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Acute Neurorehabilitation Unit,

Division of Neurology,
Department of Clinical Neurosciences,

Centre Hospitalier Universitaire Vaudois
Lausanne, Switzerland

jane.johr@chuv.ch

Karin Diserens
Acute Neurorehabilitation Unit,

Division of Neurology,
Department of Clinical Neurosciences,

Centre Hospitalier Universitaire Vaudois
Lausanne, Switzerland
karin.diserens@chuv.ch

Serafeim Perdikis
Brain-Computer Interface and

Neural Engineering Laboratory,
School of Computer Science
and Electronic Engineering,

University of Essex
Colchester, United Kingdom

0000-0003-2033-2486

Abstract—This work discusses the implications of selecting
particular statistical metrics and thresholds as criteria to
diagnose awareness through Brain-Computer Interface (BCI)
technology in patients with Disorders of Consciousness (DOC).
We report a first analysis of a novel dataset collected to
investigate whether a motor attempt electroencephalography
(EEG) paradigm coupled with Functional Electrical Stimulation
(FES) can detect command following and, therefore, signs of
conscious awareness in DOC. We assessed 22 DOC patients
admitted to the acute rehabilitation unit after a brain lesion over
one or more sessions. We extracted EEG sensorimotor rhythms
and performed a standard open-loop BCI pipeline evaluation,
classifying motor attempt against resting-state trials. We vali-
date this approach by correlating classification accuracy with
the established clinical scale Coma Recovery Scale Revised. We
employ a machine learning (ML)-inspired diagnostic criterion
based on confidence intervals over chance-level classification
accuracy and show that it yields more conservative and,
arguably, reliable inference of Cognitive Motor Dissociation
(CMD) by means of command-following, neuroimaging-based
tools, compared to diagnoses based on clinical assessments or
criteria examining the statistical significance of brain features
across different mental states.

Index Terms—disorders of consciousness, awareness, brain-
computer interface, motor attempt, chance-level

I. INTRODUCTION

Victims of traumatic brain injury or cerebrovascular acci-
dents are prone to neurological disorders, including DOC
that affect a patient’s awareness of themselves and their
environment. Consciousness can be classified through two
components; arousal (being alert, awake and attentive) and
awareness (perceive, feel and be cognizant of events) [1].

DOC are characterised by disruptions along these two com-
ponents. Brain injuries may leave the victim in a coma
(characterised by no eye opening, or no meaningful inter-
action with environment), in a so-called Vegetative State
(VS), characterised by eye opening, but absence of purpose-
ful responses, or in a Minimally Conscious State (MCS)
which comprises a spectrum of conditions characterized by
increased, even if minimal, environmental awareness com-
pared to VS [2]. As such, coma can be described as the
physical absence of arousal and thus awareness. Whereas
VS, nowadays preferably termed Unresponsive Wakefulness
Syndrome (UWS), can be defined as the recovery of arousal
in the absence of any physical sign of awareness [1].

Diagnosis of these patients is mainly done through clini-
cal instruments such as the Coma Recovery Scale-Revised
(CRS-R) and the Glasgow Coma Scale (GCS) [3]. How-
ever, these diagnostic tools suffer great limitations [4]–[6].
Most importantly, due to the fact that they are strongly
dependent on the patients’ ability to elicit motor responses,
they are particularly vulnerable to ”false negative” (type-II)
errors [5]. Literature suggests that up to 37-43% of patients
with DOC may be misdiagnosed [3], [7], [8]. Several studies
have early postulated that awareness or intentionality may
manifest even in the absence of motor functions [9]–[12].
To confirm this hypothesis and improve diagnostic accu-
racy in DOC, researchers have proposed several techniques
relying on neuroimaging. In seminal works, the authors
of [10] and [11] showed that functional Magnetic Resonance
Imaging (fMRI)-based assessment could reveal cases that
had been erroneously categorised as UWS. These and other



studies employing functional or electrophysiological brain
imaging [6], [13] have provided mounting evidence that
covert awareness may be concealed by a patient’s inabil-
ity to produce voluntary motor output spontaneously, or
in response to commands and/or stimulation, a situation
identified as CMD [14], [15]. Cases of CMD where the
afflicted individual is known (or likely) to maintain high-level
cognitive function are referred to as (complete or incomplete,
depending on whether there is residual motor activity and/or
spared communication channels) Locked-in Syndrome (LIS).
It naturally follows that, in LIS, assuming intact or nearly
intact cognition and vigilance, imaging-based paradigms can
be further leveraged to enable independent communication by
converting a diagnostic paradigm from open-loop (“offline”
brain activity processing, no patient feedback) to closed-loop
(real-time, “online” processing with feedback). Effectively,
there exists an apparent and recognized affinity between
neuroimaging-based diagnostics for DOC and BCI in both
formalization and purpose [9], [16], which accounts for a
“’de facto’ merge of the two fields [6].

Functional imaging has offered the first breakthrough in
this research line [10], denoting that an–assumed–VS patient
was observed to be aware via the use of fMRI, since areas
of the motor cortex were determined to be active when the
patient was instructed to execute motor tasks [10]. fMRI has
dominated and is still widely in use in this domain [17]–
[20], as it is still broadly accepted that high resolution imag-
ing (including Positron Emission Tomography (PET) [21])
offers greater possibilities for discerning even the slightest
evidence of awareness of people with DOC. However, EEG is
gradually emerging as the method-of-choice, offering similar
results with fMRI [22] while being less expensive, always
non-invasive and less obtrusive, portable and more practi-
cal [6], [23]–[27]. Certain studies have obtained comparable
results in overlapping patient samples employing both fMRI
and EEG [20]. Hybrid neurological methods [28] and more
invasive electrophysiological techniques [29] have also been
used to detect consciousness in DOC patients.

Another important distinction in the typology of imaging
paradigms for DOC is whether the protocol targets some
kind of passive brain process in response to stimulation
that may correlate with awareness [5], [30], [31], or more
actively seeks to assess the ability of the patient to en-
gage into command-following or, in general, tasks requiring
higher-level cognitive processing, like in a typical BCI. The
former approaches have the advantage of exerting lesser
demands on the subject, and thus may be less sensitive
to a patient’s current vigilance and cognitive capacity; on
the other hand, demonstrated command-following ability
of an assumed DOC patient is rightfully considered as a
more definite marker of this person’s awareness. As recently
surveyed in [6], not only are EEG-based DOC diagnostics
gaining ground , but more recently, the paradigms and ML
architecture of the neighboring BCI field are adopted, which
has naturally led to the assimilation of evaluation metrics
regularly used in BCI: predominantly, classification accuracy
between samples/trials of different mental tasks.

Neuroimaging-based diagnosis for DOC entails a funda-
mental caveat: a profound lack of ground truth. In other
words, there is no diagnostic metric that can be considered as
golden standard and which can serve as the absolute measure
of evaluating novel approaches. Established clinical scales
like CRS-R and GCS are still the most reliable and accepted,
but the aforementioned suspected tendency of Type-II errors
is what has motivated the search for alternative approaches
in the first place. New clinical instruments like the Motor
Behaviour Tool (MBT) [32] have also been introduced to
address this fallacy, but they require themselves validation
by independent, reliable methodologies. Effectively, in the
absence of any universally acceptable standard, researchers
seek “weak” validation by showing that a new method tends
to agree with the outcomes where an ensemble of other
methods seem to also converge to. For this reason, most
literature (as also this work) reports findings contrasted to
CRS-R, GCS and different imaging methods simultaneously.
In that respect, a major projected advantage of command-
following neurodiagnostics for DOC is that, by being exten-
sible to closed-loop control BCI systems [6], [33], [34], they
offer a possible communication channel to “unlock” con-
scious/aware LIS/CMD patients, who can then self-confirm
a CMD diagnosis and, thus, progressively the validity of the
overall approach.

Still, the lack of unquestionable ground truth renders the
problem of neuroimaging-based DOC diagnosis to essentially
be a “game of thresholds”. More specifically, one can identify
two main avenues for identifying awareness with brain imag-
ing, command-following paradigms: either statistical testing
is performed on brain features quantifying whether these
are “’significantly different’ between an active/target and a
control/non-target mental task or response [11], [15]; or, an
ML model is employed to classify brain patterns into the
corresponding categories, and the classification accuracy is
thresholded to assess whether a patient is identified as CMD
or unaware/DOC. In the latter case, the expected accuracy
value of a random classifier 1/Nc, where Nc the number
of classes present in the classification task may be used as
threshold [33], with a variety of other classification-based
decision rules proposed, among which thresholds correspond-
ing to some confidence level that the denoted accuracy is not
generated by a random classifier is a popular choice [27],
[35]–[38].

The present work offers two distinct contributions to the
literature. First, we report on the preliminary analysis of
a novel dataset of 22 DOC patients assessing command-
following with a standard EEG, Sensorimotor Rhythms
(SMR), BCI-based processing loop, with the additional nov-
elty of coupling movement commands with rich, somatosen-
sory afferent feedback through FES, conjectured to increase
patient vigilance and potentially also enhance awareness
through feedback training. Second, we compare the inference
output obtained on our data through different criteria includ-
ing clinical scores, classification accuracy with chance-level
control and per-feature significant differences with/without
correction, and discuss the implications of these choices in



the reliability of inferences over the different aspects of DOC
diagnosis.

II. MATERIALS AND METHODS

A. Patients and data

We assessed 22 patients (6 female, age 20 to 75), admit-
ted to the Acute Neurorehabilitation Unit of the Lausanne
University Hospital (CHUV), Switzerland. Written consent
to participate in the study was acquired from the relatives.
The experimental protocol (No 142/09) was approved by the
ethical committee of the Canton of Vaud, Switzerland and
adheres to the principles of the declaration of Helsinki. Data
of another 10 enrolled patients were discarded due to pres-
ence of strong artifacts on the EEG signal. In total we report
on 131 runs/blocks over 47 recording sessions by 22 DOC
patients. All patients underwent repeated behavioral CRS-R
scoring during their hospitalisation by medical doctors. MBT
evaluation was done at admission.

Fig. 1: Experimental setup: (a) Protocol presenta-
tion/recording computer, (b) EEG cap and g.Nautiulus
amplifier, (c) EEG layout, (d) FES device, (e) FES
electrodes.

B. Experimental setup

During an EEG session, patients were lying in their
beds. EEG signals were recorded with a 16-channel active
electrode montage in the standard 10-20 positions covering
the motor cortex (see Fig. 1). The amplifiers used were a
g.USBamp sampling at 512 Hz, and a g.Nautilus wireless
amplifier sampling at 500 Hz (g.tec, Schiedlberg, Austria).
Biphasic FES was implemented with one bipolar channel
through a Motionstim 8 device (MEDEL, Hamburg, Ger-
many). The FES train was delivered at 35 Hz, lasted 2 s and
consisted of a 1 s ramp with linearly increasing pulse width
from 10 to 500µs, followed by 1 s of continuous stimulation.

C. Experimental protocol

Each patient participated in 1 to 8 sessions (average 2.2),
which comprised 1 to 5 runs (average 3). Each run was
about 6 minutes long and consisted of 15 motor attempt trials
randomly interleaved with 15 rest trials. Before each session,
patients were woken up and given verbal instructions to either
attempt unilateral hand movement on the (most) affected side,

or rest following the corresponding auditory cues. Two FES
electrodes were placed on the extensor digitorum communis
of the same-side arm forming a single bipolar channel and
the FES amplitude was adjusted so as to achieve a full
hand extension movement. FES amplitudes varied between
8 and 15 mA. Each trial lasted 5 seconds and started with an
auditory cue played via in-ear headphones, which prompted
(in French) the patient to either move (”bougez”) or to
not move (”ne bougez pas”). Only motor trial offsets were
followed by FES.

D. Data analysis and evaluation

Data analysis was applied separately for each session. EEG
signals were treated with FORCe artifact removal [39], DC
removal and cross-Laplacian spatial filtering. Power Spectral
Density (PSD) of all channels was computed over 1 s sliding
windows with 62.5 (g.USBamp) or 100 ms (g.Nautilus) shift
in the band [4-48] Hz with 2 Hz resolution. For each session,
the 5 best features (pairs of channels/bands) were selected
after Fisher score ranking, excluding candidate features on
(vulnerable to artifacts) channel Fz and bands outside the
physiologically relevant µ (8-12 Hz) and β (18-24 Hz) bands.
Classification accuracy was computed with leave-one-trial-
out cross validation employing Quadratic Discriminant Anal-
ysis (QDA) decoders. The distribution of random classifi-
cation (chance) accuracy is estimated with 100 repetitions
of classification with random label permutation. A patient
was considered as CMD/DOC if accuracy in the session
exceeded/fell-short-of a chance-level criterion derived as the
99.9% percentile of the corresponding session-wise random
accuracy distribution. Exceeding this threshold substantiates
adequate SMR modulation during motor attempt trials to
significantly (in the statistical sense) differ from resting trials,
thus implying that the patient was consciously reacting to the
instruction to move. This criterion reflects a p-value thresh-
old of p = 0.001 for extracting statistical significance of
classification accuracy (i.e., the probability that this accuracy
level can be derived by an ignorant classifier is less than
0.001). We compare inferences acquired with this method
(termed CV A) with CRS-R- and MBT-based assessment, as
well as with a “feature significance”-based method (termed
FS) similar to the one described in [15]. Specifically, we
subject each candidate PSD feature to an unpaired, two-
sided Wilcoxon rank-sum test. We compare different versions
of this approach with Bonferroni (FS − BF − N ), False
Discovery Rate (FDR) ((FS − FDR − N )) and without
correction (FS−NC−N ), and demanding either a single or
N consecutive bands (N = 1, 3, 7 reported) on at least one
channel to be significant (corrected/uncorrected p = 0.05)
in order to infer CMD. The Methods are further elaborated
in [40].

III. RESULTS

Fig. 2 presents the main, classification accuracy results. As
illustrated in Fig. 2a for the proposed CV A approach, out of
47 sessions and 22 subjects, 12 (25.5%) sessions belonging to
9 (40.9%) different subjects would lead to a CMD diagnosis,



(a) Leave-one-trial-out cross validation accuracy with chance-level. (b) Leave-one-sample-out cross validation accuracy with chance-
level.

Fig. 2: Classification accuracy across all subjects and sessions. Chance-level in session-wise red limit lines.

as the session-wise accuracy (blue bar height) exceeds the
permutation-based chance-level for p = 0.001 (bar-wise red
lines). Importantly, patients S5, S20 for whom both CRS-R
and MBT agree are in coma and thus act as controls in
our dataset, are indeed found to be DOC (non-CMD) with
CV A. Fig. 2b shows the equivalent results with conventional,
leave-one-sample-out cross-validation. The large PSD win-
dow overlapping imposed here leads to large dependence
of consecutive feature values, resulting in dependent sam-
ples present in both training and testing folds. This yields
seemingly over-optimistic results, where in 37/47 (78.7%)
sessions and 19/22 patients (including coma patients S5, S20
and excluding S14, S18, S19 for whom the correct CV A
evaluation yields the same outcome) a CMD diagnosis would
be obtained.

(a) Above-chance accuracy. (b) Accuracy>50%, CRS-R<12

Fig. 3: Correlation of classification accuracy with CRS-R.

Fig. 3 shows an emerging (marginally non-significant)
correlation between classification accuracy and CRS-R (r =
0.25693, p = 0.081268). In Fig. 3a we mark in red, sessions
found to be CMD with CV A and in 3b sessions with above-
average accuracy and below-average CRS-R (13.8, hence, the
possible “false negatives”). This seems to further validate the
outlined approach, since a fairly strong CRS-R vs accuracy
correlation indicates both metrics capture the same main
trends of awareness in a patient population, but the known
Type-II error shortcoming of CRS-R prevents this correlation
from being stronger and statistically significant.

Fig. 4, provides favourable evidence for the soundness of

this analysis, confirming by example that patient sessions
resulting in CMD diagnosis and exhibiting high classification
accuracy will also show the anticipated, neurophysiologically
relevant SMR patterns of activity, similar to those manifest-
ing in able-bodied BCI users performing motor attempt or
imagery [40]. Specifically, “textbook” strong, lateral Event-
Related Synchronization/Desynchronization (ERD/ERS) ac-
tivation (Fisher score feature discriminancy between motor
attempt and resting trials) manifests in the µ (8-12 Hz) and
β bands (14-28 Hz) (mostly contralateral, with a weaker
ipsilateral component) of CMD patients S4, 1 and S7, 2. On
the contrary, coma patient S5 and the participant exhibiting
low accuracy, show no signs of relevant SMR modulation,
and are classified as DOC with our CV A method.

Fig. 5 shows that the MBT assessment classifies all, but
two (S5, S20) patients as CMD, suggesting that this tool may
be over-sensitive and prone to Type-I, false positive errors.
It is confirmed that CRS-R fails to identify potential CMD
cases at admission (of note, the % illustrated in these first
two–pre-EEG evaluation–bars refer to the 22 subjects, not
the 47 sessions referred to by the rest of the bars in the
figure). CRS-R seems to misdiagnose CMD even as some
of the patients seem to gradually emerge from UWS/MCS,
since only S17 is determined by CRS-R to be CMD both
at admission and after 3 EEG sessions. This subject is
confirmed to be CMD by CV A along with another 8 sub-
jects (having at least one above-chance session each, 12/47
in total): S1, S3, S4, S7, S10, S12, S13, S17, S22. These 9
subjects were considered as either MCS or even UWS by
CRS-R. Overall, CV A seems to be able to reveal several
latent CMD and potential LIS cases missed by CRS-R, while
being more conservative than the MBT. On the contrary,
all variations of the method relying on per-feature extrac-
tion of statistical significance, even when using conservative
Bonferroni–as opposed to FDR–correction and cluster-based
analysis requiring larger band ranges to be consistent, seem to
be over-optimistic in diagnosing awareness. Of note, even the
most conservative versions FS−BF−7 and FS−FDR−7
consider coma patient S5 as being CMD, contradicting all
other tools (CRS-R, MBT and CV A).



(a) µ band for Subject S4,1 (b) β band for Subject S4,1 (c) µ band for Subject S7,2 (d) β band for Subject S7,2

(e) µ band for Subject S5,1 (f) β band for Subject S5,1 (g) µ band for Subject S19,1 (h) β band for Subject S19,1

Fig. 4: Topographic SMR distribution for CMD (S4,1, S7,2), coma (S5,1) and UWS (S19,1) subject/sessions.

Fig. 5: Comparison of DOC diganosis with clinical, feature-
based and chance-level accuracy-based methods.

IV. DISCUSSION

Our analysis of a new DOC dataset verifies the literature
regarding the potential of EEG paradigms, in particular those
based on open-loop SMR BCI processing, to detect CMD
in populations considered DOC with conventional clinical
assessment. Although further analysis will be needed to
support such a claim, it could be that the novelty of including
the FES as feedback modality may account for the larger
percentage of CMD misdiagnosis uncovered here compared
with some of the similar works in the state-of-the-art [35],
[37].

This work underlines several potential red flags on the
statistical analysis often employed for evaluating DOC with
neuroimaging. First, we have shown how subtle mistakes
like violating fold-independence in cross-validation can cause
the diagnostic capacity of an otherwise sound method to
collapse. Most importantly, our results suggest that criteria
relying on solid measures of confidence intervals around
chance-level ML-based classification accuracy extraction will

tend to be more conservative than those based on extracting
statistically significant differences of individual features, even
when the latter are subjected to the strictest correction. These
results seem to be confirmed by the majority of literature
which tends to be more (potentially, extremely) optimistic
when adopting the latter approaches [15] compared to the
former [27], [35]–[38]. Last but not least, we confirm all
these works that already pinpointed the need to define and
employ chance-level bounds as opposed to merely using the
expected accuracy value as threshold [33].
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