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Convolutional Neural Networks (CNNs) have achieved remarkable performance breakthroughs in a vari-
ety of tasks. Recently, CNN-based methods that are fed with hand-extracted EEG features have steadily
improved their performance on the emotion recognition task. In this paper, we propose a novel convolu-
tional layer, called the Scaling Layer, which can adaptively extract effective data-driven spectrogram-like
features from raw EEG signals. Furthermore, it exploits convolutional kernels scaled from one data-driven
pattern to exposed a frequency-like dimension to address the shortcomings of prior methods requiring
hand-extracted features or their approximations. ScalingNet, the proposed neural network architecture
based on the Scaling Layer, has achieved state-of-the-art results across the established DEAP and
AMIGOS benchmark datasets.
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Emotion recognition plays a very important role in human–
computer interaction [1]. By recognizing human emotions more
accurately and quickly, we can interact with computers more effi-
ciently, thus improving the quality of life [2]. Generally, expressive
modalities can be used to judge human emotions, such as facial
expressions, audio-visual expressions, and body language [3]. On
the other hand, it has been suggested [4] that a distinction should
be made between actual emotions and core affect. In order to take
this into account, we can define what is being measured as a vari-
able which is dependent on subjective scores, such as Arousal,
Valence and Dominance. In recent years, more and more studies
that recognize human emotions have used physiological electrical
signals [5]6, such as Galvanic Skin Response (GSR), Skin Tempera-
ture (ST), ElectroCardioGram (ECG), ElectroMyogGraphy (EMG)
and ElectroEncephaloGraphy (EEG). Relatively, EEG signals have
the advantage that they are not usually easy to disguise or affected
by medicines [7]; on the other hand, while their low Signal-to-
Noise Ratio (SNR) can put high demands on an analysis algorithm,
our approach has proven to be quite robust in this regard. In this
work, therefore, we use EEG signals to recognize human emotions.

It has been proved that there are close correlations between
human emotions and brain states [8]9. With the progress in EEG
hardware equipment, it is nowadays feasible to collect EEG signals
with higher and higher sampling rates [10]. Meanwhile, the pro-
cessing and analysis methods of EEG signals are being explored
and researched constantly [11]. In EEG-based emotion recognition,
researchers mainly focus on three technical aspects. Firstly, the
most widespread methods are based on feature engineering and
machine learning algorithms to recognize human emotions [12].
This requires hand-extracted emotion-related features from EEG
signals, such as Power Spectral Density (PSD), Differential Entropy
(DE), etc. Secondly, with the development of deep learning, some
methods combine feature engineering and deep neural networks,
replacing machine learning classifiers with neural networks such
as Convolutional Neural Networks (CNNs) [13]. Thirdly, some
researchers extract data-driven features from EEG signals, and
employ parameterizable data representation methods or neural
networks as feature extractors [14]. While the feature extraction
methods mentioned above have achieved remarkable performance
on EEG based emotion recognition, there is still potential for
improvement. Hand-extracted features are mostly task-related,
and can require strong hypotheses and mathematically-driven the-
oretical support. In practice, we believe that extracting features by
hand is not easy and potentially not robust.
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Inspired by the shortcomings of methods using features
extracted by hand, we introduce an end-to-end artificial neural
network method called ScalingNet which can perform emotion
recognition based only on raw EEG data, and which thus does
not require such features. Instead, the Scaling Layer within Scal-
ingNet extracts features from the signal automatically: The idea
is to dynamically generate a series of convolution kernels scaled
from one data-driven pattern to produce a data-driven
spectrogram-like feature map from raw EEG signals. The architec-
ture we introduce has several interesting properties: (1) It auto-
matically extracts robust feature maps from raw EEG signals
without any hand-interaction. (2) It handles any length of EEG sig-
nal without requiring data alignment. (3) It is fully convolutional.
(4) It is compatible with existing neural networks, providing robust
feature extraction for different downstream tasks. We validate the
proposed approach on the challenging DEAP and AMIGOS bench-
mark datasets, achieving state-of-the-art results that highlight
the potential of models for data-driven feature extraction from
raw EEG signals.
2. Related work

In EEG-based emotion recognition, machine learning methods
provided with hand-extracted EEG features are possibly the most
widely used framework. With the development of deep learning,
researchers have gradually replaced machine learning methods
with deep neural networks, especially CNNs [15]. The hand-
extracted EEG features are mainly time domain, frequency domain,
time–frequency domain and spatial domain. The classification
methods mainly include Random Forest (RF), Support Vector
Machines (SVM), CNNs, Long Short-Term Memory networks
(LSTMs) etc. Zheng et al. [16] extracted the time domain and fre-
quency domain features from EEG signals, such as Differential
Entropy (DE), Power Spectral Density (PSD), etc., and used SVMs
for emotion classification. Liu et al. [17] extracted time domain,
frequency domain and time–frequency domain features, such as
Hjorth, PSD, Discrete Cosine Transform (DCT), etc., and then used
k-Nearest Neighbor (KNN) and RF as classifiers. Li et al. [18] pro-
posed to perform Continuous Wavelet Transform (CWT) on the
EEG signal of each channel, convert it to scalograms, then input
the construction frame into CNNs and LSTM for emotion recogni-
tion. Kim et al. [19] extracted brain asymmetry features and heart
rate features, and then used ConvLSTM (a combination of CNN and
LSTM) for classification.

Inspired by the powerful feature transforming abilities of neural
networks, some researchers propose end-to-end frameworks for
EEG based emotion recognition. Jiang et al. [20] mention that auto-
matic feature extraction does not require a large amount of prior
knowledge and yields better task-relevant representations com-
pared to hand-extracted features. Wang et al. [21] propose an Emo-
tionNet network for EEG-based emotion classification. It can take
EEG as input and uses 3-D convolution to extract spatial and tem-
poral features for emotion recognition. However, for general pur-
pose network layers, it is hard to learn and extract robust
features from signals. In the long run, this research field still has
great potential for development. We consider that there is a need
for a special neural network layer that can perform robust feature
extraction from raw EEG signals. In the next section we propose
such a layer, together with an associated network architecture.
3. Methodology

In this section, we will firstly present the Scaling Layer, which is
a building block used to adaptively extract effective data-driven
spectrogram-like features from raw EEG signals. Then we will
178
introduce a fully Convolutional Neural Network based on the Scal-
ing Layer. We call this network ScalingNet because its core feature
is the application of the Scaling Layer.

3.1. Scaling layer

The motivation is to dynamically generate a series of convolu-
tional kernels by scaling one data-driven pattern to different peri-
ods in order to expose a frequency-like dimension from signals.
This brings the possibility of automatic adaptive extraction of
effective and robust data-driven spectrogram-like features from
raw EEG signals, for use in downstream tasks.

We consider a multi-kernel convolutional layer that takes a
one-dimensional signal with shape sampling points;1ð Þ as input
and produces as output a two-dimensional spectrogram-like fea-
ture map with shape sampling points; scaling levelsð Þ by means of
the following layer-wise propagation rule:

Houtput lð Þ ¼ d bias lð Þ þ downSample weight; lð Þ � Hinput
� �

ð1Þ

where Hinput is the input vector with shape time steps;1ð Þ, i.e. the
one-dimensional signal. Houtput is the matrix of activations with
shape time steps; scaling levelsð Þ, i.e. the data-driven spectrogram-
like feature map. bias is the biases for the multi-kernel generated
by scaling a basic kernel. d �ð Þ denotes an activation function; weight
is the basic kernel from which other kernels are scaled. l is a hyper-
parameter that controls the scaling level.

� is a valid cross-correlation operator, normally defined as:

f � gð Þ n½ � ,
XN�1

m¼0

f m½ �g mþ nð ÞmodN

� � ð2Þ

where f is downSample weight; lð Þ; g is Hinput .
Returning to Eq. (1), downSample is a pooling operator that

downsamples theweight by an average filter with a window of size
2, doing this l times. This scales the data-driven pattern weight to a
specific period in order to capture specific frequency-like represen-

tations from Hinput . To ensure that the length of the downsampled
weight is always odd, the downSample uses a padding of size 1
for the filter when the length of the directly downsampled weight
is potentially even.

Furthermore, bias lð Þ is the bias for the kernel generated at the lth

scaling level. Houtput lð Þ is the activation of lth scaling level.
downSample weight; lð Þ denotes the generated kernel scaled from

weight at lth level, which recursively filters the weight l-times.
The steps involved in using Eqs. (1) and (2) are as follows.

Assume we wish to extract features for signal Hinput at the lth scaling

level. We first generate the lth scaling level kernel scaled from
weight by downSample weight; lð Þ. Then, we perform the cross-

correlation operator of the scaled kernel and Hinput by Eq. (2). Then,
we add the previous result and the bias lð Þ, and then feed the sum to
the activation function d �ð Þ, i.e. Eq. (1).

We repeat the above process total scaling level tsl times with
different setups of hyper-parameter l on a range of 0 to maximum

scaling level msl, where the maximum scaling level msl is the lth

level that makes the length of vector downSample weight; lð Þ equal
to 1, and the total scaling level tsl ¼ mslþ 1. Finally, we stack all
extracted feature vectors into a 2D tensor to obtain the data-
driven spectrogram-like feature map. In particular, in order to
ensure the alignment of extracted feature vectors, the length of

the basic kernel weight must be odd and the input signal Hinput

must be padded with scaledKernelLength� 1ð Þ=2. For the backprop-
agation, the trainable parameters are the basic kernel weight and
biases bias, which will be handled by an autograd mechanism.



Fig. 1. The core principle of the Scaling Layer. This layer directly extracts data-driven spectrogram-like feature maps from raw EEG signals for downstream tasks. It extracts
features by means of a multi-kernel generated from scaling a data-driven pattern.
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The core principle of the Scaling Layer is illustrated in Fig. 1.
3.2. ScalingNet

In this subsection, we introduce ScalingNet, a neural network
architecture mainly constructed by a series of parallel Scaling Lay-
ers to perform raw EEG data based emotion recognition.

The ScalingNet architecture is illustrated in Fig. 2. Considering
that the Scaling Layers that are used to construct the ScalingNet
extract data-driven spectrogram-like feature maps for EEG chan-
nels separately, we especially illustrate the EEG channels by stack-
ing the data-driven spectrogram-like feature maps extracted by
the Scaling Layer from EEG signals of different channels into a 3D
tensor.

The EEG signals of different channels are first fed to Scaling Lay-
ers separately in order to extract data-driven spectrogram-like fea-
ture maps. Then, the feature maps extracted by the Scaling Layers
are stacked into a 3D tensor along the EEG channel dimension.
Next, the 3D tensor is fed into several convolutional layers to per-
form feature map transformation. Finally, the transformed feature
maps are fed into an average global pooling layer and a linear layer
to perform emotion classification. Worthily, the ScalingNet archi-
Fig. 2. The ScalingNet architecture. This is constructed by a series of parallel Scaling Lay
data-driven spectrogram-like feature maps extracted by Scaling Layers, it performs emo
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tecture robustly performs raw EEG data-based emotion recognition
without requiring any hand-extracted features.

4. Experiments & results

We evaluate the performance of the proposed ScalingNet archi-
tecture on the emotion recognition task on EEG input data, using
the challenging DEAP [22] and AMIGOS [23] datasets. We compare
ScalingNet with previous state-of-the-art methods. We first intro-
duce the DEAP and AMIGOS datasets, then proceed to a detailed
description of the experimental setups, and finally report the
experimental results.

4.1. Datasets

DEAP [24] is a challenging benchmark dataset for EEG based
emotion recognition. The dataset contains EEG and physiological
signals collected from 32 subjects stimulated by watching music
videos. After they watch each video, the subjects immediately
self-evaluate their Valence, Arousal, Dominance, and Liking, on a
scale of 1–9. Each subject is asked to watch 40 videos, and 63 s
of signals are collected for each video. In the dataset, the signals
are downsampled by default to 128 Hz and filtered with a 4.0 Hz
ers that are followed by compact convolutional and linear layers. With the help of
tion recognition using raw EEG data, without any hand-extracted features.



Table 1
The hyper-parameters of the proposed ScalingNet architecture, tuned on the DEAP
dataset.

Hyper-parameters Value

batch size 32
length of weight 33
kernel size 3� 5
number of filters 16, 8, 6
activation function relu
loss cross entropy
optimizer adam
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to 45.0 Hz bandpass filter. In this paper, only EEG signals are used
to classify the Valence, Arousal, and Dominance by the rating
threshold of 5, which closely follows the setting of [25]. Specifi-
cally, 1280 EEG samples from 32 subjects are used for three binary
classification tasks of cross-subject emotion recognition.

AMIGOS [23] is another well-known dataset that can be used
for EEG based emotion recognition. The dataset contains EEG sig-
nals, physiological signals, and depth videos collected from 40 sub-
jects stimulated by watching emotional videos. After they watch
each video, they immediately self-evaluate their affective levels
according to a scale of 1–9, and their Valence and Arousal levels
are externally rated on a scale from �1 to 1 by three annotators
through the recorded face videos every 20 s. Each subject is asked
to watch 20 videos, and the length of the signals depends on the
length of the videos. All types of signals are default downsampled
to 128 Hz and high-pass filtered with a 2.0 Hz cut-off frequency. As
above, in this paper, only EEG signals are used to classify the
Valence and Arousal by the rating threshold of 0, which closely fol-
lows the setting of [23]. Specifically, 12580 EEG samples from 40
subjects are used for two binary classification tasks of cross-
subject emotion recognition.
Table 2
Experimental results compared with those of previous state-of-the-art methods on the DE
first column (Pandye et al. do not state the method used in their paper). The results for the p
direct comparison.

Studies Features Classifiers

Koelstra et al. (LOO) PSD Naive Bayes
Li et al. (10-fold) DBN SVM
Gupta et al. (LOO) graph RVM
Pandye et al. (?) VMD DNN
Chen et al. (10-fold) – H-ATT-BGRU
Chao et al. (10-fold) MFM CapsNet
Li et al. (LOO) STFT HATCN

Ours (5-fold) – ScalingNet
Ours (10-fold) – ScalingNet
Ours (LOO) – ScalingNet

The bold text in the table means that these our experimental results are better than the

Table 3
Experiment results compared with those of previous state-of-the-art methods on the AMI

Studies Features Cl

Juan et al. (LOO) PSD N
Luz et al. (?) – CN
Yang et al. (10-fold) VAE SV
Chao et al. (LOO) STFT AB

Ours (5-fold) – Sc
Ours (10-fold) – Sc
Ours (LOO) – Sc

The bold text in the table means that these our experimental results are better than the
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4.2. Experimental setup

Fivefold, ten-fold and leave-one-subject-out (LOO) cross-
validation strategies are used in the experiments. The reason is
to allow direct comparison with previous state-of-the-art methods,
each of which uses one of these three strategies. Wemanually opti-
mize the hyper-parameters of the proposed ScalingNet architec-
ture on the DEAP dataset, and the resulting values are shown in
Table 1. In the table, ‘length of weight’ is the size of the basic kernel
weight of the Scaling Layer in Eq. (1); ‘kernel size’ is the size of con-
volutional kernels used in the feature map transformation convo-
lutional layers of ScalingNet, as illustrated in Fig. 2; ‘number of
filters’ is the number of filters used in those layers (Fig. 2).

It needs to be stated that ‘raw EEG’ in the context of this work
means that the algorithm must extract information directly from
the signal itself without any human intervention. However, essen-
tial task-independent pre-processing such as epoch extraction and
re-sampling is allowed.

All experiments in this paper were conducted using a GeForce
RTX 2080 Ti. The machine learning framework used in this paper
is PyTorch [26].
4.3. Results

The experimental results of the proposed ScalingNet architec-
ture compared with previous state-of-the-art methods using the
DEAP and AMIGOS datasets, and adopting the same evaluation
strategy throughout, are shown in Tables 2 and 3. Although some
researchers have investigated three dimensions, namely Arousal,
Valence and Dominance, there is no validation that correlates all
three with the neurophysiological responses predicted from the
field of neuropsychology. In the seven comparison methods in
Table 2, four of them just predict Arousal and Valence, while three
AP dataset. Previous approaches use various cross-validation methods, shown in the
roposed method are calculated using all three methods (5-fold, 10-fold, LOO) to allow

Accuracy

Arousal Valence Dominance

0.6200 0.5760 –
0.6420 0.5840 0.6580
0.6700 0.6900 –
0.6125 0.6250 –
0.6650 0.6790 –
0.6828 0.6673 0.6725
0.7100 0.6901 0.7190

0.6999 0.7113 0.7078
0.7180 0.7188 0.7367
0.7165 0.7132 0.7289

results of previous studies.

GOS dataset (Luz et al. do not state their cross-validation method in the paper).

assifiers Accuracy

Arousal Valence

aive Bayes 0.6640 0.6910
N 0.7350 0.6700
M 0.6700 0.6880
LSTM 0.7280 0.6780

alingNet 0.7377 0.6880
alingNet 0.7406 0.6952
alingNet 0.7389 0.6928

results of previous studies.



Table 4
The relationship of Scaling Layers between its model capacity and its representational
ability under the ScalingNet architecture and DEAP dataset.

Length of weight Accuracy

Arousal Valence Dominance

129 0.6659 0.6778 0.6731
65 0.6773 0.6844 0.6886
63 0.6642 0.6882 0.6902
33 0.6999 0.7113 0.7078
17 0.6711 0.6726 0.6995

The bold text in the table means that these our experimental results are better than
the results of previous studies.

Table 5
Ablation experiments varying the feature extractor within the same backend
architecture and using the DEAP dataset.

Feature extractor Accuracy

Arousal Valence Dominance

wavelet analysis 0.6477 0.6250 0.6734
convolutional layer 0.6574 0.6641 0.6628
scaling layer 0.6999 0.7113 0.7078

The bold text in the table means that these our experimental results are better than
the results of previous studies.
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others predict Arousal, Valence and Dominance. In this work,
therefore, we report all three, to allow direct comparison with
the previous results.

In Table 2, Koelstra et al. [24], proposers of the DEAP dataset,
used PSD features and a Naive Bayes classifier for emotion recogni-
tion. Li et al. [27] used SVM for classifying emotions by using DBN
as a feature extractor. Gupta et al. [28] used graph-theoretic fea-
tures and RVM for classification. Pandye et al. [29] fed VMD fea-
tures to a Deep Neural Network (DNN) for emotion classification.
Chen et al. [30] proposed H-AAT-BGRU to classify emotions. Chao
et al. [31] extracted MFM features and used CapsNet as a classifier
for emotion recognition. Li et al. [32] fed spectrogram representa-
tions to HATCN for emotion recognition.

In Table 3, Juan et al. [23], proposers of the AMIGOS dataset,
employed PSD features and a Gaussian naive Bayes classifier for
emotion recognition. Luz et al. [33] used a CNN followed by a
DNN to classify emotions. Yang et al. [34] used SVM for classifying
emotions by using VAE as a feature extractor. Chao et al. [35] fed
spectrograms to the attention-based bidirectional LSTM-RNN they
proposed for emotion classification.

The results in Tables 2 and 3 show that the 5-fold/10-fold/LOO
accuracies of the proposed method in this paper are
69.99%/71.80%/71.65%, 71.13%/71.88%/71.32%, 70.78%/73.67%/72.89%
for Arousal, Valence, Dominance on the DEAP dataset, and
73.77%/74.06%/73.89%, 0.6880%/69.52%/ 69.28% for Arousal, Valence
on the AMIGOS dataset, respectively. Using the matching cross-
validation figure, these are all higher than the previous state-of-the-
art studies. This indicates that the proposed ScalingNet architecture
is effective and feasible for EEG data based emotion recognition.

The results above demonstrate that the spectrogram-like fea-
ture maps extracted by the Scaling Layers in ScalingNet can effi-
ciently represent task-related information from the raw EEG
signals. Compared to the hand-extracted features and general pur-
pose network layers, in addition to not requiring any prior knowl-
edge, the data-driven spectrogram-like features extracted by the
Scaling Layer through its multiple kernels, scaled from the learned
task-related patterns, can contain better representations dedicated
to downstream tasks. A more detailed exploration of the Scaling
Layer and ScalingNet will be presented in the next section.
5. Discussion

In this section, we have designed a series of experiments to
explore the properties of the Scaling Layer and ScalingNet, to verify
its contribution through ablation experiments, and to visualize the
data-driven spectrogram-like feature maps extracted by the Scal-
ing Layers.

Since the Scaling Layer handles any length of EEG signal with-
out requiring data alignment, we can arbitrarily adjust the length
of the basic kernel weight to explore the relationship between
the model’s capacity and its representational ability. We explore
the relationship through observing the emotion recognition perfor-
mance of ScalingNet with different setups of Scaling Layers. In the
experiments, we deliberately select several representative values
for the length of the basic kernel weight in the Scaling Layers.
The results are shown in Table 4.

We can observe in the table that the representational capacity
attains its best value when setting the length of weight to 33. Obvi-
ously, the value 33 is related to the datasets, and here we are more
interested in the experimental results shown in Table 4 itself.

In order to verify the contribution of the proposed Scaling Layer,
ablation experiments were also carried out. The results are shown
in Table 5. Here, we compare the Scaling Layer with two alterna-
tives from previous approaches, wavelet analysis, and a standard
convolutional layer, to explore their relative feature extraction
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capability for EEG signals. The wavelet feature extractor follows
the implementation of Runia et al. [36]. We explore the capability
through observing the resulting emotion recognition performance
for each feature extractor. As Table 5 shows, the resulting classifi-
cation accuracy under all three features, Arousal, Valence and
Dominance, is best for the proposed Scaling Layer feature extrac-
tor. We can observe that the scaling layers play an important role
in ScalingNet. It also indicates that the Scaling Layer extracts more
robust features for EEG signals with better generalization
performance.

Next, we visualize the data-driven spectrogram-like feature
maps extracted by the Scaling Layers in ScalingNet, using the DEAP
dataset. The feature maps are shown in Fig. 3, where the horizontal
axis denotes sampling points and the vertical axis denotes the
frequency-like dimension, i.e. the time and scaling levels. We can
observe that Fig. 3(a) contains more low frequency-like energy
and (b) contains more high frequency-like energy. It all started
with one data-driven pattern which was used to generate scaled
kernels in order to extract useful information. The useful learned
information contained in the data-driven spectrogram-like feature
maps is aggregated by the following layers and used for down-
stream tasks.

Finally, to further analyze the interpretability of the proposed
Scaling Layer and ScalingNet from the perspective of brain science,
we visualized the scalp topographies to see the significance of dif-
ference between positive and negative emotion groups for the fea-
tures extracted by the Scaling Layers under the ScalingNet
architecture. The DEAP dataset is once again used, and the results
are shown in Fig. 4. The scalp topography is visualized by the 1� p
values calculated by the t-test method between positive and neg-
ative groups in Arousal, Valence, and Dominance across the chan-
nels and scaling levels. Here, A-0 denotes the scalp topography of
Arousal at scaling level 1, D-5 stands for the scalp topography of
Dominance at scaling level 6, etc. In addition, scaling levels from
0 to 5 represent a range from low frequency-like energy to high
frequency-like energy.

From Fig. 4, we can observe that the brain regions used by Scal-
ingNet to differentiate between positive and negative emotions are
mainly concentrated in the prefrontal, temporal and occipital lobes.



Fig. 3. Data-driven spectrogram-like feature maps extracted by ScalingNet Scaling Layers using the DEAP dataset.

Fig. 4. Scalp topographies based on 1� p values calculated by the t-test method between positive and negative groups in Arousal, Valence, and Dominance across the
channels and scaling levels, under the ScalingNet architecture and DEAP dataset. A-0 denotes the scalp topography of Arousal at scaling level 1, D-5 stands for the scalp
topography of Dominance at scaling level 6, etc.
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Among them, the prefrontal and temporal lobes have been proven
to be related to emotion processing [37]. In contrast, the activation
of the occipital lobe may be related to the case where the experi-
mental paradigm used visual stimulation. Further, we can also
observe that not exactly the same brain regions are attended to
for different tasks and scaling levels. Notably, ScalingNet is a purely
data-driven end-to-end emotion recognition method, and the brain
regions of interest depend on the experimental paradigm, data,
labeling, and machine learning task. With the rapid increase in
the amount of data available for machine learning, it can output
valuable indications relevant to brain science.

6. Conclusion

Wehave presented the Scaling Layer, a novel convolutional layer
for extracting a spectrogram-like featuremap from raw signals, and
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ScalingNet, a neural network that operates on raw EEG data for clas-
sification, leveraging dynamically generated convolutional kernels
by scaling from one data-driven pattern. We have demonstrated
that the proposed architecture can automatically extract robust
data-driven spectrogram-like feature maps. The approach has been
successfully applied to emotion recognition based on raw EEG data.
Thus it addresses many shortcomings of prior methods based on
hand-extracted features with strong hypotheses or their approxi-
mations. The ScalingNet model using Scaling Layers has success-
fully achieved state-of-the-art performance across two well-
established emotion recognition benchmarks.
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