Wang, Peng and Yang, Yi and Sun, Wen and Wang, Qubeijian and Guo, Bin and He, Jianhua and Bi, Yuanguo (2024) Federated Learning with Privacy-Preserving Incentives for Aerial Computing Networks. IEEE Transactions on Network Science and Engineering, 11 (6). pp. 5336-5348. DOI https://doi.org/10.1109/tnse.2023.3333887 (In Press)
Wang, Peng and Yang, Yi and Sun, Wen and Wang, Qubeijian and Guo, Bin and He, Jianhua and Bi, Yuanguo (2024) Federated Learning with Privacy-Preserving Incentives for Aerial Computing Networks. IEEE Transactions on Network Science and Engineering, 11 (6). pp. 5336-5348. DOI https://doi.org/10.1109/tnse.2023.3333887 (In Press)
Wang, Peng and Yang, Yi and Sun, Wen and Wang, Qubeijian and Guo, Bin and He, Jianhua and Bi, Yuanguo (2024) Federated Learning with Privacy-Preserving Incentives for Aerial Computing Networks. IEEE Transactions on Network Science and Engineering, 11 (6). pp. 5336-5348. DOI https://doi.org/10.1109/tnse.2023.3333887 (In Press)
Abstract
With the help of artificial intelligence (AI) model, aerial computing can help analyze and predict the network dynamics and support intelligent decision-making to improve the performance of 6G space-air-ground integrated networks. Federated learning has been proposed to tackle the challenges of limited energy and data shortage for the application of AI models in aerial computing networks. A critical problem of FL for aerial computing is the lack of incentives due to privacy concerns. On the one hand, the information needed to measure users’ learning quality may be eavesdropped. On the other hand, users’ real costs for determining payments may also undertake inference attacks. In this paper, we design a privacy-preserving and learning quality-aware incentive mechanism for federated learning in aerial computing networks. We propose differential privacy based scheme to protect the privacy of the real cost. In addition, utilize Combinatorial Multi-Armed Bandit (CMAB) algorithm to evaluate the user learning quality without any participant information. Simulation results demonstrate that our scheme can significantly motivate high-quality participants with guaranteed privacy preservation and achieve effective federated learning under the constraint of the limited budget.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | federated learning, aerial computing network, privacy-preserving, incentive mechanism |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 15 Nov 2023 12:54 |
Last Modified: | 11 Dec 2024 18:29 |
URI: | http://repository.essex.ac.uk/id/eprint/36865 |
Available files
Filename: TNSESI-Federated Learning with Privacy-Preserving Incentives.pdf