
https://doi.org/10.1007/s10489-021-02623-9

BBW: a batch balance wrapper for training deep neural networks
on extremely imbalanced datasets with fewminority samples

Jingzhao Hu1 ·Hao Zhang2 · Yang Liu1 · Richard Sutcliffe1 · Jun Feng1

Accepted: 15 June 2021
© The Author(s) 2021

Abstract
In recent years, Deep Neural Networks (DNNs) have achieved excellent performance on many tasks, but it is very difficult
to train good models from imbalanced datasets. Creating balanced batches either by majority data down-sampling or by
minority data up-sampling can solve the problem in certain cases. However, it may lead to learning process instability and
overfitting. In this paper, we propose the Batch Balance Wrapper (BBW), a novel framework which can adapt a general
DNN to be well trained from extremely imbalanced datasets with few minority samples. In BBW, two extra network layers
are added to the start of a DNN. The layers prevent overfitting of minority samples and improve the expressiveness of the
sample distribution of minority samples. Furthermore, Batch Balance (BB), a class-based sampling algorithm, is proposed
to make sure the samples in each batch are always balanced during the learning process. We test BBW on three well-known
extremely imbalanced datasets with few minority samples. The maximum imbalance ratio reaches 1167:1 with only 16
positive samples. Compared with existing approaches, BBW achieves better classification performance. In addition, BBW-
wrapped DNNs are 16.39 times faster, relative to unwrapped DNNs. Moreover, BBW does not require data preprocessing or
additional hyper-parameter tuning, operations that may require additional processing time. The experiments prove that BBW
can be applied to common applications of extremely imbalanced data with few minority samples, such as the classification
of EEG signals, medical images and so on.
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1 Introduction

In machine learning, imbalanced data is a very common
problem when training a classifier. A dataset is imbalanced
if there is a difference between the number of training
examples in one class and the number in the other class.
This difference can lead to machine learning algorithms
being biased towards predicting unseen samples as members
of the majority class, a problem which also affects deep
neural networks [1]. The degree of data imbalance can
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be measured by the imbalance ratio, defined to be the
number of examples in the majority class divided by the
number in the minority class. Even with the same imbalance
ratio, the smaller the number of minority class samples,
the harder it is for machine learning algorithms to learn
effective distribution and classification bounds.

In traditional machine learning, imbalanced data has
been well-studied [2, 3]. Approaches include oversampling
[4], undersampling [3], cost-sensitive learning [5], and
ensemble learning [6, 7]. Such methods have also been
applied to deep learning [1]. For example, [8] report a
GAN-based minority sample synthesis method following
the paradigm of oversampling.

Recently, imbalanced dataset processing methods have
been specifically designed for deep learning, for example
those based on loss functions such as focal loss [9], gradient
harmonizing [10], weighted softmax loss [11] and class
imbalance loss [12]. Modified optimizer methods [13] are
another technical solution, such as DM-SGD [14] and
ABSGD [15]. The principle of all these methods is to adjust
the gradient to allow the deep learning method to support
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the imbalanced dataset. However, they all require data
preprocessing or additional hyper-parameters. Additionally,
most of them can only work in situations in which minority
samples are not extremely scarce.

There is therefore a need for an end-to-end neural
network method supporting extremely imbalanced datasets,
that does not require data preprocessing or additional hyper-
parameters, and that is also compatible with existing neural
network systems. We propose the Batch Balance Wrapper
framework (BBW) to meet this need: It is not sensitive to
imbalance ratio, it learns well and it is extremely fast. In
addition, it can handle situations in which there are only a
few minority samples in the dataset.

In BBW, stratified sampling is first used to divide the
training and test sets of an imbalanced dataset. Then,
two new layers are added to the start of an existing
neural network. The first layer performs an adaptive
normalization of the input, improving the expressiveness
of the minority sample distribution. The second layer
diversifies the normalized samples, alleviating overfitting
of the minority class. Finally, the neural network, complete
with the two added layers, is trained using a Batch Balance
(BB) algorithm which samples training data in such a way
that data items in each batch are always balanced during
the learning process. In this way, the learning method is not
biased towards a certain class.

We also propose the evaluation metrics Valuable Conver-
gence Ratio (VCR) and Average False-positive rate of Valu-
able Convergence (AFVC). These measures are intended to
evaluate neural networks on an imbalanced dataset with few
minority samples by using the ‘leave-one-out’ method for
cross-validation. Here, the leave-one-out method is defined
so that it only applies to minority samples.

We tested BBW on three imbalanced binary datasets with
few minority samples, the CHB-MIT Scalp EEG Dataset
(CHB-MIT) [16], the resampled University of Bonn EEG
time series dataset (BonnEEG) [17], and the resampled
First Affiliated Hospital of Xi’an Jiao Tong University
Tuberculosis Chest Radiograph Dataset (FAHXJU) [18].
The maximum imbalance ratio reaches 1167:1 with only 16
positive samples, 200:1 with just 2 positive samples.

We carried out six experiments, all of which use the
DenseNet121 architecture [19] as a baseline model. First,
we demonstrated the feasibility of the proposed approach by
training the baseline both with and without BBW. Second,
we compared BBW to the baseline using the proposed
modified leave-one-out method for cross-validation. Third,
BBW was compared to six existing approaches (down
sampling [3], oversampling [4], class weights [1], focal loss
[9], weighted softmax loss (WSL) [11], and class imbalance
loss (CIL) [12]) for training with unbalanced data. Fourth,
we carried out an ablation study to show the contribution

of different parts of the BBW framework. Fifth, we re-
ran the second experiment using the normal definition of
epoch. Sixth and finally, we measured the performance of
the baseline, this time adopting the normal epoch definition
and constraining learning counts to those used by BBW.

Experiment 1 illustrated the improved learning behavior
of the BBW-wrapped neural network in comparison to the
Baseline. Experiment 2 showed that BBW attained 14-
40% higher VCR and 9-15% lower AFVC. Experiment 3
found that BBW was a better approach than downsampling,
oversampling, class weights, focal loss, weighted softmax
loss, and class imbalance loss. Experiment 4 demonstrated
by ablation that each component of BBW improves the
results, and that the overall BBW is better than its individual
parts. Experiments 5 and 6 suggested that BBW is 16.39
times faster, while in addition the performance is better.

In this work, our primary contributions are:

– We propose the Batch Balance Wrapper Framework
(BBW) for adapting general DNNs, allowing them to be
well trained from extremely imbalanced datasets with
few minority samples.

– We propose the input adaptive normalization layer,
sample diversification layer, and batch balance strategy,
which perform the mechanisms of trainable normaliza-
tion, sample dynamic synthesis, and sample dynamic
balance. They can improve the expressiveness of the
sample distribution of minority samples and alleviate
the overfitting of the minority class.

– BBW is not sensitive to imbalance ratio, and is
extremely fast. It does not require data prepro-
cessing, additional hyper-parameters, or even data
normalization.

– We propose the evaluation measures Valuable Con-
vergence Ratio (VCR) and Average False-positive-rate
of Valuable Convergence (AFVC). Combined with the
proposed minority-class-only leave-one-out cross vali-
dation, they can fairly evaluate neural networks on an
imbalanced dataset with few minority samples.

– Using three different datasets, with balance ratio
as high as 1167:1 (CHB-MIT) and as few as 2
positive examples (BonnEEG), we demonstrate that
BBW achieves better performance compared to existing
methods (downsampling, oversampling, class weights,
focal loss, weighted softmax loss, and class imbalance
loss).

2 Related work

Processing methods for imbalanced datasets have been well-
studied in traditional machine learning. These methods can
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be divided into two main groups, dataset preprocessing-
based methods, and algorithm modification-based methods
[20, 21]. The main idea of dataset preprocessing-based
methods, such as oversampling and downsampling, is to
try to preprocess the dataset to alleviate its imbalance.
Zhang et al. [3] propose several multi-class imbalance
learning methods. The oversampling method attempts to
create more minority samples to alleviate the problem
[4]. The simplest implementation is to randomly repeat
minority samples until the dataset reaches an acceptable
imbalance ratio. The downsampling method attempts to
drop majority samples in order to balance the dataset. A
more sophisticated approach is to delete majority samples
which are far away from the classification boundary.
An interesting development of the resample idea is the
SMOTE method [22] and its variants [23, 24], which can
create reasonable samples based on clustering theory and
interpolation theory. Sun et al. [25] propose an imbalanced
classification algorithm combining SMOTE and Support
Vector Machines. This embeds SMOTE into the iteration
of ADASVM-TW to synthesize samples during processing.
Following the oversample paradigm, Zhou et al. [8]
propose a sample synthesis method based on generative
adversarial networks to augment minority samples of
original imbalanced datasets.

Approaches based on algorithm modification attempt to
improve the classification method to allow it to support
imbalanced datasets, such as cost-sensitive learning [5]
and the ensemble method [6, 7]. Cost-sensitive learning
assigns different costs to the different misclassifications,
thereby adjusting the classification results by minimizing
the total cost. The ensemble method in imbalanced dataset
processing divides the original dataset into a series of
balanced subdatasets, then assembles all the sub-classifiers
to boost the final result [26, 27]. Hayashi et al. [28] report an
imbalanced learning algorithm focusing on the main class,
based on a cluster-based zero-shot classifier. There are also
some classification methods that are inherently insensitive
to imbalance ratio, such as the decision tree method [29].

The above methods are designed for traditional machine
learning, but they can also be used in deep learning.
Buda et al. [1] report the effect of applying traditional
imbalanced processing methods to deep neural networks,
such as the paradigms of oversampling, downsampling,
cost-sensitive learning, ensemble learning, etc. Taherkhani
et al. [30] propose a transfer learning based multi-
class imbalanced classification method by combining an
adaptive boosting algorithm and neural networks. Pérez-
Hernández et al. [31] describe binarization techniques
on neural networks, which convert a multi-class task
into several binary tasks to reduce multi-class imbalance
problems. In recent years, some interesting imbalanced
dataset processing methods specifically for deep learning

have been developed. The methods can be categorized into
two main groups, loss-based methods and optimizer-based
methods. The principle of both categories is to adjust the
gradient to let the deep learning method support imbalanced
datasets. The loss-based method assigns different weights
to each class/sample in order to adjust the loss. In recent
work, this is the most widely followed method for neural
networks supporting imbalanced data. The most successful
instantiation of this idea is focal loss as proposed by [9],
which can automatically decide the weights of each sample
via predicted probability. Following this, Li et al. [10]
propose the Gradient Harmonizing mechanism, which can
adjust the gradient using gradient density. Jia et al. [11]
propose weighted softmax loss, adaptively parameterized
by maximum multi-class imbalance ratio. Zhang et al. [12]
devise class imbalance loss to improve the cross-entropy
loss on imbalanced datasets.

Optimizer-based methods modify neural networks in
order to support imbalanced datasets. Zhang et al. [14]
propose DM-SGD, supporting imbalanced datasets by
actively selecting samples. Qi et al. [15] develop ABSGD,
supporting imbalanced classification by weighting gradients
based on an attention mechanism.

In conclusion, therefore, it should be noted that
the above-mentioned methods require data preprocessing
or additional hyper-parameters, which create the need
for additional calculation or parameter tuning. There
is a need for an end-to-end neural network method
supporting imbalanced datasets, that does not require
data preprocessing or additional hyper-parameters, and is
compatible with all existing neural network systems. The
method we propose can meet these needs, and will be
described next.

3Methodology

In this section, we will explain the proposed Batch Balance
Wrapper framework (BBW). This allows deep neural
networks to learn from extremely imbalanced datasets.
BBW is designed to work with the Batch Balance algorithm
(BB) and stabilize it. The framework is illustrated in Fig. 1.

As shown in Fig. 1, BBW has five parts that are organized
in logical order. The first part of BBW is the stratified
sampling method, which we use to divide the data into
the training set and test set. After this, two new neural
network layers are added to the start of the existing DNN.
The first of these added neural network layers is the input
adaptive normalization layer. The second is the sample
diversity layer. After this comes the pre-existing classifier
DNN whose training performance on imbalanced data we
wish to improve. In our experiments, we use DenseNet121
[19] as an example, but it can be replaced with any DNN
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Fig. 1 Batch balance wrapper
framework

which is a classifier. The final part of BBW is BB, which
makes sure the samples in each batch are always balanced
during the learning process. In the following subsections,
we will show the details and implementation of each part of
the framework.

3.1 Stratified sampling based dataset division

In a very imbalanced dataset that has a small number of
minority samples, the random sampling method, which is
normally used in a balanced dataset for dividing it into
training and test sets, will cause the number of minority
samples in the test set to be small, possibly even zero. This
causes the evaluation metric applied to the test set to be
invalid. Therefore, we use the stratified sampling method for
division so that the test set can maintain the imbalance ratio
of the original dataset. This allows the evaluation metric to
be more credible, and avoids a situation in which it cannot
be calculated from the test set.

In the implementation, we first shuffle the samples of
each class. Then, we divide the shuffled samples into
training subsets and test subsets using a fixed ratio, e.g. 7:3.
Finally, we concatenate the samples of classes in the training
subsets or test subsets to obtain a training set and a test set,
and then shuffle them again.

It should be noted that if the number of minority samples
is too few to divide, the leave-one-out method should be
utilized to select the minority samples for the test set, and
the imbalance ratio of the original dataset should be used to

determine the number of majority samples in the test set. In
this situation, majority samples should be randomly selected
from the original dataset, and the rest should belong to the
training set. These changes will ensure that the training
set has enough minority samples for training. Additionally,
this approach does not require too many models that need
to be trained and evaluated, compared with the standard
leave-one-out procedure. The details of thismodified leave-
one-out method are described in Algorithm 2 in Section 5.

3.2 Input adaptive normalization

In traditional input normalization, sufficient training data
is always required, and it is assumed that this training
data can correctly express the real distribution of test data.
Therefore, the parameters of the normalization method can
be determined from the training set, and those parameters
are directly applied to the test samples. However, in an
extremely imbalanced dataset, the number of minority
samples may be too few to express the real distribution of
the test data, even where the dataset is very large. If the
parameters that we determined from the training set are
directly used, the samples in the testing set will not be
correctly normalized when the value of the testing set is too
large, too small, or has a different statistical profile from
the training set. In such cases, those inputs may produce an
unrepresentative output.

Therefore, our intuition is that if the input normalization
process can be trained together with the neural network,
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the whole system will be more robust in cases where the
minority samples cannot express the correct distribution.We
refer to this as input adaptive normalization, because the
neural network can simultaneously ‘think about’ the input
normalization and feature extraction together. We believe
that neural networks can better adapt to outliers in the
testing set by using the normalization process and forward
process together, even though the number of minority
samples is too few to express the correct distribution.

To implement this process, a parameterizable normaliza-
tion method [32] is used as the first layer of the neural
network. Equations (1) to (3) show the principle of input
adaptive normalization, where xi denotes the input of the
adaptive normalization layer, μ is the mean of the inputs, σ 2

is the variance, w and b are the trainable parameters of the
linear transformation, and yi denotes the output of the layer.
The process can be described as normalizing x into the mean
of zero and the variance of 1, then multiplying x by the lin-
ear trainable parameters. Therefore, we can use the input
adaptive normalization layer to normalize the input of the
neural network, and allow its trainable parameters to learn
the distribution of the input data. Most importantly, those
parameters will be trained together with the neural network.

μ = 1

m

m∑

i=1

xi (1)

σ 2 = 1

m

m∑

i=1

(xi − μ)2 (2)

yi = w
xi − μ√
σ 2 + ε

+ b (3)

As an alternative to (1) to (3), other trainable normal-
ization methods could also be considered. However, this
approach works well with our implementation.

3.3 Sample diversification

In BB, the minority samples will be used many more times
than the majority samples throughout the entire training
process. This will cause the neural network to overfit the
minority class before the majority class is properly learned.
This could also cause the loss to be insensitive to the
minority class, because the majority class, which is reused
less times, can always provide a larger loss. Therefore, our
idea is to apply a random transformation to the input data
that are reused, to ensure that they are not exactly the same
when they are fed into the neural network. Hence, we use a
noise function as the second layer of the network to perform
a random transformation of the adaptively normalized input
data, which is the reason we refer to it as the sample
diversification layer.

In the implementation, we select the Gaussian noise
function as the sample diversification function, which

adds zero-centered, one-variance Gaussian noise to the
normalized input data. Equation (4) shows this principle,
where X is the adaptively normalized input data, X′ is the
noised normalized input data, and R is a random tensor that
obeys the Gaussian distribution.

X′ ← X + R, where R ∼ N (0, 1) (4)

It should be noted that if the noise is too complex, it
will inhibit the neural network’s ability to learn the patterns
in the original data. Similarly, if the noise is too simple,
such that it is easy for the neural network to find the
patterns of the noise, the noise layer will lose the ability
to diversify samples. We believe that the best choice could
be for the noise to be changed over time, because it would
then be hard for the neural network to find such patterns.
However, in this work, the Gaussian noise is sufficient for
our implementation.

3.4 Batch balance

We think that there are two problems that restrict the training
of neural networks on extremely imbalanced datasets. The
first problem is the invalid sampling problem which is the
probability that there is no minority sample in a batched
training set. The second problem is that the majority
samples in the training set can always provide a much
larger total loss than the minority samples, because majority
samples are much larger in number than minority samples.
Our solution is to keep the sample balanced in the batched
training set, to keep the loss fair in different classes. BB
achieves this, working after the side effects of forcing the
data to be balanced are solved by the BBW framework. The
batch, here, is defined as the sample set that is fed to a deep
neural network in one gradient-updating iteration.
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Algorithm 1 shows the process of BB. The algorithm
works in one ‘epoch’. Normally, an epoch is defined as a
stage of training in which all training samples are fed to a
neural network. However, in BB, we define one epoch to
be a stage of training in which all minority training samples
are fed to the network; we use this definition because the
number of majority samples of the training set is decided by
the number of minority samples in Algorithm 1.

The meaning of the input and output variables in
Algorithm 1 can be interpreted literally. The algorithm is
defined on an epoch and returns a model trained on the
current epoch. In one batch of an epoch, we first randomly
sample batchSize

2 samples from the minority training set
without replacement to obtain the batched minority training
subset. Then, we randomly sample batchSize

2 samples from
the majority training set to obtain the batched majority
training subset. Next, we concatenate the batched minority
training subset and batched majority training subset together
to obtain the batched training set. Then, we shuffle the
batched training set, and find the corresponding label of
each sample. Finally, the shuffled batched training set is fed
to the neural network to finish the training process of the
current batch.

Something else of note in Algorithm 1 is that the number
of minority samples in the training set should be divisible by
batchSize

2 . The algorithm works with a binary classification
task; if we want BB to work with a multi-classification task,
we just need to sample data from every class and change
batchSize

2 to batchSize
numberOf Classes

.
Finally, we will outline the BBW framework as a whole

(Fig. 1). In BB, we can deduce that the minority samples
will be reused many more times than the majority samples
before the training processes converge. Therefore, BBW is
designed to stabilize the training process. From the per-
spective of the minority class, BBW looks like an upsam-
pling technique. However, from the perspective of the majo-
rity class, BBW is a downsampling one. The diversification
layer is responsible for sample synthesis, but the BB process
carries out class-based downsampling. The input adaptive
normalization layer normalizes the input, and cooperates
with the feature extracting process. BBW is thus a combi-
nation of components which are able to cooperate with each
other. It is designed for an extremely imbalanced dataset.

4 Datasets

4.1 CHB-MIT scalp EEG dataset (CHB-MIT)

The CHB-MIT Scalp EEG Dataset [16] is an ElectroEn-
cephaloGram dataset with the task of detecting the occur-
rence of epilepsy from an EEG signal. This dataset was
chosen to evaluate BBW because the multichannel brain-
wave data is imbalanced, and in particular the minority
samples are extremely lacking. Another benefit is that
the patient specificity of EEG is significant, which can
fully test BBW on various situations of learning patterns
and let us deeply analyze the principles behind BBW.
Figure 2 shows the schematic diagram of CHB-MIT. One
blue wavy line represents the brainwave of one chan-
nel recorded against time, and there are 23 channels.
The time interval marked in red represents the occur-
rence of epilepsy during this time. The SS

n − SE
n pair

in the figure represents the start and end points of the
seizure.

There are 24 cases in this dataset, but cases 12 and
13 were excluded because they frequently changed their
channel definition during the recording. In each case, there
are dozens of hours of EEG data, but only a few minutes
of seizure onset EEG data. The dataset is thus extremely
imbalanced and has few minority samples, making it an
ideal one on which to test BBW.

This seizure detection task is a typical classification
problem, but the data is successive. To segment the data into
fixed lengths, we used the non-overlapping sliding window
method to cut continuous data, as depicted in Fig. 3. tW
is the sliding window size, and Wn represents the data
fragment n denoted by window n. We labeled the data
fragment T rue if the data fragment contained any seizure
in the time window, otherwise we marked the data fragment
False.

In this work, we set tW to 30 seconds. The statistical
information of the fragments after selecting the data is
shown in Table 1. There are thousands of samples, but few
of them are positive samples. The imbalance ratio can be as
high as 1167.31:1. There are as few as 8 positive samples.
It can therefore be said that this dataset is extremely
imbalanced, and has few minority samples.

Fig. 2 CHB-MIT dataset schematic
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Fig. 3 Non-overlapping sliding window

BBW is compatible with all types of neural networks,
and we use the convolutional neural network in this task. To
feed the data fragments to the CNN, we must express them
in matrix or tensor form. A data fragment is already a matrix
with a time and channel axis, but it only shows the time
and spatial domain information. To expose the frequency
domain information that is hidden in the data fragment, we
used the short-time Fourier transform (STFT) to calculate
the spectrogram of each channel in the data fragment, as
shown in Fig. 4. By stacking the spectrogram of each
channel, we can convert the data fragment into a 3D tensor.
The three dimensions of this 3D tensor are time, frequency,

Table 1 Data fragment statistical information for each case

Case No. Total number Number of Imbalance ratio

of samples positive samples

01 4825 23 208.78

02 4196 8 523.50

03 4523 18 250.28

04 18693 16 1167.31

05 4642 23 200.83

06 7992 17 469.12

07 8030 13 616.69

08 2381 35 67.03

09 8130 12 676.50

10 5980 21 283.76

11 4022 30 133.07

14 3094 14 220.00

15 4643 86 52.99

16 2023 9 223.78

17 2381 13 182.15

18 4121 16 256.56

19 3444 11 312.09

20 3286 15 218.07

21 3907 11 354.18

22 3690 10 368.00

23 3180 20 158.00

24 2534 26 96.46

and channel. It can express the time domain, frequency
domain, and spatial domain (channel) information at the
same time. Now, we believe that the data is clear enough for
CNN to learn its features.

4.2 Bonn EEG Dataset (BonnEEG)

The University of Bonn EEG time series dataset (BonnEEG)
was released by [17] for EEG-based epilepsy detection. It
contains 500 EEG samples, labeled by five related subject
statuses. The EEG data were collected from five healthy
human subjects and five human subjects with epilepsy.
All EEG segments were single-channel signals with an
acquisition duration of 23.6 seconds, with 4,097 sampling
points and a sampling rate of 173.61 Hz. The epilepsy
detection task is abstracted as a binary classification task.
To emphasize the extreme imbalance and the few minority
samples, the dataset is resampled to only 2 minority samples
(epilepsy) with 400 majority samples (normal).

4.3 First affiliated hospital of Xi’an Jiao Tong
University Tuberculosis chest radiograph dataset
(FAHXJU)

The FAHXJU dataset was collected at the First Affiliated
Hospital of Xi’an Jiao Tong University [18]. It contains
1,403 chest radiographs, labeled by the types of tuberculo-
sis. The task is to classify the two types of tuberculosis from
the chest radiograph, which is a binary classification prob-
lem. There are 1,345 majority samples (cavity) and only 58
minority samples (exudation) in the dataset.

5 Evaluation

In extremely imbalanced datasets with few minority
samples, those samples are too few to evaluate the
performance of the method. In this situation, the leave-
one-out method is the only appropriate method to conduct
the cross-validation. However, this method is very time
consuming, especially in a situation in which the total
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Fig. 4 Using a short-time Fourier transform to expose frequency domain information

number of samples is very large. In addition, it is hard to
calculate evaluation metrics such as F-measure, P-R curve,
ROC curve, and AUC for extremely imbalanced data when
using the leave-one-out method.

Our solution is to only use the leave-one-out method for
the minority class, and to randomly sample the majority
samples according to the imbalance ratio. Then, the leave-
one-out positive sample and randomly sampled negative
sample set are concatenated to obtain the test set. Finally,
we calculate the average evaluation score of all leave-
one-out models, as in the normal leave-one-out process.
The detailed core process is shown in Algorithm 2.
leaveOneOutPositiveSample is the minority sample
which we ‘left out’.

The evaluation measures we chose were True Positive
Rate (TPR) and False Positive Rate (FPR). The calculations
are shown in (5) and (6), where TP is the number of
true positive examples, P is the total number of positive
examples, FP is the number of false positive examples, and
N is the total number of negative examples.

T PR = T P

P
(5)

FPR = FP

N
(6)

Although it should be easy to calculate the average TPR
and FPR of all leave-one-out models, a flaw concerning the
stop criterion of this method is that TPR = 1 can always
appear during the epochs of the training process, which may
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lead to bias in our evaluation process. This is because it
will improperly pull up the FPR if TPR = 1 only occurs
at the earlier epochs. Actually, in this situation, instead of
triggering the stop criterion, we prefer to consider that the
model cannot correctly predict the leave-one-out sample,
and believe that the neural network does not converge at
all. Therefore, we defined a filter to handle this situation,
which we refer to as Valuable Convergence. A valuable
convergence must satisfy TPR = 1 and FPR <0.5. The
condition TPR = 1 means the model must correctly predict
the leave-one-out sample, which is the only one positive
sample in the test set. FPR <0.5 means the predictive ability
for negative samples in the test set is just better than random
prediction.

Next, we use the Valuable Convergence Ratio (VCR) and
Average FPR of Valuable Convergence (AFVC) to evaluate
the performance of the learning method. The formulas for
VCR and AFVC are shown in (7) and (8), where Nvc is
the number of valuable convergence, Nlm is the number
of leave-one-out models, Nms is the number of minority
samples in dataset, and each FPRvc is the FPR value of a
valuable convergence. This evaluation method is suitable for
datasets that are extremely imbalanced and have only very
few minority samples.

V CR = Nvc

Nlm

= Nvc

Nms

(7)

AFV C =
∑

FPRvc

Nvc

(8)

In general, the VCR and AFVC measures are defined
to evaluate models fairly on such a dataset with few
minority samples when using the leave-one-out method.
Furthermore, the leave-one-out method is modified to only
apply to minority samples.

6 Experiments

6.1 Outline

We carried out six experiments to demonstrate the effec-
tiveness of our proposed BBW framework for learning
effectively with extremely imbalanced data containing few
minority samples. Experiment 1 compares the learning
behavior of the DenseNet121 [19] neural network archi-
tecture when used with BBW and without. Experiment 2
follows the same setting, but the test set is created using
the modified leave-one-out method proposed in Section 5.
Experiment 3 measures the performance of six previous
methods for dealing with imbalanced data containing few
minority samples. Each is trained in an identical setting so
that results may be compared directly with that of BBW in

Experiment 2. Experiment 4 is an ablation study to show the
effect on training of components within BBW. Experiment
5 repeats the setting of Experiment 2 but uses a differ-
ent definition of epoch. Finally, Experiment 6 measures the
performance of DenseNet121, once again using the stan-
dard definition of epoch, but this time restricted to the same
learning counts as BBW in Experiment 2.

6.2 Experiment 1 - verification of BBW learning

The aim was to test the learning abilities of BBW by
comparing it with a baseline implementation, in order to
demonstrate the differences in learning behavior between
them.

Only the CHB-MIT dataset was used for this experiment.
We set both training and test sets to the whole dataset, then
calculated the True Positive Rate (TPR) and False Positive
Rate (FPR) of the test set to observe the learning ability of
each learning method. We did not use the TPR and FPR
that were calculated from the training set because there
are differences in the behaviors of some neural network
structures in the training process and test process, such as
the noised layer and dropout layer, which are only activated
in the training process. By setting the training set and test
set to the same dataset, we can obtain more objective TPR
and FPR to describe the learning ability of each learning
method.

The basic architecture used for the experiment is
a modified DenseNet121 [19], which is an important
convolutional neural network backend for automatic feature
extraction. This is then wrapped by the BBW framework.
As a baseline for comparison, the DenseNet121 network is
used alone, with no BBW wrapping. For the test to be fair,
the baseline model used the same parameters of batch and
epoch as the BBW version. We also normalized the input
data with a min-max method for DenseNet121 alone, even
though the wrapped version did not require this step.

The resulting learning ability just for Case 1 (the first
case in dataset) is shown in Fig. 5. In the figure, we can
observe that the TPR and FPR of both models fluctuate
up and down at the early stage. However, from about the
40th epoch, the TPR and FPR of the baseline DenseNet121
both go down with occasional fluctuations, which indicates
that the majority class has begun to overwhelm the minority
class. In other words, the total loss of majority samples
is much larger than the total loss of minority samples,
which results in the neural network preferring the majority
class in order to ensure that the total loss of each
batch can be lower. By contrast, the TPR of the BBW-
wrapped model gradually approaches 1, and FPR gradually
approaches 0. This demonstrates the good learning ability of
BBW.
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Fig. 5 Experiment 1: Learning ability (Case 1 from CHB-MIT dataset
shown)

6.3 Experiment 2 - BBW performance using
leave-one-out

The aim was to demonstrate the better performance of
BBW when compared to the baseline. However, in this case
the test set was created using the modified leave-one-out
method discussed earlier.

All three datasets were used: CHB-MIT, BonnEEG
and FAHXJU. This time, performance metrics were VCR,
AFVC (both discussed earlier), and Time.

The general setup was very similar to that of Experiment
1, i.e. DenseNet121 wrapped with BBWwas compared with
DenseNet121 alone. However, the test set in this experiment
was created by the modified leave-one-out method proposed
in Section 5.

The results can be seen in Table 2. We can observe that
the results are much better than those of the baseline on all
three datasets. It is as expected, since Experiment 1 showed
that a neural network wrapped by BBW has better learning

ability in extremely imbalanced datasets with few minority
samples.

More detailed results for CHB-MIT can be seen in
Table 3, itemized for the 24 cases. Figures given are the
average performances of the leave-one-out models in each
case.

We can observe in the table that almost all of BBW’s
results are much better than those of the baseline, except
for Case 19 in epoch 300. This might be because the
pattern in Case 19 is simpler, leading to the over-fitting
of our method. We know from Fig. 5 that the learning
ability curve of controlled Experiment 2 is more unstable.
The unpredictable fluctuations might have resulted in better
results in Case 19 for the Experiment 2 baseline model.
Overall, the average VCR of BBW is 14-40% higher than
the baseline, and the average AFVC of our method is 9-15%
lower.

We can also observe that the results in Table 3 of some
cases in the baseline model are better and better with the
increase of epoch. Indeed, the average performance of the
baseline model becomes better when the epoch increases.
This is because patterns in the data are not very difficult
for a network to learn, and the performance is reliant on
the imbalance ratio of the dataset. The larger the imbalance
ratio, the more epochs are needed. If the patterns are not
easy for the neural network part of the BBW framework, the
performance will not become better, even if the number of
epochs is increased. This can be observed in Cases 16, 17,
etc. However, the performance of BBW is independent of
the imbalance ratio. In other words, BBW is insensitive to
the ratio. Additionally, BBW converges more quickly, and
is more stable and more robust.

6.4 Experiment 3 - comparison of BBWwith existing
methods

The aim was to compare the performance of BBW with
six popular imbalanced data processing methods, using
the same datasets and the same underlying model: down

Table 2 Experiment 2: BBW and baseline DenseNet121 compared - All datasets

Dataset Epoch = 100 Epoch = 200 Epoch = 300

BBW Baseline BBW Baseline BBW Baseline

VCR AFVC VCR AFVC VCR AFVC VCR AFVC VCR AFVC VCR AFVC

CHB-MIT 93.74 5.124 53.88 19.72 95.59 3.127 72.75 16.82 95.96 3.314 81.93 12.61

BonnEEG 100.0 00.50 50.00 21.00 100.0 00.75 50.00 42.50 100.0 00.75 100.0 35.00

FAHXJU 65.52 18.97 17.24 27.08 81.03 18.44 39.66 24.64 87.93 16.99 51.72 26.11

Average 86.42 08.20 40.37 22.60 92.21 07.49 54.14 27.99 94.63 07.02 77.88 24.57

Time 7.345h 7.493h 9.740h 10.93h 11.76h 13.97h
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Table 3 Experiment 2: BBW and baseline DenseNet121 compared - CHB-MIT dataset

Case No. Epoch = 100 Epoch = 200 Epoch = 300

BBW Baseline BBW Baseline BBW Baseline

VCR AFVC VCR AFVC VCR AFVC VCR AFVC VCR AFVC VCR AFVC

01 95.65 01.39 73.91 21.11 95.65 01.13 91.30 12.37 91.30 00.11 95.65 07.29

02 100.0 04.44 75.00 30.15 100.0 03.72 62.50 19.77 100.0 01.34 75.00 17.24

03 100.0 01.22 50.00 14.62 100.0 00.09 94.44 18.73 100.0 00.20 100.0 22.69

04 75.00 06.20 68.75 28.99 87.50 04.98 68.75 22.98 81.25 03.00 68.75 13.96

05 95.65 01.52 73.91 10.56 100.0 02.92 95.65 09.41 100.0 02.49 100.0 04.24

06 100.0 20.13 29.41 22.94 94.12 06.65 58.82 23.81 100.0 10.58 58.82 22.15

07 92.31 05.00 23.08 26.20 100.0 03.27 53.85 27.53 100.0 03.57 61.54 21.88

08 94.29 01.07 22.86 17.10 97.14 01.30 48.57 10.47 94.29 01.11 65.71 08.76

09 91.67 00.36 41.67 33.77 91.67 00.15 41.67 21.30 91.67 00.16 41.67 12.88

10 100.0 02.45 61.90 13.84 95.24 00.44 95.24 03.54 100.0 00.70 95.24 02.01

11 96.67 00.90 80.00 04.82 96.67 00.03 100.0 06.04 96.67 00.08 93.33 01.68

14 85.71 12.73 35.71 24.45 100.0 07.34 71.43 19.82 92.86 04.34 92.86 13.71

15 90.70 02.18 65.12 16.41 91.86 01.70 84.88 09.67 94.19 01.12 90.70 08.49

16 100.0 23.61 55.56 28.13 88.89 11.16 22.22 17.86 100.0 18.80 66.67 21.43

17 100.0 03.03 61.54 14.00 100.0 02.56 84.62 17.14 100.0 01.43 76.92 10.71

18 100.0 10.38 37.50 14.07 100.0 03.21 62.50 23.23 100.0 08.85 81.25 17.63

19 72.73 00.16 54.55 04.70 81.82 01.03 81.82 13.64 72.73 00.20 90.91 12.08

20 93.33 01.89 26.67 24.32 100.0 04.26 66.67 26.53 100.0 02.98 73.33 09.38

21 100.0 06.43 36.36 41.62 100.0 08.07 63.64 25.03 100.0 04.23 81.82 23.54

22 90.00 04.23 70.00 11.26 90.00 00.51 80.00 17.49 100.0 01.60 100.0 09.27

23 100.0 00.98 65.00 16.65 100.0 00.79 95.00 12.69 100.0 00.57 100.0 06.65

24 88.46 02.42 76.92 14.02 92.37 03.48 76.92 10.93 96.15 05.44 92.31 09.75

Aa: 93.74 5.124 53.88 19.72 95.59 3.127 72.75 16.82 95.96 3.314 81.93 12.61

Tb: 6.4644h 6.6115h 8.4889h 9.7028h 10.2394h 12.3912h

a The average of each column
b The total process time of each experiment

sampling [3], oversampling [4], class weights [1], focal loss
[9], weighted softmax loss (WSL) [11], and class imbalance
loss (CIL) [12].

All three datasets were used: CHB-MIT, BonnEEG and
FAHXJU. The performance metrics were VCR, AFVC,
Precision, and F1.

The six methods were implemented by adapting standard
code and then trained using the DenseNet121 model. All
settings were the same as Experiment 2.

Results across all three datasets are shown in Table 4 for
Epoch 100. We will compare the results with those for BBW
in Table 2. Table 4 indicates that downsampling is powerless
in this situation; this is as expected, because there are too
few samples for training after downsampling. Class weights,
focal loss, WSL, and CIL even had the opposite effect
compared with the baseline in Experiment 2 because they
are not designed for this extremely imbalanced situation.
Oversampling is a challenging competitor; it does improve

the performance compared with the baseline in Experiment
2. However, there still exists a large performance gap
compared with BBW in Experiment 2. The results do not
prove that these popular methods do not work; they just
tell us that they cannot work well on extremely imbalanced
datasets with few minority samples because they are not
designed for such an extreme situation. Our method works
just because it is specially designed for such datasets.

6.5 Experiment 4 - Ablation study on BBW

The aim was to measure the performance of BBW
when certain components of it are removed, in order to
demonstrate their individual contributions.

The CHB-MIT dataset was used, and the performance
metrics were VCR, AFVC, Precision, and F1.

The basic setup was the same as in Experiment 2.
Four model configurations were trained – the baseline
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DenseNet121 from Experiment 2, baseline with BB added,
baseline with adaptive normalization & diversification, and
finally the complete BBW system.

The results are shown in Table 5, which demonstrates
the gain in performance caused by the components
of BBW. The table also shows that the performance
of the complete BBW is better than its individual
components. Firstly, we observe that adding BB to the
baseline DenseNet121 slightly improves the classification
performance. This is because BB arbitrarily corrects the
imbalance, but it inevitably leads to instability in the
learning process and overfitting of the minority class.
Adding just the input adaptive normalization layer and
the sample diversification layer does not significantly
improve the classification performance, since the training
is still extremely imbalanced. However, we see a clear
improvement when wrapping the model with the full BBW
framework. The result of the ablation study meets our
expectations.

6.6 Experiment 5 - Normal definition of epoch

The aim was to investigate how imbalance ratios and
patterns of samples influence the loss to affect the final
learning results. The normal definition of epoch was used.
In all other respects, the model was the same as the baseline
in Experiment 2. The CHB-MIT dataset was used, and the
performance metrics were VCR, AFVC, and Time.

The results of this experiment when epoch = 100 are
shown in Table 6. We can see that behaviour is much more
unstable, but some typical scenarios can still be analyzed
by comparing them with other experiments. By comparing
Tables 6 and 3, it is apparent that more than 2

3 of the
VCR in Experiment 2 (BBW) is better than the VCR of
Experiment 5. Additionally, almost all of the AFVC in
Experiment 2 is lower than that of Experiment 5 in the
additional 1

3 . There are only four cases in Experiment 5 in
which the results are better than those in Experiment 2, if we
relax the constraints on epoch. Even so, the total processing
time of Experiment 5 is 16.39 times longer than the total
processing time of Experiment 2, i.e. BBW is 16.39 times
faster.

In Table 6, we can observe that some cases converge
sufficiently (such as Case 22), but some cases cannot
converge to an accepted result (such as Case 6). This
phenomenon can be explained as follows: The learning
method will learn the patterns of the majority class quickly
if the patterns are easy. The total loss of majority samples
will be less than the total loss of minority samples, which
have not been well-learned. While the learning process is
occurring, the discriminative ability of the minority class
will catch up with the discriminative ability of the majority
class. The learning method will then report an accepted
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Table 5 Experiment 4:
Ablation experiments on BBW Configuration Precision F1 VCR AFVC

Baselinea 83.53 65.51 53.88 19.72

Baselinea + BBd 85.40 71.49 61.48 17.09

Baselinea + IANb + SDc 81.22 65.77 55.26 23.12

Baselinea + IANb + SDc + BBd (i.e. BBW) 95.13 94.43 93.74 5.124

a DenseNet121
b Input Adaptive Normalization
c Simple Diversification
d Batch Balance

convergence at some epoch. If the patterns of samples are
a little difficult for the learning method, the total loss of
the majority class will be greater than the total loss of
the minority class, even if the learning method has already
learned the majority class preferentially. In fact, the learning
method will always try to learn the majority class first,
because it can always provide a larger total loss at the
beginning of the learning process. Another situation that
can lead to learning failure is when the patterns of the
samples are too easy for the learning method, leading to the
premature overfitting of the majority class. To solve these
problems, BB is stabilized by the BBW framework, and
attempts to balance ‘by force’ the number of samples in each
class in one batch, and also to balance the total loss of each
class in one batch to ensure the learning method does not
bias towards some class.

6.7 Experiment 6 - Normal epoch definition
and training counts limited

The aim was to measure the performance of the baseline
in Experiment 2 when using the normal definition of epoch
and also limiting sample learning times.

The CHB-MIT dataset was used. The performance
metrics were VCR, AFVC, and Time.

After conducting the previous experiment, we were
curious about the performance of a DenseNet121 model that
has the normal epoch definition and the same total sample
learning times as in Experiment 2 for BBW. We ensured
that the total sample learning times in this experiment
were the same as those of Experiment 2 by controlling
the epoch. The epoch adjustment formula is calculated by
(9) and (10), where Ns is the number of all samples in
dataset, ri is the imbalance ratio of the dataset, and ra
denotes the epoch adjustment ratio computed independently
for programming convenience. The epoch in the formula is
the epoch of Experiment 2, and epochnew is the epoch for
this experiment, to ensure they have the same total sample
learning times. The ceiling function used here is to prevent
epoch = 0.

ra = Nms × 2 − 2

Ns − 1 − ri
(9)

epochnew = �ra × epoch� (10)

Table 6 Experiment 5:
Baseline using normal epoch
definition

Case No. VCR AFVC Case No. VCR AFVC

01 100.0 07.55 15 90.70 05.88

02 100.0 05.18 16 66.67 05.51

03 94.44 06.54 17 100.0 12.57

04 93.75 05.98 18 100.0 08.05

05 91.30 01.42 19 90.91 15.61

06 64.71 08.88 20 100.0 04.35

07 100.0 13.49 21 81.82 08.48

08 68.57 09.38 22 100.0 00.30

09 83.33 11.82 23 100.0 06.80

10 95.24 00.79 24 100.0 13.40

11 96.67 01.42 Average 90.76 07.76

14 78.57 17.31 Time 105.9h
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Table 7 Experiment 6:
DenseNet121 using normal
epoch definition and same total
sample learning times as for
BBW in Experiment 2

Case No. E *=a 100 E *=a 200 E *=a 300

VCR AFVC VCR AFVC VCR AFVC

01 13.04 18.02 21.74 27.37 04.35 26.79

02 00.00 – 00.00 – 25.00 23.28

03 16.67 17.20 11.11 46.40 11.11 34.20

04 00.00 – 06.25 17.81 00.00 –

05 00.00 – 26.09 21.31 17.39 07.71

06 05.88 20.64 00.00 – 00.00 –

07 00.00 – 23.08 22.37 07.69 41.00

08 00.00 – 00.00 - 11.43 29.41

09 00.00 – 16.67 24.74 00.00 –

10 04.76 03.17 14.29 16.90 47.62 04.08

11 36.67 19.27 56.67 15.58 70.00 19.15

14 07.14 03.18 00.00 – 14.29 30.68

15 12.79 22.64 34.88 09.87 58.14 20.45

16 00.00 – 11.11 20.54 00.00 –

17 15.38 06.28 15.38 24.04 38.46 19.78

18 06.25 04.67 06.25 36.58 25.00 31.23

19 09.09 22.44 18.18 14.58 18.18 07.85

20 06.67 42.92 00.00 – 06.67 43.84

21 00.00 – 00.00 – 09.09 13.80

22 10.00 36.96 00.00 – 30.00 33.51

23 35.00 09.40 20.00 23.10 35.00 18.44

24 07.69 42.27 30.77 21.65 34.62 17.18

Average 08.50 – 14.20 – 21.09 –

Time 6.032h 7.188h 8.422h

a Total sample learning times are equal to the corresponding epoch

The results are shown in Table 7. We can observe that the
system did not conduct valuable learning at all. However,
the performance improved with the increase in the epoch.
This indicates that the learning method is still in the early
stage of the learning process. It again proves the efficiency
of BBW. The total processing time here is slightly less than
that for Experiment 2 because it has fewer cross-validation
steps.

Lastly, It should be noted that almost all traditional
machine learning and deep learning methods that support
imbalanced datasets require either data preprocessing or
additional hyper-parameters. Our method is an end-to-end
method that supports imbalanced datasets, and does not
require additional data preprocessing or hyper-parameters.
Additionally, BBW displayed the best performance in the
extreme situation. The experiments designed in this work

prove the ability of the proposed BBW framework to
perform well on extremely imbalanced datasets with few
minority samples, and verify its core principles.

7 Conclusion

In summary, the proposed BBW framework can adapt gen-
eral DNNs to be trained better on extremely imbalanced
datasets with few minority samples. In essence, BBW per-
forms downsampling of majority samples, and oversam-
pling of minority samples. In addition, it carries out sample
synthesis within the sample diversification layer. The input
adaptive normalization layer in BBW allows DNNs to per-
form the normalization process automatically and natively.
Moreover, BBW does not require data preprocessing or
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additional hyper-parameters, not even data normalization.
Experimental results in this paper demonstrate the perfor-
mance and efficiency of BBW.

In our early studies, we found that the ability to
discriminate the minority class is very sensitive to the
dropout method. This phenomenon needs further evidence
and study. We will also attempt in future work to enrich the
BBW framework and to combine it with other methods.
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