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Abstract
Simultaneous inference allows for the exploration of
data while deciding on criteria for proclaiming discov-
eries. It was recently proved that all admissible post hoc
inference methods for the true discoveries must employ
closed testing. In this paper, we investigate efficient
closed testing with local tests of a special form: thresh-
olding a function of sums of test scores for the individ-
ual hypotheses. Under this special design, we propose
a new statistic that quantifies the cost of multiplicity
adjustments, and we develop fast (mostly linear-time)
algorithms for post hoc inference. Paired with recent
advances in global null tests based on generalized
means, our work instantiates a series of simultaneous
inference methods that can handle many dependence
structures and signal compositions. We provide guid-
ance on the method choices via theoretical investigation
of the conservativeness and sensitivity for different local
tests, as well as simulations that find analogous behavior
for local tests and full closed testing.
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1 INTRODUCTION

In large-scale hypothesis testing problems, choosing the criteria for proclaiming discoveries, or
even picking an error metric, can be tricky before researchers look at their data. A much more
flexible approach is simultaneous (and thus post hoc) inference, which allows the researcher to
examine the whole dataset and compare data-dependent guarantees on any subsets that they like
before finally rejecting a set of null hypotheses along with the associated guarantee. Simultaneous
inference methods are typically designed to control the false discovery proportion (FDP) for all
possible choices of selections simultaneously (Blanchard et al., 2020; Goeman & Solari, 2011; Kat-
sevich & Ramdas, 2020). It was recently proved that optimal post hoc methods must be based on
closed testing (Genovese & Wasserman, 2006; Goeman et al., 2019; Marcus et al., 1976). Neverthe-
less, one big obstacle that prevents closed testing from being popular in practice is its exponential
computation time in the worst case. Further, the complex nature of the closure process makes it
hard to theoretically quantify conservativeness and power.

The key to dealing with these obstacles lies in the building block of closed testing, which is a
local test for every subset of hypotheses, that tests for the presence of a signal in at least one of the
hypotheses in the subset (in other words, global null testing for each subset of hypotheses). The
design of such local tests, that is, the choice of the global null test to apply, is critical, as its special
structure may allow fast (quadratic, linearithmic, or even linear) time shortcuts to be derived;
and its robustness to dependence and power under various settings will be largely preserved after
closure.

A practical choice for such a local test is a p-value combination test, that combines the evi-
dence against the individual hypotheses in the subset into a single test statistic. Formally speaking,
consider a set of hypotheses H1,…,Hm, each as a collection of probability measures defined on
the same space (Ω, ), where Q⋆ is the true (unknown) distribution that generates the data. A
hypothesis Hi is true if Q⋆

⊆ Hi, and the global null hypothesis is specified by

m⋂

i=1
Hi ∶= {Hi is true, for all i ∈ {1, 2,…,m}}. (1)

Assume that we construct some test statistic, or score, Ti which captures evidence refuting Hi,
and satisfying

sup
Q⋆∈Hi

Pr
Q⋆

{Ti ≤ Ci(x)} ≤ x, ∀x ∈ [0, 1], (2)

for some corresponding critical value Ci. (The scores are high when Hi is true.) One common
choice is a p-value, where Ti = Pi, with Pi being a valid p-value for Hi, and Ci(x) ≡ x. Then, global
null testing can be done in the following way: combine those scores using a function f and find a
calibration function C such that

sup
Q⋆∈

⋂m
i=1Hi

Pr
Q⋆

{f (T1,…,Tm) ≤ C(m, x)} ≤ x, ∀x ∈ [0, 1], (3)

is true under the assumed dependence structure (if any) among the scores1. We call a global
null test in the form of (3) as monotonic if f is monotonic in each of its arguments; symmetric if
f remains unchanged on permuting its arguments. Monotonicity and symmetry are two rather
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752 TIAN et al.

common features of a global null test. Given both monotonicity and symmetry of local tests,
quadratic time shortcuts for finding simultaneous FDP confidence bounds (FDP shortcuts) have
been developed by Goeman and Solari (2011) and later a quadratic time variant for simultaneous
family wise error rate (FWER) control (FWER shortcuts) was presented by Dobriban (2020).

In this paper, we investigate how inference can benefit from a more specific structure of the
local test, that of separability (see Appendix B for formal definitions of the aforementioned terms).
In particular, we consider the following special case of (3):

sup
Q⋆∈

⋂m
i=1Hi

Pr
Q⋆

{ m∑

i=1
h(Ti) ≤ C(m, x)

}
≤ x, for all x ∈ [0, 1], (4)

where h is a monotonic function of scores. Given the local tests of form (4), we show that both
FDP and FWER shortcuts can be reduced to linear time, after an initial sorting step (Theorems 2
and 3).

Design (4) applies to a majority of existing global null tests, including famous examples like
Fisher’s combination test (Fisher, 1992), Stouffer’s combination method (Stouffer et al., 1949),
Rüschendorf’s results (Rüschendorf, 1982) about the arithmetic mean of p-values; as well as
recent advances like the harmonic mean (Wilson, 2019), Cauchy (Liu & Xie, 2020) and Lévy (Wil-
son, 2021) combinations. A particular work that is closely related to ours is a summary of all
the above-mentioned global null tests: the generalized mean-based combination methods (Vovk
& Wang, 2020). The fast shortcuts we developed allow bringing those canonical and new global
null tests, to post hoc large-scale real-world applications. Consequently, we obtain a class of novel
methods for simultaneous inference, which we found rich enough to contain powerful solutions
that adapt to various dependence assumptions and signal distributions.

We further study the adaptivity in a subclass of our methods via careful quantification of the
balance between conservativeness caused by the need to protect against unknown dependence
and test power. Specifically, we calibrate against the intermediate setting of arbitrary Gaussian
correlation (rather than the two extremes, independence and arbitrary dependence), and investi-
gate the asymptotic power under our derived calibration. The theoretical findings regarding local
tests are then empirically confirmed to be preserved after closure.

One result of independent interest is the following: if P1,…,Pm are one-sided Gaussian
p-values derived from the coordinates of an arbitrary m-dimensional Gaussian, then their
arithmetic average P behaves like a p-value for small thresholds, satisfying Pr(P ≤ t) ≤ t for
t ≤ 1

2m
.

The paper outline is as follows. In Section 2, we derive linear time algorithms for three
kinds of tasks for closed testing using a local test of form (4): (1) simultaneity assessment (e.g.,
compute the cost of simultaneity for a single subset of hypotheses chosen pre hoc or post hoc),
(2) simultaneous inference (e.g., type-I error bounds and FDP error bounds calculation for a sin-
gle subset of hypotheses), and (3) automatic post hoc selection (e.g., selection of the largest set of
hypotheses with a predefined error level for its post hoc FDP bound). Then we focus on the mul-
tivariate Gaussian setting to formally evaluate a class of local tests satisfying our requirements
based on generalized means. Specifically, in Section 3.2, we derive the asymptotic valid calibrated
threshold for positively equicorrelated Gaussians, which allows us to calculate the price paid to
protect against different levels of dependence using different combinations choices. Then we cal-
culate closed-form asymptotic power expressions under different signal settings in Section 3.3,
and reason about the sweet spot for different combination methods. Finally, we confirm that our
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TIAN et al. 753

qualitative conclusions about local tests are preserved after closure, using simulations in Section 4.
A conclusion including takeaways for practitioners and future directions is provided in Section 5.

2 SIMULTANEOUS INFERENCE VIA CLOSED TESTING

Recall that we are interested in testing hypotheses H1,…,Hm, each represented by a collection of
probability measures on the measurable space (Ω, ), where Q⋆ is the true (unknown) measure
that generates the data. We call a hypothesis Hi null if Q⋆ ∈ Hi, and nonnull otherwise. We denote
HS ∶=

⋂
i∈S Hi as the intersection hypotheses corresponding to index set S, which is null if and

only if Hi is null for all i ∈ S. In particular, we let H∅ equals the set of all probability measures on
(Ω, ), so the null hypothesis H∅ is always true. Let 0 ∶= {i ∶ Q⋆ ∈ Hi} denote the (unknown)
set of null hypotheses that are true.

The nonnull hypotheses are usually of more interest, often serving as an important reference
for variable selection and scientific discovery. Therefore we often call the nonnull hypotheses
as signals. A common goal is to identify a large set of hypotheses that contains mostly sig-
nals. In other words, we wish to proclaim a set of “discoveries” while controlling the number
or fraction of false discoveries (i.e., the null hypotheses that were incorrectly proclaimed as
discoveries).

For a set S ⊆ [m] ∶= {1, 2,…,m} indexing the hypotheses, define its (unknown) number of
false and true discoveries as

𝜖(S) ∶= |S ∩0|, 𝛿(S) ∶= |S ⧵0|, (5)

respectively. We wish to find t
𝛼
(S) ∈ {0, 1} and e

𝛼
∈ {0, 1,…, |S|} such that:

Type-I error control: Pr {𝛿(S) ≥ t
𝛼
(S)} ≥ 1 − 𝛼, (6)

FDP control: Pr {𝜖(S) ≤ e
𝛼
(S)} ≥ 1 − 𝛼, (7)

where t
𝛼
(S) indicates whether we reject HS or not, and e

𝛼
(S) provides the upper bound of the

number of nonsignals in S. Specifically, Type-I error control guarantees that, with high probabil-
ity, S is not rejected if it contains only nulls, while the FDP control guarantees that, with high
probability, the number of false discoveries in set S is upper bounded. Naturally, we prefer t

𝛼
(S) to

be one if possible and e
𝛼
(S) to be as small as possible. The slightly odd formalism for (6) is simply

to draw parallels with the definitions that follow.
To freely examine several arbitrary sets S and then select a set, we need extra corrections to

ensure post hoc validity of error guarantees. In other words, we would need to convert the above
high probability guarantees for an individual set S into one for all possible sets simultaneously.
Formally, we desire

Simultaneous Type-I error control: Pr
{
𝛿(S) ≥ t

𝛼
(S) for all S ⊆ [m]

}
≥ 1 − 𝛼, (8)

for some t
𝛼
(S) ∈ {0, 1} as before, and we would like to design an e

𝛼
(S) ∈ {0, 1,…, |S|} such that

Simultaneous FDP control: Pr
{
𝜖(S) ≤ e

𝛼
(S) for all S ⊆ [m]

}
≥ 1 − 𝛼. (9)
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754 TIAN et al.

Closed form expressions for t(⋅) and e(⋅) can be derived in special cases (Katsevich & Ram-
das, 2020), but only bounds based on closed testing can be admissible (Goeman et al., 2021).
Closed testing was initially proposed by Marcus et al. (1976), who suggested using

t
𝛼
(S) = 1{t

𝛼
(J) = 1 for all J ⊇ S}. (10)

It was later noticed by Goeman and Solari (2011) that the same procedure also yields an expression
for e

𝛼
(S):

e
𝛼
(S) = max{|I| ∶ I ⊆ S, t

𝛼
(S) = 0}, (11)

which is the size of the largest subset of S that is not rejected by closed testing. In this closed
testing framework, t

𝛼
defined in (6) is also called as a local test, which is just a valid 𝛼-level test of

the composite hypothesis HS, while t
𝛼

is the corresponding post hoc version. We denote the set of
composite hypotheses rejected locally (before closure) as

𝛼
, and as 

𝛼
after closure, that is


𝛼
= {S ⊆ [m] ∶ t

𝛼
(S) = 1}, and 

𝛼
= {S ⊆ [m] ∶ t

𝛼
(S) = 1}. (12)

In this paper, we focus on the case when local test t
𝛼

is of the following form:

t
𝛼
(S) = 1

{ |S|∑

i=1
h(Ti) ≤ C(|S|, 𝛼)

}
, (13)

where h(⋅) is a monotonically increasing function.

Remark 1. In fact, the form (13) satisfies three common and reasonable designs of global null test,
which are symmetry, monotonicity, and separability. Specifically the summation structure corre-
sponds to separability; the monotonicity of h corresponds to monotonicty; and the index-invariant
fact about h corresponds to symmetry. We refer the interested readers to Appendix B for details,
and definitions of the aforementioned terms.

Before we proceed, we introduce a special class of local tests based on generalized means as
discussed by Vovk and Wang (2020), since we will repeatedly use them as motivating examples.
Consider the following combinations of p-values p1,…, pm, indexed by r ∈ [−∞,∞]:

Mr(p1,…, pm) ∶=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

max
i∈[m]

pi, if r = ∞;
(∏m

i=1pi
)1∕m

, if r = 0;
(

1
m

∑m
i=1pr

i

)1∕r
, r ∈ (−∞, 0) ∪ (0,∞);

mmin
i∈[m]

pi, if r = −∞,

(14)

which corresponds to the arithmetic mean when r = 1; geometric mean when r = 0; and har-
monic mean when r = −1. For simplicity, we use Mr,m to stand for Mr(p1,…, pm) throughout the
paper. Denote

t(r)
𝛼

(S) ∶= 1{Mr((pi)i∈S) ≤ cr(|S|, 𝛼)}, (15)
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TIAN et al. 755

where cr(|S|, 𝛼) is a critical value that depends only on |S|, 𝛼 for different r. Then according to
Vovk and Wang (2020), t(r)

𝛼

(S) is a valid local test, and the corresponding class


𝛼
∶=

{
t(r)
𝛼

∶ r ∈ [−∞,∞]
}
, (16)

is rich enough to contain many famous local test choices like the Bonferroni (r = −∞) method,
the Fisher’s combination (r = 0), and the recent harmonic mean combination method (r = −1);
and its members also have simple enough structure such that we can summarize their nature
with a univariate parameter r.

2.1 The cost of multiplicity adjustment arising from post
hoc inference

In practice, one may be concerned that simultaneity has a large statistical cost (paid in power).
To address this concern, we propose a novel statistic called coma, which stands for the COst of
Multiplicity Adjustment arising from requiring valid post hoc inference. The statistic is invariant
to the testing level 𝛼, and only costs linear time to compute.

To construct coma such that it is invariant to test level 𝛼, we intentionally use the adjusted
p-value, which is defined as the smallest 𝛼 under which the test would be rejected. Formally, for
a certain set S among a series of hypotheses H1,…,Hm, denote the adjusted p-value based on S
using local testing rule t

𝛼
as

p(S) ∶= inf{𝛼 ∈ [0, 1] ∶ t
𝛼
(S) = 1},

and the adjusted p-value for S after going through the closed testing procedure as

p(S) ∶= inf{𝛼 ∈ [0, 1] ∶ t
𝛼
(S) = 1}. (17)

Then coma is defined as follows.

Definition 1 (cost of multiplicity adjustment). For any S ⊆ [m], define

coma(S) ∶= p(S)∕p(S), (18)

as the cost of multiplicity adjustment when testing HS.

Note that coma(S) is a data-dependent quantity that depends on the choice of local test. As for
a quick example, coma(S) = m

|S| if t
𝛼

is Bonferroni and p(S) is small enough. This example concurs
with the intuition that the cost of multiplicity grows with the total dimension m; however, it
decreases with the subset dimension |S|. The following result presents a more general expression
for coma.

Theorem 1. For any S ⊆ [m], if the local test is of form (13), then we have a linear time expression

p(S) = max
0≤i≤|Sc|

p(S ∪ J⋆i ), (19)

where J⋆i is the set of indices of hypotheses associated with the i largest p-values in Sc.
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756 TIAN et al.

Theorem 1 is proved in Appendix A. In the following, we examine how coma varies with the
size of S for local tests based on generalized means 

𝛼
in (16), using calibration derived by Vovk

and Wang (2020) under arbitrary dependence. Figure 1 plots coma versus the choice of local test
for a set S of size 20 out of 200 hypotheses in total, using equicorrelated Gaussian data. We can see
that coma with local test t(r)

𝛼

with positive r is generally smaller than that with negative r, while
the order statistics-based procedures, Simes and Bonferroni, behave similarly. This indicates one
would prefer to use t(r)

𝛼

with positive r if one does not want too different results on changing from
pre hoc to post hoc. On the other hand, Figure 2 plots coma versus the size of the target set S
(with the total number of hypotheses remaining as 200). Except for the consistent observation that
positive r have lower coma, we can additionally see that coma(S) generally decreases with the size
of S, which agrees with our intuition that lower resolution post-hoc inference should cost less.

F I G U R E 1 coma(S) versus different local test procedures under different extend of dependency. The
dashed horizontal lines represents the value of coma(S) with the local test as Simes, whereas the solid lines plot
the value of coma(S) with the local test as t(r)

𝛼

versus different r. When r = −∞ (written as −Inf ), t(r)
𝛼

recovers
Bonferroni. We simulate the data to follow equicorrelated Gaussian, where we set total number of hypotheses
m = 200, and size of set S as 20. We set signal proportion outside S as 0.3, signal proportion inside S as 0.7 with
signal strength (i.e. the mean of Gaussian) 𝜇 = 2. The results are averaged over 5 × 103 trials.

F I G U R E 2 coma(S) versus the size of S using different local test procedures under We simulate the data to
follow equicorrelated Gaussian, where we set total number of hypotheses m = 200, and size of set S as 20. We set
signal proportion outside S as 0.3, signal proportion inside S as 0.7 with signal strength (i.e. the mean of
Gaussian) 𝜇 = 2. The results are averaged over 5 × 103 trials. We can see that, the lines for Simes, Bonferroni, and
r = −10 almost overlap with each other, while the line for r = −1 is slightly higher (and the line for r = 0 is on
the top). These observations are consistent with results in Figure 1.
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TIAN et al. 757

2.2 Fast shortcuts for post hoc inference and selection

Another practical concern with regard to imposing simultaneity is the heavy computation time,
which is exponential in m in general. In this section, we present fast (linear time shortcuts for
calculating both t

𝛼
and e

𝛼
, for local tests of form (13).

Theorem 2. Consider testing m hypotheses with presorted scores post-hoc via closed testing using
local test t

𝛼
of form (13). For a set S ⊆ [m], Algorithm 1 returns the simultaneous FDP bound e

𝛼
(S)

in (11), with at most O(m) computation.

Note that we sort the scores in ascending order in Algorithm 1 in order to have easier track-
ing of indices since the algorithm is a step-down procedure. The proof for Theorem 2 is in
Appendix C.

Algorithm 1. Shortcut for evaluating post hoc false discoveries bound e
𝛼
(S)

Input: A sequence of sorted scores T1,… ,Tm which satisfies T1 ≥ · · · ≥ Tm;a local test rule
of form (13) with a monotonically increasing transformation function h and thresh-
olding function C;confidence level 𝛼;candidate rejection set S = {i1, i2,… , is} and its
complement Sc = {j1, j2,… , jm−s} with i1<i2<… is, j1<j2<… jm−s.

Output: High probability (1 − 𝛼) simultaneous bound e
𝛼
(S) on the number of false discoveries

in S.
1 Initialization:

transformed candidate set scores: u1,… ,us,where ud = h(Tid) for 1 ≤ d ≤ s;
transformed complementary set scores: v1,… , vm−s, where vd = h(Tjd) for 1 ≤ d ≤ m − s;
ill-defined transformed scores: v0 = max(u1, v1); vm−s+t,us+t ≡ min(us, vm−s) − 1, ∀1 ≤ t ≤ m − s;
iteration related indices k ← 1; b ← −1;
accumulated scores Q = 0.
for a = 1,… ,m do

2 if uk+b+1 ≥ va−k−b or a = 1 then
3 Q = Q + uk+b+1

b = b + 1
4 else
5 Q = Q + va−k−b
6 end
7 while k ≤ min(s, a) and Q > C(a, 𝛼) do
8 if b > 0 then
9 b ← b − 1

10 else
11 Q ← Q + uk+1 − va−k
12 end
13 k ← k + 1
14 end
15 end
16 return k − 1

Remark 2. Note that local test t(r)
𝛼

does not admit form (13) when r = ±∞, therefore the short-
cut in Theorem 2 for evaluating corresponding e(r)

𝛼
is not applicable. However, they lead to
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758 TIAN et al.

consonant2 closed testing as proved by Lemma 2 in Appendix D, and one interesting fact
pointed out by Goeman and Solari (2011) is that if for consonant closed testing, the simulta-
neous FDP bound for a given set reduces to finding the number of its elementary hypotheses
that the closed testing cannot reject, therefore reducing to identifying the set of elementary
hypotheses being rejected after closure. For r = −∞, this is just Holm’s method, while for r = ∞,
this is just checking whether we can reject the largest p-value to decide either to reject all or
nothing.

We have presented procedures for fast inference on a single set S picked freely by users, which
in turn, enables effective post hoc selection among multiple sets of interest: linear and quadratic
shortcuts for automatic selection of the largest set S with a prespecified bound e

𝛼
can also be

developed. For users who have no idea of which candidate set to evaluate, Theorem 3 allows them
for efficient automatic selection among a sequence of incremental sets: finding the largest one
among them with FDP bounded by 𝛾 ∈ [0, 1). Specifically, the main ingredient is Algorithm 3
(Appendix E), which works for any kind of closed testing-based post hoc inference given incre-
mental candidate sets. We also provide a faster alternative, Algorithm 2 (Appendix E), given 𝛾 = 0
and certain constrains of local tests.

Theorem 3. Consider testing m hypotheses post hoc via closed testing at level 𝛼, and a series of
incremental candidate sets to reject: S1 ⊂ S2 · · · ⊂ Sn ⊆ [m] with |Si| = i for all i ∈ [n]. Then we
have:

(a) Given any desired FDP bound 𝛾 ∈ [0, 1), Algorithm 3 returns the largest set Sk such that
e
𝛼
(Sk) ≤ 𝛾|Sk|.

If we additionally require local test to be of form (13), then

(b) Algorithm 3 costs at most O(mn) computation;
(c) Algorithm 3 reduces to Algorithm 2 if 𝛾 ≡ 0 and Sk is the indexes of hypotheses with k

smallest scores, which cost at most O(m) computation with presorted scores.

The validity of Algorithm 3 in Theorem 3 does not require any assumption on local test or
presorting p-values, and needs m iterations in the worst case. In practice we expect fewer iterations
will be needed as the false discoveries are ruled out in batches quickly. Particularly, for the special
case stated in part (c) in Theorem 3, the task costs only at most linear time. The proof of Theorem 3
is in Appendix F.

Remark 3. Algorithm 2 in Theorem 3 is also the shortcut for finding the largest hypotheses set to
reject with strong FWER control among all m hypotheses.

3 CALIBRATION OF LOCAL TESTS FOR MULTIVARIATE
GAUSSIANS

The performance of closed testing-based post hoc inference largely depends on the building
blocks—local tests. Therefore, in order to provide better guidance of applying our newly derived
shortcuts introduced in Section 2, we look into the properties of different global null tests, particu-
larly the generalized mean-based ones (i.e., t(r)

𝛼

defined in (15)) since our shortcuts apply to these.
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TIAN et al. 759

Vovk and Wang (2020) first summarized the class of generalized mean-based combination meth-
ods, and derived closed form calibration under arbitrary dependence for different combination
choice, using results based on robust risk aggregation. Now we specifically summarize the results
for calibrating under arbitrary dependence (Vovk & Wang, 2020) in the following Lemma 1, as it
will be our benchmark to compare with.

Remark 4. Though a refined version of Lemma 1 (which gives best possible calibration) can be
found in Vovk et al. (2022, proposition 8.1), it does not admit closed-form expression as Lemma 1
does. Therefore we adopt Lemma 1 throughout the paper for simpler theoretical analysis.

Lemma 1 (Vovk and Wang (2020)). For m hypotheses, 𝛼∕𝛼r,m is a valid critical value for the global
null test t(r)

𝛼

defined in (15), where

𝛼r,m ∶=
⎧
⎪
⎨
⎪⎩

(r + 1)1∕r
, if r ∈ (−1,∞];

((ym +m)2∕(ym + 1))1{m ≥ 3} +m1{m ≤ 2}, if r = −1;
r

r+1
m1+1∕r

, r ∈ [−∞,−1),

(20)

and ym is the unique strictly positive solution of y2 = m
(
(y + 1) log(y + 1) − y

)
. Particu-

larly, for r ∈ {−∞, 0,∞}, we define 𝛼r,m as limr→∞ (r + 1)1∕r = 1, limr→0 (r + 1)1∕r = e, and
limr→−∞

r
r+1

m1+1∕r = m.

Follow-up work (Chen et al., 2020; Wilson, 2020) explored the conservativeness of such cal-
ibration under some special dependence structures: Wilson (2019) derived asymptotic valid (in
the sense of m → ∞) calibration under independence using generalized central limit theorem,
and empirically studied their performance when the independence assumption is broken; Chen
et al. (2020) compared the generalized mean-based combination with order statistics-based com-
bination, and proved that only Cauchy combination (and its analog harmonic mean) and Simes
combination pay no price for calibration to achieve validity under assumptions from indepen-
dence to full dependence (i.e. correlation one); Vesely et al. (2021) studied the special case that
permutation tests can be used. Figure 3 summarizes all the cases (including ours) where theo-
retically valid calibration has been derived. Note that, before our work, almost no results have
derived in cases other than the two extremes—the independence case and the arbitrary depen-
dence case: Chen et al. (2020) provided some theoretical justification in the pairwise Gaussian
scenario but only for harmonic mean. As for common intermediate dependence structures like
multivariate Gaussian case, most work only explored experimentally. Therefore, as shown in
Figure 3, we work toward filling in the gap by deriving calibration under one of the inter-
mediate cases, the equicorrelated Gaussian setting, which contains both two extremes as well
as different dependence levels. Later, we also investigate the performance of our calibration
by analyzing the asymptotic type-I error and power under different settings. Particularly, our
calibration recovers existing work in scenarios where independence provably has the highest
inflated type-I error to be calibrated among others. At the same time, our theoretical perfor-
mance investigation justifies the interesting behaviors noticed in early experimental studies
(Chen et al., 2020; Wilson, 2019), that is, for the generalized mean-based methods, choice
of positive r performs better under heavy dependence and calibrating under independence
gives a high false-positive rate overall. In contrast, the choice of negative r performs poorly
under heavy dependence, and calibrating under independence gives a low false-positive rate
overall.
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760 TIAN et al.

F I G U R E 3 Summary of regimes in which we know how to calibrate generalized means of p-values. We omit
explicit expressions as there is sometimes no analytical formula, but thresholds can be calculated numerically
(blue text). We refer readers to the corresponding references mentioned in the text for explicit expressions.

3.1 Model setup

Before presenting the main results, we first motivate our choice of the equicorrelated Gaussian
model. Consider a Gaussian sequence model for the observations:

(Xm1,Xm2,…,…Xmm) ∼ Nm(𝝁m,Σm), (21)

where 𝝁m = (𝜇m1,…, 𝜇mm), and each entry 𝜇mi
iid∼𝜇mBm, with 𝜇m > 0 as a scalar, and Bm as a

Bernoulli random variable with parameter 𝜋m. Additionally, we assume Σm ∈m, wherem is
the set of all m ×m positive semidefinite correlation matrices. We denote the (i, j)th entry of Σm
as 𝜌ij. Additionally, we denote the set of all equicorrelation matrices asE

m, which is the subset
ofm with all equal nondiagonal elements.

Suppose we are testing the global null hypothesis.

m⋂

i=1
Hmi ∶= {𝜇mi = 0, ∀ i},

at level 𝛼. We consider a one-sided p-value pmi = Φ(−Xmi) for each elementary hypothesis (where
Φ is the cumulative density function (CDF) of a standard normal), and combine them using a
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TIAN et al. 761

generalized mean t
(r)
𝛼

(15). Denote the corresponding type-I error given the correlation matrix Σ
with respect to different r as follows:

�̃�m(Σ, r, c) ∶= Pr⋂m
i=1Hmi

⎧
⎪
⎨
⎪⎩

(
1
m

m∑

i=1
pr

mi

)1∕r

≤ c
⎫
⎪
⎬
⎪⎭
, (22)

where Pr⋂m
i=1Hmi

∶= supQ⋆∈
⋂m

i=1Hmi
PrQ⋆ , and c is a correction/calibration threshold to account for

dependence, which could be an absolute constant or potentially depends on r,m, and 𝛼.

Remark 5. From the monotonicity of the generalized mean with respect to r, one can easily verify
by contradiction that �̃�m(Σ, r, c) ≤ 𝛼 implies c ≤ 𝛼.

Proposition 1. Fix any m ≥ 1 and any r ≥ 1. If c <

1
2m

, then

sup
Σ∈m

�̃�m(Σ, r, c) = sup
Σ∈E

m

�̃�m(Σ, r, c) = �̃�m(1m1T
m, r, c), (23)

where 1m is the m-dimensional vector of all ones.

Proposition 1 indicates that, for all r ≥ 1 and appropriately small 𝛼, we only need to calibrate
against the fully dependent case to have validity across the whole correlation spacem. The proof
of Proposition 1 is in Appendix G, where we used the convexity of function Φ(−x)r when r ≥ 1
and x > 0, and the fact that (multivariate) Gaussianity is preserved under linear transformations.
It is unclear whether the restriction on 𝛼 can be entirely removed, but it could perhaps be slightly
relaxed by constant factors. A special case that could be particularly interesting is when r = 1,
which we record below for emphasis.

Corollary 1. Let Σ ∈m be an arbitrary positive semidefinite Gaussian correlation matrix (with
possibly negative entries). Let X ∼ N(0,Σ) and let Pi = Φ(−Xi) for i = 1,…,m. Then, the generalized
mean of the p-values, P

(r)
∶= ( 1

m

∑m
i=1Pr

i )
1
r with r ≥ 1 satisfies

sup
Σ∈m

Pr(P
(r)
≤ 𝛼) ≤ 𝛼, for any 𝛼 <

1
2m

.

It is possible that a variant of Proposition 1 also holds for r < 1, but we have found it to be tech-
nically intractable to prove currently. Nevertheless, for the sake of simplicity and interpretability,
we next consider an intermediate case of equicorrelated Gaussians, which we observed to be
worse than the other commonly used correlation structures when r < 1 in extensive simulations,
while also encompassing the perfectly correlated case in Proposition 1. In particular, we consider
only positive correlation as the semi-positive definite requirement on the correlation matrix forces
the range of negative 𝜌 to be in (− 1

m
, 0), which vanishes as m →∞.

Definition 2. Positively equicorrelated Gaussian: For each m, the observations Xm1,…,Xmm
follow the model in (21) but with a positive equicorrelated Σm having its elementary entry
𝜌ij ≡ 𝜌 ∈ [0, 1] for all i ≠ j ∈ [m]. We denote such data distribution as G

𝜇m,𝜋m,𝜌.

Formally, in the following Sections 3.2 and 3.3, we consider the model defined in Definition 2,
and we write �̃�m(Σ, r, c) in (22) as �̃�m(𝜌, r, c) for simplicity. We intend to study the asymptotic
(m → ∞) behavior of calibrated �̃�m(𝜌, r, c) given fixed 𝛼. We would like to investigate how their
power varies as a function of correlation 𝜌 with respect to different r, and different signal settings.
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762 TIAN et al.

3.2 Calibration derivation

In this subsection, we derive the asymptotic calibration under the positively equicorrelated Gaus-
sian model in Definition 2. First, we formally define the asymptotic calibration of our concern, and
then we present our closed-form solution under the positively equicorrelated Gaussian model.

Typically, the asymptotic (m → ∞) Type-I error would be defined as


⋆(r) ∶= lim sup

m→∞
sup
𝜌∈[0,1]

�̃�m(𝜌, r, c). (24)

However, we found (24) to be intractable; specifically, before taking the outer limit, we found
taking the supremum with respect to 𝜌 for fixed m to be analytically infeasible under the posi-
tively equicorrelated Gaussian model. Therefore, we settle for an alternative (weaker) definition
of target type-I error as the following surrogate limit:

(r) ∶= sup
𝜌∈[0,1]

lim sup
m→∞

�̃�m(𝜌, r, c). (25)

Note that ⋆(r) ≥ (r) deterministically3, that is control over the surrogate asymptotic type-I
error is weaker. Denote the highest calibrated threshold c that achieves (r) ≤ 𝛼 as cr(m, 𝛼),
that is

cr(m, 𝛼) ∶= sup
{

c ∶ sup
𝜌∈[0,1]

lim sup
m→∞

�̃�m(𝜌, r, c) ≤ 𝛼

}
, (26)

and the corresponding limiting type-I error as

�̃�(𝜌, r, 𝛼) ∶= lim sup
m→∞

�̃�m(𝜌, r, cr(m, 𝛼)). (27)

In the following, we derive a closed-form expression for cr(m, 𝛼), and the corresponding �̃�(𝜌, r, 𝛼)
under the positively equicorrelated Gaussian model. Note that in this setting, the observations
can be written as

Xi =
√
𝜌 Z0 +

√
1 − 𝜌 Zi, for all i = 1, 2,…,m, (28)

where Z0 ∼ N(0, 1), Zi
iid∼N(0, 1) for all i = 1, 2,…,m, and Z0 ⟂⟂ {Zi}m

i=1. The corresponding
one-sided p-values are

pi = Φ(−Xmi) = Φ
(
−
√
𝜌 Z0 −

√
1 − 𝜌 Zi

)
. (29)

Here we drop index m as the distribution of X does not change with m and the same holds true for
p-values. An important note from this decomposition is the following conditional independence,

p1, p2,…, pm are i.i.d. conditional on Z0, (30)

which allows us to utilize generalized law of large numbers and obtain Theorem 4. We write the
expectation of pr

i when conditioning Z0 = z0 as a function of z0 that is
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TIAN et al. 763

g
𝜌,r(z0) ∶= E

[
pr

i
||| Z0 = z0

]
=
∫
Φ(−

√
𝜌 z0 −

√
1 − 𝜌 x)r𝜙(x)dx, (31)

noting that g0,r(z0) is a constant, we enforce g−1
0,r(⋅) ≡ ∞.

Theorem 4. Under the positively equicorrelated Gaussian setting, we have that, given 𝛼 ∈ (0, 1),

(a) if r > 0, then �̃�(𝜌, r, 𝛼) = Φ(−g−1
𝜌,r(𝛼r)), and cr(m, 𝛼) = min

{
𝛼,

(
r

r+1

) 1
r

}
;

(b) if −1 < r ≤ 0, then �̃�(𝜌, r, 𝛼) = Φ(−g−1
𝜌,r(cr(m, 𝛼))), and cr(m, 𝛼) =

(
sup

𝜌∈[0,1] g
𝜌,r

(
−Φ−1(𝛼)

)) 1
r is not a function of m, where g

𝜌,r is defined in (31);
(c) if r = −1, then �̃�(𝜌, r, 𝛼) = 𝛼1{𝜌 = 0}, and cr(m, 𝛼) = 𝛼

1+𝛼 log m
as 𝛼 → 0;

(d) if r < −1, then �̃�(𝜌, r, 𝛼) = 𝛼1{𝜌 = 0}, and cr(m, 𝛼) = 𝛼m
1
|r|−1 as 𝛼 → 0.

In all four cases, we have that cr(m, 𝛼) ≤ 𝛼.
The proof of Theorem 4 is in Appendix H, where we mainly use the decomposition described

above and generalized law of large numbers. From Theorem 4, we can see that the calibrated
threshold cr(m, 𝛼) under positively equicorrelated Gaussian is less conservative than that under
arbitrary correlation in Lemma 1; particularly, for r > 0, by a factor of (r + 1)1∕r; for r = 0, by a
factor of | log 𝛼|+1

| log 𝛼| ; for r = −1, by a factor4 of log m
𝛼 log m+1

; for r < −1, by a factor of |r|
|r|−1

. Figure 4 displays
these ratios for r ∈ [−10, 20]. We can see that, as |r|→ ∞, our positively equicorrelated Gaussian
calibration is almost the same as the calibration derived by Vovk and Wang (2020, Lemma 1), for
arbitrary dependence, indicating that we do not pay much price for calibrating against positive
equicorrelation to arbitrary dependence; while as |r|→ 1, the positively equicorrelated Gaussian
calibration is much tighter than that of arbitrary dependence in Vovk and Wang (2020).

Next, we conduct some large-scale simulations (in terms of m) to justify the surrogate control
in Theorem 4. Explicitly, we compare our derived asymptotic type-I error �̃�(𝜌, r, 𝛼) under the sur-
rogate calibration (i.e. (r) ≤ 𝛼) with the type-I error �̃�⋆

m(𝜌, r, 𝛼) under the ideal calibration (i.e.


⋆(r) ≤ 𝛼), that is

�̃�

⋆

m(𝜌, r, 𝛼) ∶= Pr⋂m
i=1Hmi

⎧
⎪
⎨
⎪⎩

(
1
m

m∑

i=1
pr

mi

) 1
r

≤ c⋆r (m, 𝛼)
⎫
⎪
⎬
⎪⎭
. (32)

with c⋆r (m, 𝛼) ∶= sup
{

c ∶ sup
𝜌∈[0,1]

�̃�m(𝜌, r, c) ≤ 𝛼

}
. (33)

F I G U R E 4 The theoretical ratio of calibrated threshold under positively equicorrelated Gaussian (CalG-dep)
and under arbitrary dependence (CalA-dep) versus different r
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764 TIAN et al.

Figure 5 empirically shows that, for r > −1, cr(m, 𝛼) can also approximately achieve control
∼ ⋆(r) ≤ 𝛼 in the sense that �̃�(𝜌, r, 𝛼) ≈ �̃�

⋆

m(𝜌, r, 𝛼) for each 𝜌 ∈ [0, 1] if m is large enough.
For r ≤ −1 the approximation is much looser as the convergence (for point-wise 𝜌) in

generalized law of large numbers is much slower and out of feasible simulation scope. Nev-
ertheless, from Figure 6 one may see a trend of convergence with regard the current limited
magnitude of m: the “worst case” correlation given fixed m, r, 𝛼, that is arg max

𝜌∈[0,1] �̃�
⋆

m(𝜌, r, 𝛼)
slowly approaches 0 as m grows, at different rate given different 𝛼 (faster for 𝛼 away from
0), and the point-wise Type-I error �̃�

⋆

m(𝜌, r, 𝛼) slowly approaches �̃�(𝜌, r, 𝛼) = 𝛼1{𝜌 = 0} as m
grows.

3.3 Power analysis

In this subsection, we study the power using the calibrated threshold cr(m, 𝛼) derived in
Section 3.2. We look at the case r > 0 and r ≤ −1 separately, under different alternative
settings. Given 𝛼, denote the power function for different r under distribution G

𝜇m,𝜋m,𝜌 in
Definition 2 as

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) ∶= PG

𝜇m ,𝜋m ,𝜌

⎧
⎪
⎨
⎪⎩

(
1
m

m∑

i=1
pr

mi

) 1
r

≤ cr(m, 𝛼)
⎫
⎪
⎬
⎪⎭
, (34)

with cr(m, 𝛼) is specified in Theorem 4.
In the following, we are interested in the asymptotic behaviour of 𝛽

𝜇m,𝜋m,𝜌(r, 𝛼) under different
settings for 𝜇m and 𝜋m.

Theorem 5. Fix r ≥ 0, and consider the positive equicorrelated Gaussian model in Definition 2,
where

lim
m→∞

𝜇m = 𝜇 ∈ [0,∞], lim
m→∞

𝜋m = 𝜋 ∈ [0, 1].

(a) m = 10 2
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(b) m = 10 5
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F I G U R E 5 The asymptotic uniform type-I error �̃�(𝜌, r, 𝛼) using the calibrated positively equicorrelated
Gaussian test (dotted line, identical in both subplots), and the empirical point-wise type-I error �̃�⋆m(𝜌, 𝛼, r) (solid
line) with m = 102 (left) and m = 105 (right) of different method for adjusting dependence via simulation
(averaging over 106 trials) versus correlation given different r > −1 at confidence level 𝛼 = 0.1
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TIAN et al. 765

F I G U R E 6 The empirical point-wise Type-I error �̃�⋆

m(𝜌, r, 𝛼) (solid line) with different
m ∈ {102

, 103
, 104

, 105} of different method for adjusting dependence via simulation (averaging over 106 trials)
versus correlation given different r ≤ −1 at confidence level 𝛼 = 0.001, 0.01, 0.1 in first, second, and third
columns, respectively. The dashed vertical lines indicate the “worst case” correlation given fixed m, r, 𝛼, that is
arg max

𝜌∈[0,1] �̃�
⋆

m(𝜌, r, 𝛼).

Then for any 𝛼 ∈ (0, ( r
r+1
)

1
r ), 𝜌 ∈ [0, 1], we have that the asymptotic power

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) = lim

m→∞
Pr

{
𝜋mg

𝜌,r

(
Z0 +

𝜇m√
𝜌

)
+ (1 − 𝜋m)g𝜌,r(Z0) ≤ 𝛼

r

}
∈ [�̃�(𝜌, r, 𝛼), 1],

(35)
with g

𝜌,r defined in (31), �̃�(𝜌, r, 𝛼) ∈ [0, 𝛼] defined in (27), and Z0 as a standard Gaussian random
variable. In particular,

• if 𝜋 = 1, then

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

1, if 𝜇 = ∞;
Φ

(
−g−1

𝜌,r(𝛼r) + 𝜇√
𝜌

)
, if 0 < 𝜇 < ∞;

�̃�(𝜌, r, 𝛼), if 𝜇 = 0.

(36)
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766 TIAN et al.

• if 0 < 𝜋 < 1, then

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

Φ
(
−g−1

𝜌,r

(
𝛼

r

1−𝜋

))
, if 𝜇 = ∞;

Pr
{
𝜋g

𝜌,r

(
Z0 + 𝜇√

𝜌

)
+ (1 − 𝜋)g

𝜌,r(Z0) ≤ 𝛼

r
}
, if 0 < 𝜇 < ∞;

�̃�(𝜌, r, 𝛼), if 𝜇 = 0.

(37)
• if 𝜋 = 0, then limm→∞ 𝛽

𝜇m,𝜋m,𝜌(r, 𝛼) = �̃�(𝜌, r, 𝛼), no matter what value that 𝜇 takes.

The proof of Theorem 5 is in Appendix I, where we use a triangular-array version of the
generalized law of large numbers. As a quick sanity check, expressions in (36) are always in
[�̃�(𝜌, r, 𝛼), 1], while expressions in (37) are always in

[
�̃�(𝜌, r, 𝛼), Φ

(
−g−1

𝜌,r

(
𝛼

r

1−𝜋

))]
. Also we can

verify some other intuitive facts: the power asymptotically goes to one when 𝜋 = 1 and 𝜇 = ∞,
while it drops to the lower bound �̃�(𝜌, r, 𝛼) in the worst case (i.e. 𝜋 = 0 or 𝜇 = 0). Theorem 5 also
indicates some surprising findings that are somewhat exclusive to the case of r > 0: the asymp-
totic power will not go to one even when 𝜋 = 1 if the signal strength is finite, that is 𝜇 < ∞; a
similar phenomenon occurs when 𝜇 = ∞ but 𝜋 < 1. These counter-intuitive behaviors happen
due to the nature of the combination choices with r > 0, where the combination is essentially
a weighted average of p-values with a monotonic increasing transformation, thus will be domi-
nated by large p-values. Therefore, in the case of r > 0, as long as there is a nondiminishing part
of observations that are most likely to generate large p-values (e.g., nonsignals or weak signals),
then we will lose power.

To see an explicit example of Theorem 5, we consider the case that r = 1, 𝜋 ∈ (0, 1), with
𝜇 = ∞ for simplicity. In this case the combination becomes 1 − 𝜋 times the arithmetic mean
of p-values

(
i.e. 1−𝜋

m

∑m
i=1pmi

)
. Therefore, from the definition the asymptotic power, we know it

equals Φ
(
−g−1

𝜌,r

(
𝛼

r

1−𝜋

))
) = Φ(−∞) = 0 from the definition of g−1

0,r , which agrees with Theorem 5.
This example indicates a more general phenomenon: when r ≥ 1, as long as there are some
nonsignals (i.e. 𝜋 < 1), the asymptotic power under independence will always be 0 no matter how
strong the signal is (i.e. how large 𝜇 is). On the other hand, if 𝜌 = 1, then we have the asymptotic
power equals 𝛼

1−𝜋
, which will be close to one if and only if 𝜋 → 1. From this simple example, we

justify for the behavior many (Vovk & Wang, 2020; Wilson, 2020) observed in experiments: that
is the combination choice with r ≥ 1 will be powerless unless there are many strong signals with
heavy dependence.

In the following, we study the case when r ≤ −1. Firstly, we look at the setting with moderate
signal strength, that is 𝜇m = o

(√
log m

)
. The following Theorem 6 shows that, as long as the

signal is not strong enough, the asymptotic power for r ≤ −1 will always degenerate, no matter
how dense the signal is.

Theorem 6. Consider the positive equicorrelated Gaussian model in Definition 2 where

𝜇m = o
(√

log m
)
, lim

m→∞
𝜋m = 𝜋 ∈ [0, 1],

For r ≤ −1, we have that for all 𝜌 ∈ [0, 1] and 𝛼 > 0,

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) = 𝛼1{𝜌 = 0}. (38)
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TIAN et al. 767

The proof of Theorem 6 is in Appendix J, where we mainly use results about limitation of
infinitely divisible random variables. Theorem 6 indicates that, as long as the signal is not strong
enough, the combination with r ≤ −1 will be powerless unless under independence. Despite of
the observed robustness under dependency for cases of r ≤ −1 in experiments conducted by Wil-
son (2019), the robustness will diminish as the number of hypotheses goes to infinity, and the
method actually becomes highly sensitive to the dependence in the end. This phenomenon arises
from the fact that the gap between the calibrated threshold grows at least sublinearly (i.e. O(m𝜖)
with 𝜖 > 0) for different 𝜌, therefore the conservativeness from calibration grows with the number
of hypotheses, and results in high sensitivity to dependence in the end.

In the following, we study the setting when the signal is strong enough for the test to have
power one. Specifically, that is when 𝜇m ≥ O(

√
log m).

Theorem 7. For r ≤ −1, consider the positive equicorrelated Gaussian model in Definition 2 where

𝜇m =
√

2c log m, with c > 0.

For all 𝜌 ∈ [0, 1], if further one of the following is satisfied:

(a) limm→∞ 𝜋m = 𝜋 > 0, and
√

c > 1 −
√
(1 − 𝜌);

(b) 𝜋m = m𝛾−1, where 0 < 𝛾 < 1, and
√

c > 1 −
√
𝛾(1 − 𝜌),

then we have that, for all 𝛼 > 0,

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) = 1. (39)

The proof of Theorem 7 is in Appendix K, where we use a sandwiching argument, similar to
Liu and Xie (2020). Theorem 7(a) indicates that, in order to achieve full power at different 𝜌, the
signal strength needs to be stronger under heavy dependence. This conclusion agrees with the
intuition since the power is fundamentally related to the tail of transformed p-value pr

mi, which is
thinner under heavy dependence while heavier under weak dependence. Theorem 7(b), follow-
ing the sparse setting (Donoho & Jin, 2004), states that the asymptotic power will achieve one
with probability one, as long as the signal strength c and signal sparsity 𝛾 achieve the detection
boundary defined by 𝜌:

√
c > 1 −

√
𝛾(1 − 𝜌). Note that the detection boundary in (b) grows with

𝜌, which indicates that the signal needs to be stronger/denser to achieve the sweet spot under
heavier dependence.

4 EXPERIMENTS

In Section 3 we derive theoretical results of local test tr
𝛼

(15) under equicorrelated Gaussian model
(Definition 2) in an asymptotic setting (m →∞), which indicate behaviors that positive r works
better for heavy dependence and weak dense signals, while negative r works better for weak
dependence and strong sparse signals. In this section, we empirically present the evidence that
the above behaviors of local test are largely preserved after going through closed testing.

As the theoretical results for local test in Section 3 are only asymptotic, while in closed testing,
we need to consider all subsets of [m]; henceforth, our theoretical results will not be applica-
ble for a large proportion of them. On the other hand, calibrating for subsets of size 1 to m is
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768 TIAN et al.

computationally expensive; therefore, we use the following approximation, that is calibrating
for a few sizes in [m] and then interpolating to the whole [m] (see Figure 7 for the case when
m = 1000, 𝛼 = 0.05). This empirical calibration with interpolation works well in terms of main-
taining correct error control and gives nontrivial power (see Figures 8–11).

Remark 6. Figure 7 provides reasonable evidence that for r ≥ 1, the worst-case dependence is not
achieved by 𝜌 = 1 (perfect correlation) because if that was the case, there would be no violation
of type-I error, but we observe above that the achieved error is larger than 𝛼 = 0.05.

F I G U R E 7 Calibration under 𝜌-equicorrelated Gaussian for m ∈ [1000] for a worst case 𝜌 ∈ [0, 1]
(calculated using a grid of width 0.01). We compute the empirical 𝛼 level calibrated cutoff c⋆r (m, 𝛼) with 𝛼 = 0.05

(black dots) for
(

1
m

∑m
i=1pr

i

) 1
r with grid points m ∈ {1, 2,…, 10, 15, 20,…, 1000} and

r ∈ {−10,−1.2,−1,−0.8,−0.5, 0, 0.5, 1, 2, 10} via averaging over 106 trials. Then we approximate c⋆r (m, 𝛼) for all
m ∈ [1000] via fitting a smooth line ĉ⋆m(𝛼, r)

1
r (red line) for the whole m ∈ [1000], and use the fitted value as our

final calibration. As for comparison, we also plot the theoretical calibrated cutoff cr(m, 𝛼) (see Definition (26))
derived for pointwise asymptotic type-I control in Section 3. In addition, for small m (1 ∼ 10), we just use
empirical calibration for accurateness.
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TIAN et al. 769

F I G U R E 8 The empirical false discovery proportion and power versus the signal proportion 𝜋 under
different settings using fitted calibration in Figure 7 and algorithm in Theorem 3, with 𝛼 = 0.05, 𝛾 = 0.2,
m = 200, averaging over 1000 trials

F I G U R E 9 The empirical false discovery proportion and power versus correlation 𝜌 under different
settings using fitted calibration in Figure 7 and algorithm in Theorem 3, with 𝛼 = 0.05, 𝛾 = 0.2, m = 200,
averaging over 1000 trials

 14679469, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12614 by T

est, W
iley O

nline L
ibrary on [03/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



770 TIAN et al.

F I G U R E 10 The empirical FWER and power versus signal proportion 𝜋 under different settings using
fitted calibration in Figure 7 and algorithm in Theorem 3, with 𝛼 = 0.05, m = 200, averaging over 1000 trials

F I G U R E 11 The empirical FWER and power versus correlation 𝜌 under different settings using fitted
calibration in Figure 7 and algorithm in Theorem 3, with 𝛼 = 0.05, m = 200, averaging over 1000 trials
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TIAN et al. 771

In the rest of this section, we consider m = 200 tests, each based on different samples which
are not necessarily independent, particularly, we assume the positively equicorrelated Gaussian
model (Definition 2) among samples of the m tests and test whether a given set of data has zero
mean. In particular, we consider 𝜇m ≡ 𝜇 for all m, and 𝜋m ≡ 𝜋 for all m. In Figures 8–11 we inves-
tigate the algorithms presented in Theorem 3, that is Algorithm 1 for finding the largest subset of
m such that FDP is controlled under 𝛾 , and Algorithm 2 for finding the largest subset of [m] such
that FWER is controlled under 𝛼. Specifically, Figures 8 and 9 show the results for finding the
largest subset of [m] with FDP controlled under 𝛾 = 0.2, and Figures 10 and 11 show the results
for finding the largest subset of [m] with FWER controlled under 𝛼 = 0.05. We can see that, both
FDP and FWER are controlled as we wanted, while r < 0 often has non-trivial power (close to
one) comparing with r ≥ 0 when signals are strong enough (i.e. 𝜇 large enough), while they are
both powerless otherwise (i.e. 𝜇 not large enough). For weak signals specifically, we observe that
r > 0 have higher power comparing to r < 0, especially under strong dependence (i.e. 𝜌 ≫ 0) and
high signal density (i.e. 𝜋 ≫ 0). These findings generally agree with our asymptotic theory for
local test in Section 3, that is r < 0 achieves almost perfect power under setting with sparse strong
signals, but is powerless when signals are not strong enough, in which case r > 0 works better
(especially given heavy dependence and dense signals).

5 CONCLUSION

In this paper, we investigate the general case of closed testing with local tests that adopt a special
property we called separability, that is, the test is a function of summation of test scores for the
individual hypothesis. With separability, symmetry and monotonicity in local tests, we derive a
class of novel, fast algorithms for various types of simultaneous inference. These algorithms have
been implemented in the R package sumSome5. We pair our algorithms with recent advances
in separable global null test, that is, the generalized mean-based methods summarized (Vovk &
Wang, 2020), and obtain a series of simultaneous inference methods that are sufficient to handle
many complex dependence structures and signal compositions. We provide guidance on choosing
from these methods adaptively via theoretical investigation of the conservativeness and sensitivity
for different choices of local tests in an equicorrelated Gaussian model. Specifically, we found that
within the family of simultaneous inference methods using local tests introduced in (16):

• when signals are weak, all methods are powerless, while the ones with positive r perform a bit
better when signals are dense and highly correlated.

• when signals are strong, methods with negative r are often able to achieve full power, and
methods with positive r are often still powerless; except in the case when signals are also dense,
they are comparable.

We leave the following problems for future work. First, we note that the surrogate type-I error
in (27) sometimes does not agree very well with the true type-I error in simulations (see the
discussion of Figure 6). We think this arises from the fact that the surrogate type-I error is based on
asymptotic approximation. That is, the number of hypotheses m goes to infinity. Meanwhile, we
have only tried limited dimensions empirically (i.e., m = 105). We think that the story will be more
coherent when m is much larger because we suspect that the convergence occurs very slowly. Nev-
ertheless, how to derive tight and efficient calibration explicitly for small m may be worth more
attention. Secondly, in this work, we mainly focus on the equicorrelated Gaussian case, while the
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772 TIAN et al.

derivation of a tight calibration under arbitrarily correlated Gaussians will be intriguing, though
much harder. Finally, the theoretical power analysis is conducted only for the local test; formal
theoretical analysis after closure would be desirable, though we expect that to be much harder.

ENDNOTES
1Note that generally the functions f and C can also depend on the scores themselves, however in this paper we
consider specifically the case when f and C is fixed, and f as function the scores only, and C as function of the
cardinality of hypotheses set only. These cases already consist of a large proportion of existed global null tests,
and simplify the analysis throughout the paper.

2A closed testing is consonant if the local tests for every composite hypothesis S ∈ 2[m] are chosen in such a way
that rejection of S after closure implies a rejection of at least one of its elementary hypothesis after closure.

3To see this, observe that sup
𝜌∈[0,1] �̃�m(𝜌, r, c) ≥ �̃�m(𝜌, r, c) for all 𝜌 ∈ [0, 1] and all m. Taking limsupm on both sides

maintains the inequality, as does taking a further sup
𝜌

on both sides.
4Here we use the approximation 𝛼−1,m ∼ log m as m →∞ in Vovk and Wang (2020, Proposition 6) to make the
expression cleaner. But in Figure 4, we use the numerical solution as stated in Lemma 1.

5https://github.com/annavesely/sumSome
6To see this, note that 1

m

∑m
i=1hr(Xi) ≤ C implies that maxi∈[m] hr(Xi) ≤ mC, which happens if and only if

mini∈[m] Xi ≥ −Φ−1(mC
1
r ) > 0, where the last inequality is because C <

1
2r mr .
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APPENDIX A. PROOF FOR THEOREM 1

We have t
𝛼
(S) = 1 if and only if p(J) ≤ 𝛼 for all S ⊆ J ⊆ [m], which happens if and only if 𝛼 ≥

maxS⊆J⊆[m] p(J). Therefore,

p(S) = max
S⊆J⊆[m]

p(J).

By monotonicity, we have that if J ⊇ S then p(J) ≥ p(S ∪ J⋆|J|−|S|), where J⋆i , is the set of the indices
of the i largest p-values in Sc. Therefore,

p(S) = max
|S|≤i≤m

p(S ∪ J⋆i−|S|) = max
0≤i≤|Sc|

p(S ∪ J⋆i ).

Since J⋆0 ⊆…⊆ J⋆|Sc|, it is clear that this expression can be calculated in O(|Sc|) = O(m) time.

APPENDIX B. MORE GENERAL FRAMEWORK OF LOCAL TESTS DESIGN

We start with defining some terminology. Recall that a local test is an indicator function of
whether to reject S or not:

t
𝛼
(S) ∶ R

|S| → {0, 1}. (B1)

We consider t
𝛼

of the following form:

t
𝛼
(S) = 1{f (|S|; (Ti)i∈S) ≤ 𝛼}, (B2)

where the function f depends on the size of S and the vector of scores. Given local tests of this form,
there are two commonly satisfied conditions—symmetry and monotonicity—which makes the
computation manageable: quadratic time shortcuts for simultaneous FDP inference and FWER
control have been developed by Goeman and Solari (2011) and Dobriban (2020), respectively,
under these two conditions.
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Condition 1 (Monotonicity). A local test of form (B2) is called monotonic if for any s ≥ 1, any
two sets of scores (T1,…,Ts) and (T′1,…,T′s) with Ti ≤ T′i for all i = 1,…, s, we have

f (s;T1,…,Ts) ≥ f (s;T′1,…,T′s). (B3)

Monotonicity is a reasonable requirement for a local test. Several well-known global null tests
are monotonic, for example, Fisher’s test, Simes’ test, Bonferroni test, etc; as well as the tests based
on generalized means Vovk and Wang (2020).

Condition 2 (Symmetry) 2. A local test t
𝛼

of form (B2) is called symmetric if for any s ≥ 1, any
set of scores (T1,…,Ts), and any permutation (i1,…, is) of (1,…, s), we have

f (s;T1,…,Ts) = f (s;Ti1 ,…,Tis). (B4)

Another condition that we find could further reduce computation time is separability. This
condition is relatively under-emphasized in the past closed testing literature; however, it has a
long history in the global null testing literature with an increased recent interest (Chen et al., 2020;
Vovk & Wang, 2020; Wilson, 2019).

Condition 3 (Separability) 3. A local test of form (B2) is called separable if for s ≥ 1, and a set
of scores (T1,…,Ts), there exists a series of transformation functions on R {hi}s

j=1 and a function
g on R2 such that

t
𝛼
(s;T1,…,Ts) = 1

{ s∑

j=1
hj(Tj) ≤ g(|S|, 𝛼)

}
. (B5)

Recall the class of local tests T
𝛼

defined in (16) of the main paper. It is easy to check that each
of its element t(r)

𝛼

is monotonic, symmetric for all r, and separable iff r ≠ ±∞.

Remark 7. A local test t
𝛼

of form (B2) with both symmetry and separability must admit the
following form:

t
𝛼
(S) = 1

{ |S|∑

i=1
h(Tsi) ≤ g(|S|, 𝛼)

}
, (B6)

that is the transformation functions in the summation are the same for each hypothesis.

APPENDIX C. PROOF FOR THEOREM 2

Without loss of generality, we assume that all the scores (e.g. p-values) are already sorted in a
descending order, that is T1 ≥ T2 ≥…≥ Tm. Denote S = {i1, i2,…, is}, with 1 ≤ s ≤ m and i1 <

i2, < · · · < is; and Sc = {j1, j2,…, jm−s} as the complement set of S, with j1 < j2, < · · · < jm−s.
To prove the validity of Algorithm 1, we first focus on the crucial line 9, and claim that when

event

 ∶= {line 9 is evaluated with k ≤ min{s, a}}, (C1)

happens, the following four statement are true.

(i) Q =
∑k+b

j=1 uj +
∑a−k−b

l=1 vl;
(ii) b ≥ 0;

(iii) va−k−b ≥ uk+b+1;
(iv) uk+b ≥ va−k−b+1, if b > 0.
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TIAN et al. 775

Note that
∑0

l=1vl is defined to be 0, and not v1 + v0; and
∑0

j=1uj is defined to be 0, and not
u1 + u0.

We show this by induction. The first time event  defined in (C1) happens, we have k = a =
1, b = 0 and Q = u1, so (i) and (ii) hold, (iii) holds since v0 ≥ u2, and for (iv), since b = 0 there is
nothing to prove.

Additionally, we need to prove that when b > 0 for the first time, (iv) is satisfied. Note that
the only way that b > 0 for the first time, is through the satisfaction of the condition in line 3,
specifically uk+b0+1 ≥ va−k−b0 with b0 = 0. The reason is that a always increases by one in each
while-loop of line 2, and after the first while-loop, b can be at most 0, and we have a = 2. Therefore
under the condition that uk+b0+1 ≥ va−k−b0 with b0 = 0, the algorithm will go through line 5, and
has b = b0 + 1 > 0, and uk+b ≥ va−k−b+1. That is (iv) is satisfied, when b satisfies b > 0 for the first
time.

Now assume that (i)–(iv) hold the previous time the event  happens. Let a0, k0, b0, and Q0 be
the value of a, k, b, and Q during that previous step. There are five routes for event  to happen
again, which we can characterize by the way a, k, b are updated. We will discuss these routes one
by one.

1. Line 9 → 10 → 11 → 15 → . In this case we update a = a0; b = b0 − 1; k = k0 + 1. We have
b ≥ 0 since b0 > 0. We have Q = Q0, and (i) holds since k + b = k0 + b0. By the induction
hypothesis,

va−k−b = va0−k0−b0 ≥ uk0+b0+1 = uk+r+1.

If b > 0, then also b0 > 0, so, by the induction hypothesis,

uk+b = uk0+b0 ≥ va0−k0−b0+1 = va−k−b+1.

2. Line 9 → 10 → 13 → 15 → . In this case we update a = a0; b = b0 = 0; k = k0 + 1. Clearly,
(ii) holds. We have

Q =
k0+1∑

j=1
uj +

a0−k0−1∑

l=1
vl,

which reduces to (i). By the induction hypothesis,

va−k−b = va0−k0−b0−1 ≥ va0−k0−b0 ≥ uk0+b0+1 = uk+b ≥ uk+b+1,

so (iii) follows. Since b = 0 there is nothing to prove (iv).
3. Line 9 → 2 → 3 → 4, 5 → . In this case we update a = a0 + 1; b = b0 + 1; k = k0. We get (ii)

from the induction assumption since b = b0 + 1 ≥ 1. We obtain (i) since

Q =
k0+b0+1∑

j=1
uj +

a0−k0−b0∑

l=1
vl.

By the induction hypotheses,

va−k−b = va0−k0−b0 ≥ uk0+b0+1 = uk+b ≥ uk+b+1.

Also, b > 0 and

uk+b = uk0+b0+1 ≥ va−k0−b0 = va−k−b+1.
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776 TIAN et al.

4. Line 9 → 2 → 3 → 7 → . We update a = a0 + 1, k = k0 and b = b0. We get (ii) trivially, and
(i) since

Q =
k0+b0∑

j=1
uj +

a0−k0−b0+1∑

l=1
vl.

We have (iii) since

va−k−r = va−k0−b0 ≥ uk0+b0+1 = uk+b+1.

By the induction hypothesis, we get (iv), since,

uk+b = uk0+b0 ≥ va0−k0−b0+1 = va−k−b ≥ va−k−b+1.

5. Line 9 → 10 → 13 → 15 → 9 → 2 → 7 → . First we use proof by contradiction that this case
happens only if k0 = min{a0, s}: Otherwise, for step “9 → 2” to happen in the route, we need
Q0 + uk0+1 − va0−k0 ≤ C(a0, 𝛼) to break the while loop in line 9. This cannot happen since
we need b0 = 0 to reach line 13 in this route, which indicates b0 was not updated in line 5
(otherwise b0 > 0 from our induction hypothesis (ii)), that is, uk0+b0+1 > vao−k0−b0 in line 3.
Therefore we in fact have Q0 + uk0+1 − va0−k0 > Q0 > C(a0, 𝛼), which is a contradiction to what
we require.
Consequently, we update a = a0 + 1, k = k0 + 1, and, since uk+1 ≤ v0 by definition of v0, b =
b0 = 0. So first (ii) holds, and also we get (i) since

Q =
k0∑

j=1
uj +

a0−k0∑

l=1
vl + uk0+1 − va0−k0 + va−k =

k∑

j=1
uj +

a−k∑

l=1
vl =

k+b∑

j=1
uj +

a−k−b∑

l=1
vl.

Moreover, since a = k + b and b = 0, we have (iii) because va−k−b = v0 ≥ u1 ≥ uk+b+1. There is
nothing to prove (iv) since b = 0.

Since we have exhausted the possibilities to get from one happening of event  to the next,
the above analysis proves (i)–(iv). It follows from (i)-(iv) that, in line 9, Q = Wa,k, where

Wa,k = max{QI ∶ |I ∩ S| ≥ k, |I| = a}.

To see why this is true, note that (i) Q is a sum of a terms, of which at least k terms are from S.
The sum is the largest possible such sum since the k largest scores in S are used, and by (iii) and
(iv), of the a − k remaining scores, the smallest score that is included in the sum is larger than or
equal to the largest score that is not included. Note that, if k ≤ k′, Wa,k ≥ Wa,k′ .

Now, suppose e
𝛼
(S) = e > 0. Then there exists some I ⊆ S with |I| = e and some J ⊇ I such that

QJ > g(|J|, 𝛼). In the algorithm, if a = |J| and k ≤ e, we have Q = Wa,k ≥ Wa,e ≥ QJ > g(|J|, 𝛼), so
the algorithm enters the while loop in line 9, incrementing k while keeping a fixed. This step is
repeated at least until k ≥ e + 1. Since k is non-decreasing in the steps of the algorithm, it returns
k − 1 ≥ e. The same holds trivially if e = 0.

If e
𝛼
(S) = e < s, then for every I ⊂ S with |I| > e we have t

𝛼
(I) = 1, so for all J ⊇ I, we have

QJ ≤ g(|J|, 𝛼). In particular, this holds for the worst case set, so for every e + 1 ≤ a ≤ m, we have
Wa,e+1 ≤ g(a, 𝛼). If k = e + 1, therefore, the algorithm never enters the while loop in line 9, and
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TIAN et al. 777

consequently never increments k further. The algorithm therefore ends with k ≤ e + 1 and returns
k − 1 ≤ e. The same holds trivially if e = s.

To sum up, since k − 1 ≥ e and k − 1 ≤ e, we have k − 1 = e.
Finally, we prove that the algorithm takes O(m) time to run. First, note that there are m

for-loop iterations. In each for-loop iteration, it is obvious that apart from the while-loop, the
algorithm takes constant time. For the while-loop part, we can additionally show that the total
calculations that it takes over all the for-loop iteration is at most s. A key observation for the proof
is that k can only be updated through the while-loop part, and k always increases by one each
time going through one while-loop iteration. Since the global upper bound for k is s, the number
of total iterations for the while-loop over all for-loop iterations is at most s. Since each while-loop
iteration also takes constant time, the algorithm takes at most m + s steps of O(1) calculation. In
conclusion, the algorithm takes O(m) time to run.

APPENDIX D. DISCUSSION OF CONSONANCE

Firstly we formally state the definition of consonance.

Definition 3 (Consonance). A closed testing procedure is consonant if the local tests for every
composite hypothesis S ∈ 2[m] are chosen in such a way that rejection of S after closure implies
rejection of at least one of its elementary hypotheses after closure.

Lemma 2. The closed testing procedure using local test t(r)
𝛼

defined in (15) is consonant if and only
if r = ±∞.

Proof. We will prove this proposition by analyzing different r case by case. Firstly, we show that
closed testing using local test t(r)

𝛼

(15) is consonant when r = ±∞.

1. When r = ∞, note that

t(∞)
𝛼

(S) = I
{

max
i∈S

pi ≤ 𝛼

}
. (D1)

Therefore, rejecting S after closure implies rejecting all the sets containing it locally, including
the set [m], which in turn indicates rejection of all the sets locally, and after closure as well,
therefore trivially, we have all the subsets of S being rejected after closure. In conclusion, the
corresponding closed testing when r = ∞ is consonant.

2. When r = −∞, note that

t(−∞)
𝛼

(S) = I
{
|S|min

i∈S
pi ≤ 𝛼

}
. (D2)

Therefore t
−∞
𝛼
(S) = 1 implies

t−∞
𝛼
(B) = 1 for all B ∈  ∶= {I ⊆ [m] ∶ S ⊂ I}, (D3)

and particularly t−∞
𝛼

(S) = 1, which in turn gives us

t−∞
𝛼
(A) = 1 for all A ∈  ∶=

{
I ⊆ [m] ∶ I ⊂ S,min

i∈S
pi ∈ I

}
, (D4)

from the expression in (D2).
On the other hand, note that for some A ∈ , and J ⊇ A, we have either J ⊇ S, or |J| ⊉ S. In
the former case, J is rejected locally due to fact (D3). In the later case, if |J| ≤ |S|, we have
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778 TIAN et al.

|J|mini∈J pi ≤ |S|mini∈A pi = |S|mini∈S pi ≤ 𝛼; if |J| > |S|, then there must exist B ∈  such
that |B| = |J|, which implies |J|mini∈J pi = |B|mini∈B pi ≤ 𝛼 due to fact (D4). Therefore J is
still rejected locally. Hence there exists at least one subset A of S that is rejected after closure,
that is the corresponding closed testing is consonant.

Then we use counter examples to show that closed testing using local test t(r)
𝛼

(15) is not
consonant when r ≠ ±∞.

1. When 0 < r < ∞, note that

t(r)
𝛼

= I

{ m∑

i=1
pr

i ≤
m𝛼

r

2(r + 1)

}
.

Let 𝛽r,𝛼 = 𝛼

r

2(r+1)
, the local testing rule becomes

∑m
i=1pr

i ≤ m𝛽r,𝛼 . Note that 0 ≤ 𝛽r,𝛼 ≤
1

2(r+1)
≤

1∕2 for any r > 0. For the case m = 3, and pr
1 = 𝛽r,𝛼∕3, pr

2 = 𝛽r,𝛼∕2, pr
3 = 2𝛽r,𝛼 , we have pr

1 +
pr

2 + pr
3 < 3𝛽r,𝛼 , pr

1 + pr
2 < 2𝛽r,𝛼 , while pr

1 + pr
3 > 2𝛽r,𝛼 and pr

1 < 𝛽r,𝛼 . Therefore, we reject H1 ∩
H2 ∩H3, H1 ∩H2 but neither H1 nor H2 after closure, therefore the rejection H1 ∩H2 is not
consonant.

2. When r = 0, note that

t(0)
𝛼

= I

{ m∑

i=1
log 1

pi
> m log e

𝛼

}
.

Let 𝛽
𝛼
= log e

𝛼

, and qi = log( 1
pi
), then the local testing rule becomes

∑m
i=1qi ≥ m𝛽

𝛼
. Note that

1 ≤ 𝛽
𝛼
< ∞, and 1 ≤ qi ≤∞. For m = 3, let 𝛼 = e0.9, and q1 = 1.6𝛽

𝛼
, q2 = 1.4𝛽

𝛼
, q3 = 0.1𝛽

𝛼
,

therefore we will reject H1 ∩H2 ∩H3 and H1 ∩H2 after closure, but neither H1 nor H2, which
indicates that the rejection H1 ∩H2 is not consonant.

3. When −1 < r < 0, note that

t(r)
𝛼

= I

{ m∑

i=1
pr

i ≥
m𝛼

r

2(r + 1)

}
.

Let 𝛽r,𝛼 = 𝛼

r

2(r+1)
, then the local testing rule becomes

∑m
i=1pr

i ≥ m𝛽r,𝛼 . Note that 1∕2 ≤ 1
2(r+1)

≤

𝛽r,𝛼 < ∞ for any −1 < r < 0. For the case m = 3, let 𝛼 = r
√

20(r + 1), and pr
1 = 1.6𝛽r,𝛼 , pr

2 =
1.4𝛽r,𝛼 , pr

3 = 0.1𝛽r,𝛼 . Note the fact that 𝛽r,𝛼 ≥ 10, we have that pr
1 + pr

2 + pr
3 > 3𝛽r,𝛼 , pr

1 + pr
2 >

2𝛽r,𝛼 , while pr
1 + pr

3 < 2𝛽r,𝛼 pr
2 + pr

3 < 2𝛽r,𝛼 . Therefore, we reject H1 ∩H2 ∩H3, H1 ∩H2 but
neither H1 nor H2 after closure, therefore the rejection H1 ∩H2 is not consonant.

4. When r = −1, note that

t(−1)
𝛼

= I

{ m∑

i=1

1
pi
≥

em log m
𝛼

}
.

Let 𝛽
𝛼
= e

𝛼

, qi = 1∕pi, then the testing rule becomes
∑m

i=1qi ≥ m log m𝛽
𝛼
. For the case m = 5,

let q1 = q2 = 2𝛽
𝛼

log 5, q3 = q4 = q5 = 1
3
𝛽
𝛼

log 5, then we have
5∑

i=1
qi = 5 log 5𝛽

𝛼
,

4∑

i=1
qi = 4 2

3
log 5𝛽

𝛼
≥ 4 log 4𝛽

𝛼
, and

5∑

i=1,i≠2
qi = 3 log 5𝛽

𝛼
≤ 4 log 4𝛽

𝛼
.

Therefore, we must locally reject ∩5
i=1Hi, ∩4

i=1Hi, but not ∩5
i=1,i≠2Hi. Therefore, after closure,

we will reject ∩5
i=1Hi and ∩4

i=1Hi, but we will reject neither H1, nor H2, H3 or H4, therefore the
rejection ∩4

i=1Hi is not consonant.
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TIAN et al. 779

4. When −∞ < r < −1, note that

t(r)
𝛼

= I

{ m∑

i=1
pr

i ≥ m−r
𝛼

r+1

}
.

Let t = −r, 𝛽t,𝛼 = 𝛼

−t+1, qi = 1∕pi, then the local test becomes
∑m

i=1qt
i ≥ mt

𝛽t,𝛼 . For the case m ≥

max{3,
t√3

t√3−1
}, let qt

1 = qt
2

1
2

mt
𝛽
𝛼
, and qt

3 = · · · = qt
m =

1
6(m−2)

mt
𝛽
𝛼

(choose 𝛼 such that 𝛽t,𝛼 >

6), then we have that,
∑m

i=1qt
i ≥ mt

𝛽
𝛼
,
∑m−1

i=1 qt
i ≥ mt

𝛽
𝛼
,
∑m

i=1,i≠2qt
i < mt

𝛽
𝛼
. Therefore, we will

reject ∩i∈[m−1]Hi after closure, but we cannot reject H1 after closure, therefore the rejection
∩i∈[m],i≠2Hi is not consonant. ▪

APPENDIX E. ALGORITHMS FOR POST HOC AUTO-SELECTION
SHORTCUTS

Algorithm 2. Shortcut for auto-selection of the largest rejection set with zero FDP

Input: A sequence of sorted scores T1,… ,Tm which satisfies T1 ≥ · · · ≥ Tm;a local test rule of
form (13) with a monotonically increasing transformation function h and thresholding
function g; confidence level 𝛼.

Output: Largest set S with zero false discoveries among all possible subsets of [m], equivalently,
the set of hypotheses with strong FWER control of level 𝛼.

1 Initialization:
transformed scores u1,… ,um where ui = h(Ti) for 1 ≤ i ≤ m;
iteration related indices k ← 1; s ← 1;
accumulated scores Q ← uk;
layer-wise thresholdingc ← g(s, 𝛼).
while k < m and s < m do

2 if Q > c then
3 if s ≥ k then
4 c ← c − uk

Q ← Q − uk
5 else
6 Q ← Q − uk + uk+1;
7 end
8 k ← k + 1
9 else

10 c ← c + g(s + 1, 𝛼) − g(s, 𝛼)
if s ≥ k then

11 Q ← Q + uk+1
12 else
13 c ← c − us
14 end
15 s ← s + 1
16 end
17 end
18 return S = {k,… ,m}
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780 TIAN et al.

Algorithm 3. Shortcut for auto-selection of the largest rejection set with bounded FDP

Input: confidence level 𝛼 ∈ (0, 1); desired FDP bound 𝛾 ∈ (0, 1); incremental candidate sets
S1 ⊂ S2 · · · ⊂ Sn with |Sk| = k.

Output: the largest Sk such that e
𝛼
(Sk) ≤ 𝛾|Sk|.

1 Initialization: k ← 1
while k ≥ 1 do

2 e ← e
𝛼
(Sk)

if e∕k ≤ 𝛾 then
3 return Sk
4 else
5 k ← ⌊ k−e

1−𝛾
⌋

6 end
7 end
8 return ∅

APPENDIX F. PROOF FOR THEOREM 3

We first prove part (a) of Theorem 3. Denote ek = e(Sk), and dk = k − ek. Consider we are at the
iteration when k = i with i ∈ [n]. If ei

i
≤ 𝛾 , then we return i, otherwise, we need to look for j < i

such that ej

j
≤ 𝛾 . Note that, for j < i, if di

1−𝛾
< j, we have

dj

j
(∗)
≤

di

j
< 1 − 𝛾, and in turn

ej

j
> 𝛾, (F1)

where (*) is true from lemma 3 in Goeman et al. (2021). Therefore we cannot have ej

j
≤ 𝛾 for j < i

if j > di
1−𝛾

, so we directly skip those iterations in batches, and that gives us Algorithm 3.
Next, we prove part (b) and (c) which requires additional assumptions about the local

tests. Part (b) is follows immediately from Theorem 2. Hence, we only prove part (c) of the
theorem in the following. Without loss of generality, assume that all the m scores are sorted as
T1 ≥ T2 ≥…≥ Tm.

Firstly, we claim that the largest set S ⊆ [m] with e
𝛼
(S) = 0 admits strong FWER control at

level 𝛼. Note, from the definition of e
𝛼
(S) in (11), for any S such that e

𝛼
(S) = 0, each of its elemen-

tary subset is rejected by closed testing at level 𝛼; and conversely, for any hypotheses set S that is a
collection of elementary hypotheses rejected by closed testing at level 𝛼, each of its subsets is also
rejected by closed testing, and hence e

𝛼
(S) = 0. Therefore, the largest set S ⊆ [m]with e

𝛼
(S) = 0 is

the collection of all the elementary hypotheses that are rejected by closed testing at level 𝛼. Then
recalling the well-known fact that the collection of all elementary hypotheses rejected by closed
testing at level 𝛼 is a hypothesis set with strong FWER control at level 𝛼, we have proved our claim.

Then we show that finding the collection of all the elementary hypotheses rejected by closed
testing at level 𝛼 is equivalent to finding a cutoff in the ordered scores. From the monotonicity of
the local test, it is easy to see that, for any k ∈ [m], if closed testing rejects Tk, it must also reject
Ti for all i > k. Therefore, the final rejection sets must be of the form {Tk⋆ ,…,Tm}, where k⋆ is a
cutoff we are interested in finding in the ordered scores.

Finally, we show that Algorithm 2 is constructed in a way to find the correct cutoff, which is
realized via searching from the largest score and stopped at the first one (which is our cutoff k⋆)
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TIAN et al. 781

rejected by closed testing. Note that we reject Hk via closed testing if and only if each composite
hypothesis containing it can be rejected locally. Using the monotonicity of the local test, this is
saying that, for each s = 1,…,m, we have:

{∑s
i=1h(Ti) ≤ g(s, 𝛼), if s ≥ k;

h(Tk) +
∑s−1

i=1 h(Ti) ≤ g(s, 𝛼), otherwise.
(F2)

With simple rearrangement, one may see that Algorithm 2 starts with k = 1, increase k by 1 in
each of its updates with k, and stops at the first time that (F2) is satisfied, when k is the cutoff k⋆

of our interests. Therefore, we have finished the proof for part (c).

APPENDIX G. PROOF FOR PROPOSITION 1

We call Xmi as just Xi in this proof for brevity. Note that, for r ≥ 1,

�̃�m(Σ, r, c) ∶= Pr
∩m

i=1Hmi

⎧
⎪
⎨
⎪⎩

(
1
m

m∑

i=1
pr

mi

) 1
r

≤ c
⎫
⎪
⎬
⎪⎭
= Pr

{
1
m

m∑

i=1
hr(Xi) ≤ C

}
, (G1)

where hr(x) ∶= Φ(−x)r, and C ∶= cr. Note that hr is a convex function for x ≥ 0 when r ≥ 1.
Indeed, taking second derivative of hr with respect to x, we have

d2hr(x)
dx2 = rΦ(−x)r−2

𝜙

2(x) [xΦ(−x) + r − 1] .

When C <

1
2rmr , the event E1 ∶=

{
1
m

∑m
i=1hr(Xi) ≤ C

}
implies6 the event E2 ∶= {Xi > 0,

∀i ∈ [m]}. Then, E1 and E2 together imply the event E3 ∶=
{

hr

(
1
m

∑m
i=1Xi

)
≤ C

}
due to convex-

ity of hr(x) for x ≥ 0 and r ≥ 1. Therefore,

Pr

{
1
m

m∑

i=1
pr

i ≤ C

}
= Pr

{
1
m

m∑

i=1
hr(Xi) ≤ C

}
≤ Pr

{
hr

(
1
m

m∑

i=1
Xi

)
≤ C

}

= Pr

{
Φ

(
− 1

m

m∑

i=1
Xi

)r

≤ C

}
= Pr

{
1
m

m∑

i=1
Xi ≥ −Φ−1(C

1
r )

}

= Pr

{
1
m

m∑

i=1
Xi ≥ C2

}
= Pr

X∼N(0,Σ)

{ 1
m

I
T
mX ≥ C2

}

(∗)
= Pr

Z∼N(0,𝜎2
Σ)
{Z ≥ C2} = 1 − Φ(C2∕𝜎Σ), (G2)

where C2 = −Φ−1(C
1
r ) > 0, and 𝜎

2
Σ =

1
m2 I

T
mΣIm ∈ R, where Im is vector of all ones in Rm. Particu-

larly, (*) is true due to the fact that Gaussianity is preserved under affine transformations.
On the other hand, under full dependence (i.e. 𝜌ij ≡ 1 for all i, j), we have

Pr

{
1
m

m∑

i=1
pr

i ≤ C

}
= Pr

{
pr

1 ≤ C
}
= Pr

{
Φ(−X1)r ≤ C

}

= Pr {X1 ≥ C2} = 1 − Φ(C2). (G3)
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782 TIAN et al.

Therefore combining (G2) and (G3), and the fact that C2 > 0, we have

1 − Φ(C2) ≤ sup
Σ∈m

Pr

{
1
m

m∑

i=1
pr

i ≤ C

}

≤ sup
Σ∈m

1 − Φ(C2∕𝜎Σ) (G4)

(a)
= sup

Σ∈E
m

1 − Φ(C2∕𝜎Σ)

(b)
= sup

𝜌∈[− 1
m
,1]

1 − Φ

(
C2

1
m
+ m−1

m
𝜌

)
= 1 − Φ(C2), (G5)

wherem is the class of all correlation matrix, andE
m is the class of all equicorrelation matrices

with correlation 𝜌 ∈ [− 1
m
, 1]. Specifically, (a) is true since 𝜎Σ only depends on the average of all

entries in Σ, and (b) is true since 𝜎Σ = 1
m
+ m−1

m
𝜌 for any Σ inE

m. In conclusion, we have

sup
Σ∈m

Pr

{
1
m

m∑

i=1
pr

i ≤ C

}
= 1 − Φ(C2), (G6)

for all r ≥ 1 and the supremum is achieved at full dependence. Transforming back to the original
representation in (22), we have completed our proof.

APPENDIX H. PROOF FOR THEOREM 4

Recalling decomposition (28) in the main paper, we can rewrite �̃�m(𝜌, r, c) as the following, which
makes the link to the Generalized Law of Large Numbers clearer:

�̃�m(𝜌, r, c) = EZ0

⎡
⎢
⎢
⎢⎣
Pr

⎧
⎪
⎨
⎪⎩

(
1
m

m∑

i=1
pr

i

) 1
r

≤ c) ||| Z0 = z0

⎫
⎪
⎬
⎪⎭

⎤
⎥
⎥
⎥⎦

= EZ0

[
Pr

{
sign(r) 1

m

m∑

i=1
pr

i ≤ sign(r) ⋅ C) ||| Z0 = z0

}]
, (H1)

where we use the conditional independence amongst {pi}m
i=1, and replace C ∶= cr. Then

we have

lim sup
m→∞

�̃�m(𝜌, r, c) = lim sup
m→∞

EZ0

[
Pr

{
sign(r) 1

m

m∑

i=1
pr

i ≤ sign(r) ⋅ C ||| Z0 = z0

}]

= EZ0

[
lim sup

m→∞
Pr

{
sign(r) 1

m

m∑

i=1
pr

i ≤ sign(r) ⋅ C ||| Z0 = z0

}]
,

where the last equality is true by applying dominance convergence theorem since the inner prob-
ability is integrable. In the following, we focus on quantifying the limitation of the conditional
probability
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TIAN et al. 783

Pr

{
sign(r) 1

m

m∑

i=1
pr

i ≤ sign(r) ⋅ C ||| Z0 = z0

}
, (H2)

for which we need Lemma 3 to characterizes the distribution of pr
i for r ≠ ±∞.

Lemma 3. Denote the CDF of pr
i (with pi defined in (29)) conditioning on Z0 = z0 as Fr,𝜌,z0 , and

the corresponding density as fr,𝜌,z0 , we have that:

Fr,𝜌,z0(y) = Φ
⎛
⎜
⎜⎝
sign(r)

Φ−1(y
1
r ) +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠
, and fr,𝜌,z0(y) = O

(
y−(

1
(𝜌−1)r

+1)
)

as yr → 0, (H3)

where we take y−(
1

(𝜌−1)r+1) = exp
(
− y

𝜌−1

)
when r = 0.

Proof. Without loss of generality, we only prove for the case r ≥ 0. Firstly, when r > 0, we have:

Fr,𝜌,z0(y) = Pr
{

pr
i ≤ y ||| Z0 = z0

}
= Pr

{
Φ(−

√
𝜌z0 −

√
1 − 𝜌Zi) ≤ y

1
r

}

= Pr
⎧
⎪
⎨
⎪⎩

Zi ≤
Φ−1(y

1
r ) +

√
𝜌z0

√
1 − 𝜌

⎫
⎪
⎬
⎪⎭
= Φ

⎛
⎜
⎜⎝

Φ−1(y
1
r ) +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠
, (H4)

and also the density

fr,𝜌,z0(y) =
dFr,𝜌,z0(y)

dy
∝

y
1
r
−1

r
√

1 − 𝜌

𝜙

⎛
⎜
⎜⎝

Φ−1(y
1
r ) +

√
𝜌Z0

√
1 − 𝜌

⎞
⎟
⎟⎠

/
𝜙(Φ−1(y

1
r )) (H5)

∝
y

1
r
−1

r
√

1 − 𝜌

exp
⎛
⎜
⎜⎝
−
𝜌Φ−1(y

1
r )2 +

√
𝜌Z0Φ−1(y

1
r )

2(1 − 𝜌)

⎞
⎟
⎟⎠
. (H6)

Using the approximation

Φ−1(x) = O

(
−
√

log 1
x2

)
when x → 0,

we have that,

fr,𝜌,z0(y) = O
(

y−(
1

(𝜌−1)r+1)
)

as y → 0. (H7)

For r = 0, we have:

Fr,𝜌,z0(y) = Pr
{

log pi ≤ y ||| Z0 = z0

}
= Pr

{
Φ(−

√
𝜌z0 −

√
1 − 𝜌Zi) ≤ exp(y)

}

= Pr

{
Zi ≤

Φ−1(exp(y)) +
√
𝜌z0

√
1 − 𝜌

}
= Φ

(
Φ−1(exp(y)) +

√
𝜌z0

√
1 − 𝜌

)
, (H8)
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784 TIAN et al.

and also the density

fr,𝜌,z0(y) =
dFr,𝜌,z0(y)

dy
∝

exp(y)
r
√

1 − 𝜌

𝜙

(
Φ−1(exp(y)) +

√
𝜌Z0

√
1 − 𝜌

)/
𝜙(Φ−1(exp(y))) (H9)

∝
exp(y)

r
√

1 − 𝜌

exp

(
−
𝜌Φ−1(exp(y))2 +

√
𝜌Z0Φ−1(exp(y))

2(1 − 𝜌)

)
. (H10)

Again using the approximation

Φ−1(x) = O

(
−
√

log 1
x2

)
when x → 0,

we have that,

fr,𝜌,z0 (y) = O
(

exp
(

y
1 − 𝜌

))
as y → −∞, i.e. log y → 0. (H11)

▪

(a) and (b) r > −1:
When r > −1, using Lemma 3 we have that E

[
pr

1
||| Z0 = z0

]
< ∞ for any 𝜌 ∈ [0, 1], therefore by

the Law of Large Numbers, we have

1
m

m∑

i=1
pr

i
||| Z0 = z0

d
−−→ E

[
pr

1
||| Z0 = z0

]
, (H12)

where
d
−−→ means converge in distribution. Therefore,

lim sup
m→∞

Pr

{
sign(r) 1

m

m∑

i=1
pr

i ≤ sign(r) ⋅ C ||| Z0 = z0

}

= Pr
{

sign(r)E
[

pr
1
||| Z0 = z0

]
≤ sign(r) ⋅ C

}
, (H13)

and hence

lim sup
m→∞

�̃�m(𝜌, r, c) = EZ0

[
Pr

{
sign(r)E

[
pr

1
||| Z0 = z0

]
≤ sign(r) ⋅ C

}]
∶= h(𝜌, r,C). (H14)

Recall that the conditional mean g
𝜌,r(z0) ∶= E

[
pr

i
||| Z0 = z0

]
in (31), we have

g
𝜌,r(z0) =

∫
Φ
(
−
√
𝜌 z0 −

√
1 − 𝜌 x

)r
𝜙(x)dx

= 1√
1 − 𝜌

∫
𝜙

(
y −

√
𝜌z0

√
1 − 𝜌

)
Φ(−y)rdy, (H15)

where 𝜙 as the standard normal p.d.f. From expression in (H15), it is easy to see that g
𝜌,r(z0) is

monotonically nonincreasing in z0 when r ≥ 0, while monotonically nondecreasing in z0 when
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TIAN et al. 785

r < 0. Therefore, using this monotonicity, we have explicit expression

h(𝜌, r,C) = Φ
(
−g−1

𝜌,r(C)
)
. (H16)

Recall the relationship C ≡ cr, and the definition of cr(m, 𝛼) that

cr(m, 𝛼) ∶= sup
{

c ∶ sup
𝜌∈[0,1]

lim sup
m→∞

�̃�m(𝜌, 𝛼, c) ≤ 𝛼

}
,

where the supremum over c is taking over R, we omit it for simplicity.
For r > 0, plugging in expression (H16) in (H14), we have the following closed expression

cr(m, 𝛼) =
(

sup
{

C ∶ sup
𝜌∈[0,1]

Φ
(
−g−1

𝜌,r(C)
)
≤ 𝛼

}) 1
r

.

Denote C
𝜌
∶= sup

{
C ∶ Φ(−g−1

𝜌,r(C)) ≤ 𝛼

}
, we claim that cr(m, 𝛼) is equivalent to

(
inf

𝜌∈[0,1] C
𝜌

) 1
r .

To prove this claim, first note that

sup
{

C ∶ sup
𝜌∈[0,1]

Φ
(
−g−1

𝜌,r(C)
)
≤ 𝛼

}
= sup

⋂

𝜌∈[0,1]

{
C ∶ Φ

(
−g−1

𝜌,r(C)
)
≤ 𝛼

}
. (H17)

This is true due to the following simple reasoning. For each c such that sup
𝜌∈[0,1] Φ(−g−1

𝜌,r(c)) ≤ 𝛼,
we have

c ∈
⋂

𝜌∈[0,1]

{
C ∶ Φ

(
−g−1

𝜌,r(C)
)
≤ 𝛼

}
.

On the other hand, for each c ∈
⋂

𝜌∈[0,1]{C ∶ Φ(−g−1
𝜌,r(C)) ≤ 𝛼}, we have

sup
𝜌∈[0,1]

Φ
(
−g−1

𝜌,r(c)
)
≤ 𝛼.

Therefore
{

C ∶ sup
𝜌∈[0,1]

Φ
(
−g−1

𝜌,r(C)
)
≤ 𝛼

}
=

⋂

𝜌∈[0,1]

{
C ∶ Φ

(
−g−1

𝜌,r(C)
)
≤ 𝛼

}
,

and taking supremum on both sides we have (H17).
Then, using the monotonicity of g

𝜌,r(z) with regard z, and the fact that g
𝜌,r(z) decreases with

𝜌 when 𝜌 > 0, z > 0 and r ≥ 0 (easy to verify that the derivative with regard 𝜌 is always negative),
we further have

sup
⋂

𝜌∈[0,1]

{
C ∶ Φ

(
−g−1

𝜌,r(C)
)
≤ 𝛼

}
= sup

⋂

𝜌∈[0,1]

{
C ∶ C ≤ g

𝜌,r
(
−Φ−1(𝛼)

)}

= sup
{

C ∶ C ≤ inf
𝜌∈[0,1]

g
𝜌,r

(
−Φ−1(𝛼)

)}
= inf

𝜌∈[0,1]
g
𝜌,r

(
−Φ−1(𝛼)

)

Combining with (H17), we have
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786 TIAN et al.

cr(m, 𝛼) =
(

inf
𝜌∈[0,1]

g
𝜌,r

(
−Φ−1(𝛼)

))
1
r

. (H18)

Using properties of g
𝜌,r we can further simplify the above expression. We find that g

𝜌,r(z) decreases
with 𝜌 when z > 0 but increases with 𝜌 when z ≤ 0. Since we assume only 𝛼 ∈ (0, 1), we are
not sure about the sign of Φ−1(𝛼). Therefore the minima can be achieved at both boundaries,
that is

inf
𝜌∈[0,1]

g
𝜌,r(−Φ−1(𝛼)) = min

{
g0,r(−Φ−1(𝛼)), g1,r(−Φ−1(𝛼))

}
.

Note that

g0,r(−Φ−1(𝛼)) = r
r + 1

; g1,r(−Φ−1(𝛼)) = 𝛼

r
,

finally we have cr(m, 𝛼) = min{𝛼,
(

r
r+1

) 1
r } for r > 0.

Similarly, for −1 < r ≤ 0, as c ∶= C
1
r decreases with C, we have the closed expression

cr(m, 𝛼) =
(

inf
{

C ∶ sup
𝜌∈[0,1]

Φ(−g−1
𝜌,r(C)) ≤ 𝛼

}) 1
r

=
(

sup
𝜌∈[0,1]

C
𝜌

) 1
r

,

where C
𝜌
∶= inf

{
C ∶ Φ(−g−1

𝜌,r(C)) ≤ 𝛼

}
. Using the monotonicity of g

𝜌,r(z) with regard z, and the
fact that g

𝜌,r(z) decreases with 𝜌when 𝜌 > 0, z < 0 and r < 0 (easy to verify that the derivative with
regard 𝜌 is always negative), we further have

C
𝜌
= inf

{
C ∶ C ≥ g

𝜌,r
(
−Φ−1(𝛼)

)}
= g

𝜌,r
(
−Φ−1(𝛼)

)
. (H19)

Therefore,

cr(m, 𝛼) =
(

sup
𝜌∈[0,1]

g
𝜌,r

(
−Φ−1(𝛼)

))
1
r

. (H20)

Finally, we have that,

�̃�(𝜌, r, 𝛼) = lim sup
m→∞

�̃�m(𝜌, r, cr(m, 𝛼))

=

{
Φ

(
−g−1

𝜌,r(𝛼r)
)
, if r > 0;

Φ(−g−1
𝜌,r(cr(m, 𝛼)r), if − 1 ≤ r ≤ 0.

(H21)

And

cr(m, 𝛼) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

min
{
𝛼,

(
r

r+1

) 1
r

}
, if r > 0;

(
sup
𝜌∈[0,1]

g
𝜌,r

(
−Φ−1(𝛼)

))
1
r

if − 1 ≤ r ≤ 0.
(H22)
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TIAN et al. 787

(c) and (d): r ≤ −1
When r ≤ −1, things get a bit tricky, since according to Lemma 3, E

[
pr

i
||| Z0 = z0

]
may not exist.

In the following, we will use the stable law stated in Lemma 4 to derive the asymptotic behaviour
of �̃�m(𝜌, r, c) for r < 0.

Lemma 4. (Generalized LLN (Uchaikin & Zolotarev, 2011)) Consider a sequence of i.i.d random
variables X1,X2,…,Xm which shares the same distribution with X, where X has support on [1,∞]
and density f satisfying the following:

f (x) = O(x−(𝛽+1)), as x → ∞ with 𝛽 > 0.

Denote Xm ∶= 1
m

∑m
i=1Xi, we have that

(a) if 0 < 𝛽 < 1, then m1− 1
𝛽 Xm

d
−−→Y ;

(b) if 𝛽 = 1, then Xm − log m
d
−−→Y ;

(c) if 1 < 𝛽 < 2, then m1− 1
𝛽 (Xm − E [X])

d
−−→Y ;

(d) if 𝛽 ≥ 2, then Xm
d
−−→E [X],

where Y is some random variable that shares the same tail behaviour with X .
Then, for r ≤ −1, from Lemma 3, we have 𝛽 = 1

(𝜌−1)r
. Let

C(𝛼, r,m, 𝜌) ∶=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

C
𝛼,rm−1+(𝜌−1)r

, if 0 ≤ 𝜌 < 1 + 1
r
;

C
𝛼,r + log m, if 𝜌 = 1 + 1

r
;

C
𝛼,rm−1+(𝜌−1)r + E

[
pr

1
||| Z0 = z0

]
, if 1 + 1

r
< 𝜌 ≤ 1 + 1

2r
;

C
𝛼,r + E

[
pr

1
||| Z0 = z0

]
, if 1 + 1

2r
< 𝜌 ≤ 1,

(H23)

where C
𝛼,r is some constant that depends only on𝛼 and r that we will specify later. Using Lemma 4,

we have

lim
m→∞

Pr

{
1
m

m∑

i=1
pr

i ≥ C(𝛼, r,m, 𝜌) ||| Z0 = z0

}

= Pr
{

Y ≥ C
𝛼,r

||| Z0 = z0

} (∗)
= Pr

{
pr

1 ≥ C
𝛼,r

||| Z0 = z0

}
+ o(1)

= Fr,𝜌,z0(C𝛼,r) + o(1) as 𝛼 → 0, (H24)

where Y is the random variable comes from the limitation in Lemma 4, which shares the same
tail behaviour of pr

1, therefore we have the approximation (∗).
Recalling definitions in (22), (27) of the main paper, our goal is to find c such that

sup
𝜌∈[0,1]

lim sup
m→∞

�̃�m(𝜌, r, c) ≤ 𝛼,

or equivalently find C such that
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788 TIAN et al.

sup
𝜌∈[0,1]

lim sup
m→∞

�̃�m(𝜌, r,C
1
r ) ≤ 𝛼.

Note that C(𝛼, r,m, 𝜌) is monotonically nonincreasing in 𝜌, and C(𝛼, r,m, 0) dominates
C(𝛼, r,m, 𝜌) for any 0 < 𝜌 ≤ 1. Therefore, to calibrate for arbitrary 𝜌 ∈ [0, 1], that is to find a critical
value that does not depend on 𝜌, we have no choice but let C = C(𝛼, r,m, 0), and hence

sup
𝜌∈[0,1]

lim sup
m→∞

�̃�m(𝜌, r,C(𝛼, r,m, 0)
1
r ) = �̃�m(𝜌, r,C(𝛼, r,m, 0)

1
r )

= EZ0

[
1 − Fr,0,Z0(C𝛼,r)

]
= EZ0

[
Φ

(
Φ−1(C

1
r
𝛼,r)

)]
= C

1
r
𝛼,r ≤ 𝛼,

which indicates we should set C
𝛼,r = 𝛼

r to achieve the upper bound.
Therefore we have

cr(m, 𝛼) = (C(𝛼, r,m, 0))
1
r =

{
𝛼m

1
|r|−1

, if r < −1;
𝛼

1+𝛼m
, if r = −1,

(H25)

and correspondingly

�̃�(𝜌, r, 𝛼) = lim sup
m→∞

�̃�m(𝜌, r, cr(m, 𝛼)) = 𝛼I{𝜌 = 0},

where the last equality is true due to the nature of stable law, where the tail behavior deter-
mines the rate of growth, and the mismatch of the growth rate leads to degenerate asymptotic
probability.

Here we finish the proof for Theorem 4.

APPENDIX I. PROOF FOR THEOREM 5

In the following, we are interested in calculating the asymptotic power using the calibrated
threshold cr(m, 𝛼) derived in Theorem 4. In particular, the power can rewritten as

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) ∶= Pr

{
sign(r) 1

m

m∑

i=1
pr

mi ≤ sign(r)Cr(m, 𝛼)

}
, (I1)

where Cr(m, 𝛼) = cr(m, 𝛼)r, and pmi = Φ−1(−Xmi) for all i. Using similar decomposition as in the
proof of Theorem 4, we have that, for all i = 1, 2,…,m,

Xmi = 𝜇mi +
√
𝜌 Z0 +

√
1 − 𝜌 Zi,

pmi = Φ(−Xmi) = Φ
(
−𝜇mi −

√
𝜌 Z0 −

√
1 − 𝜌 Zi

)
, (I2)

where variable Z0 ∼ N(0, 1), Zi
iid∼N(0, 1), {Z0} ⟂⟂ {𝜇mi,Zi}m

i=1, and 𝜇mi
iid∼𝜇mBmi with

Bmi
iid∼Bernoulli(𝜋m) for all i = 1, 2,…,m. Also, we have the conditional independence:

pm1, pm2,…, pmm are independent conditioning on Z0. (I3)
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TIAN et al. 789

Then the asymptotic power is given by

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) = EZ0

[
lim

m→∞
Pr

{
sign(r) 1

m

m∑

i=1
pr

mi ≤ sign(r)Cr(m, 𝛼) ||| Z0

}]
. (I4)

When r > 0, we can use the law of large numbers of triangular array, that is,

sup
m

E

[
p2r

mi
||| Z0 = z0

]
< ∞ ⇒

1
m

m∑

i=1
pr

mi − E

[
pr

mi
||| Z0 = z0

] p
−−→ 0, (I5)

almost surely for all possible value of z0. Then we get

lim
m→∞

Pr

{
1
m

m∑

i=1
pr

mi ≤ Cr(m, 𝛼) ||| Z0

}
= lim

m→∞
Pr

{
E

[
pr

m1
||| Z0

]
≤ 𝛼

r
}

= lim
m→∞

Pr
{
𝜋mE

[
pr

m1
||| Z0, 𝜇m1 = 𝜇m

]
+ (1 − 𝜋m)E

[
pr

m1
||| Z0, 𝜇m1 = 0

]
≤ 𝛼

r
}
. (I6)

Combining (I4) and (I6), we have that, when r > 0,

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) = Pr

{
𝜋g

𝜌,r

(
Z0 +

𝜇

√
𝜌

)
+ (1 − 𝜋)g

𝜌,r(Z0) ≤ 𝛼

r

}
, (I7)

where g
𝜌,r is defined in (31). From this expression, the following cases can be specified,

• if 𝜋 = 1, then

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

1, if 𝜇 = ∞;
Φ

(
−g−1

𝜌,r(𝛼r) + 𝜇√
𝜌

)
, if 0 < 𝜇 < ∞;

�̃�(𝜌, r, 𝛼), if 𝜇 = 0.

(I8)

• if 0 < 𝜋 < 1, then

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

Φ
(
−g−1

𝜌,r

(
𝛼

r

1−𝜋

))
, if 𝜇 = ∞;

Pr
{
𝜋g

𝜌,r

(
Z0 + 𝜇√

𝜌

)
+ (1 − 𝜋)g

𝜌,r(Z0) ≤ 𝛼

r
}
, if 0 < 𝜇 < ∞;

�̃�(𝜌, r, 𝛼), if 𝜇 = 0.

(I9)

• if 𝜋 = 0, then limm→∞ 𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) ≡ �̃�(𝜌, r, 𝛼), no matter what value that 𝜇 takes.

Therefore, we complete the proof.

APPENDIX J. PROOF FOR THEOREM 6

When r ≤ −1, We utilize the following results: as long as the triangular array {Ymi, i = 1,…, im}
satisfy the uniformly asymptotically negligible (UAN) condition, that is for any 𝜖 > 0,
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790 TIAN et al.

lim
m→∞

max
i

Pr {|Ymi| > 𝜖} = 0, (J1)

then we have that, limm→∞
∑

i Ymi converge to an infinitely divisible distribution under certain
conditions. The specific argument is formally stated in the following Lemma 5.

Lemma 5. (Theorem 3.2.2 in Gnedenko & Kolmogorov, 1954) Consider an triangular array
{Ymk, k = 1,…, km}, such that the UAN condition is fulfilled, that is for any 𝜖 > 0

lim
m→∞

max
k

𝜇mk{|y| > 𝜖} = 0, (J2)

where 𝜇mk is the distribution function for Ymk, and denote Sm ∶= Ym1 + · · · + Ym,km .
Then there exists a deterministic sequence am such that sequence Sm − am converges weakly

to an infinitely divisible random variable Y if and only if the following conditions are
fulfilled:

1. for any A = (−∞, x) with x < 0, and A = (x,∞) with x > 0 such that 𝜈(𝜕A) = 0,

𝜈(A) ∶= lim
m→∞

km∑

k=1
𝜇mk(A), (J3)

is a Lévy measure, that is, a 𝜎-finite Borel measure on R ⧵ 0 such that ∫
R⧵0 min{1, x2}𝜈(dx) < ∞.

2. moreover,

lim
𝜏→0

lim sup
m→∞

km∑

k=1
Var (Zmk1{|Zmk| < 𝜏})

= lim
𝜏→0

lim inf
m→∞

km∑

k=1
Var (Zmk1{|Zmk| < 𝜏}) = 𝜎

2
< ∞. (J4)

Particularly, Y has the characteristic exponent

𝜙(t) = −1
2
𝜎

2t2 +
∫

R⧵{0}
(eitx − 1 − itx1{|x| ≤ 1})𝜈(dx), (J5)

and am can be chosen by

am =
km∑

k=1
∫|x|<1

x𝜇nk(dx) + o(1), (J6)

given that 𝜈({x ∶ |x| = 1}) = 0.
In our case, let

Ymi =
1

m−r (p
r
mi − ar,m)|Z0,

where ar,m = 0 if r < −1, and ar,m = log m if r = −1. We firstly check the UAN condition (J1). Note
that
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TIAN et al. 791

lim
m→∞

max
i

Pr
{||||

1
m−r

(
pr

mi − ar,m
)||||

> 𝜖

||| Z0 = z0

}

= lim
m→∞

Pr
{||||

1
m−r

(
pr

mi − ar,m
)||||

> 𝜖

||| Z0

}

= lim
m→∞

Pr
{

pr
mi > m−r

𝜖 + ar,m
||| Z0

}
+ Pr

{
pr

mi < −m−r
𝜖 + ar,m

||| Z0

}

= lim
m→∞

𝜋m Pr
{

pr
mi > m−r

𝜖 + ar,m
||| Z0, 𝜇mi = 𝜇m

}

+ (1 − 𝜋m)Pr
{

pr
mi > m−r

𝜖 + ar,m
||| Z0, 𝜇mi = 0

}

+ 𝜋m Pr
{

pr
mi < −m−r

𝜖 + ar,m
||| Z0, 𝜇mi = 𝜇m

}

+ (1 − 𝜋m)Pr
{

pr
mi < −m−r

𝜖 + ar,m
||| Z0, 𝜇mi = 0

}

= lim
m→∞

𝜋mΦ
⎛
⎜
⎜⎝

Φ−1((m−r
𝜖 + ar,m)

1
r ) + 𝜇m +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠

+ (1 − 𝜋m)Φ
⎛
⎜
⎜⎝

Φ−1((m−r
𝜖 + ar,m)

1
r ) +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠

+ 𝜋mΦ
⎛
⎜
⎜⎝
−
Φ−1((−m−r

𝜖 + ar,m)
1
r ) + 𝜇m +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠

+ (1 − 𝜋m)Φ
⎛
⎜
⎜⎝
−
Φ−1((−m−r

𝜖 + ar,m)
1
r ) +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠
. (J7)

For r < −1, we have ar,m = 0, and thus, (J7) can be simplified as

lim
m→∞

𝜋mΦ
⎛
⎜
⎜⎝

Φ−1((m−r
𝜖)

1
r ) + 𝜇m +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠
= lim

m→∞
𝜋mΦ

⎛
⎜
⎜⎝

Φ−1(𝜖
1
r

1
m
) + 𝜇m +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠
, (J8)

while on the other hand, for r = −1, we have ar,m = log m, and (J7) can also be simplified as

lim
m→∞

𝜋mΦ
⎛
⎜
⎜⎝

Φ−1((m𝜖 + log m)
1
r ) + 𝜇m +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠
= lim

m→∞
𝜋mΦ

⎛
⎜
⎜⎝

Φ−1(𝜖
1
r

1
m
) + 𝜇m +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠
. (J9)

Therefore, in order to make (J8) and (J9) goes to zero, we only need to make 𝜇m grows slower
than |Φ−1( 1

m
)| = O(

√
log m), that is 𝜇m = o(

√
log m). Returning to the proof of the theorem, we

first consider the case 𝜌 > 0, under which we will prove that for each i, Ymi = op(1) when r < −1,
and Ymi = o(log m) when r = −1, as m →∞. We prove this by applying Lemma 5, during which
we check the conditions 1 and 2 in it.

As for condition 1 in Lemma 5 for r ≤ −1, defining 𝜈(x) ∶= 1 − limm→∞ m Pr {Ymi > x} for all
x > 0, it can be simplified to checking that
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792 TIAN et al.

1 − 𝜈(1) +
∫0<x<1

x2
𝜈(dx) < ∞. (J10)

Note that

Pr {Ymi > x}

= Pr
{

mrPr
mi > x ||| Z0 = z0

}
= Pr

{
Pmi <

x
1
r

m
||| Z0 = z0

}

= 𝜋m Pr

{
Pmi <

x
1
r

m
||| Z0 = z0, 𝜇mi = 𝜇m

}
+ (1 − 𝜋m)Pr

{
Pmi <

x
1
r

m
||| Z0 = z0, 𝜇mi = 0

}

= 𝜋mΦ
⎛
⎜
⎜⎝

Φ−1((x
1
r ∕m) + 𝜇m +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠
+ (1 − 𝜋m)Φ

⎛
⎜
⎜⎝

Φ−1((x
1
r ∕m) +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟⎠

= 𝜋mΦ
⎛
⎜
⎜
⎜⎝

−
√

2 log(mx−
1
r ) +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟
⎟⎠
+ (1 − 𝜋m)Φ

⎛
⎜
⎜
⎜⎝

−
√

2 log(mx−
1
r ) +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟
⎟⎠
+ o(1)

= Φ
⎛
⎜
⎜
⎜⎝

−
√

2 log(mx−
1
r ) +

√
𝜌z0

√
1 − 𝜌

⎞
⎟
⎟
⎟⎠
+ o(1) = O(m− 1

1−𝜌 x
1

(1−𝜌)r ), (J11)

therefore, we have

𝜈(x) = 1 − lim
m→∞

m Pr {Ymi > x} = 1 − x
1

(1−𝜌)r lim
m→∞

m− 𝜌

1−𝜌 = 0, (J12)

since 𝜌 > 0. Therefore (J10) is true, and in particular 𝜈(x) = 0 when 𝜌 > 0.
Afterwards, we check condition 2 in Lemma 5, which simplifies to verifying

lim
𝜏→0

lim
m→∞

mVar(Ymi1{Ymi < 𝜏}) < ∞, (J13)

in our setting. Using the similar technique that we will use to calculate am, that is, the truncated
first moment, we have the following about the truncated second moment for any fixed truncation
position 𝜏 > 0,

Var(Ymi1{Ymi < 𝜏}) ≤ mE
[
Y 2

mi1{Ymi < 𝜏}
]

= o
(

m1− 1
1−𝜌 log

1−2r
2 (m)

)
→ 0, as m →∞, since 𝜌 > 0. (J14)

Therefore, the limit distribution does not have a normal term when 𝜌 > 0. Lastly, we compute am
via (J6), that is

am = mE [Ymi1{Ymi < 1}] = mr+1
E

[
Pr

mi1
{

Pr
mi <

1
mr

}]

= − mr+1

r
√

1 − 𝜌

∫

m−r

1
y

1
r exp

⎛
⎜
⎜
⎜⎝
−
𝜌Φ−1

(
y

1
r

)2
+ 2AmΦ−1

(
y

1
r

)
+ A2

m

2(1 − 𝜌)

⎞
⎟
⎟
⎟⎠

dy, (J15)
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TIAN et al. 793

where Am =
√
𝜌z0 + 𝜇m = o(

√
log m). Let x = Φ−1(y

1
r ), we have that (J15) equals

mr+1
√

1 − 𝜌

∫

∞

Φ−1( 1
m
)
Φ(x)r exp

(
−

x2 + 2Amx + A2
m

2(1 − 𝜌)

)
dx

= mr+1
√

1 − 𝜌

(

∫

1

Φ−1( 1
m
)
+
∫

∞

1

)
Φ(x)r exp

(
−

x2 + 2Amx + A2
m

2(1 − 𝜌)

)
dx = mr+1

√
1 − 𝜌

(I1 + I2). (J16)

Using the following well-known Mill’s inequality (Gordon, 1941), that is for any u > 0,

u
1 + u2 𝜙(u) ≤ Φ(−u) ≤ 1

u
𝜙(u), (J17)

we have that

I1 ≤
∫

1

Φ−1( 1
m
)

( −x
1 + x2

)r
𝜙(−x)r exp

(
−

x2 + 2Amx + A2
m

2(1 − 𝜌)

)
dx

= 1√
2𝜋∫

−Φ−1( 1
m
)

1

( x
1 + x2

)r
exp

(
−
[r(1 − 𝜌) + 1]x2 − 2Amx + A2

m

2(1 − 𝜌)

)
dx

= 1√
2𝜋∫

−Φ−1( 1
m
)

1

(1
x
+ x

)−r
exp

(
−
[r(1 − 𝜌) + 1]x2 − 2Amx + A2

m

2(1 − 𝜌)

)
dx

≤
2−r
√

2𝜋∫

−Φ−1( 1
m
)

1
x−r exp

(
−
[r(1 − 𝜌) + 1]x2 − 2Amx + A2

m

2(1 − 𝜌)

)
dx

= 2s
√

2𝜋 exp(cm)∫

−Φ−1( 1
m
)

1
xs exp

(a
2

x2 + bmx
)

dx, (J18)

and

I1 ≥
∫

1

Φ−1( 1
m
)

( 1
−x

)r
𝜙(−x)r exp

(
−

x2 + 2Amx + A2
m

2(1 − 𝜌)

)
dx

= 1√
2𝜋 exp(cm)∫

−Φ−1( 1
m
)

1
xs exp

(a
2

x2 + bmx
)

dx, (J19)

where s = −r ≥ 1; a = r(𝜌−1)−1
1−𝜌

= s − 1
1−𝜌

; bm =
Am
1−𝜌

> 0; cm =
A2

m
2(1−𝜌)

. Combining (J18) and (J19),
we have that

I1 = O

(
exp(cm)

∫

−Φ−1( 1
m
)

1
xs exp

(a
2

x2 + bmx
)

dx

)
. (J20)

In the following, we first consider a > 0, under which case we demonstrate the rate of I1. Then
we argue that the case with a ≤ 0 will only lead to a slower rate.
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794 TIAN et al.

Let hm(x) = xs exp
(

a
2

x2 + bmx
)

. When x > 1, we have

𝜕

2hm(x)
𝜕x2 =

[
(ax + bm)2xs + a(2s + 1)xs + 2sbmxs−1 + s(s − 1)xs−2] exp

(a
2

x2 + bmx
)
≥ 0, (J21)

that is, hm is convex in x for x > 1. Plugging into (J20), we have

I1
<∼ 2s−1
√

2𝜋 exp(cm)

||||
Φ−1

( 1
m

)||||

[
exp

(a
2
+ bm

)
+
||||
Φ−1

( 1
m

)||||

s
exp

(
a
2
Φ−1

( 1
m

)2
+ bmΦ−1

( 1
m

))]

= o
(

m−r− 1
1−𝜌 log

1−r
2 (m)

)
as m →∞. (J22)

On the other hand, we have

I2 ≤ 2−r
∫

∞

1
exp

(
−

x2 + 2Amx + A2
m

2(1 − 𝜌)

)
< 2−r

∫

∞

−∞
exp

(
−(x + Am)2

2(1 − 𝜌)

)
= 2−r

√
2𝜋(1 − 𝜌), (J23)

using the fact

∫

∞

−∞
exp(−ax2)dx =

√
𝜋

a
, (a > 0).

Finally, plugging (J22) and (J23) into (J16), we have that

am = o
(

m1− 1
1−𝜌 log

1−r
2 (m)

)
→ 0 as m → ∞, since 𝜌 > 0. (J24)

Based on the above calculations, we can finally apply Lemma 5 and have

m∑

i=1
Ymi − am

p
−−→ 0 for all r ≤ −1. (J25)

Therefore, when r < −1,

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) = lim

m→∞
𝛽m(𝜌, r, 𝛼) = lim

m→∞
E

[
Pr

{ 1
m

∑
pr

mi ≥ Cr(m, 𝛼) ||| Z0

}]

= lim
m→∞

E

[
Pr

{ 1
m−r

∑
pr

mi ≥ m1+rCr(m, 𝛼) ||| Z0

}]

= E

[
lim

m→∞
Pr

{∑
Ymi ≥ mr+1

𝛼

rm−1−r
}]

= lim
m→∞

Pr
{∑

Ymi − am ≥ 𝛼

r − am

}
= 0; (J26)

and similarly when r = −1,

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) = lim

m→∞
𝛽m(𝜌, 𝛼, r) = lim

m→∞
E

[
Pr

{ 1
m

∑
pr

mi ≥
1
𝛼

+ log m ||| Z0

}]

= lim
m→∞

Pr
{∑

Ymi − am ≥
1
𝛼

+ log m − am

}
= 0. (J27)

In conclusion, for r ≤ −1, we have that, 𝛽(𝜌, r, 𝛼) = 0 as long as 𝜇m = o(
√

log m) and 𝜌 > 0.
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On the other hand, recall that in Theorem 4 we derive that the calibrated threshold under
equicorrelation when r ≤ −1 in fact equals to that under independence. Therefore when 𝜌 = 0,
for all r ≤ −1 we have

lim
m→∞

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) = lim

m→∞
𝛽m(𝜌, 𝛼, r) = lim

m→∞
Pr

{ 1
m

∑
pr

mi ≥ Cr(m, 𝛼)
}

= lim
m→∞

Pr
{ 1

m
∑

pr
mi ≥ Cr(m, 𝛼)

}
= 𝛼. (J28)

Here we finish the proof for Theorem 6.

APPENDIX K. PROOF FOR THEOREM 7

Using the calibrated threshold cr(m, 𝛼) derived in Theorem 4, we have that

𝛽
𝜇m,𝜋m,𝜌(r, 𝛼) = Pr

{
1
m

m∑

i=1
pr

mi ≥ Cr(m, 𝛼)

}
= Pr

{ m∑

i=1
mr(pr

mi − arm) ≥ 𝛼

r

}
, (K1)

where Cr(m, 𝛼) = cr(m, 𝛼)r, arm = 0 for r < −1, and arm = log m for r = −1.
Therefore, we only need to prove that

∑m
i=1mr(Pr

mi − arm)→ ∞ with probability one, where
arm = 0 for r < −1, and arm = log m for r = −1. Since

m∑

i=1
mr(Pr

mi − arm) ≥ max
i

{
mr(Pr

mi − arm)
}
= (m min{Pmi})r −mrarm, (K2)

and with part (a) we have

min
i
{Pmi} = Φ(−

√
1 − 𝜌max

i

{
Zi + 𝜇mi∕

√
1 − 𝜌

}
−
√
𝜌Z0)

= Φ(−
√

1 − 𝜌

√
2 log m − 𝜇m −

√
𝜌Z0) + op(1)

= Op(m−(
√
(1−𝜌)+

√
c)2). (K3)

Therefore, we have that

(m min{Pmi})r −mrarm = Op

(
m
−r

((√
(1−𝜌)+

√
c
)2
−1

))
→∞, (K4)

with probability one, since
√

c > 1 −
√
(1 − 𝜌). Hence we have proved the argument for part (a).

Similarly, as for part (b) we have

min
i
{Pmi} = Φ

(
−
√

1 − 𝜌max
i

{
Zi + 𝜇mi∕

√
1 − 𝜌

}
−
√
𝜌Z0

)
. (K5)

≤ Φ
(
−
√

1 − 𝜌

√
2𝛾 log m − 𝜇m −

√
𝜌Z0

)
+ op(1). (K6)

= Op

(
m−(

√
𝛾(1−𝜌)+

√
c)2
)
. (K7)
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Therefore, we have that

(m min{Pmi})r −mrarm = Op

(
m−r

(
(
√
𝛾(1−𝜌)+

√
c)2−1

))
→∞, (K8)

with probability one, since
√

c > 1 −
√
𝛾(1 − 𝜌). Hence we have concluded the proof.
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