the
network node n. Conversely, when ζ(n,m) = 0, it means that
edge node m is not selected. The utility function Uj signifies
the current value of an edge node j prior to accepting a call
request, while wj represents the penalty weight for selecting
an inappropriate edge node j. The penalty weight is crucial
to avoid assigning high preference levels to unsuitable edge
nodes, which could result in suboptimal solutions. One of
the constraints that the optimization problem must satisfy is
denoted as (C1), which guarantees that the payoff for each
edge node is calculated by subtracting its cost from its reward.

In the utility-game model, the aim is to determine the set
of policies that can achieve the highest possible payoff for
each potential edge node. To ensure that an assigned edge
node has enough computing capacity to handle a network
node’s task, constraint (C2) is introduced. This constraint
considers the quality of service requirement and task size
to determine whether an edge node can handle the task.
Frequent task computation can increase overhead and delay
in edge nodes. Constraints (C3), (C4), and (C5) restrict the
assignment of each network node to a single edge node and
limit the maximum number of edge nodes that each BS k ∈ K
can serve simultaneously. Here, K denotes the set of BSs.

The preference level of a candidate edge node is usually
higher when it has more available resources, while a higher
penalty weight for an edge node results in a lower preference
level. A candidate edge node that is closer to a network node is
generally a better choice. To take this into account, the penalty
weight wj is determined based on the distance between the
candidate edge node and the network node:

wj =


0 if dij ≤ dth
(dij−dth)
(cj−cth)

if cth < dij ≤ cj

1 if cj < dij

(9)

The optimization problem aims to maximize the total reward
of all available edge nodes and is formulated in Eq. (9).

5

The distance between the network node i and edge node j
is represented by dij , while cj denotes the cell radius of
edge node j. Pre-defined thresholds dth and cth are used to
determine the penalty weight for an edge node based on its
distance from the network node. If dij is less than or equal to
dth, the penalty weight is set to zero.

max Payoff (U1, U2, ..., Um)

s.t.

m∑
j=1

Uj = 1

U1, U2, U3, ..., Um ≥ 0 (10)

The optimization problem formulated in Equation (10) will
be tackled using the Karush-Kuhn-Tucker (KKT) conditions,
as explained in [26]. The utility function value Uj for the
jth edge node depends on coverage, power and distance
between the edge node and the network node of edge nodes,
as explained in the sequel. In the subsequent section, the edge
node selection optimization problem will be transformed into
a game theory framework.

IV. EDGE NODE SELECTION MODEL

This section presents a comprehensive explanation of the
edge node selection model proposed in the study. The first
subsection, Sec. IV-A introduces the utility game theory in
manufacturing for controlling edge node services. Finally, a
model is developed for the selection of edge nodes during the
deployment of edge computing nodes.

A. Utility Game-Theory in smart manufacturing

The objective of the utility-game theory approach is to
evaluate the worth of each potential edge node by computing
its utility function. This can enhance the deployment of edge
computing nodes and the collaborative game among edge
nodes. The utility function enhances the quality of service
and evaluates the utility value based on the requirements for
enhancing the quality of service of the computation request
task. The proposed edge node selection scheme employs a
utility-game theory system to calculate the value of preference
for each candidate edge node. The utility function considers
the QoS improvement requirements of the task computation
request. A multi-edge nodes viewpoint-based approach is used
to calculate the preference value in a cooperative game for
edge node selection. The proposed scheme aims to select the
best edge node for a service request by integrating the utility
values of all candidate nodes linearly and choosing the one
with the highest value. The objective is to maximize the QoS
benefit while minimizing cost and delay for a given state. To
this end, a multiple edge node deployment model based on
utility functions is designed. A game-theoretic auction model
assigns a utility function to each edge node based on its
features and task computing demands. The utility function is
then used in the game model to choose the best edge node for
the service process.

The selection of the best edge node is based on the com-
putation of a utility function that is designed to accomplish
the computation task. The optimal edge node should require a

minimum cost of deploying edge computing nodes that have
optimal distance and coverage, and have a power level that
is above a certain threshold. Moreover, to ensure the QoS is
maintained during the transition among edge nodes, a utility
function is used.

The selection of edge nodes for task computing is consid-
ered a multi-objective optimization problem. To tackle this
challenge, a utility game theory is devised to achieve optimal
QoS for network nodes while minimizing the cost of deploying
edge computing nodes. The game involves three key elements:
game players, strategies, and payoffs. The set of game players
is denoted as M, comprising all potential edge nodes, each
following its unique policy. The total number of strategies is
denoted by g, represented by {U1, U2, .., Uj , .., Um}, where Uj

denotes the utility function value for the jth edge node. The
objective is to minimize the overall utility function, formulated
as:

min
∑

j=1,...,m

Uj (11)

The term Uj can be decomposed into distinct components,
i.e. [25],

Uj = fcov × fpow × fN
dis (12)

The connectivity and coverage of edge nodes are crucial for
both requesting and executing network nodes to maintain a
reliable connection during task execution and result transfer.
If the mobile network node moves out of the coverage area
of an edge node while processing a task, the task processing
result must be sent to the cloud, resulting in an additional
delay. The communication between network nodes and edge
nodes is carried out through wireless links. The set of spectra
that are orthogonal within the coverage area of an edge node is
represented by kj , ranging from 1 to Kj . By accessing these
spectra, network nodes can access the data provided by the
edge nodes. The binary spectrum decision of network nodes
is denoted by {b.kj = b.(1), ..., b.Kj}, where the value of b.kj
is either 0 or 1. If a network node selects a particular edge
node pair spectrum, k, then b.kj = 1 and 0 otherwise. Each
network node can select only one spectrum at a time, i.e.,
b.kj ≤ 1 for all k in K.

In order to calculate the coverage radius of an edge node, the
coverage radius needs to be determined based on the minimum
download network node coverage probability required. The
formula for the coverage radius fcov is given in Eq. (13),
and it is defined as the maximum radius where the coverage
probability for all mobile network nodes within that radius is
above a given threshold. The calculation takes into account
the distance of the edge node and its transmitting power.

rj =

√
PjG

λN0ε
, (13)

where Pj is the transmitter power (dBm), G is the antenna
gain, λ is a parameter depending on the fading environment,
N0 is the power spectral density of the background noise,
and ε is the minimum coverage probability. The coverage
probability is determined as the probability that the received

6

signal power is greater than a threshold, which is related to
the SINR requirement of the system.

To obtain the total power consumption of an edge node
fpow, we consider the idle and sleep modes. The sleep mode
is enabled when there are no tasks to be executed or no
scheduling activities are required. In the sleep mode, the power
consumption of the edge node can be expressed as Ps = Pidle,
where Pidle is the power consumption of the idle state of the
edge node. Therefore, the total power consumption of an edge
node is given by the following equation:

P =

{
fpow if Active

Pidle if Sleep
(14)

We need to compute the transmit power of the edge node
in order to ensure that all network nodes within its coverage
range can receive the signals. The transmit power is dependent
on the distance between the edge node and the network node,
the path loss, and the interference caused by other nodes. The
transmit power can be calculated using the following equation:

Pt =
Pr · d−µ

ij

η
(15)

where Pr is the received power by the network node, dij is
the distance between the edge node and the network node, µ
is the path loss exponent, and η is the system efficiency.

The objective of optimizing the deployment of edge com-
puting nodes is to reduce the delay in the edge network and
minimize the cost associated with deploying computing re-
sources. This goal is accomplished by minimizing the response
time of data source nodes i.e.,

min
∑

j=1,...,m

tj (16)

To achieve a balance between the two optimization objec-
tives, weight parameters θ and λ are incorporated into the
objective functions Eq. (16) and Eq. (11), respectively. This
produces a new joint optimization objective, which can be
represented as:

min (θ ∗
∑

j=1,...,m

tj + λ ∗
∑

j=1,...,m

Uj) (17)

To strike a balance between minimizing edge network
delay and decreasing the cost of deploying edge computing
resources, weight parameters θ and λ are employed. During
the joint optimization process, these weight parameters serve
as weights to control the relative importance of each objec-
tive, allowing for a more tailored optimization approach. By
adjusting the values of θ and λ, it is possible to prioritize one
objective over the other, depending on the specific needs and
constraints of the system being optimized.

The given optimization problem is characterized as convex.
It involves the minimization of a linear combination of two
summations, each with coefficients θ and λ, respectively.
The non-negativity of these coefficients preserves convexity,
ensuring that any local minimum attained is also a global
minimum. With no constraints, the problem exhibits the desir-
able property of convexity, indicating that it can be efficiently

solved using convex optimization techniques and that the
solution obtained is globally optimal.

The impact of these parameters on the optimization objec-
tive depends on the specific goal. For instance, if the objective
is to minimize network time delay, then increasing θ and
deploying more edge computing nodes is advantageous. Con-
versely, if the objective is to minimize the cost of computing
resource deployment, then increasing λ and deploying fewer
edge computing nodes are preferred. These approaches are
appropriate for scenarios with different numbers of tasks,
data transmission time constraints, and budget considerations.
When both factors are considered to be equally important, a
balance needs to be achieved between θ and λ. The aim of this
study is to strike a balance between reducing-edge network de-
lay and minimizing the cost of deploying computing resources,
which is achieved by appropriately setting the values of θ and
λ in the joint optimization objective.

The optimization process involves considering various fac-
tors such as the location of edge nodes, the computing capa-
bilities of each node, and the data transmission requirements
of the network. The goal is to identify the most suitable set
of edge nodes that can provide the necessary computational
resources while minimizing the cost of deployment. This
involves evaluating the trade-offs between different factors,
such as the distance between the edge nodes and the data
sources, the processing power of the nodes, and the cost of
deploying and maintaining the infrastructure. By taking into
account all these factors, the optimization process can identify
the most efficient and cost-effective deployment strategy for
edge computing nodes. Ultimately, this will result in a low-
latency network that can support a wide range of applications
and services, while also being cost-effective to deploy and
maintain.

The edge node selection problem can be modelled as a
competitive game in a trading market, where the game players
are the available edge nodes, and the policies represent the re-
action of the game players to the network nodes’ requirements,
which are expressed in the weight of the parameters [27]. The
payoff of each edge node is determined by its ability to com-
pute the given task. To efficiently address this game, a scoring
technique known as MEW (Multiple Evaluation Weighting)
is utilized within a cooperative game model, as described
in the work by Yoon et al. [28]. The MEW score function
incorporates various criteria, including distance, power, and
coverage, and the Analytic Hierarchy Process (AHP) method
is employed to calculate the weights of network selection
parameters based on task requirements. AHP is a valuable tool
for calculating the weights of network selection parameters
because it offers a structured, flexible, and systematic way to
make decisions. It’s especially useful when you have multiple
criteria and subjective preferences to consider. AHP helps
prioritize parameters, reach consensus, and make transparent
and consistent decisions in network selection. Once an edge
node is selected by the SDN controller, an agreement is
established with the chosen edge node. This process ensures
that the selected edge node guarantees optimal QoS to the
network node. Overall, the edge node selection problem is
critical for the efficient and effective deployment of edge

7

Algorithm 1 Edge Node Selection using AHP and Utility
Theory
Require: List of edge nodes (edgeNodes)
Ensure: Best edge node for selection (bestEdgeNode)

1: function selectEdgeNode(edgeNodes):
2: matrix ← generateGeneralizedMatrix(edgeNodes)
3: weights ← calculateWeightsUsingAHP(matrix)
4: payoffs ← calculatePayoffs(edgeNodes, weights)
5: bestEdgeNode ← findEdgeNodeWithMaxPay-

off(payoffs)
6: return bestEdgeNode
7:
8: function generateGeneralizedMatrix(edgeNodes):
9: matrix ← createEmptyMatrix(len(edgeNodes), num-

Features)
10: for i = 1 to len(edgeNodes) do
11: for j = 1 to numFeatures do
12: matrix[i][j] ← calculateFea-

tureValue(edgeNodes[i], j)
13: return matrix
14:
15: function calculateFeatureValue(edgeNode, j)
16: {Extract the value associated with each feature (dis-

tance, power, coverage) pertaining to the edge node}
17: featureValue ← edgeNode[j]
18: return featureValue
19:
20: function calculateWeightsUsingAHP(matrix):
21: {Perform calculations using the AHP to determine the

weights}
22: return weights
23:
24: function calculatePayoffs(edgeNodes,weights):
25: payoffs ← empty list
26: for i = 1 to len(edgeNodes) do
27: payoff ← calculatePay-

off(edgeNodes[i],weights[i])......... Equation (10)
28: payoffs.append(payoff)
29: return payoffs
30:
31: function calculatePayoff(edgeNode, weights):
32: {Perform calculations to determine the payoff for the

edge node}
33: return payoff
34:
35: function findEdgeNodeWithMaxPayoff(payoffs):
36: maxPayoff ← -1
37: bestEdgeNode ← null
38: for i = 1 to len(payoffs) do
39: if payoffs[i] > maxPayoff then
40: maxPayoff ← payoffs[i]
41: bestEdgeNode ← i
42: return bestEdgeNode =0

computing infrastructure and requires careful consideration of
various factors.

The Edge Node Selection using Game Theory is displayed

MEW Generalized Matrix
Certeria Coverage Power DistanceENs

EN1

EN2

EN3

...
ENm

r11 r12 r13 r1j

r31

ri1

r21 r22

r32

ri2

r23

r33

ri3

r2j

r3j

rij

AHP

Weighted Matrix
Certeria Coverage Power DistanceENs

EN1

EN2

EN3

...
ENm

w11 w12 w13 w1j

w31

wi1

w21 w22

w32

wi2

w23

w33

wi3

w2j

w3j

wij

Utility
Function to

Calculate
Payoff

Select Best EN
...

...

2

4

Figure 2. Edge node selection model.

in Algorithm 1. The proposed algorithm aims to select the best
edge node for providing a service before the task execution
begins. The algorithm takes a list of edge nodes as input and
determines the best edge node for selection. The generate-
GeneralizedMatrix function creates a matrix that contains
feature values for each edge node. Each row represents an
edge node, and each column represents a specific feature
(e.g., distance, power, coverage). The calculateFeatureValue
function extracts the value associated with each feature for a
given edge node. The calculateWeightsUsingAHP function is
a placeholder for a step where AHP is used to calculate the
weights of the features. AHP is a technique for determining
the relative importance of criteria or features in decision-
making. The calculatePayoffs function computes a payoff for
each edge node based on the calculated weights from AHP.
The payoffs represent how well each edge node performs
considering the criteria and their weights. The findEdgeN-
odeWithMaxPayoff function identifies the edge node with the
highest payoff, indicating the best choice based on the selected
criteria. The process starts with edge nodes sending their initial
offers to the controller, which then evaluates their ability based
on the offers. The controller then negotiates with the edge
nodes by distributing tasks, and each node responds based on
their strategies represented by the weights of key parameters
that impact data processing. Each edge node evaluates and
sends its final offers based on the assigned tasks. Using a
weighted matrix, the controller evaluates the final offers and
selects the most favorable one. In the concluding phase, the
edge node with the highest utility function score is chosen as
the winner and entrusted with providing the service. Figure 2
shows the steps of the edge node selection model based on
game theory to choose the best edge node for task processing.

The task of selecting the most suitable edge node for
task computation can be represented as a matrix, where each
row corresponds to a candidate edge node and each column
corresponds to a specific metric, such as distance or power.
The edge node’s score, represented by Sj , is determined by
multiplying the weight of each relevant metric, denoted as
wj , with its corresponding value. These weights represent the
importance of each metric and are combined in a convex man-
ner to compute the final score for each edge node, considering
both advantageous and expensive metrics. The formula for the
calculation of the score is given by:

8

Sj ≜
M∏
j=1

xij
wj (18)

Weight parameters wj are allocated to each metric in the
score evaluation, where xij represents the computing capabil-
ity of the jth edge node serving the ith network node. The
weight set forms a convex combination, with positive weights
assigned to benefit metrics and negative weights assigned to
cost metrics.

To evaluate the scores of the edge nodes, we compare the
score obtained through MEW with the score of an ideal edge
node. The edge node with the highest score is considered to
be the best. The scores are calculated using a score function
for each edge node. The value ratio rj between the j-th edge
node and the ideal edge node is defined in Equation (19). For
cost metrics, a lower value is considered better.

rj =
j

j∗
=

∏M
j=1 x

j
ij∏M

j=1

(
x∗
ij

)wj
(19)

where 0 ≤ rj ≤ 1.
The total score of the primary offer for each edge node is

obtained according to:

Uprimary
j =

m∑
j=1

rj (20)

The data fusion unit primarily performs the tasks of analyzing,
calculating, and merging raw data to generate accurate attribute
weights. The AHP technique can be employed to calculate the
weighted matrix, which determines the relative weight wj of
the jth attribute in Equation (21). The weighted matrix incor-
porates the weights of various metrics that influence the edge
node selection process, including distance, power, coverage,
delay, and deployment cost. By summing up these weights,
the relative weight of each attribute can be determined.

m∑
j=1

wj = wd + wp + wc + wrs + wcd (21)

The weight or importance of the metrics affecting the edge
node selection process are denoted by wd, wp, wc, wrs, and
wcd, which respectively correspond to distance, power, cover-
age, delay, and deployment cost.

The game utility value Uj for the jth edge node is deter-
mined by multiplying the relative weight of task requirements
wj with the non-dimensional comparable data rj . This syn-
thesis is represented by:

Uj =

m∑
j=1

wjrj (22)

where the total utility for each candidate edge node is calcu-
lated using the utility function Uj , and the optimal edge node
is selected based on the edge node with the highest total utility
score. This means that the index j∗ of the optimal edge node
is equal to the index j∗ that maximizes the utility function Uj ,
which can be mathematically represented as follows:

j⋆ ≜ argmax
j

Uj (23)

V. NUMERICAL EVALUATION

This section is dedicated to evaluating the effectiveness of
the proposed model in a simulated smart factory environment
and comparing it with other benchmark algorithms. Here,
we offer comprehensive information regarding the simulation
environment settings and present the results obtained from our
experimental evaluation. Our evaluation includes a compara-
tive analysis of the performance between our model and other
similar methods, namely Shortest Estimated Latency First
(SELF) [29], Shortest Estimated Buffer First (SEBF) [30],
and Random Deployment (RD). We assess their effectiveness
in terms of deploying edge nodes cost, network delay, packet
loss, and energy consumption. Our results demonstrate that the
proposed algorithm performs exceptionally well in minimizing
the total cost of deploying edge nodes, network delay, packet
loss, and energy consumption.

The intelligent manufacturing process includes various func-
tions and applications, resulting in multiple scenarios. For this
study, we consider an existing smart factory scenario in a
square environment. Based on the production process, smart
devices are placed in corresponding positions on the grid, and
WiFi sites are optimally placed based on the smart device
locations. Using the models and algorithms presented in this
article, we determine the optimal deployment location for edge
servers and deploy them on the corresponding WiFi sites, as
illustrated in Figure 1.

We consider an area of 1000m × 1000m which has 200
sensor nodes distributed randomly and 32 WiFi stations dis-
tributed regularly along the coordinate axis. Each sensor node
is randomly assigned one of the 15 available services with the
data size and CPU cycles for each service randomly chosen
from a range. We deploy 15 edge server nodes, with each
server’s cost fixed between 1000 and 1500 due to variations
in their computing resources. We set the threshold value to 800
for basic edge servers and 600 for fault-tolerant servers. The
CPU resources of servers are within a range of 40 to 90, and
the server throughput is set between 3 to 8. After a specific
period, each edge node reconfigures to serve the maximum
sensor node request according to the Poisson process.

We evaluated the performance of our proposed node deploy-
ment method by comparing it to three other methods: SELF,
SEBF, and RD.

SELF operates by having a sensor node select the edge node
with the shortest estimated latency based on calculations of
latency between the sensor node and all reachable edge nodes,
as shown in Figure 3. This approach aims to save energy.
However, it faces challenges when an edge node is within the
communication range of multiple sensor nodes. Simultaneous
transmission can lead to data loss, as depicted in Figure 4,
without considering data priority, which is problematic in
critical situations. Nevertheless, in normal situations without
critical events, the SELF method can extend the lifetimes
of both sensor nodes and the network. SEBF, on the other
hand, selects an edge node based on the smallest buffer
occupancy, significantly reducing packet loss, as shown in
Figure 4. However, it has a drawback when a sensor node is
within the transmission range of multiple edge nodes. SEBF

9

Figure 3. Number of edge nodes versus energy consumption (Number of
sensor nodes = 200)

Figure 4. Packet loss versus number of edge nodes (Number of sensor nodes
= 200)

may lead the sensor node to choose a more distant edge
node with higher latency, as illustrated in Figure 3, resulting
in increased energy consumption and reduced lifespans for
both the sensor node and the network. While SEBF can be
advantageous in critical situations, it may cause data loss in
rare, life-threatening circumstances. Lastly, the RD method is
straightforward to implement but has its drawbacks. There is
a possibility that a sensor node selects an edge node with a
higher buffer occupancy or higher latency compared to other
equivalent edge nodes. The findings presented in Figures 3
and 4 demonstrate that our model effectively reduces energy
consumption and mitigates packet loss compared to the SELF,
SEBF, and RD approaches, providing a more reliable and
efficient solution.

We also evaluated the proposed method for deploying
edge computing nodes in smart manufacturing by considering
two key factors: network delay and the cost associated with
deploying computing resources. The comparison primarily
focused on two aspects: the duration of data transfer from

a device to an edge node and the time required to receive
processing results back from the edge node. Additionally, the
cost of deploying computing resources for the overall task
computation process was also considered in the evaluation.
The objective was to achieve a cost-effective deployment of
computing resources while ensuring that all edge computing
functions were met. This was achieved by finding a balance
between network delay and the cost of deploying computing
resources and optimizing the deployment of edge computing
nodes throughout the manufacturing space. For example, if a
factory’s edge computing functions could be met with three
nodes, any additional nodes would be unnecessary and would
increase costs.

In our simulation, we deliberately chose specific values
for two key parameters, θ and λ, setting them to 1000 and
0.2, respectively. This deliberate choice aimed to strike a
delicate balance between the impact of network delay and
the deployment cost of computing resources within the edge
computing node deployment cost function. These parameter
selections were instrumental in shaping the behavior of our
deployment model.

The impact of these parameter choices became evident when
examining the variation in network delay, as illustrated in
Figure 5, across different algorithms concerning the number
of deployed edge computing nodes. As more nodes were
deployed, each node had a reduced workload in terms of pro-
duction equipment assignments, leading to a notable reduction
in network delay across all considered methods. Intriguingly,
our game theory-based method demonstrated superior perfor-
mance in terms of minimizing network delay compared to
the SELF and RD methods when deploying between 3 to 9
edge nodes. However, as the number of edge nodes exceeded
9, the network latency difference between our method and
SELF gradually diminished. With a higher number of edge
nodes, the request-response time value appeared to stabilize
at approximately 300–400 ms.

This observation underscores the effectiveness of our game
theory-based approach in optimizing edge computing node
deployment for reduced network delay, particularly within a
certain range of edge node counts. However, it also highlights
the diminishing returns associated with further increases in
edge node deployment, where network latency tends to sta-
bilize. This nuanced understanding is valuable in tailoring
edge computing strategies to specific manufacturing scenarios
where network delay and deployment cost considerations are
paramount.

The deployment cost of various methods and the number of
edge nodes is shown in Figure 6. The proposed game theory
method had the best performance in terms of deployment cost.
In SELF, SEBF and RD, for the number of edge nodes greater
than 6 nodes, the network has more available resources and
the edge nodes can meet most of the requests locally. As more
edge nodes were added, the proposed game theory method
performed better than other methods in terms of network delay
and deployment cost. The method selected an edge node to
meet a time gain threshold of less than 8%, resulting in the
lowest deployment cost and network delay of 0.6 seconds
compared to the other methods. Overall, the proposed method

10

Figure 5. Number of edge nodes versus network delay.

Figure 6. Number of edge nodes versus deployment cost.

outperformed all other approaches in terms of both network
delay and deployment cost.

In Figure 7, we provide a visual representation of the
relationship between the number of incoming requests and the
resulting throughput performance. What immediately captures
attention is the consistent and remarkable superiority of the
network design proposed in this study when compared to three
benchmark schemes—SELF, SEBF, and RD.

To be more specific, our proposed network demonstrates a
respective 6% improvement compared to the SELF approach,
a 10.5% enhancement compared to the SEBF approach, and a
substantial 23.5% boost in throughput performance compared
to the RD approach when the number of requests reaches 260.
This significant performance advantage indicates not only the
increased capacity but also the efficiency of our proposed
network configuration in handling higher request loads. It
suggests that our network architecture is well-equipped to
process a greater number of requests in a more efficient and ex-
pedient manner, making it a robust choice for scenarios where
high-demand processing is required. This enhanced throughput

Figure 7. Throughput versus number of requests.

can translate into improved user experiences, reduced latency,
and increased overall system efficiency, making our network
design an attractive and practical solution for various real-
world applications.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a technique for deploying edge computing
nodes in a system architecture, aiming to strike a balance
between deployment cost, network delay, and other factors
such as the spatial distribution of devices, device functions,
and edge node computing capacity. To accomplish this, a game
theory algorithm was proposed to find the best edge computing
node for deployment. We compared this method with three
other techniques: SELF, SEBF, and random deployment. The
results of the experiments demonstrated the superiority of the
proposed method over the other three benchmark schemes. in
terms of network delay and computing resource cost. This
approach represents a valuable and promising solution for
implementing Industry 5.0 and improving the real-time data
processing of a device. In future work, our aim is to delve
deeper into the development of the learning decision-making
mechanism rooted in the utilization of this deployment ap-
proach, with the overarching goal of significantly augmenting
device performance. This research will involve an in-depth ex-
amination of the learning decision-making process, leveraging
the insights gained from the deployment method to make more
informed and optimized choices. By integrating this enhanced
decision-making mechanism into our framework, we anticipate
achieving notable improvements in device performance across
various applications and scenarios.

ACKNOWLEDGMENT

This work was supported in part by the U.K. Engineer-
ing and Physical Sciences Research Council under Grant
EP/X013162/1.

REFERENCES

[1] P. O. Skobelev and S. Y. Borovik, “On the way from industry 4.0 to
industry 5.0: From digital manufacturing to digital society,” Industry 4.0,
vol. 2, no. 6, pp. 307–311, 2017.

11

[2] V. Özdemir and N. Hekim, “Birth of industry 5.0: Making sense of
big data with artificial intelligence,“the internet of things” and next-
generation technology policy,” Omics: a journal of integrative biology,
vol. 22, no. 1, pp. 65–76, 2018.

[3] N. Jafari, M. Azarian, and H. Yu, “Moving from industry 4.0 to industry
5.0: what are the implications for smart logistics?” Logistics, vol. 6,
no. 2, p. 26, 2022.

[4] P. K. R. Maddikunta, Q.-V. Pham, B. Prabadevi, N. Deepa, K. Dev,
T. R. Gadekallu, R. Ruby, and M. Liyanage, “Industry 5.0: A survey on
enabling technologies and potential applications,” Journal of Industrial
Information Integration, vol. 26, p. 100257, 2022.

[5] L. Lv, Z. Wu, L. Zhang, B. B. Gupta, and Z. Tian, “An edge-ai based
forecasting approach for improving smart microgrid efficiency,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 11, pp. 7946–7954,
2022.

[6] L. Yang, Y. Lu, J. Cao, J. Huang, and M. Zhang, “E-tree learning:
A novel decentralized model learning framework for edge ai,” IEEE
Internet of Things Journal, vol. 8, no. 14, pp. 11 290–11 304, 2021.

[7] X. Feng, J. Wu, A. K. Bashir, J. Li, A. Shen, and M. D. Alshehri,
“Vulnerability-aware task scheduling for edge intelligence empowered
trajectory analysis in intelligent transportation systems,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 24, no. 4, pp. 4661–
4670, 2023.

[8] S. A. Soleymani, S. Goudarzi, M. H. Anisi, Z. Movahedi, A. Jindal,
and N. Kama, “PACMAN: Privacy-preserving authentication scheme
for managing cybertwin-based 6G networking,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 7, pp. 4902–4911, 2021.

[9] S. Goudarzi, M. H. Anisi, A. H. Abdullah, J. Lloret, S. A. Soleymani,
and W. H. Hassan, “A hybrid intelligent model for network selection in
the industrial internet of things,” Applied Soft Computing, vol. 74, pp.
529–546, 2019.

[10] J. Wan, S. Tang, Q. Hua, D. Li, C. Liu, and J. Lloret, “Context-aware
cloud robotics for material handling in cognitive industrial internet of
things,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2272–2281,
2017.

[11] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
federated learning and blockchain for edge association in digital twin
empowered 6g networks,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 7, pp. 5098–5107, 2020.

[12] C. F. Durach, J. Kembro, and A. Wieland, “A new paradigm for
systematic literature reviews in supply chain management,” Journal of
Supply Chain Management, vol. 53, no. 4, pp. 67–85, 2017.

[13] N. Iqbal, A.-N. Khan, A. Rizwan, F. Qayyum, S. Malik, R. Ahmad,
D.-H. Kim et al., “Enhanced time-constraint aware tasks scheduling
mechanism based on predictive optimization for efficient load balancing
in smart manufacturing,” Journal of Manufacturing Systems, vol. 64, pp.
19–39, 2022.

[14] X. Li, D. Li, J. Wan, C. Liu, and M. Imran, “Adaptive transmission
optimization in sdn-based industrial internet of things with edge com-
puting,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1351–1360,
2018.

[15] J. Wan, B. Chen, M. Imran, F. Tao, D. Li, C. Liu, and S. Ahmad,
“Toward dynamic resources management for iot-based manufacturing,”
IEEE Communications Magazine, vol. 56, no. 2, pp. 52–59, 2018.

[16] J. Wan, S. Tang, D. Li, M. Imran, C. Zhang, C. Liu, and Z. Pang,
“Reconfigurable smart factory for drug packing in healthcare industry
4.0,” IEEE transactions on industrial informatics, vol. 15, no. 1, pp.
507–516, 2018.

[17] Z. Zhou, M. Shojafar, M. Alazab, and F. Li, “Iecl: an intelligent energy
consumption model for cloud manufacturing,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 12, pp. 8967–8976, 2022.

[18] G. Li, J. Wu, J. Li, K. Wang, and T. Ye, “Service popularity-based smart
resources partitioning for fog computing-enabled industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10,
pp. 4702–4711, 2018.

[19] K. Kaur, S. Garg, G. S. Aujla, N. Kumar, J. J. Rodrigues, and
M. Guizani, “Edge computing in the industrial internet of things envi-
ronment: Software-defined-networks-based edge-cloud interplay,” IEEE
communications magazine, vol. 56, no. 2, pp. 44–51, 2018.

[20] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying fog computing
in industrial internet of things and industry 4.0,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 10, pp. 4674–4682, 2018.

[21] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,” IEEE
Transactions on Cloud Computing, vol. 5, no. 4, pp. 725–737, 2015.

[22] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation
in fog computing based on containers for smart manufacturing,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4712–4721,
2018.

[23] X. Li, J. Wan, H.-N. Dai, M. Imran, M. Xia, and A. Celesti, “A hybrid
computing solution and resource scheduling strategy for edge computing
in smart manufacturing,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 7, pp. 4225–4234, 2019.

[24] A. Majeed, Y. Zhang, S. Ren, J. Lv, T. Peng, S. Waqar, and E. Yin, “A
big data-driven framework for sustainable and smart additive manufac-
turing,” Robotics and Computer-Integrated Manufacturing, vol. 67, p.
102026, 2021.

[25] S. Goudarzi, M. H. Anisi, D. Ciuonzo, S. A. Soleymani, and A. Pescapé,
“Employing unmanned aerial vehicles for improving handoff using co-
operative game theory,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 57, no. 2, pp. 776–794, 2020.

[26] C. A. C. Cortez and J. C. Pinto, “Improvement of Karush–Kuhn–Tucker
conditions under uncertainties using robust decision making indexes,”
Applied Mathematical Modelling, vol. 43, pp. 630–646, 2017.

[27] T. L. Saaty, “Decision-making with the AHP: Why is the principal eigen-
vector necessary,” Elsevier European Journal of Operational Research,
vol. 145, no. 1, pp. 85–91, 2003.

[28] K. P. Yoon and C.-L. Hwang, Multiple attribute decision making: an
introduction. Sage publications, 1995, vol. 104.

[29] T. Rahman, X. Yao, G. Tao, H. Ning, and Z. Zhou, “Efficient edge nodes
reconfiguration and selection for the internet of things,” IEEE Sensors
Journal, vol. 19, no. 12, pp. 4672–4679, 2019.

[30] A. Alagha, S. Singh, R. Mizouni, A. Ouali, and H. Otrok, “Data-driven
dynamic active node selection for event localization in iot applications-a
case study of radiation localization,” IEEE Access, vol. 7, pp. 16 168–
16 183, 2019.

