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Abstract 13 

Long-Term Electroencephalogram (Long-Term EEG) has the capacity to monitor over a long 14 

period, making it a valuable tool in medical institutions. However, due to the large volume of 15 

patient data, selecting clean data segments from raw Long-Term EEG for further analysis is an 16 

extremely time-consuming and labor-intensive task. Furthermore, the various actions of 17 

patients during recording make it difficult to use algorithms to denoise part of the EEG data, 18 

and thus lead to the rejection of these data. Therefore, tools for the quick rejection of heavily 19 

corrupted epochs in Long-Term EEG records are highly beneficial. In this paper, a new reliable 20 

and fast automatic artifact rejection method for Long-Term EEG based on Isolation Forest (IF) 21 

is proposed. Specifically, the IF algorithm is repetitively applied to detect outliers in the EEG 22 

data, and the boundary of inliers is promptly adjusted by using a statistical indicator to make 23 

the algorithm proceed in an iterative manner. The iteration is terminated when the distance 24 

metric between clean epochs and artifact-corrupted epochs remains unchanged. Six statistical 25 

indicators (i.e., min, max, median, mean, kurtosis, and skewness) are evaluated by setting them 26 

as centroid to adjust the boundary during iteration, and the proposed method is compared with 27 

several state-of-the-art methods on a retrospectively collected dataset. The experimental results 28 

indicate that utilizing the min value of data as the centroid yields the most optimal performance, 29 
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and the proposed method is highly efficacious and reliable in the automatic artifact rejection of 30 

Long-Term EEG, as it significantly improves the overall data quality. Furthermore, the 31 

proposed method surpasses compared methods on most data segments with poor data quality, 32 

demonstrating its superior capacity to enhance the data quality of the heavily-corrupted data. 33 

Besides, owing to the linear time complexity of IF, the proposed method is much faster than 34 

other methods, thus providing an advantage when dealing with extensive datasets. 35 

Keywords: Long-Term EEG; Automatic Rejection; Isolation Forest; Outlier Detection; 36 

Machine Learning 37 

1. Introduction 38 

Long-Term Electroencephalogram (Long-Term EEG) is a type of EEG that records over a long 39 

period of time, rather than a specific duration [1]. It is used primarily for epilepsy monitoring, 40 

but is also used in Intensive Care Units (ICU), Operating Rooms, and Emergency Rooms [2-4]. 41 

As Long-Term EEG is used to monitor seizures, cerebrovascular diseases, and psychiatric 42 

conditions, it typically lasts from hours to days [5-11]. During the recording process, the EEG 43 

may contain multiple signals from both neuronal and non-neuronal sources, with the latter often 44 

referred to as artifacts, which interfere with neural signals [12]. Artifacts are usually manually 45 

identified and removed from the data before EEG signals are further analyzed [13]. However, 46 

this manual annotation procedure is both time-consuming and subjective [14], making an 47 

efficient and reliable automatic artifact removal tool highly desirable. 48 

Several advanced algorithms have been developed for the automated preprocessing of 49 

artifacts, which can be divided into two categories: identifying or detecting artifacts in EEG, 50 

and processing artifacts that have been discovered [15-19]. In recent years, many methods based 51 

on Deep Learning (DL) or Machine Learning (ML) have been proposed for the former category 52 

[20-29]. For example, in 2022, the Convolutional Neural Network with Transformer (CNN-53 

Transformer) was proposed to detect artifacts at single channel level and segment level, which 54 

was validated on the TUH Artifact dataset (TUH-ART) [30]. For the latter category, despite the 55 

famous Independent Component Analysis (ICA), Artifact Subspace Reconstruction (ASR), and 56 

Signal Space Projection (SSP) methods that have been applied to the correction and 57 
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reconstruction of EEG, novel DL-based denoising methods continue to emerge [31-40].  58 

However, the aforementioned methods have certain limitations. Most researchers who 59 

employ DL validate their methods on one or a few datasets, resulting in poor generalization 60 

performance and scalability [41]. Additionally, algorithms based on signal reconstruction 61 

theory encounter challenges to process epochs of signals that have been heavily corrupted by 62 

artifacts. In such cases, employing certain signal completion techniques can be beneficial. 63 

However, in the absence of recordings regarding these completion signals in a clinical setting, 64 

repairing artifacts becomes particularly challenging. Given these circumstances, rejecting these 65 

signals may be regarded as a viable and favorable choice. 66 

Most existing tools reject epochs based on the Peak-to-Peak Amplitude (PTP), and the 67 

mainstream EEG analysis software integrates the PTP-based method [42, 43]. However, the 68 

selection of threshold in PTP value is data-specific and requires the expertise of practitioners, 69 

making an automated specification of threshold preferable. In this regard, the automated artifact 70 

rejection for MEG and EEG data (Autoreject) has achieved remarkable success and has been 71 

utilized in various types of research [44]. Nevertheless, Autoreject has some drawbacks. Firstly, 72 

due to its implementation of an interpolation algorithm and Bayesian Optimization, it runs 73 

slowly when processing intensive data. Secondly, its performance is not satisfactory when the 74 

overall data quality of the signal is poor. These shortcomings make it unsuitable for Long-Term 75 

EEG. 76 

In order to address the aforementioned issues, this paper proposes a novel automatic 77 

method for the artifact rejection of Long-Term EEG. The proposed method can significantly 78 

improve the overall data quality in a relatively short running time, making the method both 79 

reliable and fast. The superior performance of the proposed method is mainly due to the ability 80 

of Isolation Forest (IF) to accurately partition the feature space, as well as the linear time 81 

complexity of IF. The contributions of this paper can be summarized as follows: 82 

(a) A reliable and fast automatic rejection method for clinical Long-Term EEG is proposed, 83 

which is based on iterative application of the IF, to avoid manually selecting the peak-to-84 

peak amplitude threshold for artifact rejection of Long-Term EEG. 85 

(b) A metric utilized to measure the class distance between epochs that should be dropped and 86 
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epochs that should be retained is designed to promptly terminate the iteration of the IF. To 87 

evaluate the performance of artifacts removal by using the proposed method, six different 88 

statistical indicators are utilized and considered accordingly by setting them as the metric 89 

during iteration. 90 

(c) The proposed method is evaluated across Long-Term EEG recordings of six 91 

retrospectively collected patients, in comparison with four state-of-the-art methods, 92 

including two unsupervised methods and two supervised methods. 93 

2. Materials and methods 94 

In this section, the description of patients and a series of basic preprocessing operations are 95 

introduced first. Subsequently, the proposed automatic artifact rejection method based on IF is 96 

detailed comprehensively.  97 

The aim of the design of this method is to provide a reliable and efficient tool for swiftly 98 

removing corrupted segments from the data when conducting non-continuous epoch-level EEG 99 

analyses in research or clinical settings, thus avoiding the need for extensive manual data 100 

rejection. The motivation for constructing the proposed method is based on the aim of providing 101 

a reliable and efficient tool for capturing artifact introduced by subjects during Long-Term EEG 102 

recording. In this regard, the PTP metric remains an effective and practical choice. Furthermore, 103 

the IF algorithm was initially designed for efficient and precise outlier detection, making it 104 

well-suited for this purpose. When both are appropriately combined, it becomes effortless for 105 

the algorithm to detect outlier epochs in a Long-Term EEG recording. However, due to the 106 

complexity of clinical environments, it is often challenging for subjects to maintain a fully 107 

relaxed resting state, which is often desirable for research and medical purposes. Instead, 108 

subjects typically exhibit some degree of mental activity or minor movements. As a result, there 109 

are relatively few data segments with low noise levels, and the entire dataset is characterized 110 

by moderate levels of noise, often accompanied by notable artifacts. In this scenario, the 111 

proposed method considers an iterative use of the IF algorithm for identifying outliers in the 112 

data while retaining epochs with relatively low PTP values in each iteration, until all epochs 113 

distorted by artifacts are correctly classified. Following the aforementioned design philosophy, 114 
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the flowchart of the proposed method is shown in Fig. 1. The main procedures are presented in 115 

Fig. 1 and will be demonstrated in this section, respectively. 116 

 117 

Fig. 1. Flowchart of the proposed method. 118 

2.1 Data Preparation and Basic Preprocessing 119 

The present study enrolled 6 subjects in total, of which 2 subjects had epilepsy and 4 subjects 120 

were healthy. Data from all subjects were retrospectively collected from the database of the 121 

Department of Neurology of Nanjing Drum Tower Hospital from 2021 to 2022. All the subjects 122 

provided informed consent and underwent Long-Term Video-EEG for up to 20 hours. The 123 

inclusion criteria for epilepsy were: (1) subject age ≥ 18 years old; (2) EEG recordings of 124 

subjects showed obvious epileptic discharge, and subjects had previously experienced seizures. 125 

The inclusion criteria for healthy subjects were: (1) subject age ≥  18 years old; (2) The 126 

subjects presented for consultation due to heatstroke or syncope, however, no visible 127 

abnormalities were observed in the EEG. This study was approved by the Ethics Committee of 128 

the Department of Neurology, Nanjing Drum Tower Hospital, Nanjing, China. 129 

As shown in Fig. 2, a 19-channel montage based on the 10-20 International System was 130 
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used to collect the EEG signals. In order to maintain the configuration of each subject consistent, 131 

the recordings were referenced to the average of earlobes, namely A1 and A2. Since the 132 

sampling rates of the EEG recordings are different, the data were resampled at 500 Hz for the 133 

convenience of subsequent analysis. The high-frequency muscle artifacts resulting from 134 

movements such as chewing and head motion are common artifacts in EEG recordings, and eye 135 

movement signals often interfere with the subsequent analysis of EEG signals. Therefore, in 136 

order to verify the effectiveness of the proposed methods, bandpass filtering and independent 137 

component analysis were intentionally omitted for reducing or suppressing these artifacts. 138 

Instead, notch filters were exclusively used to remove global noise associated with the power 139 

source, ensuring proper operation of the methods. To remove power-line interference, an FIR 140 

notch filter with zero phase and hamming window is designed by using MNE [43], and is 141 

applied at 50 Hz for each subject’s EEG recording.  142 

 143 

Fig. 2. Channel configuration of selected Long-Term EEG recordings. 144 

2.2 Feature Extraction 145 

Initially, as shown by the first block in the middle column of Fig. 1, the features of epochs in 146 

the original signals are extracted. PTP is widely used in the analysis of EEG. For the purpose 147 

of simplicity of notation, a formal definition is established in this subsection. In consideration 148 

of EEG research with a large amount of data, the raw data is always divided into epochs of 149 

equal time length, so the PTP values for each channel in one epoch are defined by the following 150 
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equation: 151 

 𝐸𝑛
𝑐 = max 𝑥𝑛

𝑐 (𝑘) − min𝑥𝑛
𝑐 (𝑘) (1) 

where 𝐸𝑛
𝑐 is the PTP value for 𝑐th channel in 𝑛th epoch, 𝑥(𝑘) is in discretization form of 152 

time course of single channel within an epoch, with 𝑘 being the sampling point, where 0 ≤153 

𝑘 ≤ 𝐾 − 1 and 𝐾 is the sampling rate. By computing the PTP value 𝐸𝑛
𝑐 for each channel in 154 

each epoch, the raw EEG time series can be reformulated as a new feature matrix: 155 
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 (2) 

Thus, 𝑋𝑓𝑒𝑎𝑡𝑢𝑟𝑒  is a dense matrix of size 𝐶 × 𝑁. 156 

2.3 Isolation Forest 157 

Following the extraction of epoch-level features, the subsequent step is to identify the corrupted 158 

epochs. Since the ratio of corrupted epochs to clean epochs in a given Long-Term EEG 159 

recording is indeterminate, it is suitable to define the process of corrupted epochs rejection as 160 

a two-class imbalanced classification task. Hence, methods formulated for anomaly detection 161 

can be employed to resolve this problem. 162 

This paper proposes to use the IF to distinguish between corrupted and clean epochs. The 163 

reason to choose the IF is that it has linear time complexity with a low constant and a low 164 

memory requirement [45]. The IF assumes that, when randomly partitioning the feature space 165 

of specified samples, samples with distinguishable features are more likely to be separated in 166 

early partitioning [46]. Thus, nodes with shorter path lengths in the isolation trees are highly 167 

likely to be anomalies.  168 

Overall, anomaly detection using the IF is a two-stage procedure. The first stage involves 169 

constructing isolation trees through the application of the specified samples and the partitioning 170 

process, while the second stage entails passing the samples through the isolation trees to 171 

generate an anomaly score for each sample. 172 

An isolation tree built from a dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} is a complete binary tree, 173 

where each node in the tree has exactly zero or two children. In the first stage of the IF algorithm, 174 

a collection of 𝑡 isolation trees are generated by initially sub-sampling the provided set 𝑋 to 175 
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size 𝜓, followed by a recursive partition of the set 𝑋𝜓. The partition operation selects a feature 176 

dimension of the samples 𝑞 and a split value 𝑝, such that the comparison 𝑞 <  𝑝 divides 177 

samples into left subtree and right subtree. The termination conditions of constructing an 178 

isolation tree are: 179 

(1)  The depth of the tree reaches the limit 𝑙, where 𝑙 =  𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑙𝑜𝑔2 𝜓). 180 

(2)  |𝑋𝜓| = 1. 181 

(3)  All values in 𝑞 are the same. 182 

Upon completion of the aforementioned operations for 𝑀 times, an isolation forest consisting 183 

of 𝑀 isolation trees is constructed. 184 

In the second stage of the IF algorithm, an anomaly score 𝑠 is derived from the expected 185 

path length 𝐸(ℎ(𝑥)) for each sample presented in 𝑋, where ℎ(𝑥) is calculated by counting 186 

the number of edges from the root node to a terminating node as instance 𝑥 traverses through 187 

an isolation tree and 𝐸(ℎ(𝑥)) is the average of ℎ(𝑥) from a collection of isolation trees. As 188 

described in [46], the trees constructed by the IF algorithm have an equivalent structure to a 189 

Binary Search Tree (BST). In a BST, an unsuccessful search is defined as the inability to find a 190 

specified element within the tree. Therefore, the path length of termination due to an external 191 

node in the IF algorithm can be estimated using the theory of BST. The average path length of 192 

an unsuccessful search in a binary search tree is defined as follows:  193 

 𝑐(𝑛) =  2𝐻(𝑛 −  1) − (
2(𝑛 −  1)

𝑛
) (3) 

where 𝐻(𝑖)  is the harmonic number and it can be estimated by 𝑙𝑛(𝑖)  +  0.5772156649 194 

(Euler’s constant). Since 𝑐(𝑛)  can be used to normalize ℎ(𝑥) , the anomaly score 𝑠  of a 195 

sample is formulated as: 196 

 
𝑠 =  2

−
𝐸(ℎ(𝑥))

𝑐(𝑛)  
(4) 

The anomaly score 𝑠 can be used to identify anomalies within the data. The algorithm arranges 197 

the data in descending order according to 𝑠 , and the first 𝑚  instances are the top 𝑚 198 

anomalies. As illustrated in Fig. 1, the IF algorithm is utilized repeatedly. Following each 199 

iteration, the most probable outliers are identified as potentially corrupted epochs. 200 

2.4 Boundary Adjustment 201 
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Since the IF detects outliers on the basis of anomaly score, it is capable of discovering corrupted 202 

epochs in the iteration. According to the definition of PTP, clean epochs are supposed to have 203 

a lower value of PTP compared to heavily corrupted epochs. However, in clinical Long-Term 204 

EEG recordings, the proportion of time for patients to maintain resting-state and perform daily 205 

activities is unknown. In other words, patients only need to wear the signal collector during 206 

clinical EEG monitoring, and they can engage in activities such as eating and drinking within 207 

the monitoring area. However, the duration of patients lying down and keeping their mind 208 

empty is uncertain. As a result, the collected signals contain both resting-state and other daily 209 

activity EEG signals in a coupling manner. Consequently, the ratio of time spent in resting-state 210 

and other daily activities cannot be determined explicitly. Under such circumstances, in a 211 

clinical Long-Term recording that needs to be preprocessed, the aggregation trend of data is 212 

also non-deterministic. In the feature space, when epochs with higher values of PTP tend to 213 

cluster, those with lower values of PTP (representing data when the patient is in a resting state) 214 

are significantly distanced from the cluster center, often resulting in their identification as 215 

outliers by the IF algorithm and subsequent elimination, despite being the epochs of interest. 216 

To address this issue, six methods are proposed to adjust the boundary between outliers 217 

and inliers. Since it is unambiguous that clean epochs always have a lower value of PTP, those 218 

epochs considered as outliers by the IF but with a low value of PTP should be retained as well. 219 

After each decision of the IF, the data can be divided into two sets, one as inliers and the other 220 

as outliers, which can be expressed as follows: 221 

 𝑆𝑖𝑛𝑙𝑖𝑒𝑟𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑝} (5) 

and 222 

 𝑆𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑞} (6) 

where 𝑝 and 𝑞 are the numbers of epochs determined as inliers and outliers in the current 223 

iteration. Due to the multi-dimensional nature of EEG signals, segmental feature extraction 224 

using peak-to-peak values allows for temporal separation and reduction of the data. However, 225 

the spatial dimensions are still preserved. The main design motivation of the proposed method 226 

is to facilitate comparison and iteration on the most salient features of the data, enabling the 227 

progressive identification of epochs heavily contaminated by signals. Principal component 228 
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analysis (PCA) is a classical data analysis technique that linearly combines the original 229 

variables to generate new composite variables while preserving the maximum amount of 230 

information. With the aim of identifying the primary components of variance in the data, PCA 231 

is employed in the boundary adjustment stage to reduce dimensionality and eliminate redundant 232 

information. To mathematically represent the boundary adjustment method, the PTP value at 233 

the epoch level after PCA reduction is defined as: 234 

 𝐸𝑒𝑝𝑜(𝑠) = 𝑃𝐶𝐴(𝑠, 𝑛𝑐𝑜𝑚𝑝𝑜𝑒𝑛𝑡𝑠 = 1) (7) 

where 𝑠 ∈ 𝑆𝑖𝑛𝑙𝑖𝑒𝑟𝑠  or  𝑆𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 , and 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 1 indicates that original feature matrix is 235 

reduced to one dimension. Thus, the maximum value of retained epochs is used to adjust the 236 

boundary: 237 

 𝐸𝑚𝑎𝑥
𝑖𝑛𝑙𝑖𝑒𝑟𝑠 = max (𝐸𝑒𝑝𝑜(𝑠)) (8) 

where 𝑠 ∈ 𝑆𝑖𝑛𝑙𝑖𝑒𝑟𝑠   , and 𝐸𝑚𝑎𝑥
𝑖𝑛𝑙𝑖𝑒𝑟𝑠   represent the maximum PTP value of retained epochs. If 238 

𝐸𝑒𝑝𝑜(𝑠) < 𝐸𝑚𝑎𝑥
𝑖𝑛𝑙𝑖𝑒𝑟𝑠  when 𝑠 ∈ 𝑆𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 , then this epoch should be regarded as an inlier and be 239 

retained with other inliers. This boundary method is denoted as the Max Method. In the same 240 

way, the min value of retained epochs can be defined as: 241 

 𝐸𝑚𝑖𝑛
𝑖𝑛𝑙𝑖𝑒𝑟𝑠 = min (𝐸𝑒𝑝𝑜(𝑠)) (9) 

and it is used as a comparator to retain epochs with 𝐸𝑒𝑝𝑜(𝑠) < 𝐸𝑚𝑖𝑛
𝑖𝑛𝑙𝑖𝑒𝑟𝑠  when 𝑠 ∈ 𝑆𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 . 242 

This boundary method is denoted as the Min Method. Similarly, mean and median values of the 243 

retained epochs can also be used to adjust the boundary of outliers and inliers. They can be 244 

defined as: 245 

 𝐸𝑚𝑒𝑎𝑛
𝑖𝑛𝑙𝑖𝑒𝑟𝑠 = mean (𝐸𝑒𝑝𝑜(𝑠)) (10) 

and 246 

 𝐸𝑚𝑒𝑑𝑖𝑎𝑛
𝑖𝑛𝑙𝑖𝑒𝑟𝑠 = median (𝐸𝑒𝑝𝑜(𝑠)) (11) 

respectively. Then the epochs decided as outliers by the IF are supposed to be retained if 247 

𝐸𝑒𝑝𝑜(𝑠) < 𝐸𝑚𝑒𝑎𝑛
𝑖𝑛𝑙𝑖𝑒𝑟𝑠  or 𝐸𝑒𝑝𝑜(𝑠) < 𝐸𝑚𝑒𝑑𝑖𝑎𝑛

𝑖𝑛𝑙𝑖𝑒𝑟𝑠  when 𝑠 ∈ 𝑆𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 . These two methods are called 248 

the Mean Method and the Median Method, respectively. Moreover, we have also taken into 249 

consideration the metrics of the distribution. Therefore, kurtosis and skewness of the 250 

distribution are used to adjust the boundary of outliers and inliers, and they are denoted as 251 
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Kurtosis Method and Skewness Method. Thus, they are defined to be:  252 

 𝐸𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠
𝑖𝑛𝑙𝑖𝑒𝑟𝑠 = kurtosis (𝐸𝑒𝑝𝑜(𝑠)) (12) 

and 253 

 𝐸𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠
𝑖𝑛𝑙𝑖𝑒𝑟𝑠 = skewness (𝐸𝑒𝑝𝑜(𝑠)) (13) 

respectively. These six methods are all effective for adjusting the boundary but have different 254 

characteristics, which will be explored in the next section. 255 

2.5 Termination Condition of the IF Iteration 256 

In order to implement automatic rejection of artifacts, it is necessary to specify a termination 257 

condition for the IF iteration. For this reason, two classes should be defined: 258 

(1) Ωretain: all the epochs that are confirmed to be clean by the algorithm. 259 

(2) Ω𝑑𝑟𝑜𝑝: all the epochs that are confirmed to be artifact-corrupted by the algorithm.  260 

After adjusting the boundary of separation results of the IF, the sets 𝑆𝑖𝑛𝑙𝑖𝑒𝑟𝑠  and 𝑆𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠  261 

can be rearranged and merged to Ωretain and Ω𝑑𝑟𝑜𝑝. By using L2 norm, the distance between 262 

Ωretain and Ω𝑑𝑟𝑜𝑝 is defined as: 263 

 𝐷𝑖𝑠𝑡 =  |max (𝐸𝑒𝑝𝑜(𝑠𝑖)) − min (𝐸𝑒𝑝𝑜(𝑠
𝑗))|

2
 (14) 

where 𝑠𝑖 ∈ Ωretain  and 𝑠𝑗 ∈ Ω𝑑𝑟𝑜𝑝 . As the number of iterations increases, the distance 264 

defined above will be subject to alteration. This is due to the gap in the PTP values between 265 

clean epochs and artifact-corrupted epochs being varied in the successive iteration. Finally, 266 

when all the artifact-corrupted epochs are correctly classified, the IF algorithm will detect no 267 

outlier present or incorrectly classify minor clean epochs as outliers. In either of the scenarios, 268 

the distance between the two classes will remain unchanged. Consequently, the iteration should 269 

be terminated and the automatic rejection is completed.  270 

The source code for this research is available on GitHub at the following URL: 271 

https://github.com/RunKZhang/Isolation_Forest_Automatic_Rejection.  272 

3. Experiments and results 273 

In this section, the proposed method is verified and compared with the state-of-the-art. For each 274 
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patient described in the previous section, the first two-hour data of the recordings is extracted. 275 

For each two-hour data, the data is split from the middle to build two one-hour datasets. Next, 276 

non-overlapping one-second epochs were made for each one-hour data. Thus, twelve one-hour 277 

data segments with 3600 epochs were built. The two-hour data is extracted because, upon 278 

registration and commencement of Long-Term EEG recording, patients are typically unable to 279 

remain still and at rest. The segmentation of EEG recordings is executed by using MNE. 280 

Considering that the length of data processed by different algorithms may not be consistent, 281 

the evaluation metrics for data quality should be independent of data length. Thus, the metrics 282 

used to evaluate the data quality before and after rejection were Overall Data Quality (ODQ) 283 

and Overall Data Quality Rating (DQR) introduced by Zhao et al. in [47]. The ODQ value is 284 

expressed as:  285 

𝑂𝐷𝑄 =
𝑀𝑔𝑜𝑜𝑑 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑀𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
                          (15) 286 

where 𝑀𝑔𝑜𝑜𝑑 𝑤𝑖𝑛𝑑𝑜𝑤𝑠  is the number of good windows in a data segment, while 287 

𝑀𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑛𝑑𝑜𝑤𝑠  is the number of total windows in a data segment. A window refers to the time 288 

course of a single channel within an epoch and a good window indicates that the single time 289 

course is with an acceptable level of noise. Since the quantitative signal quality evaluation 290 

method for EEG proposed in [47] is threshold-based, it requires no ground-truth labels for good 291 

windows and automatically identifies the good windows based on a set of parameters. 292 

Considering its nature of not requiring manual labeling, this metric is particularly suitable for 293 

evaluating data quality in situations where the dataset lacks true labels and the size of the dataset 294 

is tremendous. The number of total windows 𝑀𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 is denoted as: 295 

𝑀𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 = 𝐶 × 𝑁                        (16) 296 

where 𝐶 is the number of channels in a data segment and 𝑁 is the number of epochs in a data 297 

segment. From the definition of ODQ, it can be inferred that this metric is suitable for evaluating 298 

the data quality of the same data segment after being processed by different methods. In can be 299 

summarized that the higher the ODQ value, the better the quality of the data. The authors in 300 

[47] manually partition the ratings of DQR, which correspond to "perfect," "good," "poor," and 301 

"bad." The rating of DQR is determined based on the numerical value of ODQ. When ODQ is 302 

less than 60, an EEG recording's DQR is classified as D, indicating bad data quality. When 303 
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ODQ is greater than or equal to 60 but less than 80, the DQR of a recording is classified as C, 304 

indicating poor data quality. When ODQ is greater than or equal to 80 but less than 90, the DQR 305 

of a recording is classified as B, indicating good data quality. When ODQ is greater than or 306 

equal to 90, the DQR is classified as A, indicating perfect data quality. The ODQ values and 307 

their corresponding DQR ratings are illustrated in Table 1. 308 

Table 1. The ODQ value and corresponding DQR. 309 

DQR ODQ Value 

A 𝑂𝐷𝑄 ≥ 90 

B 90 > 𝑂𝐷𝑄 ≥ 80 

C 80 > 𝑂𝐷𝑄 ≥ 60 

D 60 > 𝑂𝐷𝑄 

 310 

The IF is implemented using scikit-learn and the parameters are set to default, which are 311 

shown in Table 2. Since the IF algorithm is a type of ensemble method, the number of base 312 

estimators actually represents the number of random trees in the forest, and it is defaulted to be 313 

100 in scikit-learn. The number of samples denotes the amount of data drawn from the dataset 314 

to construct a random tree, and this parameter value set to 'Auto' indicates that scikit-learn will 315 

automatically select the minimum value between the size of the dataset and 256. The 316 

contamination represents the proportion of outliers in the original data, and this parameter value 317 

set to 'Auto' means that the threshold is determined as in the original paper [46][47]. The number 318 

of features denotes the percentage of the dimension of the feature vector drawn from the original 319 

data to train random trees, and 1.0 means that all the features are used for training. Bootstrap is 320 

a parameter used to control the sampling method, where 'True' means that training data were 321 

sampled with replacement, and 'False' indicates sampling without replacement is performed. 322 

The ODQ value and the DQR are calculated using the WeBrain platform and Python scripts 323 

[48]. 324 

 325 

 326 

 327 
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Table 2. The parameters of the IF in scikit-learn. 328 

Parameter Names Parameter Values 

The number of base estimators 100 

The number of samples Auto 

contamination Auto 

The number of features 1.0 

bootstrap False 

 329 

The data quality prior to artifact rejection is shown in Fig. 3. It is evident that the ODQ 330 

varies in a large range from 0 to 88.89 and the DQR is between D and B. The average quality 331 

value of these segments is (53.24 ± 27.87) and the average rating is D. 332 

 333 

Fig. 3. Overall Data Quality and corresponding ratings. 334 

3.1 Evaluation of Six Boundary Adjustment Methods 335 

The six methods for boundary adjustment were compared in terms of ODQ values in our 336 

experiment to illustrate which adjustment method is the most reasonable. The ODQ values after 337 

rejection by the six boundary adjustment methods are illustrated in Fig. 4. 338 
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 339 

Fig. 4. Boxplot of the performance of six boundary adjustment methods. 340 

 341 

From Fig. 4, it can be noted that the lowest ODQ value of the Min Method is 22.22, while 342 

the lowest ODQ values of the other five methods are 0, 27.77, 27.77, 19.64 and 19.64, 343 

respectively. Meanwhile, it is evident from the figure that the highest ODQ values among the 344 

boundary adjustment methods based on simple statistics exceed 90, while the two methods 345 

based on distribution metrics only exceed 80. This indicates that these six boundary adjustment 346 

methods are effective in eliminating artifact-corrupted epochs. However, the box size of the 347 

Min Method is the smallest among the six methods, implying that the overall data quality after 348 

rejection by the proposed method with the Min Method as the boundary adjustment method can 349 

reach a superior level. As observed from the distribution curve on the right side of each box, 350 

the ODQ values of the other five methods are more dispersed and the average ODQ value of 351 

the Min Method is higher than those of other methods. 352 

The number of iterations required for convergence for each data segment is illustrated in 353 

Fig. 5. The distance between two classes is calculated after each iteration, and the iteration stops 354 

when the distance values of two adjacent iterations are the same. 355 
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 356 

Fig. 5. Numbers of iterations required for convergence by the six methods that use different 357 

statistical indicators as the centroid. (a) Min Method. (b) Max Method. (c) Median Method. 358 

(d) Mean Method. (e) Kurtosis Method. (f) Skewness Method. 359 

 360 

The distance values recorded in Fig. 5 were calculated after each iteration. However, prior 361 

to any iterations or before the first iteration, the number of elements in set 𝛺𝑑𝑟𝑜𝑝  is zero, 362 

indicating that the set containing epochs confirmed to be artifact-corrupted is empty. In equation 363 

(14), the minimum value of elements in the set 𝛺𝑑𝑟𝑜𝑝 is required, but the minimum value of 364 

an empty set is undefined. Hence, Fig. 5 omits the distance values before any iterations and 365 

starts recording from the first iteration onwards. After the first iteration, both sets 𝛺𝑟𝑒𝑡𝑎𝑖𝑛 and 366 

𝛺𝑑𝑟𝑜𝑝 contain elements. However, due to different data segments evaluated in the experiments, 367 

the elements of the two sets are distinct, resulting in different calculated distance values. Fig. 5 368 

shows a discernible trend that the Max Method requires the least number of iterations to achieve 369 

convergence and only needs two iterations in most data segments. Similarly, the Kurtosis 370 

Method converges after a few iterations. On the contrary, using the min value as the centroid to 371 

adjust the boundary needs more iterations to achieve convergence. The performances of the 372 

other three methods tend to be analogous, which indicates that they need a similar running time. 373 

In general, although the Min Method requires the maximum number of iterations to achieve 374 

convergence compared with the other five boundary adjustment methods, this method is 375 

capable of reaching the best data quality after rejecting artifact-corrupted epochs.  376 

Fig. 6 provides an overview of the number of epochs of each data segment after corrupted 377 
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epochs being rejected by the proposed method. It is noted from the figure that using the min 378 

value as the centroid always resulted in more iterations and fewer retained epochs.  379 

 380 

Fig. 6. The number of epochs of each data segment after corrupted epochs being rejected 381 

by the proposed method that use different statistical indicators as the centroid. (a) Min 382 

Method. (b) Max Method. (c) Median Method. (d) Mean Method. (e) Kurtosis Method. (f) 383 

Skewness Method. 384 

3.2 Comparison with the State-of-the-Art 385 

In this subsection, the proposed method is compared with several state-of-the-art automatic 386 

artifact removal methods, including two unsupervised methods and two supervised methods. 387 

The first method is Autoreject, which adaptively selects thresholds for discriminating artifacts 388 

from clean segments using cross-validation and employs Bayesian Optimization for optimal 389 

threshold [44]. The second method, referred to as AUTO in this paper, takes a series of complex 390 

handcrafted features as input to an autoencoder for unsupervised learning and outlier removal 391 

[49]. The third and fourth methods are EEGdenoiseNet and Interpretable CNN, well-known 392 

convolutional neural network-based approaches for artifact handling in EEG signals [35] [22]. 393 

In this paper, the AUTO is trained for 100 epochs to discriminate artifact-corrupted epochs, and 394 

contamination is set to 0.1 by default according to [49]. For EEGdenoiseNet, a classifier was 395 

added to the end as stated in [22] and trained for 100 epochs on the EEGdenoiseNet dataset, 396 

which is a semi-synthetic EEG dataset. According to [22], Interpretable CNN is also trained for 397 

100 epochs on the EEGdenoiseNet dataset to achieve a high accuracy of classifying clean EEG 398 

and artifacts. After completing the training of both networks, they were validated on the 399 
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collected dataset used in this paper. Each epoch's data was inputted to the network as a batch 400 

for validation purposes. The training and testing of deep learning models in this paper were 401 

executed using NVIDIA GeForce GTX 1080 Ti. The comparison results are shown in Table 3. 402 

It is noteworthy that the epochs left by these methods differ as shown in Table 3, and this can 403 

be attributed to the normal inconsistency in the length of the remaining data after being 404 

processed by different algorithms. This is because during the running process, different 405 

algorithms will reject epochs that they deem to be highly contaminated by artifacts, so it is 406 

challenging to ensure that processing the same data segment with different algorithms will yield 407 

data of the same length. Thus, the discrepancy in data length after automatic rejection renders 408 

it sensible to compare the quality of the artifact-rejected data using ODQ values. 409 

Table 3. Results from comparison between the proposed method and other methods. 410 

Method   Running Time Number of Retained Epochs ODQ Value 

Proposed Method 5.48 ± 1.04s 1226.25 ± 468.42 80.09 ± 21.77 

Autoreject    582.28 ± 34.29s   1888.58 ± 1212.27 58.33 ± 37.57 

AUTO 100.09 ± 11.32𝑠 3240 ± 0 58.66 ± 26.27 

EEGdenoiseNet 24.96 ± 2.51𝑠 3048.91 ± 705.22 62.57 ± 23.07 

Interpretable CNN 7.19 ± 0.89𝑠 2443.83 ± 1242.99 63.68 ± 23.70 

   411 

The ODQ values before and after artifact removal by using the proposed method and other 412 

methods are shown in Fig. 7(a). The proposed method yields superior or equivalent results in 413 

most data segments compared to other methods. However, not all these methods can be used to 414 

improve the quality of the data. After being processed by AUTO and EEGdenoiseNet, segment 415 

twelve even exhibits a lower ODQ value compared to the original data, and Autoreject shows 416 

a similar performance on segment four. As shown in Fig. 3, the bars that illustrate data segments 417 

are sorted by ODQ values, and segments one to six are rated as D. The proposed method yields 418 

the highest improvement in ODQ value through artifact removal when applied to these data 419 

segments. This indicates that the proposed method resulted in a higher proportion of good 420 

windows in the artifact-rejected data compared to other methods, implying that the proposed 421 

method is able to perform better than other methods on poor-quality data segments. Fig. 8(a) is 422 
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a scatter plot, with the y-axis showing the ODQ values of the proposed method and the x-axis 423 

showing the ODQ values of the other methods. Evidently, the ODQ values of segments after 424 

artifact rejection by the proposed method are higher than those of the other methods, as most 425 

data points are above the dashed line. On the contrary, the scatter plot illustrates that the 426 

proposed method is capable of improving the data quality to some extent, as there are few data 427 

points located in the bottom left corner. 428 

Subsequently, the number of epochs left by the proposed method was compared to those 429 

left by other methods, and the results are depicted in Fig. 7(b). The figure suggests that the 430 

proposed method tends to reject more epochs than other methods on poor-quality data segments, 431 

thus indicating that it is more proficient in detecting artifact-corrupted epochs. Notably, the two 432 

methods based on supervised learning refused to drop any epochs on segments 4, 7, and 10, 433 

leading to the failure of improving the ODQ value. From the perspective of ML/DL, the quality 434 

of data is more important than the quantity. Figure 8(b) shows the scatter plot of the number of 435 

retained epochs after rejection by the proposed method (y-axis) and other methods (x-axis). 436 

More data points are below the dashed line in Fig. 8(b), which demonstrates that the data 437 

segments have fewer epochs left after rejection by the proposed method than after rejection by 438 

other methods. From Fig. 7 and Fig. 8, it can be seen that, when using these methods to reject 439 

heavily-corrupted epochs, the proposed method results in a higher proportion of good windows 440 

in the artifact-rejected data, even when fewer epochs are retained. In other words, the ratio of 441 

clean epochs to contaminated epochs in the remaining data segments has been increased.  442 

 443 

Fig. 7. Comparisons of ODQ values and number of epochs between original data and data 444 

after rejection by the proposed method and other methods. (a) ODQ values of original data 445 

and data after rejection by the proposed method and other methods. (b) Number of epochs 446 
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of original data and data after rejection by the proposed method and other methods. 447 

 448 

Fig. 8. Scatter plots for comparing the performances of the proposed method and other 449 

methods in terms of the ODQ value and the number of retained epochs after artifact 450 

rejection. (a) Scatter plot for comparison between the proposed method and other methods 451 

in terms of ODQ value. (b) Scatter plot for comparison between the proposed method and 452 

other methods in terms of number of retained epochs. 453 

 454 

Furthermore, the relationship between the running time and the length of the data segment 455 

of the aforementioned rejection methods was compared. To this end, data segments with lengths 456 

equal to one hour, three hours, and five hours were extracted from the patients and used for 457 

comparison. The five methods were executed on these new data segments, and their 458 

corresponding running times were recorded. As a result, Fig. 9 shows the logarithmic average 459 

running time across segments versus the corresponding epoch length with points in square. The 460 

straight lines through these points represent the linear fit curve between the running time and 461 

the corresponding length of the data segment. The parameters after fitting are presented in Table 462 

4. As demonstrated in Fig. 9 and Table 4, the linear fit result of the proposed method has a lower 463 

intercept than that of other methods, implying that the running time of the mentioned methods 464 

is comparable when the length of the data segment is short. Moreover, although the slopes of 465 

the two supervised learning methods is slightly higher than the proposed method, the time cost 466 

for pretraining the two methods should also be taken into consideration, implying a potential 467 

higher time complexity.  468 
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 469 

Fig. 9. Relationships between running time and length of the data segment of the proposed 470 

method and other methods. 471 

 472 

Table 4. Results of linear fitting between the proposed method and other methods. 473 

Method  Slope  Intercept   R square     Pearson’s r 

Proposed method 0.10 ± 0.01 0.62 ± 0.04 0.98 0.99 

Autoreject 0.21 ± 0.05 2.61 ± 0.16 0.95 0.97 

AUTO 0.24 ± 0.01 1.76 ± 0.02 0.99 0.99 

EEGdenoiseNet 0.16 ± 0.03 1.27 ± 0.12 0.96 0.98 

Interpretable CNN 0.16 ± 0.03 0.73 ± 0.10 0.96 0.98 

4. Discussion 474 

In this study, a novel automatic rejection method for enhancing the data quality of clinical Long-475 

Term EEG recordings at the very initial stage of preprocessing is proposed and the performance 476 

of the proposed method is evaluated by comparison with four state-of-the-art methods. This 477 

section discusses the results depicted in the previous section, and the distinctions and 478 

similarities between the proposed method and other methods are elucidated in certain contexts. 479 

In the previous section, it was initially demonstrated that using the minimum value of the 480 

data as the centroid to adjust the boundary is more effective than other statistical indicators. The 481 

rationale behind this phenomenon is that the boundary adjustment technique based on the 482 

minimum value can consistently target the minimum value in the data and increase the iteration 483 
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times to discover more outliers. It has been observed that while using median, mean, maximum, 484 

kurtosis, and skewness can be beneficial in improving the quality of the data, they also have the 485 

potential to terminate the iteration process prematurely, thus preventing from achieving the 486 

optimum result. In theory, using skewness and kurtosis would yield better results compared to 487 

simple statistical metrics, as they consider the overall shape of the distribution. However, their 488 

performance is inferior when compared to the Min Method. This can be attributed to the 489 

relatively small variation in skewness and kurtosis across the entire data, making it easy for 490 

them to remain unchanged after removing a portion of data segments, thereby ending the 491 

removal process. Nevertheless, using the minimum value as the centroid will result in fewer 492 

epochs compared to other methods, since using the minimum value as the centroid requires 493 

more iterations. Therefore, when aiming to keep fewer epochs than the other five methods, 494 

those epochs with a high level of data quality will be preserved. 495 

The results from the previous sections demonstrate that the proposed method exhibits 496 

certain advantages over the state-of-the-art methods in terms of reliability. From a principle-497 

based perspective, Autoreject employs a cross-validation framework and utilizes the Frobenius 498 

norm of the mean value of good trials in the training set, as well as the median value in the 499 

validation set. Therefore, it assumes that the mean and median values of the PTP of the dataset 500 

are sufficient to discriminate artifacts from the clean data. However, as stated in Section II, the 501 

proportion of time for a patient to stay in a resting-state or perform activities is unknown, and 502 

there may be instances where the artifact-corrupted data exceeds the clean data. Mean and 503 

median values used in Autoreject may not be able to effectively differentiate between artifact-504 

contaminated epochs and clean epochs since they potentially assume that epochs with a higher 505 

PTP value than mean and median are likely to contain artifacts, and epochs with a lower PTP 506 

value are likely to be clean. However, this assumption may not always hold true in clinical 507 

settings. The reason for the superiority of the proposed method over Autoreject lies in its 508 

divergence from the approach employed by Autoreject. Unlike Autoreject, the proposed method 509 

utilizes the minimum value of retained epochs as a criterion to distinguish between clean epochs 510 

and contaminated epochs during the iterative process. Although this may result in a reduction 511 

in the number of retained epochs, the minimum value of the retained epochs consistently 512 
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ensures an improvement in data quality. For the comparison between the proposed method and 513 

other methods, it is imperative to acknowledge the significant contributions that DL-based 514 

methods have made to the preprocessing stage of EEG. In terms of feature extraction, AUTO 515 

applies manipulation to multiple features and metrics extracted from the EEG, compressing 516 

them into a more compact space. Subsequently, a decision boundary is curved to separate the 517 

outliers from the inliers. Compared to the proposed method, the major drawback of AUTO lies 518 

in its assumption of a fixed proportion of outliers in the data. Although this proportion can be 519 

treated as a hyperparameter of the model, the proposed method, on the other hand, continuously 520 

discovers contaminated epochs in the data through an iterative process. EEGdenoiseNet and 521 

Interpretable CNN employ distinct convolution kernels to extract features from the original 522 

EEG signals and classify clean EEG signals from artifacts based on these extracted features, 523 

and they necessitate pre-training on the dataset prior to being transferred to other scenarios. 524 

Nonetheless, the training source data often lacks diversity, leading to suboptimal transfer 525 

performance. The proposed approach, in contrast, can be regarded as an unsupervised method 526 

that achieves satisfactory results without the need for pre-training. 527 

On the other hand, the proposed method needs the shortest execution time compared to 528 

other methods. From a theoretical standpoint, the proposed method constructs isolation trees by 529 

partitioning the feature space to form sub-trees, and the feature space shrinks with each iteration 530 

step. Contrarily, Autoreject requires the adoption of Bayesian Optimization to select the optimal 531 

threshold from a set of candidate thresholds. The optimization-based design often yields 532 

satisfactory results within an acceptable runtime for datasets of small sizes. However, for larger 533 

datasets, the time required to find the global optimum solution is considerably longer compared 534 

to directly partitioning the feature space. For the DL-based methods, EEGdenoiseNet and 535 

Interpretable CNN, they exhibit short execution times on large-scale datasets with the support 536 

of GPUs. However, the time required for pre-training them should also be taken into 537 

consideration. Although their pre-training time in this study is in the order of thousands of 538 

seconds, this time may increase exponentially as the size of the source dataset increases. The 539 

low runtime efficiency of AUTO can be attributed to its extraction of numerous features from 540 

the EEG as inputs to the network, which consumes more time compared to using only PTP. 541 
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However, this study still has some limitations. Firstly, a limited number of patients were 542 

used to validate the proposed method in this study. Due to the specificity of EEG, it is reasonable 543 

to consider a larger number of participants for validation. Secondly, this paper only addresses 544 

the removal of contaminated data without considering the use of methods for data restoration, 545 

which serves as a potential direction for future research. 546 

5. Conclusion 547 

In summary, a novel reliable and fast method for automatic rejection of clinical EEG recordings 548 

is proposed in this paper. The results illustrated in Section III indicate that the proposed method 549 

with min value as the centroid greatly improved the data quality, which implies that the 550 

proposed method is reliable in the automatic artifact rejection of Long-Term EEG recordings. 551 

Furthermore, the proposed method is also compared with the current state-of-the-art methods 552 

for preprocessing clinical EEG data. The comparison results suggest that the proposed method 553 

is competitive in most circumstances and it performs better than other methods especially when 554 

data quality is poor. Meanwhile, the comparison of running time indicates that the proposed 555 

method has a lower time complexity and is much faster than other methods. This is the 556 

consequence of the repeated application of an advanced data-driven outlier detection algorithm, 557 

accompanied by the establishment of an appropriate centroid, which ultimately led to the 558 

fulfillment of the termination condition. By building a tool to help researchers clean up data 559 

automatically, researchers can reduce the time required to inspect data, thus allowing them to 560 

focus on scientific research instead of parameter tuning for preprocessing.  561 
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