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Abstract—Brain-computer interfaces (BCIs) are increasingly
deployed in stroke rehabilitation. Most BCIs rely on batch,
supervised parameter estimation which requires large, labelled
brain data associated with the motor tasks to be performed dur-
ing the therapy. Consequently, BCI-based rehabilitation regimes
include an initial calibration session aimed at collecting the
necessary data to train the BCI model. This calibration process
is time-consuming and tedious, especially considering the strict
logistical constraints in a clinical setting. This paper investigates
the possibility of calibration-free BCI regimes rendering re-
calibration sessions entirely redundant. We compare the decoding
performance of three different approaches to calibration-less
BCI, which exploit either the notion of adaptation or the classical
results of event-related synchronization/desynchronization, to
that of a conventional, calibration-based classification method, on
a large dataset of 26 (sub-)acute stroke patients performing 15
therapeutic sessions. Our results show that calibration-less BCI
for stroke treatments is not only possible, thus lifting a major
practical barrier hindering the translation of this technology to
clinics, but may also be superior to the standard, calibration-
based methodology in terms of classification accuracy.

Index Terms—brain-computer interface, calibration, stroke
rehabilitation, event-related spectral perturbation (ERSP), Ma-
halanobis distance, adaptation

I. Introduction
Brain-Computer Interface (BCI) technology has been effec-

tively used to restore motor function in patients with severe
motor impairments caused by stroke [1]. It is hypothesized
that BCI-based stroke therapies foster beneficial neuroplas-
ticity promoting recovery by reinstating the intention-action-
perception loop of natural motor control that has been broken
due to the brain lesion. This is achieved as BCI-driven, rich
afferent feedback is temporally coupled to the efferent motor
commands decoded by the BCI sparking activity-dependent,
associative plasticity [2]. In particular, motor rehabilitation
for the upper limb has been largely grounded on “reward-
ing” sound Event-Related Synchronization/Desynchronization
(ERD/ERS) modulation of sensorimotor rhythms (SMR)
through a wide range of feedback types and end-effectors [2]–
[8].

SMR-based BCI conventionally requires a calibration phase
before it can decode motor intentions from raw electroen-
cephalography (EEG) signals in real-time [2], [9]. This is
due to the usual employment of supervised machine learning
methods to learn the parameters of the BCI model, techniques

that require labelled, ground truth data. During calibration, the
subject is asked to repeatedly rehearse the same motor tasks
that will be later exercised and detected by the BCI in the
therapeutic sessions, while the examples of the brain activity
corresponding to these tasks are recorded and labelled by the
experimental protocol. Furthermore, due to the non-stationary
nature of brain activity, the performance of trained BCI
models may soon degrade, and novel calibration procedures
are necessary to reinstate decoding accuracy [10], [11]. Even
if re-calibration is grounded on recent “online”, closed-loop
data derived from the therapeutic sessions, so that additional
re-calibration sessions for data collection are not needed, the
re-training process is likely to demand the presence of expert,
technical personnel, increasing the regime’s complexity.

Re-calibration sessions are time-consuming and demotivat-
ing for patients, as they do not involve closed-loop control [11].
The need for calibration reduces the therapy’s intensity as
therapeutic sessions need to be pushed back to interleave
calibration ones or classifier re-training. Overall, the cali-
bration stage and/or the re-calibration/re-training procedures
pose a severe obstacle considering the stringent logistical and
financial constraints in clinics. Therefore, the identification of
calibration-free methods is essential for the technology transfer
of BCI-based clinical interventions.

The issue of calibration-less (“zero-training”) BCI has been
studied as one of the main motivations behind the BCI adapta-
tion literature [12]. However, most of these investigations are
based on able-bodied users [13]–[16] and primarily regard as-
sistive applications (e.g., there is a focus on unsupervised adap-
tation [17], largely unnecessary in the rehabilitation context
where labels can be available). Very few works have addressed
the problem specifically within the BCI-based rehabilitation
context, employing either subject-specific adaptation [18] or
various forms of transfer learning [19], [20]. Of note, although
EEG markers of motor imagery/attempt in stroke patients tend
to be similar to those of able-bodied individuals, they are likely
to be weaker and less consistent, leading to lower single-trial
classification accuracy [2], [21]. Hence, SMR classification
in stroke poses greater challenges than in general SMR BCI
literature.

Here, we investigate the possibility of calibration-free BCI-
based methods for stroke rehabilitation emphasizing the use
of algorithms that enable the immediate launch of therapy
without imposing any prerequisite. In particular, we wish to



discard the need for either previous patient data for adaptation,
or subject-unspecific data for transfer learning. We report on
a novel dataset of 26 sub-acute stroke patients undergoing 15
therapeutic sessions. We compare the classification accuracy
obtained online by the conventional calibration method, to
that of three different calibration-less schemes based on i)
a supervised adaptive algorithm ii) Event-Related Spectral
Perturbation (ERSP) extraction, and iii) Mahalanobis distance
of SMR patterns from resting-state distributions. Our findings
indicate that calibration-free BCI-based rehabilitation algo-
rithms can be established, discarding calibration needs without
compromising performance.

II. Methods
A. Participants

We assessed 26 acute/sub-acute stroke patients with severe
hemiplegia (16 male, 62 ± 11 years old) recruited in 5 clinical
centres in Germany, Switzerland and Italy. All patients signed
informed consent and the study was approved by the local
ethical committees. The study was designed as a double-blind,
randomized controlled trial. The basic inclusion criteria were
first unilateral stroke leading to severe hemiparesis (Medical
Research Council (MRC) muscle strength <= 2 points for ex-
tensor muscles of the affected hand), and admission maximum
3 months post-stroke. Patients were assigned to two groups,
BCI (intervention arm, 𝑁 = 13) and Sham-BCI (control,
𝑁 = 13) using Frane’s minimization algorithm for randomized
allocation, balancing several identified confounds (gender, age,
lesion side, lesion site, etc.).

B. Study and BCI protocols
Each patient underwent 15 therapeutic sessions over 3-

5 weeks involving the training of a wrist/palm extension
movement, and 3 screening sessions (pre-intervention, post-
intervention, and 6-month follow-up) where the motor and
resting-state tasks were performed in open-loop with high-
density EEG, and clinical assessments were carried out. Here,
only the data derived from each participant’s 15 therapy
sessions are used. The primary outcome was Fugl-Meyer
Assessment of the upper limb, with several other clinical scales
(e.g., MRC) monitored at the three endpoints.

The therapy comprised repetitions of BCI-triggered,
Functional Electrical Stimulation (FES)-actuated movements
(wrist/palm extension of the affected upper limb by stimulating
the extensor digitorum communis muscle and nearby muscle
sites of the forearm). The EEG and FES (Motionstim 8, Medel,
Germany) hardware/software configuration (Fig. 1), the BCI
processing, the group design (BCI vs Sham-BCI) and the
experimental protocol are also partially reported in [21] and
follow closely those described by Biasiucci et al. [2].

Fig. 1a illustrates the experimental setup of a therapeutic
session. In these sessions, brain activity was acquired via 16
active EEG channels over the sensorimotor cortex (Fig. 1b):
Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3,
CP1, CPz, CP2, and CP4 according to the international 10-20
system with reference on the right ear and ground on AFz. The

EEG was recorded with a g.USBamp system (g.Tec, Austria)
at 512 Hz. Raw signals were bandpassed between 0.1 Hz and
100 Hz, and notch-filtered at 50 Hz.

For each trial repetition, patients were requested to per-
form attempted wrist extension movements of the affected
hand [2], [21], whose SMR EEG correlates have been shown
to be similar to those elicited during Motor Imagery (MI)
(ERD/ERS) [22]. A therapy session included 3-7 runs (blocks)
comprising 15 trials each. As shown in Fig. 1c, each trial
started with a 2 s “fixation stimulus” epoch, during which
patients were instructed to fixate a cross in the middle of
the screen and prepare for the upcoming movement attempt,
avoiding inducing any artifacts. This was followed by a 1 s
“cue” epoch (arrow pointing upwards) instructing the user
to commence their motor attempt. In the motor attempt
epoch, the BCI was continuously classifying in closed-loop
the patient’s SMR as either “rest/no-movement” or “motor
attempt”. Consecutive classification decisions were integrated
with an exponential smoothing filter, the output of which was
visualised through a grey, “liquid-cursor” bar and fed back
to the patient, as in [2], [9]; unlike its predecessor study in
chronic stroke [2], in this case, patients were shown visual
feedback, as depicted in Fig. 1c. The motor attempt epoch
would successfully finish either when the patient was able to
produce adequate and timely ERD/ERS in order to push the
liquid cursor upwards enough so as to reach a re-configurable
(by the therapist) threshold, or when the epoch would time-out
(7 s). Only in the former case, reaching the threshold would
trigger the FES wrist extension movement and show a trial-
end/decision-reached feedback for 1 s. The end of the motor
attempt epoch was followed by an inter-trial interval lasting
randomly between [3, 4] s, before the next trial takes place.

Before the therapy, a calibration session (3-4 runs) was
imposed to collect data for training the BCI classifier. These
runs interleaved, in random order, 15 motor attempts with
15 “rest”/no-movement trials, all of which lasted 4 s, with
fake/positive feedback. The trial structure and feedback graph-
ics were otherwise identical to those of the therapy runs.
Importantly, as the results reported here refer to the on-
line/therapy runs only, the fixation-cross epoch is used to
derive instances of “rest”/“no-move” data.

A new BCI decoder was manually produced every week
using data from the preceding week’s therapeutic sessions so
that our calibration-based benchmark already reflects a mild
(”offline”, periodic, subject-specific) adaptation. Of note, re-
calibration was always performed by the same BCI expert
and extended to Sham participants (for effective blinding).
Participants in both groups underwent the exact same protocol,
wearing the same apparatus; the only difference is that, in the
Sham-BCI group, FES-based movement execution is triggered
at random, and does not depend on the patient’s SMR modula-
tion. This was achieved by “playing back”, for each participant
in the Sham group, the EEG data of a matched patient in the
BCI group.



(a) Experimental setup of therapy sessions. (b) EEG placement.

(c) Trial timeline of a therapeutic run.

Fig. 1: Experimental and protocol setup.

C. EEG processing, feature extraction and selection

EEG channels are spatially filtered with a cross-Laplacian
derivation, where the uniformly weighted sum of the orthog-
onal neighbouring channels is subtracted from each channel.
The Power Spectral Density (PSD) of each Laplacian channel
was estimated during the movement attempt or no-movement
period for the frequency bands 4 to 48 Hz with 2 Hz resolu-
tion (23 bands) in sliding 1 s windows shifting by 62.5 ms with
the Welch method and identical parameterization to [2]. For
the actual therapy sessions, the most discriminant EEG spatio-
spectral features were selected to build the BCI classifier as
in [2], [23], [24].

For the calibration-less methods introduced here, to elimi-
nate the supervised feature selection procedure that is part of
conventional calibration and alleviate overfitting, we reduce
the feature vectors to 24 PSD features by considering only
12 lateral channels–FC3, FC1, FC2, FC4, C3, C1, C2, C4,
CP3, CP1, CP2, and CP4–and 2 broad–averaging the original

feature space–frequency bands: 𝜇 (8-14 Hz) and 𝛽 (18-24 Hz).

D. Calibration-based and calibration-free methods
We compare three calibration-less schemes to the

calibration-based approach that was actually used during on-
line BCI operation at the therapeutic sessions. The calibration-
free methods concern i) a supervised adaptive algorithm rely-
ing on Quadratic Discriminant Analysis (QDA) ii) extraction
and thresholding of ERSP, and iii) Mahalanobis distance of
SMR patterns from resting-state distributions. The following
sections describe each of these algorithms in greater detail.

E. Calibration-based classification
The calibration-based method is the one presented in [2].

PSD feature vectors were classified with a Gaussian mixture
model (GMM) framework [24]. For each incoming PSD
sample at time 𝑡, the output of the GMM resulted in a
posterior probability distribution over the two mental classes
𝑐 (motor attempt “move”, resting “no-move”) 𝑝𝑡 (𝑐 |xt) =



Fig. 2: Exemplary topographical SMR distribution for two
patients with strong (left) and weaker (right) ERD/ERS.

[𝑝𝑚𝑜𝑣𝑒
𝑡 , 𝑝𝑛𝑜−𝑚𝑜𝑣𝑒

𝑡 ]. Each mental class is represented by 4
Gaussian units. Uniform priors for the classes and mixture
coefficients are assumed, as well as shared, diagonal co-
variance matrices. The centroids of the Gaussian units are
initialized by means of self-organizing map clustering and their
covariance matrices are subsequently computed as the pooled
covariance matrices of the data closest to each prototype.
Finally, the distribution parameters are, iteratively re-estimated
through gradient descent so as to reduce the mean square
error (MSE) [25]. The training of the Gaussian classifier stops,
if the MSE change after each iteration is not improving,
or after 20 iterations at maximum [24], [25]. As already
described, during the actual therapy, posteriors 𝑝𝑡 (𝑐 |xt) were
further processed with an evidence accumulation framework
(exponential smoothing) to drive the feedback and the FES;
for the purposes of this work, each sample xt is classified
as belonging to the mental class with the highest posterior
probability, in order to extract classification accuracy.

F. Supervised adaptive QDA
Online parameter estimation of the BCI model discards the

need for re-calibration sessions and presents what is probably
the most straightforward avenue towards calibration-less BCI-
based rehabilitation. Since in the context of a rehabilitation
protocol motor tasks are instructed and not self-paced, BCI
adaptation can proceed in a supervised manner, which sim-
plifies the algorithmic design and guarantees convergence
properties [11], [17]. To represent the BCI adaptation approach
in our comparison, we here devise an adaptive method based
on QDA.

Specifically, we accumulate the latest available 2000 PSD
samples xt derived by elapsed motor attempt (“move”) and

fixation (“no-move”) epochs in the ongoing and previous
runs of a participant’s data. xt regards the 24 broad-band,
lateral feature vectors employed also for the other calibration-
less methods. The classifier is updated during the inter-
trial interval every time 3 new trials are completed. The
update consists in selecting the 5 (out of 24) best features
according to 𝑟2 separability and subsequently computing on
these further reduced space x′t the mental class-specific mean
vectors/centroids 𝜇c and full covariance matrices Σ𝑐 (with
Oracle Approximating Shrinkage [26] to counteract overfitting,
especially while the adaptation buffer is mostly empty at the
beginning of adaptive learning). Effectively, a multivariate nor-
mal distribution 𝑁𝑐 (𝜇c, Σ𝑐) is fitted to the data of each class
(“move”, “no-move”), which constitutes the generative dual of
a QDA classifier. Similarly to the calibration-based approach
(see Section II-E, posteriors 𝑝𝑡 (𝑐 |x′t, 𝜇c, Σ𝑐) are derived at
each time 𝑡, and the class exceeding a probability of 0.5 “wins”
the corresponding sample. The PSD samples of the first 3
trials of the simulation where no adaptive classifier exists are
excluded from the calculation of classification accuracy.

G. ERSP-based movement detection
ERD/ERS refers to brain oscillatory activity responses in

specific frequency bands and cortical locations that are widely
used in SMR BCI. Strong ERD/ERS activation during motor
tasks is distinguishable from the “resting” state and even
distinct of the particular motor action performed [22]. ERSP
refers to numerically stable approaches to quantify ERD/ERS
phenomena describing the relative change in the EEG power
following some endogenous motor task and reflecting a mea-
sure of the deviation of the bandpower relative to a baseline
period. Here, we adapt an ERSP definition as:

𝐸𝑅𝑆𝑃
𝑓
𝑡 =

|𝑥 𝑓
𝑡 − 𝜇

𝑓
𝑛𝑜−𝑚𝑜𝑣𝑒 |

𝑠
𝑓
𝑛𝑜−𝑚𝑜𝑣𝑒

(1)

where 𝜇
𝑓
𝑛𝑜−𝑚𝑜𝑣𝑒, 𝑠

𝑓
𝑛𝑜−𝑚𝑜𝑣𝑒 are the mean and standard devia-

tion of the PSD feature 𝑓 (for all 𝑓 among the aforementioned
24 features) retrieved in the preceding fixation epoch of the
motor attempt trial where sample xt belongs. Effectively,
𝐸𝑅𝑆𝑃

𝑓
𝑡 represents the z-score of motor attempt samples with

respect to the most recent estimate of the “rest” distribution for
a particular spatio-spectral feature [27]. This metric relies on
the notion that motor attempt periods should generate large
z-score values, well outside high-density PSD value area of
the no-movement distributions.

As 𝐸𝑅𝑆𝑃
𝑓
𝑡 is a univariate metric calculated individually

for each feature 𝑓 , we examine 3 variants of decision mak-
ing taking into account the evidence by all features: either
thresholding the–across features–average or the maximum, or
individually thresholding features and produce a final “move
vs no-move” decision through majority voting.

H. Mahalanobis distance movement detection
The third calibration-less approach tested resides on the

same idea, but directly derives a multivariate metric to
quantify the deviation of a sample xt from the “resting



Fig. 3: Average and standard deviation of balanced accuracy for all methods.

state” through the sample’s Mahalanobis distance [28] 𝐷 (xt)
from the (covariance-shrinked) multivariate normal distribu-
tion 𝑁 (𝜇𝑛𝑜−𝑚𝑜𝑣𝑒, Σ𝑛𝑜−𝑚𝑜𝑣𝑒) of the preceding fixation epoch,
which is subsequently thresholded:

𝐷 (xt) =
√︃
(xt − 𝜇𝑛𝑜−𝑚𝑜𝑣𝑒)𝑇 ∗ Σ−1

𝑛𝑜−𝑚𝑜𝑣𝑒 ∗ (xt − 𝜇𝑛𝑜−𝑚𝑜𝑣𝑒)
(2)

III. Results

Fig. 2 represents the average Fisher Score separability of
PSD samples between the move and no-move mental classes
in the 𝜇 (8-14 Hz) and 𝛽 (16-24 Hz) bands for the two patients
exhibiting the highest (left) and lowest (right) classification
accuracy with the calibration-based approach actually used
during the therapy. It provides favourable evidence for the
soundness of the motor tasks performed by patients in the
study. Specifically, both patients showcase prominent SMR
modulation in the anticipated 𝜇 and 𝛽 bands, which is lat-
eralized (mostly contra-lateral–the affected hand is the right
hand for Patient 1 ad the left one for Patient 2–but, also
with a strong ipsilateral component, especially for Patient 1),
as expected for regular motor EEG correlates. Furthermore,
the magnitude of SMR separability is consistent with the
classification accuracy obtained for these two patients, where
high accuracy is accompanied by neurophysiologically relevant
SMR patterns of activity, similar to those manifesting in able-
bodied and/or spinal cord injury BCI users performing motor
imagery [9], [17].

With regard to the comparison among calibration-based and
calibration-free methods, in order to account for the class
imbalance between motor attempt and no-movement intervals
in terms of the number of samples available in each category
in our dataset, we report ”balanced” classification accuracy
(average of the true positive and true negative rates of the
obtained confusion matrix for each patient and algorithm).
For each method, we provide results for a single, optimized
threshold applied to all subjects and sessions, so that the
proposed methods involve no learning of (hyper)-parameters

other than what can be seamlessly computed in a standard
protocol.

Fig. 3 presents the average, method-wise balanced classi-
fication accuracy across patients. Evidently, the calibration-
free algorithms proposed here are competitive to a standard,
calibration-based approach. Specifically, the adaptive algo-
rithm is significantly superior (𝑝 = 0.005) and the ERSP-
Mean marginally so (𝑝 = 0.07, paired, two-sided t-test). The
Mahalanobis distance method did not perform better than
a random classifier due to intense overfitting, in spite of
using covariance shrinkage for regularization; however, the
successful application of univariate ERSP, which shares the
same underlying idea, suggests that it could work with a
reduced feature space and/or longer resting epochs.

IV. Discussion
Our results strongly indicate that a calibration phase for su-

pervised training of SMR BCI classification models, currently
the method-of-choice (also) in stroke rehabilitation protocols
despite the logistic concerns raised, is not really necessary.
Adaptive classification with virtually “zero” calibration needs
(i.e., in this work, only 3 trials are needed to output the
first classifier; fake or no feedback provided for this short
interval should be acceptable in the rehabilitation setting) is
shown to significantly outperform, on average, the standard,
calibration-based BCI. Importantly, methods based on simple
ERSP-inspired movement intent detection from EEG are also
competitive to the supervised classification model; this is a
critical observation, as there can be occasions or individuals
(e.g., increased artifact production due to concomitant deficits
for certain stroke patients, such as spasticity or dyskinesia)
where adaptive approaches may be ill-advised, due to their
vulnerability of adapting to noise.

Our findings substantiate the claim that the calibration
stage in BCI-based rehabilitation regimes, where the natu-
ral availability of labels and the seamless incorporation of
short resting-state epochs allow for supervised adaptation
and ERD/ERS-inspired methodologies, can be spared without
detriment. This conclusion yields considerable impact on the



design and logistics of BCI-based rehabilitation interventions.
Furthermore, our findings have good potential and can be
applied to other BCI-based motor rehabilitation regimes (e.g.,
for spinal cord injury patients). Our future work will focus on
fine-tuning these approaches and extending their evaluation to
bigger datasets.
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