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Introduction: The Eidolon helvum fruit bat is one of the most widely distributed 
fruit bats in Africa and known to be a reservoir for several pathogenic viruses that 
can cause disease in animals and humans. To assess the risk of zoonotic spillover, 
we conducted a serological survey of 304 serum samples from E. helvum bats 
that were captured for human consumption in Makurdi, Nigeria.

Methods: Using pseudotyped viruses, we  screened 304 serum samples for 
neutralizing antibodies against viruses from the Coronaviridae, Filoviridae, 
Orthomyxoviridae and Paramyxoviridae families.

Results: We report the presence of neutralizing antibodies against henipavirus 
lineage GH-M74a virus (odds ratio 6.23; p  <  0.001), Nipah virus (odds ratio 4.04; 
p  =  0.00031), bat influenza H17N10 virus (odds ratio 7.25; p  <  0.001) and no 
significant association with Ebola virus (odds ratio 0.56; p  =  0.375) in this bat 
cohort.

Conclusion: The data suggest a potential risk of zoonotic spillover including 
the possible circulation of highly pathogenic viruses in E. helvum populations. 
These findings highlight the importance of maintaining sero-surveillance of E. 
helvum, and the necessity for further, more comprehensive investigations to 
monitor changes in virus prevalence, distribution over time, and across different 
geographic locations.
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Introduction

Throughout the course of human history, viral zoonotic spillover 
events have been sporadic and sometimes catastrophic, resulting in 
several highly lethal pandemics (1). With approximately 60–75% of all 
human infectious diseases arising from zoonotic transmission (2), it 
is crucial to remain vigilant in identifying and monitoring potential 
sources of zoonotic spillover, such as wildlife reservoirs, in order to 
prevent future outbreaks. Over the past four decades, bats have been 
identified as a significant source of zoonotic events that have sparked 
major outbreaks of viruses with considerable implications for human 
health (3). As the second most diverse mammalian order, bats have 
been linked to the transmission of a range of viruses, including 
coronaviruses, filoviruses, lyssaviruses, and henipaviruses, among 
others (4, 5). With over 12,000 bat-derived virus sequences spanning 
30 viral families, having relevance to both veterinary and medical 
sectors, the need for surveillance of bat populations is critical to assess 
and mitigate the risk of potential zoonotic spillover events.

Eidolon helvum, the straw-colored fruit bat, is one of the most 
widely distributed fruit bats in Africa (6). It has extensive migratory 
patterns of over 2,000 kilometers and is hypothesized to migrate based 
on availability of fruits to increase reproductive success (7, 8). 
According to the DBatVir database (9) (accessed on 25th August, 
2023) 17 different viruses, including Coronaviridae and 
Paramyxoviridae, have been detected in E. helvum.

In several countries within Africa, bats, including E. helvum, are 
often hunted for either bushmeat (10, 11) or as a form of pest control 
to mitigate fruit farming losses (12). One of these countries is Nigeria, 
where E. helvum can be found in bushmeat markets to be sold as food 
(12–15) or as resources for traditional medicine (16). Though many 
of these practices have been limited by policies imposed due to the 
Ebola outbreak in 2014 (17), continued bat hunting for human 
consumption greatly increases the risk of zoonotic transmission, 
making surveillance vital for public health and wildlife conservation 
efforts in the region.

Although serological evidence of neutralizing antibodies in bat 
sera is not definitive proof of active virus infection in bats, it does 
suggest that bats have been exposed to the virus or closely related 
viruses, and have mounted an adaptive immune response. Screening 
for neutralizing antibodies in bats using highly pathogenic viruses 
requires use of high containment facilities, which can be avoided by 
using pseudotyped viruses (PVs) in neutralization assays as they are 
considered safe for handling under biosafety level 2 conditions. 
Pseudotyped virus neutralization assays (PVNA) have gained 

widespread usage for detecting neutralizing antibodies due to their 
high sensitivity and robust correlation with live virus neutralization 
assays (18).

This study aimed to preliminarily assess the potential presence of 
pathogenic viruses in bats hunted for bushmeat, to allow further, more 
comprehensive follow-up investigations focusing on the presence of 
animal and human pathogenic viruses in Nigeria. We screened 304 
serum samples from E. helvum bats that were captured for human 
consumption in Makurdi, Nigeria using PVs expressing the viral 
glycoproteins of several viruses known to pose high public health risks 
(Table 1). Due to limited volumes of sera, we prioritized the order of 
screening based on the viruses’ potential risk to animal and human 
health (19–21). Our findings indicate the presence of neutralizing 
antibodies against important representatives of different virus families, 
which may suggest the circulation of several highly pathogenic viruses 
with pandemic potential, or closely related viruses, in colonies of 
E. helvum in Nigeria, and therefore, warrants further 
comprehensive research.

Materials and methods

Bat sera collection

All sera were collected from terminally bled straw-colored fruit 
bats (Eidolon helvum) that were captured for human consumption in 
Makurdi, Benue State Nigeria (7o44′25.7″N 8o31′52.8″E). The bats in 
Makurdi were collected from roosts in trees in and around the Benue 
State Government House, and on trees in private residences close to 
the government house. Bat roost sites and seasons when bats roost in 
Makurdi were identified by collaborating and interacting with local 
bat hunters. Convenient sampling was done by collecting samples only 
on days when bat hunters set traps to capture bats. Bat roost sites were 
visited once every week over a period of 12–14 weeks. Personnel 
protective equipment with respirators were worn by those involved in 
the sampling of bats captured for human consumption. The bats were 
captured by setting mist nets in the evenings when they went out to 
feed. The bats were trapped in the nets as they return to their roost 
sites on trees during the early hours of the following morning. The 
bats were then carefully taken down alive from the nets by the hunters, 
identified morphologically using phenotypic properties and bled from 
the brachial vein, using a 5 mL syringe and a 21-gauge hypodermic 
needle by the investigator. Bats were also sampled from roosts on trees 
in private residences where permissions were gained. Sampling was 

TABLE 1 List of viruses pseudotyped for screening E. helvum samples in this study.

Virus family Genus Species

Coronaviridae Betacoronavirus Severe acute respiratory virus 1 (SARS-CoV-1)

Severe acute respiratory virus 2 (SARS-CoV-2)

Bat coronavirus RaTG13 (RaTG13)

Filoviridae Ebolavirus Zaire ebolavirus (EBOV)

Marburgvirus Marburg virus (MARV)

Orthomyxoviridae Alphainfluenzavirus Bat influenza H17N10 (H17N10)

Paramyxoviridae Henipavirus Nipah virus (NiV)

Ghanaian henipavirus M74a (GH-M74a)
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carried out for two consecutive seasons (November 2017–March 2018 
and November 2018–March 2019). The whole blood samples were 
placed in well-labeled 7 mL tubes. These were placed on ice in cooler 
boxes and transported to the Amadu Ali Centre for Public Health and 
Comparative Medicine Laboratory, Federal University of Agriculture 
Makurdi. Sera were harvested from whole blood by centrifuging at 
3,000 revolutions per minute for 10 min. Serum samples were placed 
in labeled 2 mL screwcap cryovials, heat-inactivated at 56°C for 30 min 
and stored at −20°C, then later transported to the Animal and Plant 
Health Agency, Weybridge (United Kingdom) after an import license 
was approved (License Number: ITIMP19.1408). Ethical approval for 
this research study was granted by the Animal Ethics Committee and 
Research Ethics Committee of University of Pretoria (certificate 
numbers V092-18 and REC097-18). The Director/Chief Veterinary 
Officer of Nigeria, Department of Veterinary and Pest Control 
Services, Federal Ministry of Agriculture and Pest Control Services, 
Abuja Nigeria granted permission to sampling of bat populations 
(license number VDS/194/S.4/11/T/85).

Pseudotype virus production

Lentiviral (HIV) based pseudotypes used for this study were 
generated and characterized as described in detail, Influenza H17 (22), 
SARS-CoV-1 (23), SARS-CoV-2 (24), RaTG13 (25), EBOV and 
MARV (26), while NiV and GH-M74a were adapted from Khetawat 
et al. (27). Briefly, 1.0 μg of p8.91 plasmid encoding the HIV gag-pol 
was mixed with 1.5 μg of pCSFLW reporter gene and 1 μg of each 
surface viral glycoproteins as described in the studies cited in the 
previous sentence and in Table 2. After mixing the plasmids in 200 μL 
of Opti-MEM (ThermoFisher, Woolwich, UK), Fugene HD (Promega, 
Southampton, UK) transfection reagent was added at a 1:3 
(plasmid:Fugene HD) ratio and incubated for 15 min prior to adding 
the transfection complexes to HEK293T/17 cells in T-75 cell culture 
flasks. Pseudotypes were harvested at 48- and 72-h post transfection, 
whereby culture media was removed from the flasks and filtered 
through a 0.45 μM cellulose acetate filter (Corning, Deeside, UK). 

Samples were aliquoted and frozen at −80°C for long term storage 
prior to use.

Pseudotype virus titration

Pseudotyped viruses were titrated by serially diluting filtered 
pseudotypes with fresh DMEM starting from a 1:2 to a final 1:512 
dilution using white 96-well flat bottom plates (ThermoFisher, 
Woolwich, UK). Then appropriate target cells that allow permissibility 
for infection were added (Table 2) and plates were returned to the 
incubator. After 48 h, cells were lysed with Bright-Glo reagent 
(Promega, Southampton, UK), and luciferase expression levels were 
assessed using a GloMax plate reader (Promega, Southampton, UK).

Sera screen and neutralizations

Sera were initially screened at single point dilution (1:100, except 
NiV and GH-M74a at 1:50). Each plate had wells containing PV only 
to determine maximum pseudotype entry. Samples where a 1 log 
decrease in RLU compared to the no-serum virus-only control was 
observed were then selected for cytotoxicity assay using Cell Titre Glo 
kit (Promega, Southampton, UK) and light microscopy to verify 
viability of cells prior to undertaking PVNA (data not shown). 
Neutralization assays were carried out by mixing bat sera, positive 
control sera (EBOV: WHO International Standard for Ebola virus 
Antibodies, 15/262, H17: mouse polyclonal antibodies raised to 
purified H17 antigen expressed using the baculovirus system as 
described in Loureiro et al. (28) and Shelton et al. (29), or positive 
monoclonal antibody NiV: m102.4 (30), with cell culture media at a 
starting input of 1:40 ratio (sera: cell culture media) and diluted either 
4-fold (GH-M74a and NiV) to 1:5,000 or 8-fold (all other viruses) to 
1:5120. PVs were added to the plates at a minimum RLU input of 
105 per well, incubated for 1 h at 37°C, followed by addition of target 
cells at a density of 104 cells per well, except for NiV and GH-M74a 
where a cell density of 204 cells per well was used. Plates were 

TABLE 2 Plasmids used to generate pseudotyped viruses.

Viral glycoprotein Accession Vector Target cells

Coronaviridae

SARS-CoV S (Tor2) NC_004718.3 pcDNA 3.1+ HEK293T ACE2 + TMPRSS2

SARS-CoV-2 S (Wuhan) NC_045512.2 pcDNA 3.1+ HEK293T ACE2 + TMPRSS2

RaTG13 S QHR63300.2 pcDNA 3.1+ HEK293T ACE2 + TMPRSS2

Filoviridae

EBOV Mayinga 76 GP EU224440 pCAGGS CHO

MARV Angola 05 GP DQ447660 pCAGGS CHO

Orthomyxoviridae

IAV-like H17N10 H17 AFC35438.1 pI.18 MDCK II

Paramyxoviridae

NiVb G and F JN808864.1 pCAGGS BHK

GH-M74A G and F HQ660129 pCAGGS BHK

HEK293T cells were transfected with Angiotensin-converting enzyme 2 (ACE2) and Transmembrane protease, serine 2 (TMPRSS2). CHO, Chinese hamster ovary cells; MDCK, Madin-Darby 
canine kidney cells. For this study we used the G and F genes from a Bangladeshi NiV isolate (NiVb).
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incubated at 37°C and 5% CO2 for 48 h prior to lysis using Bright-Glo 
reagent according to manufacturer’s protocol and monitoring of 
luciferase expression using a GloMax plate reader. Regression curves 
were fitted using GraphPad Prism 8 software (San Diego, CA, 
United States) as described previously (31). Some PVNAs tested fewer 
bat serum samples, due to the limited volumes supplied for this study. 
Currently, no positive control reagent exists for GH-M74a.

Statistical analysis

Data were analyzed using STATA version 16 (StataCorp, College 
Station, TX, United  States). Descriptive statistics were used to 
summarize the distribution of the variables. Bivariate logistic 
regression was used to determine the association between the 
presence or absence of neutralizing antibodies against each virus. 
Multivariable logistic regression was used to adjust for confounding 
factors. The data were coded as binary variables (1 = positive, 
0 = negative). Logistic regression was used to determine the 
association between the presence or absence of neutralizing 
antibodies against each virus and the dependent variable was the 

presence or absence of neutralizing antibodies against each virus. 
Crude and adjusted odds ratios (OR) were estimated with 95% 
confidence intervals (CI) to measure the strength of association 
between each variable and the presence or absence of 
neutralizing antibodies.

Results

Our PVNA screening revealed the presence of neutralizing 
antibodies against several of the pseudotyped viruses tested 
(Figures 1A,B; Table 3). However, no neutralization was observed 
against the Coronaviridae members SARS-CoV-2, SARS-CoV, and the 
bat coronavirus RaTG13. Although neutralizing antibodies against 
EBOV PVs were detected in a single sample (n = 1/278), no 
neutralization was observed against MARV. We also found several 
samples positive for neutralizing antibodies against influenza A virus 
H17N10 PVs (n = 26/304), indicating the presence of positive or cross-
reactive H17 neutralizing antibodies. Additionally, positive samples 
were detected for Nipah virus (NiV) (n = 16/54) and GH-M74a 
(n = 36/54) from the Paramyxoviridae PVs.

FIGURE 1

Positive detection of neutralizing antibodies in E. helvum by PVNA assay. Neutralization curves derived from pMN assays against positive samples that 
were selected from the initial screening, red curves denoting positive control reagents, with the exception of GH-M-74a which was not neutralized by 
NiV 102.4 mAb (red dotted line) (A). IC50s calculated by pMN assays against each PV (B). In the panel displaying samples positive for NiV, empty white 
circles denote samples that did not cross-neutralize GH-M74a. Number of samples positive for neutralizing antibodies against multiple viruses (C).
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Our logistic regression analysis shows that the presence of 
neutralizing antibodies is significantly associated with virus type, as 
indicated by the p-values for the virus coefficients. Specifically, the 
odds of samples having neutralizing antibodies are significantly higher 
for H17 (odds ratio = 7.25, p < 0.001), NiV (odds ratio = 4.04, 
p = 0.00031), and GH-M74a (odds ratio = 6.23, p < 0.001) compared to 
the reference category of SARS-CoV-2. EBOV did not show a 
significant association with neutralizing antibody status (odds 
ratio = 0.56, p = 0.375).

We further analyzed the data to investigate the presence of samples 
positive for neutralizing antibodies against multiple viruses (Figure 1C). 
Our analysis revealed one sample positive for H17 and NiV, two samples 
positive for H17 and GH-M74a, and 13 samples positive for both NiV 
and GH-M74a. These findings suggest that multiple viruses may have 
circulated within the same bat or that antibodies to one of the three 
viruses may cross-neutralize against multiple viruses.

Discussion

This study investigated the seroprevalence of neutralizing 
antibodies against several highly pathogenic viruses in E. helvum bats 
in Nigeria. We report a high level of seroprevalence against GH-M74a 
(66.7% of samples) and NiV (29.6%). The high level of seropositivity 
against GH-M74a could be the result of a recent resolved infection or 
the presence of multiple pathogens circulating with similar 
antigenicity. Given that the two viruses share a key conserved region 
in their attachment protein, and that GH-M74a antibodies have been 
shown to cross neutralize NiV (32), the significance of our study 
becomes evident when we consider the detection of three unique 
samples that, notably, exhibited neutralization exclusively against NiV 
but not GH-M74a. This suggests the potential existence of a closely 
related virus to NiV, or, though unlikely, the presence of NiV, which 
has yet to be identified in bats in Africa. In any case, the predictive 
value of a virus’s capability to utilize highly conserved receptors is 
significant when assessing the potential for viral emergence and cross-
species transmission (33) Therefore, our results may indicate the 
presence of a closely related virus whose pathogenicity and virulence 

remain to be characterized. The henipavirus designated Ghana virus 
(GhV) remains the only African henipavirus that has been fully 
sequenced, isolated from E. helvum (34). However, Henipavirus and 
henipa-like virus antibodies have been detected in E. helvum (32, 35, 
36) and other species, of which the literature has been thoroughly 
reviewed in Mbu’u et  al. (37). Despite their detection, overall 
seroprevalence in bats remains low. Interestingly, Pernet et al. (32) 
detected a 3–4% seroprevalence rate from 497 human blood samples 
against Hendra virus, GH-74a and NiV, of which almost all positive 
samples were derived from individuals who reported butchering bats 
for bushmeat. This finding, combined with the outcomes of our study, 
underscores the ongoing elevated risk of exposure for individuals 
engaged in the bushmeat trade.

We also observed seropositivity toward the H17N10 PVs, a bat 
Influenza A-like virus that contains unconventional HA and NA 
proteins (38). The evolutionary distinct H17N10 along with H18N11 
virus (not screened for in this study) were originally recovered from 
asymptomatic fruit bats of the Neotropic bat family Phyllostomidae 
(Sturnira lilium and Artibeus planirostris) in several countries of 
Central and South America (38–40). These viruses have attracted 
considerable attention following reports that their entry in host cells 
is mediated by the conserved trans-species MHC-II proteins, 
suggesting zoonotic potential (41, 42). So far, bats in Central and 
S. America, have been found seropositive for H17N10 and H18N11, 
but not in a study in Central Europe (43), and to our knowledge this 
is the first report of H17-neutralizing samples in non-Neotropical bat 
species. Considering the lack of a validated serological assay to screen 
E. helvum bat sera specifically for H17N10, we  cannot exclude 
serological cross-reactivity with heterologous H17-like antigens. 
Nonetheless, the potential presence of undiscovered H17 or H17-like 
IAV species in E. helvum, such as the ones described in Phylostomidae 
is tantalizing, cannot be ruled out and warrants further examination 
by unbiased approaches, i.e., metagenomics in subsequent studies.

Although we  only detected a single sample positive for 
neutralizing antibodies against EBOV, similar studies have also 
reported very low seroprevalence rates in E. helvum; 1 out of 262 
samples from Ghana (44), and 19 out of 748 samples from Zambia 
(45). These low numbers could be due to the fact E. helvum bat cells 
have been shown to be refractory toward EBOV infection (46). On the 
other hand, a report detected much higher seroprevalence of EBOV 
antibodies in E. helvum from Cameroon, with 107 out of 817 positive 
samples (47). Again, it is vital to consider the possibility of cross-
neutralization, not only with other pathogenic species of ebolaviruses 
but potentially closely related undiscovered filoviruses, which may not 
be pathogenic in humans such as the newly discovered Bombali virus 
in Africa, and shares cross-neutralization against EBOV 
antibodies (48).

There are several limitations to our study. Relative to the size of 
bat colonies, 304 samples is small and as a result may not accurately 
represent potential viruses in circulation within the colony. Secondly, 
the use of PVs alone, without nucleic acid testing does not definitively 
inform whether the antibodies we  detected were generated by 
infection of the stated virus or a close relative, resulting in cross 
neutralizing antibodies, which we have detailed in the discussion. 
Nonetheless, the preliminary nature of our data in this study would 
suggest that it is worth carrying out a more comprehensive 
investigation of E. helvum bats in Makurdi to assess the potential risks 
posed to the human and animal population.

TABLE 3 Results of pMN assays with each PV.

Viruses
Positive 
samples

Negative Percentage

Coronaviridae

SARS-CoV-1 0 304 0.00%

SARS-CoV-2 0 290 0.00%

RaTG13 0 290 0.00%

Filoviridae

EBOV 1 278 0.36%

MARV 0 279 0.00%

Orthomyxoviridae

H17N10 26 304 8.55%

Paramyxoviridae

NiV 16 54 29.63%

Gh-M74a 36 54 66.67%

Sample sizes decreased due to limited sera volumes.
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In summary, our serological screening of E. helvum sera obtained 
from bats has revealed the presence of antibodies that can neutralize 
PVs displaying the glycoproteins of several highly pathogenic viruses. 
The capture and preparation of these bats for human consumption 
suggests a potential for direct exposure to bat bodily fluids, thereby 
elevating the risk of cross-species transmission of the viruses and 
other pathogens. Given that human settlements are encroaching into 
areas known to harbor large bat colonies, especially in areas that are 
known for bat roosting, the risk of zoonotic spillover will continue to 
increase. Therefore, monitoring of bat viruses especially in the large 
bat populations in Sub-Saharan Africa is crucial in order to better 
understand the prevalence and transmission of viruses and to mitigate 
the risk of potential spillover events.
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