
Computer-based Blind Diagnostic System for 
Classification of Healthy and Disordered Voices 

Zulfiqar Ali 
School of Computer Science and 

Electronic Engineering 
University of Essex 

Colchester, United Kingdom. 
z.ali@essex.ac.uk

Alba G. Seco De Herrera   
School of Computer Science and 

Electronic Engineering 
University of Essex 

Colchester, United Kingdom. 
alba.garcia@essex.ac.uk  

Ghulam Muhammad  
Department of Computer Engineering 
College of Computer and Information 

Sciences 
King Saud University  
Riyadh, Saudi Arabia. 
ghulam@ksu.edu.sa

Tamer A. Mesallam  
Department of Otolaryngology, Head 

and Neck Surgery 
College of Medicine  

King Saud University 
Riyadh, Saudi Arabia. 
tmesallam@ksu.edu.sa 

Abstract—A large population around the world is suffering 
from voice-related complications. Computer-based voice 
disorder detection systems can play a substantial role in the 
early detection of voice disorders by providing complementary 
information to early-career otolaryngologists and general 
practitioners. However, various studies have concluded that the 
recording environment of voice samples affects disorder 
detection. This influence of the recording environment is a 
major obstacle in developing such systems when a local voice 
disorder database is not available. In addition, sometimes the 
number of samples is not sufficient for training the system. To 
overcome these issues, a blind detection system for voice 
disorders is designed and implemented in this study.  Hence, 
without any prior knowledge of voice disorders, the proposed 
system has the ability to detect those disorders. The developed 
system relies only on healthy voice samples which can be 
recorded locally in the desired environment. The generation of 
a reference model for healthy subjects and decision criteria to 
detect voice disorders are two major tasks in the proposed 
systems. These tasks are implemented with two different types 
of speech features. Moreover, the unsupervised reference model 
is created by using DBSCAN and k-means algorithms. The 
overall performance of the system is 74.9% in terms of the 
geometric mean of sensitivity and specificity. The results of the 
proposed system are encouraging and better than the 
performance of Multidimensional Voice Program (MDVP) 
parameters which are widely used for disorder assessment by 
otolaryngologists in clinics. 

Keywords—Blind voice disease detection, judgment reference 
model, vocal fold disorders, DBSCAN, objective analysis, 
unsupervised learning. 

I. INTRODUCTION 

The air pressure generated by the lungs causes the vocal 
folds to vibrate for producing the voice. Then, this voice 
travels through the mouth and becomes sound after the 
application of oral cavities [1]. The voice of personnel is 
considered to be healthy if they can meet their personal and 
professional requirements without facing any fatigue and 
vocal problems [2]. 

 Vocal folds open and close at regular intervals during 
phonation for generating a healthy voice. However, due to 
abnormal growth of tissues on their surface or injury to nerves 
controlling them, they exhibit irregular vibrations. 
Consequently, the voice becomes strained and harsh due to the 

tight closure of vocal folds, and sometimes the excessive 
distance between them makes the voice breathy, weaker, and 
whispering [3]. The abnormal growths of vocal folds and 
injury to nerves are known as voice pathologies or vocal folds 
disorders. Some common types of voice disorders are vocal 
folds nodules, cysts, polyps, paralysis, and sulcus.  Normally, 
they appeared due to poor hydration, alcohol consumption, 
smoking, and vocal misuse including screaming, and 
excessive talking. Healthy and disordered vocal folds 
(suffering from vocal folds cysts) are shown in Fig. 1. 

(a) (b) 
Fig. 1. Vocal folds (a) healthy (b) suffering from vocal folds cysts [4].  

Subjective evaluation using different rating scales such as 
Consensus Auditory-Perceptual Evaluation of Voice (CAPE-
V) is a common practice of clinicians to assess voice disorders 
[5-7]. However, human error, attention, memory lapses of 
raters, interpretation of rating scales, experience, and 
knowledge of the clinicians may affect this way of evaluation 
[8, 9]. On the other hand, objective evaluation using 
computer-based diagnostic (CBD) systems is a non-invasive 
approach and independent of human bias. 

Many CBD systems have been developed for the detection 
of voice disorders [10-14]. Such systems can play a significant 
role in the reliable detection of voice disorders by providing 
complementary information to otolaryngologists. In addition, 
the CBD system can detect voice disorders at an early stage as 
some cancerous disorders like keratosis become life-
threatening if they are not treated on time. However, the 
reported results of developed voice disorder detection systems 
vary from one database to another even if the same set of 
features and machine learning algorithms are implemented. 
For instance, in the study conducted by Ali et al. [15], Mel-
frequency Cepstral Coefficients (MFCC) are extracted from 
voice samples of three voice disorder databases: 
Massachusetts Eye and Ear Infirmary (MEEI) database [16], 
Saarbrücken Voice Database (SVD) [17], and Arabic Voice 



Pathology Database (AVPD) [18]. Then, several experiments 
are conducted for the classification of healthy and disordered 
subjects. The respective best-obtained accuracies for these 
databases are 94.6%, 83.65%, and 80.2%. The accuracy of 
voice disorder detection for MEEI is 11% better than AVPD 
and 14% better than SVD. One of the potential reasons for 
MEEI’s high accuracy is its different recording environments 
for healthy and disordered subjects as indicated by Sáenz-
Lechón et al. [19] “Normal and pathological voices were 
recorded at different locations (Kay Elemetrics and MEEI 
Voice and Speech Lab., respectively), assumedly under the 
same acoustic conditions, but there is no guarantee that this 
fact has no influence in an automatic detection system.” Due 
to the recording of healthy and disordered subjects at different 
locations, the corresponding sample of these subjects becomes 
easily differentiable.   This is the reason that MEEI database 
yields higher accuracies for disorder detection as compared to 
other databases.  

A similar trend is found by Al-nasheri et al. [20] where the 
best-obtained accuracy for MEEI database is 89% and that for 
AVPD and SVD is 70% and 68.5%, respectively. These 
accuracies are obtained with top-10 Multidimensional Voice 
Program (MDVP) parameters (out of 22). These 10 
parameters are selected based on their Fisher discriminant 
ratio [21]. The list of all twenty-two MDVP parameters is 
provided in [22].   

In [15] and [20], when cross-database experiments are 
conducted with MEEI, SVD, and AVPD, the results of voice 
disorder detection become worst, i.e., 47% to 82% using 
MFCC [15] and 38.89% to 70.27% using MDVP parameters 
[20]. Similarly, the best F1- score for the detection of voice 
disorders obtained by Harar et al. [14] is 0.733 (or 73.3%) 
using MFCC and MDVP parameters. The following different 
databases are used for the experiments MEEI, SVD, AVPD, 
and Príncipe de Asturias Database (PDA) [23]. One of the 
major factors for such varying accuracies is the recording 
environment of these databases [14].  

The cross-database results signify that the generated 
models for healthy and disordered subjects using one database 
do not make good references for classification when testing is 
done with another database. Therefore, for good results, the 
training and testing samples should be recorded in the same 
environment. However, a CBD system for voice disorder 
cannot be developed for a community if a local voice disorder 
database is not available. Because if they use a database that 
is recorded somewhere else to train the system, the testing 
samples recorded in the local environment will not have a 
similar environment. Eventually, the diagnosis of voice 
disorder will be affected.  

To overcome the unavailability of a voice disorder dataset, 
a first attempt is made to design and implement a blind 
detection system for voice disorders in this study. The 
proposed system will detect voice disorders without having 
any prior knowledge about them. The developed system only 
needs to be trained with samples of healthy people which can 
easily be recorded locally in the desired environment. In 
addition, this study will fill the gaps of unsupervised 
techniques in this area as no work has been reported for such 
systems [24]. The unsupervised reference model for healthy 
people is generated by using Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) and k-means 
algorithms [25, 26]. Relative Spectral Transform - Perceptual 
Linear Prediction (RASTA-PLP) features [27, 28] are 

extracted from the voice sample and given to the DBSCAN 
algorithm to identify the dense region of features. The other 
important task in the proposed blind detection system is the 
decision criteria to determine the class of test samples, and the 
fractal dimension (FD) of the voice samples is used as one of 
the measures in it [29].   

The rest of the paper is organised as follows: Section II 
describes the pre-processing of speech signals, the extraction 
of two types of speech features, and the generation of an 
unsupervised reference model for healthy people. Section III 
explains the voice disorder dataset, the creation of decision 
criteria, and experimental results. Section IV analyses the 
proposed system for decision-making and compares it with 
other studies. Finally, Section V draws some conclusions.  

II. GENERATION OF REFERENCE MODEL FOR PROPOSED 

SYSTEM  

The first objective in developing the proposed blind 
detection is the generation of a reference model using healthy 
subjects. The block diagram of the proposed system is 
depicted in Fig. 2 and each of its components is described in 
the following sections. 

A. Feature Extraction: RASTA-PLP and Fractal Dimension
Speech rapidly changes over time, and therefore, its

analysis becomes difficult.  To make the speech fairly 
stationary, each signal S is divided into short frames f as 
expressed in Eq. (1). 

,i nS f� �� � � (1)

where i represents the total number of frames, and it varies 
from one speech signal to another. In this study, a frame of 
length n = 1024 (~40 milliseconds) is used with an overlap of 
50% with the previous. 

Both ends of the frames are tapered closer to zero by 
applying hamming window. This process does not only 
exhibit the periodicity in the successive frames but also avoids 
spectral leakage after the application of Fast Fourier 
Transformation (FFT). The other important steps in the 
computation of RASTA-PLP are critical band analysis and 
inverse filtering to get the source signal. To estimate critical 
bands, the Bark scale is implemented which is linear up to 500 
Hz and increased by 20% of the center frequency beyond it. 
This analysis simulates the human auditory system. Whereas 
the linear prediction (LP) analysis determines the formant 
structure and cancels its effect from the speech to get the 
source signal [10]. The LP analysis of the Rth order divides the 
vocal tract into R linear tubes. It means the current sample is 
estimated by R previous samples.  This analysis mimics the 
human speech production system. Therefore, the extracted 
features simulate both human auditory and speech production 
systems.  

In this study, 1024 points hamming window and FFT are 
applied on every frame.  Twenty-four filters are used for 
critical band analysis and 11th-order LP analysis is applied to 
extract twelve RASTA-PLP features from each frame f.  The 
obtained set of features for a signal S is represented by Fi,j , 
where j represents the dimension of features which is equal to 
12. 

 Another type of feature, FD, is extracted from each signal. 
It measures the complexity of a signal. Due to the presence of  



Fig. 2. Block diagram of the proposed system for blind detection of voice disorders, where RASTA-PLP and fractal dimension (FD) are two different types 
of extracted speech features. For the reference model, two clustering algorithms are implemented, i.e., DBSCAN and k-means.  The proposed system detects 

voice disorders without having any prior knowledge about them.  

voice pathology on vocal folds, they exhibit irregular 
vibrations during phonation. It makes the speech signal of a 
patient more complex/transient as compared to a healthy 
person. Katz’s and Higuchi’s algorithms are widely used to 
estimate FD [30, 31]. However, the Higuchi algorithm is not 
sensitive to amplitude which makes the KATZ algorithm a 
strong choice in this study. For instance, two synthetic signals 
with different amplitudes are shown in Fig. 3(a) and 3(b). The 
maximum amplitude in 3(a) is 10 and that in Fig. 3(b) is 5. 
FDs with the Higuchi algorithm are the same for both signals, 
whereas, they are different when computed using the KATZ 
algorithm. 

(a) 

(b) 

Fig. 3. Fractal dimension using two algorithms, KATZ and Higuchi, for two 
synthetic signals of different amplitude.  

Some frequency bands are more discriminant in the 
classification of healthy and disordered signals. Especially, 
lower frequencies from 1-1562 Hz have shown good 
performance for disorder detection [10, 32]. The lower 
frequencies of speech are heavily source dependent due to the 
low-frequency glottal formant, while the higher frequencies 
are less dependent on the source signal. Therefore, before 
computing FD using KATZ algorithm, this frequency band is 
achieved by applying Discrete Wavelet Transformation [33]. 
To compute FD, only the first second of all voice samples is 
considered. These FDs of the 1-1562 Hz band of signals are 
used in the decision criteria. 

Now, to generate the reference model, the extracted 
RASTA-PLP features Fi,j are given to DBSCAN.    

B. Identification of a Dense Region in Feature Space F
A dense region (DR) in feature space Fi,j is determined

using the DBSCAN algorithm to make sure that the generated 
reference model is a good representative of healthy subjects. 
The region is obtained by tunning two parameters of the 
algorithm: the number of minimum points clustered together 
for the region (mPts) and a threshold to locate the 
neighborhood points (ε).  

In this study, a large value for the minimum points and a 
low value for the threshold, mPts = 1500 and ε = 0.005 are 
used to get the dense region. This region is represented by 
yellow ‘x’ in Fig. 4 and contains 46.5% of the total feature Fi,j. 
For visualisation, only two features (features 3 and 4) of all 
frames are depicted in Fig. 4. 

Fig. 4. Feature space F and the dense region DR which is further divided into 
four clusters having centroids Ck.   

Now, a signal should be compared with the mean of the 
dense region (mDR) to determine the class, i.e., healthy or 
disordered. However, to use the entire dense region, DR is 
divided into four sub-regions using the k-means clustering 
algorithm where each resulting region is indicated by its mean 



C1, C2, C3, and C4. These means are highlighted by red ‘o’ 
in Fig. 4. Eventually, the decision with four regions (Ck, k=1, 
2, 3, 4) will be more reliable than using the single mDR. The 
centroids Ck is the desired reference model for the healthy 
voice samples.   

III. DECISION CRITERIA AND EXPERIMENTAL RESULTS

To develop the decision criteria, the AVPD database is
divided into three partitions: training, validation, and testing. 
The database and its partitions are described in the following 
section.  

A. AVPD database
The Computerized Speech Lab model 4500 (CSL 4500)

was used to record both healthy and disordered subjects in the 
AVPD database. All subjects were recorded in a sound-treated 
room at the Communication and Swallowing Disorders Unit 
of King Abdulaziz University Hospital by expert clinicians. 
The samples were recorded at a bit rate of 16 bits with a 
sampling frequency of 48 kHz. The distance between the 
mouth and the microphone was kept constant at 15 cm for all 
recordings, which were then saved in two different audio 
formats. Five voice disorders: vocal fold cysts, nodules, 
paralysis, polyps, and sulcus were recorded in AVPD. These 
disorders fall under the category of organic voice disorders 
because they appeared due to abnormal growth of tissues on 
the vocal folds or injury to the nerves controlling the vocal 
folds.  

In addition, all healthy subjects are recorded following 
clinical evaluation to confirm that they are healthy and do not 
suffer from any disorder in the past. Each subject signed a 
consent form to indicate their consent and to state that they 
had no problems to utilise their samples in research. 
Information about the individual's gender, age, and smoking 
habits was also obtained. Moreover, the perceptual severity of 
voice quality disorders was graded on a scale of 1 to 3, with 1 
denoting mild, 2 denoting moderate, and 3 denoting severe 
disorders. 

Each subject in the AVPD recorded a variety of texts. In 
this study, the sustained vowel /ah/ is used. Healthy samples 
are split into the 70% as training and 30% as test set and are 
denoted by Ptr and Pts. Ptr does not contain any disordered 
samples. All disordered samples are in Pts. For the tuning of 
the thresholds in the decision criteria, the training subset Ptr is 
further divided into two parts, PT and PV, where PT contains 
70% of Ptr’s samples and PV consists of the remaining 30%. 
The distribution of the samples in these subsets is provided in 
Table I. 

TABLE I.  DISTRIBUTION OF HEALTHY AND DISORDERED SAMPLES IN 
THREE PARTITIONS OF THE AVPD DATABASE  

Partitions 
Samples

Total 
Healthy Disordered 

Training subset 
PT 59 - 59

Validation subset 
PV 25 - 25

Testing Subset 
Pts 

36 97 133 

B. Decision Criteria
The criteria to differentiate between normal and

pathological signals are of prime importance in the proposed 
blind detection system. To develop the decision criteria, two 

questions need to be addressed. The first question is what 
distance from the reference model will declare a frame 
healthy. The second is how to declare a signal as healthy or  

disordered. 

To answer the first question, the distortion of each frame 
of every healthy sample in the training partition PT is 
computed with the generated model (Ck). The distortion (di) 
of the ith frame of signal X is computed using Eq. (2). 

 (2) 

where fxi is RASTA-PLP of ith frame of X, Ck are the centroids 
in the reference model, and the dimension of features and 
centroids is the same which is j.    

 Now, a threshold (thresh) on the distortion needs to be 
adjusted for deciding its class. To set thresh, the computed 
distortions of all signals in PT are averaged and the resulting 
value is 0.1250. So, it implies that any frame having a distance 
less than thresh=0.1250 will declare as a member of the 
healthy class. A healthy voice sample with 402 frames is 
shown in Fig. 5. 61.6% of its frames are less than the thresh 
which indicates that they are closer to the generated reference 
model of the healthy subjects. This percentage of frames for a 
signal S is represented by pFrame[S]. 

Fig. 5. Distortion of all frames of a healthy signal. Frames less than the thresh 
= 0.1250 are indicated by red ‘o’ and the horizontal black line is representing 
the thresh.  

 To answer the second question, the overall class of the 
signal will be determined using the percentage of the frame 
below the thresh. The threshold on pFrame is denoted by 
thFrame and initially set to 50%. Another measure, that is the 
FD of signals (FD[S]), is also used to find the class of the 
signal. The threshold on FD (thDF) is set to the average FD of 
all healthy signals in PT which is 1.0015. The FD of the 
healthy signal shown in Fig. 5 is 1.0011. Finally, the standard 
deviation of distortions  (i.e., STD[di]) of a signal is also 
considered. A threshold (thSTD) on it is set to the average of 
the standard deviation (STD) of all signals in PT, i.e., 
thSTD=0.042. The STD of the distortion for the healthy signal 
in Fig. 5 is 0.451. The purpose of using these three measures 
is to make the decision reliable. 

 The next important task is tunning of the adjusted 
thresholds. To do it, the experiments are performed using the 
validation subset. This subset consists of healthy subjects as 
the generated model in the proposed system is also for healthy 
subjects only. In addition, there are no available criteria to 
differentiate between healthy and disordered samples at this 
stage. Healthy subjects are labelled as a negative class, 
therefore, specificity is used to measure the performance of 
the generated model. To get the optimal specificity, grid 
search is performed in the ranges 50%±5, 1.0014±0.002, and 
0.042±0.04 for thFrame, thFD, and thSTD, respectively. The 
best specificity for the validated subset PV is 80% and is 
obtained with thFrame=47%, thFD=1.0013, and 



thSTD=0.0395. Therefore, these values of thresholds will be 
used in the decision criteria to differentiate between healthy 
and disordered samples.  

The criteria to declare a sample ‘healthy’ is given by Eq. (3). 

Condition 1: pFrame[S] > thFrame AND FD[S] < thFD  

OR       (3) 

Condition 2: pFrame [S] > thFrame AND STD[di] > thSTD  

All requirements of the proposed system have been 
accomplished for the blind detection of disorders such as the 
generation of the reference model, measures for decision 
criteria, and their optimal values.   

C. Detection of Voice Disorders
To report the results for the test subset Ptr, three metrics are 

used. Disordered and healthy samples are labeled as positive 
and negative classes, respectively. Consequently, sensitivity 
(sen) is defined as the ratio between correctly identified 
disordered samples and the total number of disordered 
samples. Similarly, specificity (spe) is defined as the ratio 
between correctly classified healthy samples and the total 
number of healthy samples. For the overall performance of the 
system, accuracy (percentage of the total number of truly 
detected samples) is not used as imbalanced data affect this 
measure. As Ptr also contains different numbers of healthy and 
disordered samples. Therefore, geometric means (GM) of sen 
and spe is used for the overall performance of the system and 
is defined in Eq. (4). 

(4) 

The performance of the proposed blind detection system is 
depicted in Fig. 6. The percentage values of sen, spe, GM are 
computed and listed.   

Fig. 6. The results of the proposed system for voice disorder detection over 
the test subset Pts. 

IV. ANALYSIS AND COMPARISONS

 As shown in Fig.5, pFrame[S] is 61.6% which means that 
distortion di for the most of frames is less than the adjusted 
thresh = 0.1250. For a signal to be healthy, pFrame[S] should 
be more than 47% (the tunned threshold thFrame) which is 
satisfied. In addition, the FD of the signals FD[S]  is 1.0011 
which is less than 1.0013 (the tunned threshold thFD). It 
means that both requirements of condition 1 in the proposed 
criteria are fulfilled. Therefore, the signal belongs to the 
healthy class. This signal also satisfied condition 2 because 
STD(di) is 0.0451 which is higher that the thSTD. Similarly, 

in Fig. 6, pFrame[S] is 68.9% and FD[S] is 1.0011. According 
to condition 1 of the criteria, the corresponding signal also 
belongs to the healthy class. 

Fig. 6. Distortion of frames below the thresh (pFranme = 68.9%) for a healthy 
signal of the test subset Pts. The fractal dimension of the signal is 1.0011. 

 For the signal in Fig. 7(a), pFrame[S] is 38.5% which 
means that most of the frames of the signal are away from the 
reference model of the healthy subjects and less than the 
thframe. In addition, the FD is 1.0019. Ultimately, both 
conditions in the criteria become false. Hence, the signal 
belongs to a disordered patient. Similarly, in Fig. 7(b) and (c), 
pFrame=27.2% and FD=1.0024, and  pFrame=18.1% and 
FD=1.0020, respectively. Therefore, the corresponding 
signals are classified as disordered.  

(a) 

(b) 

(c) 
Fig. 7. Measures (percentage of frames below thresh and fractal dimension) 
for disordered signals on the test subset (a) pFrame=38.5% and FD=1.0019 
(b) pFrame=27.7% and FD=1.0024 (c) pFrame=18.1% and FD=1.0020. 

No CBD system exists for the blind detection of voice
disorders. Unlike the proposed system, the existing systems 
need supervised training to generate reference models for 
healthy and disordered subjects. Although supervised models 
are used in [20, 34], the performance of the proposed system 
is still better than the MDVP parameters-based system where 
the best-obtained accuracy with the AVPD database is 72.5% 
for disorder detection [20, 34]. MDVP is a component of 
Computerized Speech Lab model 4500 (CSL 4500) which is 
widely used in the clinical evaluation of voice disorders. The 

50%
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Sensitivity Specificity Geometric
Mean

Results 73.20% 75% 74.10%



importance of CSL is evident by the fact that all three 
databases (MEEI, AVPD, and SVD) are recorded by using it.  

V. CONCLUSION

The proposed blind detection system determines the 
presence of disorders by using the reference models of healthy 
subjects only. The computed distortions of the frames from the 
reference model play a significant role in the decision.  The 
other positive aspect of the proposed system is the 
interpretation of its decision to differentiate between healthy 
and disordered samples. The developed system can be 
deployed for voice disorder detection in circumstances when 
disordered samples are not available or not sufficient to train 
a system. The proposed system can be enhanced by improving 
the decision criteria. For instance, adaptive thresholds for the 
measures can be used. In addition, it is also good to observe 
how many consecutive frames are below and above the 
threshold before making the final decision.      
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