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A Perceptual Computing Approach for Learning
Interpretable Unsupervised Fuzzy Scoring Systems

Prashant K. Gupta, Deepak Sharma, and Javier Andreu-Perez, Senior Member, IEEE

Abstract—Scoring the driver’s behavior through the analysis of
his/ her road trip data is an active area of research. However, such
systems suffer from a lack of explainability, integration of expert
bias in the calculated score, and ignoring the semantic uncer-
tainty of various variables contributing to the score. To overcome
these limitations, we have proposed a novel perceptual computing
based unsupervised scoring system. The prowess of the proposed
system has been exemplified in a case study of driver’s scoring
from telemetry data. Our proposed approach yields scores
that showed a higher significant separability between drivers
performing responsible or irresponsible (aggressive or drowsy)
driving behaviours, than the formal method of computing these
scores (a p value of 3.94 x 10~* and 3.42 x 1073, respectively,
in a Kolmogorov-Smirnov test). Further, the proposed method
displayed higher robustness in the bootstrap test (where 30% of
original data was omitted at random) by providing scores that
were 90% similar to the original ones for all results within a
confidence interval of 95%.

Index Terms—Computing with Words, Fuzzy Logic, Perceptual
Computing Systems, Unsupervised Scoring Systems.

I. INTRODUCTION

RIVING score estimation through the analysis of road
trip data' is an active area of research. Various articles
exist in the literature which has conducted studies for driving
score estimation by incorporating various factors or conditions
[1]-[7]. Independently, some works also focus on developing
telematic devices [8] for calculating the score estimation on
the basis of perceived driving behaviour. A case study was also
conducted in [9]-[11], to estimate the score from the driving
telemetry data, using a methodology similar to that commonly
employed by the insurance or rental cars companies. The
findings of this study have been presented in the form of
a publicly available dataset. An outcome of these works
has been to estimate the driver’s score (behaviour) using
the numeric values of the various imprecise variables (lane
drifting, braking, etc.) and classify the behaviour linguistically
(good, moderate, bad, etc.).
These driver’s score estimation systems have demonstrated
very good performances in their respective works; however,
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I'This data is generally curated through mobile apps and analysed using Al
models.

they have some shortcomings, too. They act like a ‘black-
box’ and lack explainability. Often, such systems generally
involve integrating several variables into a linear equation,
which is purely based on the perception of the few individ-
uals who tune or assign the score based on their subjective
opinion. Such systems, therefore, hide the score calculation
methodology from the end user. Also, they are seen as the
subjacent family of supervised learning, where the experts
provide apriori score labelling of the observations according
to their subjective understanding. The scoring system then
integrates the labelling bias of the experts in the learned
model following a methodology akin to regression or multi-
class problems. Another limitation of these systems is that
they rely on the precise numeric values of various variables,
which are semantically imprecise and vague. The perceptual
understanding of the precise numerical values (or meanings)
of these variables is rather soft (and uncertain) as it depends
on the context (levels, places and so forth) and the person (a
traffic officer, car mechanic, professional driver or insurance
brokers [12]).

Thus, our position is that, in order to overcome the disad-
vantages of these scoring systems, we propose our novel Per-
ceptual Computing based Interpretable Unsupervised Fuzzy
Scoring System. The proposed system treats the scoring in
an unsupervised way, computing with natural terms that ex-
press perceptions of the variables that make up the objective
score. Perceptual Computing, the core methodology behind
our scoring system, was proposed by Prof. Mendel in [13]%.
The means to achieve Perceptual Computing, is the framework
called the Perceptual Computer or Per-C. The use of Per-C
becomes reasonable whenever a computing system needs to
process subjective linguistic information similar to the human
cognitive process.

We have also demonstrated the utility of our proposed Per-C
based scoring system using the telemetry data of [9]-[11]. We
found that the driving scores obtained by our proposed system
show a higher divergence between the ones obtained from
responsible and irresponsible drivers (aggressive or drowsy),
in a Kolmogorov-Smirnov test [16], with a higher significant
value of p = 3.94 x 10~* whereas the ones of a formal method
of driver’s scoring from telemetry [10] have p = 3.42 x 1073,
Further, a robustness analysis using a bootstrap test of 30%
random removal of the original data showed that the resultant
footprint of uncertainty (FOU) plots of® scores were 90%

ZPerceptual Computing is one instantiation of Prof. Zadeh’s novel Com-
puting with Words (CWW) framework [14], [15]
3These FOU plots were generated in the Per-C.
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similar to the original one using the full data, with a confidence
interval of 95%. In sum, our proposed approach causes a
better and more stable partitioning of the scores with respect
to expected responsible (or otherwise) driving behaviours.

The rest of the paper is organized as follows: Section
IT discusses the related literature, Section III gives details
of the novel Per-C based design of Unsupervised Scoring
system and Section IV discusses the results obtained from its
applicability to the telemetry data of [9]-[11]. Section V gives
detailed discussions on the obtained results. Finally, section
VI concludes this paper and throws light on its future scope.
Details on important concepts are given in the Supplementary
Materials (SMs).

II. RELATED WORK

In this section, we present some of the literary works that
motivated us to bring forth the research presented in this paper.
We also discuss the basics of IT2 FSs and related concepts.

A. Literature review

With regards to our case study for drivers scoring in [7],
the authors said that driver’s behaviour assessment was a
difficult task, especially in the insurance applications, due to
numerous factors such as the trade-off between application
cost and data accuracy, data uncertainty, noisy data, etc. They
proposed a fuzzy treatment for driver behaviour assessment.
The focus of this work was on modelling the data uncertainty,
although explainability and unsupervised modelling were not
prioritised. In [5], authors performed supervised regression to
predict near-miss events. They used information such as vehi-
cle usage, attitude toward speeding, and time and proportion
of urban/nonurban driving from the telematics data, as well
as additional information such as acceleration, braking, and
cornering. They concluded general remarks such as night-
time driving was associated with a lower risk of cornering
events, urban driving increased the risk of braking events, and
speeding was associated with acceleration events. Nonetheless,
the non-fuzzy supervised approach did not elaborate on the
importance or interrelations, using the ‘everyday language’ or
explainable terms in each input variable, for example, how
does low, intermediate, high, very high speeding, acceleration,
both, or in combination with other terms, predicts few, some,
several or many near-miss events. Some works have tried fuzzy
approaches to develop score systems that consider inputs and
outputs as ‘natural language’ imprecise terms. Sohn et al. [17]
presented a fuzzy logistic regression method for credit scoring
that processing inputs and outputs as T1 fuzzy numbers. This
work pointed out the importance of considering the impre-
cision and vagueness of the input and output data. However,
the inference approach (logistic regression) requires supervised
training and although variable’s data could be defined as fuzzy
numbers, logistic regression is not CWW approach per se and
depends on extra model parameters (coefficients) that are not
fuzzy linguistic terms, hindering its overall interpretability and
straightforward tuning. In another previous work, Hoffmann et
al. [18] proposed a method to estimate a score, also, in this
case, a financial scoring, based on a descriptive fuzzy-rule base
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Figure 1: Membership functions of an IT2 FS [26]

(FRB) classifier. Rule-based models can be considered to be
interpretable, provided that the fuzzy inputs and outputs can be
adequately conceptualized into linguistic terms [19]. However,
Hoffmann et. al learning mechanism is also supervised (viz.
genetic fuzzy rule generation), and the initial linguistic terms
are replaced by optimised membership functions to support
classification accuracy of the FRB, at the expense of losing
its initial perceived meaning hindering explainability.

Perceptual computing is a novel CWW approach. It has
been used in various applications. The latest work, [20],
uses perceptual computing for portfolio selection. Some latest
works [21], [22] present a relation between granular computing
and the CWW. CWW has also been used by Pratihar et. al for
transportation [23]. The work [24] presents Python libraries
for CWW methodologies.

B. A short primer on IT2 FS

The IT2 FSs were conceptualized by Prof. Zadeh in ( [25]).
They have a greater capability to model the semantics of lin-
guistic information through the use of secondary membership
degree. In the IT2 FSs, the secondary MF is assumed to be 1
everywhere.

An IT2 FS is pictorially shown in Fig. 1 and mathematically
given in the form of Eq. (1) as:

A= {(x, (@), p3(w. (@) = 1) | 2 € U,0 < p(ar) < 1}
ey
here z is the data point, (z) isthe primary membership and
5 (x, u(z)) is the secondary membership. Also, in the Fig. 1,
it can be seen that a T1 FS is shown inside the FOU of IT2
FS by a dashed line, whose ends rest on the x-axis at [ and
r. This T1 FS is called an embedded T1 FS. According to (
[27]), the FOU of an IT2 FS can be considered as a union of
all such embedded T1 FSs.

Additionally, the concept of the neighborhood is important.
For any data point z lying inside an IT2 FES, its Neigh-
borhood is defined as: NH = {{X/'T{, ﬁ} | NH =
argmax d(cen — x), NH = argmind(cen — x)}, cen :

cen<zx cen>x
troid value and d(cen — x) : distance between cen and .

cen-
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III. A NOVEL PER-C BASED UNSUPERVISED SCORING
SYSTEM WITH TYPE-2 FuUzZzY LINGUISTIC TERMS

In classical Per-C, the semantics of problem variables are
represented using IT2 FS models or FOU, which are con-
structed inside the encoder using the endpoint data intervals
collected from a group of subjects. This data collection has
limitations as a large amount of time is required for data
collection and many users do not provide the data seriously
[28]. Further, more often than not, each of problem variables,
have an associated stream of numeric data values* [29]-[32],
etc. This is also true for the original telemetry data [9]-[11].

Also, in the existing Per-C’s CWW engine, linguistic weight
is associated with a variable (and not individual linguistic
terms associated with a variable). Further to it, a user chooses
a linguistic term and elicits its respective associated linguistic
weight at the time of aggregation. We feel that different
linguistic terms of variable may have different connotations.
For example, the amount of negative connotation attached to
‘Very Low’ may not be the same as the amount of positive
connotation attached to ‘Very High’. Thus, assigning the same
weight to all the linguistic terms of a variable seems a little
impractical.

Hence, for our proposed Per-C based unsupervised scoring
system, we developed an encoder which disambiguates and
conceptualises stream of numeric values, as the fuzzy linguistic
terms using Fuzzy C-means (FCM) [33], [34]. They are later
mapped into FOUs of the associated linguistic terms of a
variable (Details are discussed in Section III-A). Also, in
the CWW engine, the selection of the linguistic terms to be
aggregated is data-driven. Each linguistic term is assigned a
different linguistic weight instead of a variable. Finally, for
human explainability, we generate linguistic recommendations
from the decoder.

It is pertinent to mention that our proposed scoring sys-
tem will define the boundaries of the linguistic terms in an
unsupervised way. The scoring system only requires some
prior information about the ordering of the linguistic terms
of variables and whether these variables semantically support
(or oppose) the score. This is all needed to convey the
information from these variables into an overall score that
will be interpretable (in essence). Our proposed scoring system
also processes the linguistic information in same three steps
of existing Per-C viz., encoder (Steps 1-3), CWW engine
(Steps 4-6) and decoder (Steps 7-8), which are presented in
the algorithm 1, and discussed next.

A. Encoder (Steps 1-3)

The Encoder of the novel Per-C based unsupervised scoring
system consists of three steps as seen from Algo-1. Input to the
encoder (please see Step 1) is V' number of variables (which
contribute to the score), each with an associated L number of
linguistic terms and N associated numeric data values.

Then in the Step 2a, data cleaning is performed by removing
the duplicates (if any) from the N number of data values to

4With the progression of Industry 4.0, sensors are being increasingly
deployed in the environment which collects a stream of data values for the
problem variables.

arrive at M surviving data values such that M < N. In
Step 2b, the L centroids of these M data values are found
(Linguistic terms, LT;,7 = 1,2, ..., L) using the FCM, which
also gives the degree of memberships of each M data value
into the fuzzy boundaries around each L centroid. In Step 2c,
for each data value say x, of the M data values, we define
twin valued set called the neighborhood NH = {ﬁl, NH 1,
}jvvhere N H identifies the centroid which is closest to  and

H is the further centroid. Thus, N H enables the calculation
of Upper Membership Function or UMF ((x)) and Lower
Membership Function or LMF (u(x)) values for each data
point z. It is mentioned here that each of these M data values
can belong to a maximum of two adjacent centroids with
membership degrees ji(x) and p(x), because these centroids
are in one dimension. There is always more uncertainty
about the boundary of the partition [35], and thus, we want
membership degrees in a maximum of two adjacent centroids
for any of the M data values.

In the Step 2d, the fi(z) and p(z) are used for mapping
each of the M data values into one of the interior or shoulder
(left or right) FOUs. Consider a plot of the ;1 and p for a
data value, = (of M unique data values), belonging to a i*"
linguistic term LT;,7 = 1,2, ..., L, as shown in Fig. 2a. In the
Fig., the blue colored curve is the zi and orange colored is the
. The term LT; overlaps on the left side with LT;_; and the
right side with LT} ;. From this Fig., 2a, we map the fi(z) and
u(x) into the UMF and LMF of the FOU parameters for the
interior and shoulder IT2 FS word models, using (2)-(4). It is
mentioned here that the resulting IT2 FS word model,as shown
in Fig., 2b, is the interior FOU. However, the left shoulder of
right shoulder FOU may also be obtained. We arrive at the
FOU parameters as explained below.

a) UMF parameters: The UMF of the IT2 FS is defined
by the parameters a, b, c and d (Please see Fig. 2b). To estimate
their values through Fig. 2a, a is defined as the smallest x
value for which g =1 in LT;_y and p = 0 in LT; (NH =
{LT;, LT;_1}); b is the smallest x that has i = 1 in LT;
and u = 0in LT;_y (NH = {LT;_1, LT;}); c is the largest
x at which i = 1 in LT; and g = 0 in LT;;; (NH =
{LT; 1, LT;}); and d is the largest 2 value for which i = 1 in
LT;yyand p=0in LT; (NH = {LT;, LT;41}). However, for
left shoulder FOUs, @ = b = 0 and for right shoulder FOUs,
¢ = d = 10. It is mentioned here that wherever the maximum
value of 1 and minimum of 0 of & or p are not possible, then
the maximum possible values of fi or . as obtained from FCM
should be used. B

b) LMF parameters: The LMF of the IT2 FS word model
is defined by the parameters e, f, g and 115 (Please see Fig. 2b).
From Fig. 2a it follows that the value of parameter e is the
average of all x = ¢4,q = 1,...,j, where ¢;,¢ = 1,2,...,7
are the respective j*" data points satisfying the condition that
ulx = eq) = 0in LT; and p(z = eg + 1) # 0 in LT,
Eq + 1, being the immediately next data point to eq> lying
within the LT;. Similarly, the value of g is the average of all
T =gq¢,9=1,2,..,7, where g4,q = 1, ..., j are the respective
jth data points satisfying the condition that u(z = gq) # 0 in
LT; and p(x = g,+1) = 0in LT}, g,+1, being the immediate
successor of qq» lying within the LT;. The parameter f’s value
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Algorithm 1 Novel Per-C based Unsupervised Scoring System

#Encoder

1: Input: V: Number of variables contributing to the score, L: Number of associated linguistic terms to each variable, N:
Number of data values associated with each variable

2: For each Variable Repeat:
a: Remove the duplicates from the N number of data values to arrive at M unique data values. > Data Cleaning
b: Subject these M data values to FCM to obtain L number of centroids LT;,i = 1,2,...,L, as well as degree of
memberships of each M data value into each of the LT; centroids. > Data Processing
¢: Vo € M, define Neighborhood NH = {{W{, ]W{)} | NH = argmax d(cen — x), NH = argmind(cen — x)}, cen :

cen<z cen>x
centroid value and d(cen — x) : distance between cen and z. Calculate the UMF for z as: fi(z) = maz{ung = pyg}

and LMF as: p(r) = min{ung = pgg }-

d: For 3z € M, lying within 7*" Linguistic term (LT}), map it into interior or shoulder FOUs, where UMF of the FOU is
defined by parameters: {a,b,c.d} and LMF by: {e.f.g,uur}, as > Mapping into FOU
Left Shoulder FOU:

v
19Yq
= | (=

a=0,b=0,e=0,9={ =9¢) 0Nz =q,+1)=0Vq,q=1,2,....5}, f=0,pup =1

c=max{r | NH = {LT;11,LT;} N p(x) =0, i4(x) = 1},d = max{x | NH = {LT;, LT;11} N p(x) =0, a(z) = 1}

2
Interior FOU:
a=min{x | NH = {LT;, LT;_1},Np(x) = 0, a(x) = 1},b = min{z | NH = {LT;_1, LT;} N p(x) = 0, a(x) = 1},
c=max{x | NH = {LT;j11, LT} N p(x) =0, a(z) = 1},d = max{x | NH = {LT;, LT;11} N p(x) = 0, a(z) = 1}
Yioi€ Y19
e= =T ule = eg) = 0N p@ = eg +1) £ 0,9 = == ple = g,) # 0N ple = g5 +1) =0,
g1 f .
3)
Right Shoulder FOU:
a=min{x | NH = {LT;, LT;_1},Np(x) = 0, a(x) = 1},b = min{z | NH = {LT;_1, LT;} N p(x) = 0, p(x) = 1},

J
_1 €
¢ =10, d—10,6—{23(1(_11(1,|p(x—6q)—Oﬂ,u(:v—eq+1)#OVeq,q—l,Z...,j}, f=10, g=10, py=1

4)

3: Determine the IT2 FS word models for linguistic terms of all the variables and store them in the codebook

#CWW Engine

4: Input [n1,ng,...,ny]: Data vector containing numeric values of each variable

5: For each nj,j = 1,2,...,V in Step 4, find out the linguistic term associated with the respective variable so that n; has
the highest degree of membershlp in it. Also, find out the associated linguistic weight of this term.

6: Extract the IT2 FS model X; of each linguistic term and its associated linguistic weight W from the codebook (of Step
3) and aggregate them using LWA as:

vV oo o
N X, W
Viwa = =220 5)
Zj:l W
#Decoder }
7: Numeric recommendation for the Y7y 4 is given based on ¢; and ¢, determined from the EKM algorithm, as:
c +c
avg — 6
Cavg 5 (6)

8: Linguistic recommendation for Y7 4 is given using Jaccard’s similarity measure as:

P (}; i )= Z;V:1 min(fiy (z;), P, (z5)) + Zjvzl min(ﬁ?(zj)’ﬁLTk (x5)) -
i(Yowa, L E?le maz(fig (), B, (T5)) + Z;il maz(pg (25), by 7 (25))

LT}, is a codebook linguistic term from Step 3 and x; are equally spaced inside the support of YiwaULT.
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I

<) By =max (e )\

Highest Membership Value
anje digsiaquagy 3saSIH puodas

f/’ g4 bz \fz 92 4
+
e, te ' _fitfs g=g1 e

7 & Z

(@) 2 and p values of LT} and its adjacent centroids LT;_1 and LTj41

Hf

(b) FOU parameters of the IT2 FS constructed from f and p

Figure 2: Mapping the UMF (z2) and LMF (1) from centroid LT; into FOU parameters of the IT2 FS

is the average of all x = f,,¢ = 1,2,...,4, where f,,q =
1,2, ..., are the respective j" data points of highest 1, lying
within LT; and py, is the p values at z = f,. However, for
the left shoulder FOU, e = f = 0 and for the right shoulder
FOU, f = g = 10. Also, py = 1 for both these shoulder
FOUs. An important point to note in Fig. 2a is that it shows
only two instances of each of e;, g, and f,. The data can
contain multiple of these data points.

Thus, the Step 2 is repeated for all the variables so that
FOUs are obtained for all the linguistic terms corresponding
to each of the variables, the FOUs as well as linguistic terms
are stored in a codebook (Please see Step 3.

B. CWW Engine (Steps 4-6)

The CWW engine consists of three steps as seen from
Algorithm-1. Step 4 inputs a data vector containing the nu-
meric data values corresponding to each of the V' variables
into the Algo, where for each numeric value in the data
vector, a linguistic term from codebook is found in which this
numeric value has maximum membership degree, in Step 5
(Please refer Section SM-V). Then after finding the associated
linguistic weight of each of these linguistic terms, the FOU
data for each linguistic term and its associated weight is
extracted from the codebook (constructed in Encoder) and
aggregated to generate an IT2 FS Yiwa using (5), in Step
6 (Please refer [27] or Section SM-II.B).

C. Decoder (Steps 7-8)

The decoder of the proposed scoring system generates a
numeric value, cq,4 using (6) for the f/LW A using the switch
points ¢; and ¢, of an IT2 FS (Please refer Section SM-II.C) in
the Step 7. Finally, in the Step 8, a linguistic recommendation
is generated for the Yiwa using the Jaccard’s similarity
measure using (7).

The complete block diagram of our proposed scoring system
is shown in Fig. 3. From Fig., it can be seen that the input
to our proposed scoring system is a stream of numeric data

values, linguistic labels and linguistic weights. Inside the
encoder, the FOUs are generated for the linguistic terms and
their associated weights and stored in a codebook (please
refer Section III-A. Then a numeric data vector causes the
extraction of the linguistic terms’ and their respective as-
sociated linguistic weights’ FOUs to be extracted from the
codebook based on the membership degree of each numeric
value into the respective linguistic term from the codebook.
These extracted FOUs of the linguistic terms and weights are
subjected to LWA, which generates an aggregated nine point
Yrwa at the output of CWW engine (please refer Section
III-B). This Y7 4 is fed as input to the decoder to generate a
NUMETric SCOre, 4y Using the EKM algorithm and a linguistic
recommendation using the Jaccard’s similarity (please refer
Section III-C).

IV. RESULTS: REAL-WORLD CASE STUDY FOR DRIVER’S
SCORE ESTIMATION DATA

In this section we demonstrate the prowess of our Novel Per-
C based Unsupervised Scoring System (from Section III) using
the real-life telemetry data from [9]-[11]. In these works, the
authors collected (a stream of) numeric data values for seven
variables: acceleration (AC'), braking (BR), car following
(CF), lane drifting (LD), lane weaving (LW), over-speeding
(OS) and turning (TU), from the road trips of six drivers.
AC (BR) denotes a sudden increase (decrease) in the vehicle
speed, C'F' is a measure of the safe distance between the
personal vehicle and the one ahead, LD is measured as a
deviation from the centre of the driving lane, LW is the
number of lane changes, OS represents driving above the
maximum allowed speed limit and 7'U means a sudden change
in vehicle’s direction.

The drivers conducted trips in the motorway and the sec-
ondary types of road. Motorway roads had 2 to 4 lanes in
each direction and around 120 km/hr of maximum allowed
speed. The secondary road had principally one lane in each
direction with a maximum allowed speed of 90 km/hr. Each
driver performed three trips on the motorway road (round-trip,
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with values of variables
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Yiwa: Aggregated IT2 FS for the score

Figure 3: The proposed Per-C based unsupervised scoring system

around 25km each) and four trips on the secondary road (one-
way, around 16km each).

We now present the working of our proposed novel Per-C
based Unsupervised scoring system (from Section III) through
this real-life telemetry data and use it to compute the overall
trip score (Sections IV-A-IV-D). We also compare the results
of our proposed system to those in the original telemetry data
(Section V-A). We then give a robustness analysis of the scores
obtained with our proposed scoring system (Section V-B).

A. Encoding telemetry data

Considering the same seven variables: AC, BR, CF, LD,
LW, OS and TU [9]-[11], we associated five linguistic terms
to each of these variables. Further, each linguistic term was
allocated a linguistic weight (W'T") (instead of variable), and
WT was also assigned five linguistic terms:Very Low (WT'V),
Low (WTL), Medium (WT M), High (WT H) and Very High
(WTE). The linguistic terms associated with the variables and
the associated W'T' of each variable’s linguistic term are listed
in Table 1.

For exemplifying the construction of (associated) linguistic
terms’ (of variables) FOU plots and those of the associated
WT’s, consider the variable AC' in the motorway road. It
had N = 16,631 associated numeric data values. Removal of
duplicate values reduced them to M = 546 unique data values.
As AC had five associated linguistic terms (refer Table I),
we found L=5 centroids of these 546 numeric data values, as
well as memberships degrees of each of these 546 values to
every centroid’s soft boundary, using FCM. Subsequently, we
extracted the data points with the highest and second highest
degrees of membership from these 546 values to estimate the
FOU parameters.

Let’s say the centroids are denoted as LT3, LTy, LT, LTy
and LTs. Consider LT3, which will be used to define the
linguistic variable ACM (please see Table I). We found
that for LT3, x = 5.02 is the smallest value at which the
neighborhood NH = LT3, LT, exists, with () = 0.89 and
w1 = 0.05 (As stated in Section III-A, if () = 1 and p = 0 are
not in the data set, then maximum available values of the two
memberships should be used). The x = 6.67 is the minimum

value at which NH = LT5, LTs, i = 1 and g = 0, whereas
x = 6.78 is the maximum value at which NH = LT}, LT,
i =1and pp = 0. The z = 8.06 is the largest data value at
which NH = LT3, LTy, i = 1 and p = 0. As LT3, is the
interior FOU, therefore, as seen from (§), a=5.02,b=06.67,
c=6.78 and d = 8.06. x = 5.49 and z = 6.81 satisfy the
condition p(x = e4) = 0in LT3 and p(zx = e, + 1) # 0.0 in
LT;. Therefore, e; = 5.49, e = 6.81 and e = 52 = 6.15.
Similarly, z = 6.64 and x = 7.99 give rise to g = 7.32. The
x = 6.07 and x = 7.4 are the data values with the highest p,
lying within LT3, and the membership degrees at both these
points have a value of 0.45. Hence, f = # = 6.74 and
py = 0.45. In this way, FOU parameters for the LT3 are
estimated. Similarly, FOU parameters of the interior FOUs of
LT, and LT, are estimated.

For estimating the FOU parameters of left shoulder viz.,
LTy, x = 3.33 is the maximum data value at which NH =
LT, LTy, i =1 and pp = 0. x = 5.01 is is the maximum
data value at which NH = LTy, LT5, i = 0.89 and p =
0.05. Also, 2 = 4.99 is the only data point which satisfies the
condition pu(z = g4) # 0in LT3 and p(z = g;+1) =0
in LT}. Therefore, using (2), a =0, b =0, c=333, d=
5.01, e=0, f=0, g=4.99, puy=1.

For estimating the FOU parameters of right shoulder viz.,
LTs, x = 8.07 is the smallest data value at which neigh-
borhood exists as NH = LTy, LTs, with (u) = 1 and
p = 0. The x = 9.34 is the minimum data value at
which NH = LT5, LTy, with (1) = 1 and p = 0. The
x = 8.16 is the only data point which satisfy the condition
plx = eg) = 0in LT; and p(z = e, + 1) # 0 in
LTs. Therefore, using (4), a = 8.07, b = 9.34, ¢ = 10,
d =10, e = 816, f = 10, g = 10, py = 1. In this
manner, the FOU parameters of all the linguistic terms of AC
are determined and listed in Table II.

Similarly, the FOU plots for the associated linguistic terms
of all other variables were computed. For generating the data
stream for WT, all the data values associated with a variable
were summed and processed, and FOU plots were generated.
The obtained FOU plots along with the respective linguistic
terms (of variables and WT') were stored in the form of a
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Table I: Variables: Associated Linguistic Terms and Linguistic Weights.

Variables Associated Linguistic weight Variables Associated Linguistic weight
Linguistic Terms Motorway Secondary Linguistic Terms Motorway Secondary
Very Low (ACYV) Very Low (WTV)  Very High (WTE) Very High (BRE) Very Low (WTV)  Very High (WTE)
Low (ACL) Low (WTL) High (WTH) High (BRH) Low (WTL) High (WTH)
Acceleration Medium (ACM) Medium (WT M) Medium (WT M) Braking Moderate (BRM) Medium (WT M) Medium (WT M)
(AC) High (ACH) High (WTH) Low (WTL) (BR) Less (BRL) High (WTH) Low (WTL)
Very High (ACE)  Very High (WTE) Very Low (WTV) Very Less (BRV)  Very High (WTE)  Very Low (WTV)
Very small (CF'V)  Very Low (WTV)  Very Low (WTV) Very Large (LDE)  Very Low (WTV)  Very High (WTE)
Car Small (CFS) Low (WTL) Low (WTL) Lane Large (LDL) Low (WTL) High (WTH)
Following Average (CFA) Medium (WT M) Medium (WT M) Drifting Average (LD A) Medium (W'T M) Medium (WT M)
(CF) Large (CFL) High (WTH) High (WTH) (LD) Small (LDS) High (WTH) Low (WTL)
Very Large (CFE)  Very High WTE) Very High WTE) Very small (LDV')  Very High (WTE) Very Low (WTV)
Very High (LWE)  Very Low (WTV)  Very Low (WTV) Very High (OSE) Very Low (WTV)  Very Low (WTYV)
Lane High (LW H) Low (WTL) Low (WTL) Over High (OSH) Low (WTL) Low (WTL)
Weaving Medium (LW M) Medium (WT M) Medium (WT M) Speeding Moderate (OSM) Medium (WT M) Medium (WT M)
(LW) Low (LW L) High (WTH) High (WTH) (0S) Less (OSL) High (WTH) High (WTH)
Very Low (LWYV)  Very High (WTUE) Very High (WTE) Very Less (OSV) Very High (WTFE) Very High (WTE)
Very Large (TUFE)  Very Low (WTV) Very Low (WTV)
Large (TUL) Low (WTL) Low (WTL)
Turning Average (T'U A) Medium (WT M) Medium (WT M)
(TU) Small (T'US) High (WTH) High (WTH)

Very small (TUV)

Very High (WTE)

Very High (WTE)

codebook. The FOU data for the linguistic terms of all the
variables and W1 in the motorway is given in Table II. The
corresponding FOU data for the secondary road, as well as
FOU plots for the two types of road, are given in Table SM-I,
Fig. SM-4 and Fig. SM-5.

B. Running CWW Engine

To exemplify the selection of linguistic terms for a vari-
able in CWW engine, consider a data vector containing the
variables’ {AC, BR, CF, LD, LW, OS, TU} values in the
motorway as: {10, 9.18, 9.79, 7.8, 10, 9.32, 8.1}. For each
of these values of the variables, we find out the respective
highest membership degrees in the respective linguistic terms
of the variables (Section SM-IL.B). Thus, the linguistic terms
corresponding to the values of the variable given in the vector
are {ACE, BRV, CFE, LDS, LWV, OSV, TUV} (For
full forms of ACE, BRV, CFE, LDS, LWV, OSV and
TUV, please see Table I). From Table I, the respective cor-
responding WT of the linguistic terms are found as: {WTE,
WTE, WTE, WI'H, WTE, WT'E, WTE}, where WT'E
is Very High and WTH is a high.

Hence, the FOU data for the respective linguistic terms
and associated W'T' from codebook (or Table II) is extracted
and aggregated using (5), to generate nine points IT2 FS
word model (described by its UMF and LMF) given as
?LWA={7.01, 8.87,9.78, 10, 7.24, 8.45, 9.77, 9.86, 0.46}, the
first four points in the f’LW 4 describe the UMF and remaining
the LMF.

C. Decoding Telemetry Data into Drivers Scores

In CWW engine, the values of linguistic terms of vari-
ables were linguistic weighted averaged to generate a nine
point FOU for }N/LW 4 (Please see section IV-B). This ?LW A
corresponds to the output variable, the driver’s score (D.S).
However, this FOU for YLW 4 18 decoded to a numeric score,
Cavg = 8.81, as discussed in Section III-C.

Now, from the works [9]-[11], we extracted the numeric
data values for DS and associated five linguistic terms to
it: Terrible (DSV'), Poor (DSL), Borderline (DSM), Fair
(DSH) and Good (DSFE). Then, we generated the FOUs for
these linguistic terms using the encoder, section III-A. The
FOU data for these linguistic terms are stored in the codebook
and shown in Table II for a motorway. The corresponding FOU
data for the secondary road, as well as FOU plots for the two
types of road, are given in Table SM-I, Fig. SM-4 and Fig.
SM-5.

To generate linguistic recommendations for YLW 4, we find
out the similarity between YLW 4 and the FOUs of five
linguistic terms associated with DS, using Jaccard’s similarity
measure from (7). Thus, the closest linguistic recommendation
comes out to be Good (DSH).

D. Calculating the overall driver’s score for one trip

From the telemetry data [9]-[11], we picked up the data vec-
tors containing numeric data values of seven variables, accu-
mulated per second and aggregated them through the encoder
and CWW engine of our proposed scoring system (Sections
IV-A-IV-B), to arrive at aggregated nine points Y7y 4’s. Then
we weighted aggregated these Yrya’s based on their fre-
quency in the complete trip of a driver, to generate a Y7y 4 for
the complete trip, denoted as Youveraii—Triprw - A linguistic
recommendation for Yoyerali—Trip,w . Was generated using
the Jaccard’s similarity (from (7) between Youerali—Triprw a
and FOUs of linguistic terms for DS (please see Table II).
Thus, the scores were calculated for motorway and secondary
roads (for the normal, aggressive and drowsy type of be-
haviours). All the results are given in Table III.

From the Table, it follows that the Normal driving be-
haviour, is scored as either Fair (DSH) or Good (DSFE);
however, the Aggressive or Drowsy driving behaviours, are
rated as Borderline (D.SM) or Poor (DSL), and very rarely as
Fair (DS H). Thus, our proposed scoring system differentiates
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Table II: FOU data for the Linguistic Terms of the Variables and the Driver’s Score for Motorway

Variables, Associated FOU data
Linguistic weights Linguistic UMF LMF Centroid
and Driver’s Score terms a b c d [ f g 1 c Cr Cavg
Very Low (ACYV) 0.00 0.00 3.33 5.01 0.00 0.00 4.99 1.00 1.62 2.21 1.91
Low (ACL) 0.00 5.34 5.48 6.74 446 5.21 5.82 045 284 568 426
Acceleration (AC) Medium (AC'M) 5.02  6.67 6.78 8.06 6.15 6.74 7.32 045 6.16 7.13  6.65
High (ACH) 6.75  8.02 8.13 10.00 7.49 8.07 8.66 046 7.68 874 821
Very High (ACE) 807 9.34 10.00 10.00 8.16 10.00 10.00 1.00 927 940 934
Very High (BRE) 0.00 0.00 1.03 2.96 0.00 0.00 2.82 1.00 091 1.12 1.02
High (BRH) 0.00 2.86 3.04 5.01 2.07 2.96 3.85 046 193 357 275
Braking (BR) Moderate (BRM) 297 493 5.10 7.06 4.12 5.01 5.92 044 440 563 502
Less (BRL) 5.02  6.99 7.17 10.00 6.18 7.07 7.97 046 646 8.08 7.27
Very Less (BRV) 7.07 9.00 10.00 10.00 7.21 10.00 10.00 1.00 889 9.10 9.00
Very small (CFV) 0.00 0.00 0.60 2.82  0.00 0.00 2.77 1.00 090 1.01 096
Small (CF'S) 0.00 3.03 3.23 5.14 1.79 2.97 3.89 045 198 358 278
Car Following (C'F) Average (CFA) 2.83  5.05 5.22 7.13 4.26 5.14 6.02 045 440 573 5.07
Large (CFL) 5.15  7.06 7.23 10.00 6.27 7.14 8.01 046 655 813 734
Very Large (CFE) 7.14 9.02 1000 10.00 7.27 10.00 10.00 1.00 892 9.12 9.02
Very Large (LDFE) 0.00 0.00 3.53 4.92 0.00 0.00 4.82 1.00  1.56 2.23 1.89
Large (LDL) 0.00 4.85 498 6.40 428 4.92 5.57 046 2.68 536 4.02
Lane Drifting (L D) Average (LD A) 493 634 6.47 7.88 5.76 6.41 7.06 044 596 685 641
Small (LDS) 641 7.83 7.96 10.00 7.25 7.89 854 046 745 862 8.03
Very small (LDV) 7.89 928 10.00 10.00 7.99 1000 10.00 1.00 9.20 935 9.28
Very High (LWE) 0.00 0.00 1.30 2.50  0.00 0.00 2.38 1.00 0.77 1.02 090
High (LW H) 0.00 2.38 2.50 4.00 1.87 2.58 3.19 047 1.61 295 228
Lane Weaving (LW) Medium (LW M) 2.63 3091 4.00 6.36 3.38 4.17 4.86 036 3.64 492 428
Low (LWL) 412 571 6.00 10.00  5.40 6.50 7.27 036 553 7797 6.65
Very Low (LWV) 6.67 889 10.00 10.00 6.67 10.00 10.00 1.00 875 892 8.84
Very High (OSE) 0.00 0.00 1.42 3.38 0.00 0.00 3.36 1.00 1.09 1.32 1.20
High (OSH) 0.00 3.52 3.70 5.47 2.58 3.50 4.36 045 221 409 315
Over-Speeding (O.S) Moderate (OSM) 3.39  5.39 5.55 7.33 4.66 5.48 6.29 045 482 603 542
Less (OSL) 548 7.26 7.43 10.00 6.53 7.34 8.15 046 679 826 752
Very Less (OSV) 7.34 9.09 1000 10.00 746 10.00 10.00 1.00 9.00 9.18 9.09
Very Large (TTUE) 0.00 0.00 1.00 2.89 0.00 0.00 2.74 1.00 0.89 1.09 099
Large (TUL) 0.00 2.78 2.96 4.87 1.88 2.88 3.75 046 189 343 266
Turning (T'U) Average (TUA) 290 4.8 4.97 6.86 4.01 4.88 5.76 044 428 548 4.88
Small (T'US) 488 6.80 6.97 10.00  6.02 6.88 774 046 628 8.00 7.14
Very small (TUV) 687 874 10.00 10.00 7.01 10.00 10.00 1.00 879 9.03 891
Very Low (WTV) 0.00 0.00 1.00 294  0.00 0.00 2.80 1.00 091 1.11 1.01
Low (WTL) 0.00 2.84 3.02 4.99 2.04 2.94 384 046 193 355 274
Linguistic Weight (WT) Medium (WT M) 295 4091 5.09 7.05 4.10 5.00 591 0.44 438 562 5.00
High (WTH) 5.00 6.98 7.16 10.00 6.17 7.06 7.96 046 645 8.08 7.26
Very High (WTE) 7.06 9.00 10.00 10.00 720 10.00 10.00 1.00 889 9.09 8.99
Terrible (DSV) 0.00 0.00 5.28 6.32 0.00 0.00 6.28 1.00 2.03 3.05 254
Poor (DSL) 0.00 6.30 6.40 7.41 5.78 6.35 6.82 045 3.06 6.64 485
Driver’s Score (D.S) Borderline (DSM) 6.33  7.38 7.46 8.48 6.96 7.42 7.89 045 7.09 774 741
Fair (DS H) 742 845 8.53 10.00 8.02 8.48 8.95 045 817 9.01 8.59
Good (DSE) 849 949 10.00 10.00 855 10.00 10.00 1.00 943 953 948

between different types of driving behaviour and assigns a
score in a proper manner.

V. DISCUSSIONS

We now draw comparisons between the results of our
proposed system to those in the original telemetry data [9]—
[11]; provide a robustness analysis of the scores obtained with
our proposed scoring system; provide a conceptual comparison
between the existing Per-C and that of our proposed system;
and discuss some of the interesting facts and findings from
the work in this paper, which are applicable to any scoring
systems in general. More discussions in the context of the
driver’s scoring systems are given in the Section SM-1V, due
to paucity of space.

A. Comparison of scores obtained with proposed system and
original telemetry data

In the works [9]-[11], the data vectors containing numeric
values of the 7 variables were collected per second of the
driver’s trip. These data values were arithmetically averaged
to calculate the overall driver’s score for one trip. The scores
were classified for the normal, aggressive and drowsy type
of behaviour, where the driver in these trips was asked to
simulate this type of behaviour. For reference, the respective
scores for the driver, type of road and behaviour obtained with
the telemetry data are listed in the last column of Table III. The
table also lists the drivers’ scores obtained with our proposed
scoring system.

For comparison between the scores obtained with our pro-
posed scoring system and original telemetry data, we ran the
Kolmogorov-Smirnov statistics [16] on the respective streams



IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Table III: Comparison of drivers’ trip scores in Motorway & Secondary: using proposed scoring system vs Telemetry Data

Driver*  Behavior** Overall Score with proposed scoring system Telemetry
a b c d e f f g Wy c cr Cavg LS*** Score
Type of Road: Motorway

N 652 865 9.61 993 693 83 9.6 973 048 831 886 858 Fair (DS H) 8.84

D1 A 6.41 850 933 989 692 815 931 954 046 811 876 844 Fair (DS H) 8.76
D 545 814 914 988 634 763 9.14 941 042 758 852 8.00 Borderline (DSM) 7.52

N 6.60 862 954 990 696 826 953 9.69 048 830 884 857 Fair (DS H) 9.08

D2 A 475 746 826 956 589 7.19 822 871 045 687 798 742 Borderline (DSM) 6.91
D 596 828 919 9.89 662 79 9.19 944 047 786 862 824 Borderline (DSM) 7.87

N 694 883 977 994 7.6 850 977 9.85 050 857 899 8.78 Fair (DS H) 9.62

D3 A 6.05 827 924 993 654 800 922 948 050 793 861 827 Fair (DS H) 7.54
D 557 802 886 980 641 761 886 9.19 042 751 842 796 Borderline (DSM) 7.67

N 7.14 897 991 1000 729 936 991 994 078 884 9.10 897 Good (DSE) 9.84

D4 A 542 789 877 981 621 757 874 9.14 046 742 833 7.87 Borderline (DSM) 7.24
D 6.09 844 936 990 677 799 936 955 043 798 873 835 Borderline (DSM) 8.40

N 634 843 926 995 6.85 813 924 951 048 8.07 873 840 Fair (DS H) 8.44

D5 A 507 752 83l 977 592 725 828 880 047 7.04 808 7.56 Borderline (DSM) 6.99
D 513 805 9.8 994 6.10 759 9.15 945 045 749 846 797 Borderline (DSM) 6.61

N 6.64 868 9.66 1000 6.87 883 9.66 979 067 849 888 8.68 Fair (DS H) 8.660

D6 A 553 792 879 973 622 756 876 9.13 047 747 830 7.88 Borderline (DSM) 7.29
D 538 777 865 972  6.15 728 872 9.06 038 729 826 7.78 Borderline (DSM) 9.96

Type of Road: Secondary

N1 588 802 890 9.87 6.64 782 890 932 046 769 852 8.1l Fair (DS H) 8.40

D1 N2 636 835 927 985 691 813 925 955 048 8.08 872 840 Fair (DS H) 8.74
A 538 777 882 9.65 6.13 744 881 9.8 045 740 825 7.82 Borderline (DSM) 7.28

D 532 758 838 958 631 748 841 890 048 721 815 7.68 Borderline (DSM) 8.30

N1 6.63 848 941 988 7.09 837 941 9.62 050 827 883 855 Fair (DS H) 9.18

D2 N2 627 829 933 981 687 841 9.17 957 062 810 869 839 Fair (DS H) 8.73
A 489 725 841 937 564 701 844 891 047 7.00 785 742 Poor (DSL) 6.57

D 507 777 878 955 6.15 745 876 9.1 045 725 821 773 Borderline (DSM) 7.85

N1 7.19 890 9.88 1000 743 893 988 994 0.6 877 9.14 895 Good (DSE) 9.69

D3 N2 6.13 813 916 970 6.66 747 924 942 030 7.76 860 8.8 Fair (DS H) 8.48
A 515 751 866 9.64 589 734 864 9.3 050 726 810 7.68 Borderline (DSM) 7.20

D 6 834 934 972 683 817 933 953 05 796 866 831 Fair (DS H) 9.08

N1 7.04 876 973 1000 736 9.06 9.73 9.85 069 867 9.06 8.87 Fair (DS H) 9.68

D4 N2 722 891 991 1000 745 913 990 995 067 882 9.15 898 Good (DSE) 9.71
A 540 772 871 9.67 646 7.68 860 9.12 050 738 831 7.85 Borderline (DSM) 8.08

D 548 809 920 9.67 635 783 920 943 050 7.68 844 8.06 Borderline (DSM) 8.18

N1 7.13  8.86 9.84 10 741 8.87 983 991 058 872 9.1 891 Good (DSE) 9.53

D5 N2 6.07 829 925 973 6.83 801 924 947 045 791 865 828 Fair (DS H) 8.87
A 417 6.00 725 859 462 594 750 818 052 6.17 683 6.50 Poor (DSL) 5.72

D 501 758 867 942 589 734 863 9.09 051 721 802 7.62 Borderline (DSM) 7.29

D6 N1 645 842 933 979 695 811 934 958 044 812 874 843 Fair (DS H) 9.21
D 529 7.83 893 9.68 6.09 722 9.09 927 036 738 831 7.84 Borderline (DSM) 7.57

* Telemetry study [9]-[11] had 6 drivers, **N=Normal, A=Aggressive, D=Drowsy, N1=Normal 1, N2=Normal 2, ***Linguistic Value of Driver’s Score

of scores (partitioned into normal and aggressive+drowsy
behavior). We obtained respective p values of 3.94 x 10~*
and 3.42 x 1073, Thus, the lower p-value obtained with our
proposed approach signifies that it is able to partition the
normal driving scores from the aggressive+drowsy ones in a
better manner compared to the telemetry data.

B. Robustness analysis using Bootstrap Sampling

We validated the drivers’ scores generated by our proposed
scoring system using the Bootstrap sampling. We heuristically
filtered data vectors from Section IV-D for the driver’s trip.
Then, we randomly selected 70% of these data vectors (with-
out replacement) for every driver and the trip, bifurcated by
the type of road. We calculated the overall drivers’ numeric
as well as linguistic trip’s score using our proposed scoring
system. This was repeated 100 times for each driver, trip and
type of road to obtain 100 nine point FOUs for the respective

overall driver’s score (Similar to the nine point FOUs for the
overall score given in Table III).

We calculated the Jaccard’s similarity between the respec-
tive driver’s score for trip and type of road (taken from Table
II) and these respective 100 nine point FOUs, to generate
corresponding 100 Jaccard’s similarity scores. From these 100
Jaccard’s similarity scores, we found the similarity index value
at 95% confidence. For e.g., for driver D1 in Normal driving
behaviour on a motorway road, the similarity index at 95%
confidence was found to be 93.84%. This similarity index is
the robustness value of the score as it indicates how similar
are the resultant FOUs from bootstrapping with respect to the
original one. Similarly, we calculated the robustness values
for all the drivers in different types of behaviours and both
roads. These results are summarized in Table IV. We found
that the proposed scoring system’s scores are highly robust to
significant removal of data (30%), with average robustness in
its formulation of 90%, within a 95% confidence interval.
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Table IV: Overall driver’s score in a trip on Motorway and Secondary for robustness analysis

Driver Behavior® Robustness Driver Behavior®  Robustness Driver Behavior®*  Robustness
Type of Road: Motorway
N 93.84 N 89.47 N 90.67
D1 A 93.03 D3 A 96.81 D5 A 83.26
D 95.34 D 92.41 D 89.53
N 92.56 N 97.87 N 95.19
D2 A 84.32 D4 A 84.26 D6 A 82.13
D 91.57 D 92.14 D 88.53
Type of Road: Secondary
N1 86.78 N1 93.40 N1 89.68
DI N2 79.03 D3 N2 86.54 D5 N2 87.04
A 95.61 A 95.99 A 74.29
D 89.33 D 84.59 D 93.20
N1 89.62 NI 93.21 N1 80.60
D2 N2 85.37 D4 N2 97.20 D6 N2 -
A 96.40 A 91.65 A -
D 93.50 D 88.97 D 80.57

*N=Normal, A=Aggressive, D=Drowsy, N1=Normal 1, N2=Normal 2

C. Existing Per-C vs Our proposed scoring system

As the data source of existing Per-C is a group of people
vs the stream of numeric data value in our proposed scoring
system, hence a fair comparison between the two is from
a conceptual point of view. The differences and similarities
between the two are listed in the Table V, from which it can
be seen that the existing Per-C has some limitations, which are
successfully overcome by the use of proposed scoring system.

D. FOUs with proposed scoring system vs other approaches

We have presented a novel way of obtaining FOUs from a
stream of data values. There exist other methods for obtaining
FOUs from data. Unfortunately, these other methods cannot
be used straight for our proposed scoring system because we
require the FOUs to follow a semantic ordering (bounds) based
on prior information on the semantic partitioning (please see
Section III). It is pertinent that the FOUs must fall within a
set of pre-defined (bounded) linguistic terms. This is to ensure
that each FOU represents the uncertainty (of the membership
degree) associated with each data value belonging to the
linguistic label and the maximum of one adjacent linguistic
label. So, our method produces overlapping between the FOUs
bounded to each linguistic term.

E. Interesting aspect on dealing with real constant data

In the encoder of our proposed scoring system, unique data
values for finding the centroids were used because retention of
the duplicate values introduced a bias towards long continuous
sequences of uninformative observations. In fact, with the
unique data values in the dataset, the percentile rank of the
dataset ranged from 0 to 100. However, with the duplicate
values in the dataset, the percentile rank did not reach 100,
which inhibits the complete coverage of the information scale
(0 to 10) in a natural way. Also, the effect of duplicate
retention was quite pronounced on the shape of the obtained
FOU plots. The duplicate values caused the centroid of the
FOU to shift more towards them, thereby causing only a single

linguistic term to cover almost 60% of the information scale
and one or more of the other linguistic terms’ FOUs to shrink
in size and be limited in 40% of the scale. In our perception,
this is not a fair scoring system.

In many passive real-world monitoring scenarios, a large
amount of collected data is constant and lacks informativeness.
Large sequences of constant data can cause the variables’
frequency distributions to become skewed towards frequent
duplicates. For example, irresponsible driving scores would
be attenuated if the driver performed some risky driving but
cruised during most of the trip. This is due to the linguistic
variables mostly reflecting the variations around the most
frequent values rather than capturing the impact of extreme
behaviours. In the FOU generation, we used distinct values
because they better generalise the information about variations,
rendering evenly distributed IT2 word models that better
reflect what can contextually happen during the driver’s trip.

F. Semantic ordering

In score systems, not all variables affect the overall score
with the same ordering and orientation, and we have accounted
for that in our approach. There is a semantics ordering on the
linguistic terms belonging to a variable. For example, we all
know that semantically, Very Less is smaller than M oderate,
which in turn is smaller than Very High. With this notion
in mind, we see that the orientation of the linguistic terms
for variables AC and C'F are opposite to those of other vari-
ables. The linguistic terms corresponding to the variable AC
(as seen from Table I) are Very Low(ACV), Low(ACL),
Medium(ACM), High(ACH) and Very High(ACE).
From the Fig. SM-4, we see that the FOU for ACV is
located on a lower side of the scale, whereas the location
order for FOUs of other linguistic terms follows the order
ACE > ACH > ACM > ACL. Against this, consider
the variable BR. The linguistic terms corresponding to BR
are Very High(BRE), High(BRH), Moderate(BRM),
Less(BRL) and Very Less(BRV'). However, from Fig. SM-
4, we see that the FOUs of these terms follow the order
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Table V: Comparison of the existing Per-C and proposed novel Per-C

Attributes

Existing Per-C (based on IA, EIA, HMA)

Proposed Novel Per-C

Differences

Generating word models?
Steps in the data part?

Mapping into FOU?

Linguistic terms for aggregation
in CWW engine?
Associated linguistic weights?

Using data collected from a group of people or a single subject
Bad data processing, outlier processing, tolerance limit process-
ing, reasonable interval processing, etc.

By mapping Embedded T1 FSs into the left shoulder, interior
or right shoulder FOU

Generally elicited by the user

Assigned to the variable

From a stream of data values

Removing duplicate data values, finding the centroids using
FCM and calculating the highest and second highest member-
ship degree of each data point.

Estimating left shoulder, interior or right shoulder FOU param-
eters through highest and second highest membership function
values of data points from FCM.

Found based on respective maximum degrees of memberships
of the variables’ numeric values from the input data vector
Can be assigned to the linguistic terms of the variable

Similarities

Aggregation operator in CWW
Engine?
Decoding in the decoder?

Interval weighted average, Fuzzy weighted average or Linguistic
weighted average.
By similarity measure, ranking, or subsethood

Interval weighted average, Fuzzy weighted average or Linguistic
weighted average.
By similarity measure, ranking, or subsethood

BRE < BRH < BRM < BRL < BRYV. This is so
because the variable BR shows an opposite behaviour to that
of variable AC.

VI. CONCLUSIONS AND FUTURE SCOPE

In this paper, we have proposed a novel Per-C based
unsupervised scoring system. Our novel Per-C based system
successfully models the word semantics through IT2 FS word
models, which are automatically generated from a stream of
numeric values, against other models which require collecting
labelled data from people, which has its inherent limitations
[27], [36].

We have also demonstrated the applicability of our proposed
scoring system to the scenario of driver’s score calculation
using real-life data [9], [10]. We chose this scenario because
in some countries, the driving quality (of a driver) is assessed
using a telematics unit fitted inside the vehicle and that has
a direct impact on their insurance premium. A high number
of users seem dissatisfied with the respective score calcu-
lated by the ‘black box’ [37]. Consumer protection services
have highlighted a growing high number of complaints on
this system and the poor confidence of consumers in the
predicted values [38]. On the contrary, with our proposed
scoring system, drivers can naturally perceive, understand and
peruse the relations between the various driving-related inputs
linguistically, adding the desired explainability.

Further, more often than not, the scoring systems have been
treated (in literature) in a supervised manner and have been
developed based on subjective labelled samples coming from
a single or several experts (section V-B). The pre-labelling of
the data may induce bias in the final score. Our novel Per-C
based system is unsupervised and yields objective scores that
are purely data-driven (section V-A).

Nonetheless, the precise numeric data values pertaining to
the variables (used in the system design) may have subjective
interpretations. Their semantic uncertainty is ignored when the
end user is provided with a single numeric data output. Thus,
our novel Per-C based unsupervised scoring system overcomes
this limitation by modelling the semantics of these numeric
data linguistically, in the form of IT2 FS word models. Also,
our proposed system generates linguistic recommendations,

the linguistic information being subjective in nature as “words
mean different things to different people” [27], [36].

When evaluating the resultant scores in a real-world sce-
nario, it was found that these were able to exhibit higher
differences between groups requiring divergent scores (respon-
sible vs. irresponsible drivers) than a state-of-the-art method.
Also, robustness analysis showed resiliency to loss of data.
It is pertinent to mention that our proposed scoring system
is quite general and can be applied to any scoring system or
scenario where IT2 FS word models need to be generated from
a stream of numeric data values, such as monitoring data.

In this work, we have mainly focused on the encoding
and engine part of the Per-C system but in future works,
we will pursue modifying the decoder part to allow other
CWW applications by inter-relating linguistic variables in
different ways. In the decoder section, future developments
could encompass the use of higher-order fuzzy sets, such as
those aimed at incorporating time-dependencies [39]. Another
possible extension of the present work can be developing
assessment metrics for the quality of generated explanations
from a CWW system.
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