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research is to improve training and ViT structures for more
accurate skin cancer diagnosis.

In this paper, we aim to investigate applications of ViT
in skin cancer lesion detection, focusing on the ISIC 2017
dataset, which provides a comprehensive collection of der-
moscopic images for reliable model testing [7]. We compare
ViTs with the current state-of-the-art Inception ResNetV2
[5] to compare their advantages and limitations. Our study
contributes to the growing knowledge of automated skin
cancer detection using ViT. The results hold the potential
to enhance the accuracy, efficiency, and accessibility of skin
cancer diagnosis, benefiting patient outcomes and reducing
healthcare burdens.

The paper is organised as follows: Section II offers a
background study on AI-assisted skin cancer detection. Section
III outlines the methodology, including preprocessing, system
architecture, and solutions. Section IV presents experimental
results and comparisons. Section V discusses and concludes
the experiments.

II. BACKGROUD

Almaraz-Daminan et al. (2018) [8] emphasised the need for
non-invasive, low-cost computer-aided diagnostic instruments
for the diagnosis of skin cancer. Dermatoscopy only slightly
enhances the sensitivity and specificity of conventional pro-
cedures. However, the survival rate of melanoma is still quite
low, and dermatoscopy requires a great deal of training. Using
the ABCD rule by Jain et. al [9] and feature analysis by Saba T
[10] in computer-aided image processing suggests the possibil-
ity of autonomous diagnosis. Esteva et. al [4] performed binary
classification using a CNN model on 129,450 clinical images.
Transfer Learning also exhibited great potential, as Dorj et.
al [11] considered the multi-class classification of 3,753 skin
images using deep neural network techniques with ECOC-
SVM for classification coupled with feature extraction using
AlexNet CNN. Using transfer learning on this small dataset
they achieved an accuracy of 0.94, a sensitivity of 0.98, and a
Specificity of 0.91. Researchers have explored the potentials
of ViTs for skin cancer classification given their ability to
uncover long-range dependencies and complexities in images
in ways CNNs are limited. Yang et. al [12] proposes a novel
ViT model for skin cancer lesion classification. Using a pre-
trained image net fine-tuned on the HAM10000 dataset, their
results surpass that of Datta et. al [5] with an accuracy of 0.94.
Xin et. al [13] proposed a new ViT model for skin cancer
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I. INTRODUCTION

Skin cancer is a prevalent public health concern worldwide, 
which is primarily caused by chronic exposure to ultraviolet 
radiation from the sun [1]. Among them, melanoma is one 
of the deadliest and most aggressive types. Melanoma has
unique features such as uneven distribution, asymmetrical 
shape, scalloped or notched borders, and uneven distribution 
of colours which helps us to differentiate from other types 
of skin cancers. Early detection of melanoma is crucial as it 
has the capability to spread rapidly and is resistant to tradi-
tional treatments. Machine learning combined with artificial
intelligence and computer vision has demonstrated potential 
in melanoma detection, exceeding dermatologists across a 
range of classifications [2, 3]. Automatic skin cancer detection 
has evolved from traditional image processing to advanced 
deep-learning models. Hand-crafted features and rule-based
algorithms were the earlier methods, but they couldn’t handle
complex skin lesions. Significant progress was made by CNNs 
[4], such as VGGNet, ResNet and InceptionNet in capturing
detailed skin lesion features [5]. However, the introduction 
of ViT marked a breakthrough in capturing global and long-
term dependencies using self-attention mechanisms, making 
them more suitable for various skin lesion detection [6]. ViTs
have demonstrated remarkable performance when merged with
datasets such as ISIC, underscoring their importance in au-
tomating the identification of skin cancer. The goal of our
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image feature extraction and lesion classification using multi-
scale patch embedding, overlapping sliding windows, and
constructive learning. Applying this concept to the HAM10000
dataset, an accuracy and precision of 0.94 was achieved.

III. METHODOLOGY AND PROPOSED SOLUTION

A. Methodology

1) Preprocessing: To manage computational costs during
model training, images were resized to 224 × 224 pixels
using the Lanczos resampling filter method. This approach
maintained image quality, visual integrity, and minimized
resizing artifacts. To mitigate the limited dataset size, data
augmentation techniques were employed, including rotation
(180°), width shift (0.1), height shift (0.1), zoom (0.2), hor-
izontal and vertical flips, and fill mode (‘nearest’). Non-
uniform transformations such as skewing and stretching were
deliberately avoided to prevent irregularities. Following aug-
mentation, each class contained five times more images than
the original dataset.

2) Focal Loss: Focal Loss is generally used to handle the
extreme imbalance issue between the two classes [14]. The
equation for focal loss is derived from the equation of cross-
entropy loss by adding two parameters α and γ, where α
which is termed as a balanced cross-entropy loss that is the
base for focal loss, balances the importance of positive and
negative examples, it does not differentiate between easy or
hard examples. As an alternative, they suggest reshaping the
loss function to down-weight easy examples and concentrating
training on difficult negatives by introducing γ in the below
equation as follows 1

FL(pt) = −αt(1− pt)
γ log(pt) (1)

In the above equation, p ∈ [0, 1] is the model’s estimated
probability for the class.

3) Proposed System: The proposed skin cancer detection
system utilizes the ViT model, specifically the ViT-B16 vari-
ant, which introduces self-attention mechanisms for recogniz-
ing complex patterns and long-range dependencies in input
images. The ViT architecture processes skin cancer images
by dividing them into fixed-size patches (16x16), projecting
them into high-dimensional vectors, and adding positional
embeddings for spatial information.These embeddings are then
passed through transformer encoder layers with multi-head
self-attention and non-linear feed-forward neural networks.
The final output is globally averaged and processed through a
fully connected layer with softmax activation for classification
Fig. 1.

The architecture is built on the pre-trained ViT-B16 model
and customized with flattened, layer normalization, dropout,
and dense layers (see Fig. 2). The flattened layer generates a
1-dimensional feature vector, and layer normalization reduces
the impact of internal covariate shift. Dense layers handle
subclass classification. Data preprocessing, including image
resizing to 224x224, significantly reduces computation time.
Data augmentation retains crucial features like asymmetric

Fig. 1: ViT architecture used for skin cancer classification.

Fig. 2: Proposed 9-layer ViT Model Architecture with layer
normalization and regularization

borders in melanoma images, deliberately excluding methods
like stretching and skewing. The model is implemented using
ViT-Keras 0.1.2, TensorFlow 2.12.0, and CUDA 12.0 for GPU
acceleration in Python 3.10.6.

4) Data Partitioning : The training dataset consists of 2000
images, where 3 classes are distributed as follows: Melanoma
- 374 images; Seborrheic keratosis - 254 images; and Benign
nevi - 1372 images. In addition to training data, separate vali-
dation (150 images) and test (600 images) are available along
with their labels. In our study, we considered two different
model evaluation settings: 1) S1: cross-validation (CV) and
2) S2: normal. Under each evaluation set, we have further
divided it into two different data partitioning schemes: a) SS1:
partitioned the training set into 5-folds and performed 5-fold
CV and evaluated the model performance on the test set; b)
SS2: merged the training and validation data then partitioned
in into 5-folds and performed 5-fold CV and evaluated the
model on the test set.

IV. RESULT

In both setting S1 and S2, the test set was used to evaluate
the model‘s performance. Due to the imbalance in the data,



TABLE I: Test dataset results for data partitioning scheme SS1 under setting S1 (i.e., training with 5-fold CV).

Model Name Layer Normalization + FL Batch Normalization + BCE Batch Normalization + FL

Recall Precision Acc AUC Recall Precision Acc AUC Recall Precision Acc AUC

Nev vs Seb (DA) 0.90 0.91 0.90 0.94 0.87 0.89 0.87 0.92 0.74 0.85 0.74 0.86
Nev vs Seb 0.87 0.87 0.87 0.89 0.75 0.85 0.74 0.86 0.87 0.92 0.75 0.81
Seb vs [Mel & Nev] (DA) 0.89 0.89 0.89 0.89 0.81 0.89 0.81 0.89 0.89 0.89 0.89 0.89
Seb vs [Mel & Nev] 0.86 0.87 0.84 0.85 0.68 0.86 0.68 0.85 0.80 0.85 0.80 0.81

TABLE II: Test dataset results for data partitioning scheme SS2 under setting S1 (i.e., training with 5-fold CV).

Model Name Layer Normalization + FL Batch Normalization + BCE Batch Normalization + FL

Recall Precision Acc AUC Recall Precision Acc AUC Recall Precision Acc AUC

Mel vs [Nev & Seb] (DA) 0.83 0.82 0.83 0.83 0.83 0.83 0.83 0.81 0.79 0.81 0.80 0.76
Mel vs [Nev & Seb] 0.83 0.80 0.81 0.78 0.76 0.78 0.76 0.74 0.55 0.73 0.55 0.61
Seb vs [Mel & Nev] (DA) 0.87 0.88 0.87 0.88 0.79 0.88 0.79 0.87 0.81 0.85 0.81 0.81
Seb vs [Mel & Nev] 0.87 0.88 0.87 0.88 0.80 0.83 0.80 0.77 0.80 0.83 0.80 0.77

TABLE III: Comparison with the state-of-the-art results on test dataset for data partitioning scheme SS1 under setting S2 (i.e.,
training on whole training data), where DA - Data Augmentation, FL - Focal Loss, BCE -Binary Cross Entropy)

Model Name Nevus VS Seb [Seb] vs [Melanoma & Nevus]

Sensitivity Specificity ACC AUC Sensitivity Specificity ACC AUC

IRV2 (SA) 0.95 0.71 0.90 0.94 0.93 0.69 0.90 0.94
ViT B16 (BN)* 0.93 0.38 0.72 0.83 0.69 0.83 0.71 0.86
ViT B16 (LN)* 0.93 0.58 0.88 0.86 0.93 0.58 0.88 0.86
ViT B16 (BN + BCE + DA)* 0.95 0.68 0.89 0.68 0.94 0.76 0.91 0.91
ViT B16 (LN + BCE + DA)* 0.94 0.71 0.90 0.90 0.95 0.67 0.91 0.91
ViT B16 (BN+ FL + DA)* 0.95 0.68 0.89 0.93 0.92 0.70 0.89 0.89
ViT B16 (LN+ FL + DA) 0.93 0.84 0.92 0.95 0.96 0.59 0.91 0.93

TABLE IV: Comparison with the state-of-the-art results on test dataset for data partitioning scheme SS2 under setting S2 (i.e.,
training on whole training data), where DA - Data Augmentation, FL - Focal Loss, BCE -Binary Cross Entropy)

Model Name [Melanoma] vs [Nevus & Seb] [Seb] vs [Melanoma & Nevus]

Sensitivity Specificity ACC AUC Sensitivity Specificity ACC AUC

ResNet50 0.63 0.89 0.84 0.86 0.87 0.84 0.84 0.95
RAN50 2 0.62 0.91 0.85 0.85 0.88 0.86 0.86 0.94
SEnet50 3 0.62 0.90 0.85 0.86 0.86 0.87 0.86 0.95
ARL-CNN 0.66 0.89 0.85 0.88 0.87 0.87 0.87 0.96
ViT B16 (BN)* 0.42 0.87 0.77 0.74 0.77 0.72 0.77 0.81
ViT B16 (LN)* 0.61 0.86 0.83 0.78 0.91 0.57 0.86 0.87
ViT B16 (BN + BCE + DA)* 0.56 0.88 0.82 0.75 0.88 0.8 0.87 0.89
ViT B16 (LN + BCE + DA)* 0.60 0.88 0.84 0.82 0.89 0.86 0.88 0.93
ViT B16 (BN + FL + DA)* 0.51 0.90 0.81 0.81 0.89 0.78 0.88 0.91
ViT B16 (LN + FL + DA)* 0.77 0.37 0.86 0.83 0.96 0.62 0.91 0.92

we have used a range of evaluation metrics such as recall,
sensitivity, accuracy, and AUC-ROC score. In the context of
setting S1 within data partitioning scheme SS1, the results are
detailed in Table I. ViT with layer normalization plus focal
loss stood out by providing the best recall scores in three
pairwise binary classifications: Nevus vs. Seborrheic Keratosis
with data augmentation (DA) achieved a recall of 0.90, Nevus
vs. Seborrheic Keratosis without DA attained 0.87. Seborrheic
Keratosis vs. [Melanoma & Nevus] with DA secured a recall
of 0.89. Similarly, in setting S1 with data partitioning scheme
SS2, the results can be found in Table II Here, we observed a
similar pattern where ViT with layer normalization plus focal
loss again outperformed other configurations, achieving the

best recall score in all four pairwise binary classifications. This
included a recall of 0.83 for Nevus vs. Seborrheic Keratosis
with DA, a recall of 0.83 for Nevus vs. Seborrheic Keratosis
without DA, a recall of 0.87 for Seborrheic Keratosis vs.
[Melanoma & Nevus] with DA, and a recall of 0.87 for
Seborrheic Keratosis vs. [Melanoma & Nevus] without DA.
Shifting to setting S2 under data partitioning scheme SS1, the
results are presented in Table III. In this configuration, simple
training and test partitioning were employed, and a comparison
with the current state-of-the-art [5] was conducted. Notably,
we achieved a state-of-the-art recall score for Nevus and Seb-
orrheic Keratosis, with a 2% improvement in weighted recall
and a 1% increase in AUC score. Additionally, we obtained



a higher specificity of 84%. Under the same setting S2, with
data partitioning scheme SS2, the results are detailed in Table
IV. Here, we utilized simple training and test partitioning and
compared the results with [15] ARL-CNN, SEnet, ResNet, and
RAN14, which employed the original tasks from the ISIC 2017
challenge. Our model demonstrated superior sensitivity and
accuracy compared to ARL-CNN in both tasks, outperforming
all other state-of-the-art models. In the first task, [Melanoma]
vs. [Nevus & Seborrheic Keratosis], we achieved a sensitivity
of 77% and an accuracy of 86%, surpassing the other models.
In the second task, [Seborrheic Keratosis] vs. [Melanoma &
Nevus], we achieved a sensitivity of 96% and an accuracy of
91%, outperforming ARL-CNN by 8% in sensitivity and 4%
in accuracy.

V. DISCUSSION AND CONCLUSION

Multiple experiments assessed the effectiveness of ViTs in 
skin cancer classification, comparing various models including 
CNN, CNN with soft attention, basic ViT, ViT with batch 
normalization, and ViT with layer normalization and regu-
larization. ViT with layer normalization and regularization 
showed robustness. Different preprocessing techniques, such 
as data augmentation and resizing, were tested, addressing 
data imbalance while using focal loss as the loss function. 
A rigorous 5-fold CV was applied across all experiments. 
Challenges involved interclass similarity, intra-class dissimilar-
ity, and difficulties distinguishing visually similar skin lesions, 
particularly with limited classes. Darker skin tones and delayed 
diagnosis presented additional challenges. Future research 
should incorporate larger datasets for enhanced performance 
and feature extraction. Tackling these issues is essential for 
advancing skin cancer lesion classification.

This paper presented an innovative 9-layer Vision Trans-
former (ViT) model for skin cancer lesion classification. It 
extended the foundational ViT architecture with 8 customized 
layers and addressed dataset imbalances using focal loss. The 
model synergized transformer-based vision architecture with 
dense layers and advanced regularization techniques, resulting 
in superior sensitivity, recall, and accuracy in binary classifica-
tion tasks compared to the state-of-the-art [5]. Through rigor-
ous 5-fold cross-validation, our ViT model exhibited reliability 
and potential for setting new standards in precise medical 
image classification, achieving a 1% and 2% performance 
improvement in task 1 and task 2 of binary classification, 
respectively, when compared to [5], with accuracy rates of 
91% and 92%.
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