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B S T R A C T

ynamic path planning has gained increasing popularity in mobile robot navigation. Some of the current
ath planning methods require a priori information about the motion space and are easily affected by the
istribution of obstacles. To address the above limitation, this paper presents a novel dynamic method that
ransforms path planning into an optimal control problem and solves it dynamically through adaptive dynamic
rogramming and artificial potential field. The proposed method can obtain optimal paths for a differentially-
riven mobile robot model in an unknown environment with many irregular obstacles. First, by combining
ath optimization and kinematical constraints of the mobile robot, the original problem is transformed into a
ew problem. Second, the total distance traveled, the effect of heading angle, the distance from the target to
he robot, and the resultant force of the artificial potential field are included in the new performance index
unction. Third, the method based on adaptive dynamic programming is developed to avoid obstacles and
uarantee the safety of autonomous navigation. The convergence analysis provides theoretical guarantees for
ur method, and the iterative control sequence will converge to the optimal control. Furthermore, simulation
esults and analyses under different complexity levels demonstrate that our method has promising performance
n exploring and exploiting dynamic path planning problems.
. Introduction

With rapid advances in artificial intelligence and control engineer-
ng, mobile robots are beginning to have a major impact in both the
ilitary and civilian sectors. For example, self-driving cars do not
eed drivers but only passengers, unmanned aerial vehicles (UAVs)
an replace humans in delivering goods, unmanned surface vehicles
an perform precise autonomous docking, and smart wheelchairs can
mprove the quality of life for disabled people. (Liu et al., 2023; Li

et al., 2023; Wang et al., 2023; Low et al., 2022). Autonomous naviga-
tion is a crucial technical issue that needs further research for mobile
robots. Autonomous navigation can be broadly classified into four cat-
egories: environment sensing, path planning, motion control, and de-
cision making (Ntakolia et al., 2023; Wang et al., 2020; Pietrzykowski
et al., 2022). Path planning is an essential bridge between environment

sensing and motion control, and it is a key part of the mobile robot
(Dian et al., 2022; González et al., 2016). The path planning of the
mobile robot is to find a feasible route in the motion space from the
initial location to the given target location, and avoid some irregular
obstacles such as rocks, trees, and cars. Advanced path planning meth-
ods can significantly improve motion performance and reduce wear and
tear of mobile robots.

Generally, traditional path planning methods for mobile robots
are divided into two types, depending on the environmental space
available to the mobile robot: static and dynamic path planning (Jones
et al., 2023). The static methods generate feasible paths in an off-line
manner, which can obtain complete environmental information and the
mobile robot can arrive at the target location by following the ‘‘first
planning then tracking’’ framework, such as curve fitting, grid method,



X. Li et al.
intelligent optimization algorithm, etc. (Sathiya et al., 2022; Wahab
et al., 2020; Sedighi et al., 2019; Ammar et al., 2016). Static path
planning methods have served the scientific and industrial communities
for quite some time. Chen et al. (2022b) proposed an interval path
planning method for patrol robots in risk areas, which improved the
multi-objective particle swarm optimization to search for safe paths
with objective functions of both optimal distance and riskiness. Li
et al. (2023) developed an off-line trajectory planner with high-quality
warm-started strategy for the fixed-wing UAV formation. Kyaw et al.
(2022) designed a novel batch-informed trees* method with the energy-
based objectives for reconfigurable robots in complex environments.
However, the planning process of the static method relies on complete
environmental information, the data collection is space consuming and
expensive, and the mobile robot needs to construct a global map model
before planning. Once unknown obstacles or moving obstacles appear
in the motion space, it may be questionable whether the mobile robot
can safely track the planned path to the target. These static path
planning methods are limited in their application because they are
unable to obtain a viable motion path for the mobile robot in real-time.

Compared with the static methods, the dynamic path planning
methods generate paths in an on-line manner, which obtain the partial
environment information by sensors in real-time, such as the artificial
potential field (APF), dynamic window approach (DWA) and reinforce-
ment learning (Fan et al., 2023; Fox et al., 1997; Kiran et al., 2022).
Dynamic path planning has gained popularity in recent years. Wang
et al. (2022) proposed a simultaneous planning and control framework
to solve the real-time planning problem for unmanned surface vehicles
in unknown motion spaces. Sangiovanni et al. (2021) presented a
hybrid control method to obtain a collision-free path in anthropomor-
phic robots, which could be deployed in real-time, requiring only the
sensor data of the robot and the surroundings. Chen et al. (2022a)
developed a reinforcement learning-based path planning method with
dynamic obstacle avoidance, which can avoid moving obstacles in the
environment and achieve real-time planning. These methods signifi-
cantly reduce the cost of resources and improve the dynamic obstacle
avoidance capability. The dynamic methods guide the mobile robots to
dynamically obtain the solutions in the sampling range and adjust the
path on-line to achieve obstacle avoidance (Wu et al., 2021). As the
study progresses, the above dynamic path planning methods encounter
many challenges. Real-time capability is a major problem for such
methods. Dynamic methods can only be effective if the computing time
is less than the sampling interval, so the computational burden cannot
be too high. In addition, many dynamic methods tend to get stuck in a
situation where they fail to converge. The APF uses force fields to guide
the mobile robot to complete the path, but this method often falls into a
local optimum in obstacle-dense spaces and ultimately fails to reach its
target (Rosas et al., 2019). The DWA realizes a path planning scheme
by rolling computation of the window containing local information, but
it suffers from the infinite loop problem (Kowsar et al., 2022). The
reinforcement learning methods have excellent performance, but de-
signing an appropriate reward function can be difficult and the training
process requires significant computational power (Ladosz et al., 2022).
More importantly, most of the above static and dynamic path plan-
ning methods consider the mobile robot as a mass and the mobile
robot can move unconstrained. However, mobile robots are essentially
nonlinear systems with complicated motion constraints. For example,
differentially-driven models must adjust the direction by the difference
in velocity between two wheels. And fixed-wing UAVs cannot remain
stationary in the sky. Planning the path of a mass may be impractical
for the autonomous navigation of mobile robots in some scenes.

In recent years, some researchers have been working on optimal
control based dynamic path planning methods. In order to obtain
a better solution, the researchers consider the motion equation of
the mobile robot when designing the path planner. Optimal control
methods are the intersection of mathematical optimization and con-

trol theory, which calculates the optimal performance index function
under dynamic constraints (Teng et al., 2022; Wang et al., 2017).
The original problems are formulated as optimal control problems
(OCPs), which can be solved by pseudospectral or other optimal control
methods. Hansen and Wang (2020) solved the path accuracy problem
for autonomous parking systems by applying Pontryagin’s maximum
principle. Zhang et al. (2018) modeled the path problem of a mobile
robot as an OCP and designed an approximation strategy to deal
with the non-convex part. Ji et al. (2017) proposed a planning and
tracking algorithm through the virtual potential field and the model
predictive control for intelligent vehicles, which can minimize collision
occurrence. When there are many mobile robots or obstacles in the
motion space, the traditional optimal control method will encounter the
‘‘curse of dimensionality". This is due to the nonlinear motion equation
constraint and other state constraints of mobile robots, which causes
great inconvenience to the solution. Based on the above analysis, it
would be likely to facilitate the dynamic path planning for mobile
robots if an optimal control method with a low computational burden
could be developed.

To investigate how planners generate collision-free solutions in real-
time, this paper builds a new dynamic path planning method for mobile
robots in complex unknown environments. The method has advantages
in on-line planning, high solving efficiency, and can obtain the optimal
path. With the proposed method, we attempt to solve the ‘‘curse of
dimensionality", and improve the computational efficiency in OCPs.
The main contributions of our study are

• This paper developed an ADP-based method to solve the dynamic
path planning problem, the original problem is transformed into
an OCP.

• Our method designs a new performance index function, which can
optimize the path length of the mobile robot, and avoid obstacles
appearing in the unknown environment.

• The convergence analysis proves that the proposed method can
theoretically find the optimal solution of the OCP under appro-
priate constraints.

• The simulation results based on dynamic and static obstacles
demonstrate that the proposed method is effective for the path
planning of the mobile robot, and that robustness and real-time
capability can be guaranteed.

The rest of this paper is organized as follows. Section 2 formulates
the path planning problem and gives the mathematical description.
In Section 3, we present the specific implementation of the proposed
method based on the optimal control. In Section 4, we prove the
convergence of our method. Simulation results and related analysis are
presented in Section 5. At last, Section 6 concludes this paper and gives
future prospects.

2. Problem formulation

The original path planning problem will be converted into an OCP.
We will give a mathematical description of the problem in this section.

2.1. Motion equation

There are many different types of mobile robots in the world, such
as differentially-driven mobile robots, legged robots, car-like models,
UAVs and so on. And they have different driving principles and kine-
matical equations to make mobile robots move. Differentially-driven
mobile robots are a typical class of mobile robot models whose motion
comes from their driven wheels placed on both sides. The configuration
of a differentially-driven model is shown in Fig. 1. This mobile robot
model has three wheels, of which wheels A and B are driven wheels,
and wheel C is the passive wheel.

Differentially-driven mobile robots, such as smart wheelchairs and

sweeping robots, often operate in complex unknown environments,
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Fig. 1. The configuration of a differentially-driven mobile robot.

ynamic path planning methods with real-time obstacle avoidance
erformance are very important for such mobile robots. Therefore, this
aper considers a differentially-driven model as the controlled plant
nd is devoted to developing the dynamic methods to successfully
rive the model to the target while satisfying maneuverability. The
inematical equation of a differentially-driven mobile robot (Almomani
t al., 2021; Wang et al., 2015) is written as
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where the state vector 𝒙(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)] ∈ R3, (𝑥1(𝑡), 𝑥2(𝑡)) are
the position coordinates in the 2D environment, and 𝑥3(𝑡) = 𝜃(𝑡) is the
heading angle. The control vector 𝒖(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡)] ∈ R2, 𝑢1(𝑡) = 𝑣𝑟(𝑡)
and 𝑢2(𝑡) = 𝑣𝑙(𝑡) presents the linear velocity of the right and left driven
wheel, respectively. For the model, 𝑑 indicates the distance between
the two driven wheels, the linear velocity is 𝑣(𝑡) = (𝑢1(𝑡) + 𝑢2(𝑡))∕2, and
the angular velocity is 𝜔(𝑡) = (𝑢1(𝑡) − 𝑢2(𝑡))∕𝑑.

To solve the path planning problem using the numerical method,
the kinematical equation in continuous-time can be transformed into a
discrete-time equation as follows
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where the variables 𝒙(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘), 𝑥3(𝑘)] and 𝒖(𝑘) = [𝑢1(𝑘), 𝑢2(𝑘)]
are introduced to present 𝒙(𝑡) and 𝒖(𝑡), respectively. The constant 𝛥𝑡 is
the uniform sampling interval in our study.

For the mobile robot, the kinematical Eq. (2) can be simplified to a
compact form as follows

𝒙(𝑘 + 1) = 𝐹 (𝒙(𝑘), 𝒖(𝑘)) , 𝑘 = 0, 1, 2,… ,∞ (3)

where 𝑘 = {0, 1, 2,… ,∞} is defined as the sampling point in this work,
𝐹 (⋅) ∶ R3 ×R2 → R3 is the mapping of the system function. The moving
of the mobile robot must strictly obey this kinematical equation, and
we assume in this paper that the robot system is controlled.

2.2. Physical constraints

For path planning problems, the mobile robot will obtain the cor-
responding sampling state values 𝒙(𝑘) at each time step 𝑘, and the
initial state 𝒙0 and the terminal state 𝒙𝑓 of the mobile robot should be
satisfied. Both the state 𝒙(𝑘) and the control 𝒖(𝑘) are constrained due to
practical physical properties of mobile robots, leading to the following
inequality constraints
𝒙min ≤ 𝒙(𝑘) ≤ 𝒙max (4)
𝒖min ≤ 𝒖(𝑘) ≤ 𝒖max (5)

where 𝒙min and 𝒖min are the minimum values of the state and control,
and 𝒙max and 𝒖max are the maximum values of the state and control,
respectively.

In addition, the distance between the mobile robot and these obsta-
cles should be kept at a safe distance in case of collisions. In a dynamic
path planning problem, the mobile robot moves in an unknown envi-
ronment without a priori knowledge and only calculates the distance
to obstacles within its perception range. Thus, the obstacle constraint
is expressed as

𝑑𝑚(𝑘) ≥ 𝛽 (6)

where 𝑚 = 1, 2,… ,𝑀𝑘 presents that there are 𝑀𝑘 obstacles {𝑂1, 𝑂2,… ,
𝑂𝑀𝑘

} within the perception range. 𝛽 is a predefined safety distance
between the mobile robot and 𝑂𝑚; 𝑑𝑚(𝑘) is the Euclidean distance
between the mobile robot and the outer surface of 𝑂𝑚.

2.3. Performance index function

For OCPs, the performance index function 𝐽 (⋅) (Liu et al., 2021; Mu
et al., 2017) under the control law {𝒖(𝑘)} can be described as follows

𝐽 (𝒙(0)) =
∞
∑

𝑘=0
𝑈 (𝒙(𝑘), 𝒖(𝑘)) = 𝑈 (𝒙(0), 𝒖(0)) + 𝐽 (𝒙(1)) (7)

where the utility function 𝑈 (𝒙(𝑘), 𝒖(𝑘)) > 0 represents the stage value
based on 𝒖(𝑘), and transfers the system equation from 𝒙(𝑘) to 𝒙(𝑘 + 1).

It is necessary to design an appropriate performance index function
for our problem, which can represent the expectation of minimizing
energy consumption, terminal time, distance traveled by mobile robots,
or other factors to minimize the mission risk. In general, the shortest
path is advantageous to improve the performance of a mobile robot.
From the path-optimal perspective, we expect to solve the problem in
this study as follows

min 𝐽1 = min
∞
∑

𝑘=0
𝛥𝑆2(𝑘) = min

∞
∑

𝑘=0

2
∑

𝑖=1
(𝑥𝑖(𝑘 + 1) − 𝑥𝑖(𝑘))2 (8)

where the notation ∑

𝛥𝑆2(𝑘) is the square of the total distance traveled,
𝛥𝑆(𝑘) = ‖𝒔(𝑘+ 1) − 𝒔(𝑘)‖2 is the movement distance from the time step
𝑘 to 𝑘 + 1, and 𝒔(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘)] is the position coordinate of the
differentially-driven model.

2.4. Formulation

By combining (1) to (8), the dynamic path planning problem of
the differentially-driven mobile robot is established as an OCP with a
number of constraints

min 𝐽1 = min
∞
∑

𝑘=0
𝛥𝑆2(𝑘)

s.t. 𝒙(𝑘 + 1) = 𝐹 (𝒙(𝑘), 𝒖(𝑘))
𝐺(𝒙(𝑘), 𝒖(𝑘), 𝑘) ≤ 0

𝑘 = 0, 1, 2,…

(9)

where, for simplicity, the inequality 𝐺(𝒙(𝑘), 𝒖(𝑘), 𝑘) ≤ 0 denotes the
set of all physical constraints. The OCP is subject to the kinematical
equation and these constraints on state variables, control variables and
time.

3. Proposed path planning method

Adaptive dynamic programming (ADP) and APF methods are used
to obtain the solution of dynamic path planning problems. The advan-
tages of our method are to obtain dynamic paths that avoid all obstacles

in unknown environments.
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3.1. Iterative optimal control method

This paper formulates an OCP to solve the dynamic path planning
problem. The final solution is to achieve an admissible control strategy
that stabilizes the system and minimizes the function 𝐽 (𝒙(𝑘)) under con-
traint conditions. Namely, we want the planning scheme to obtain a
ollision-avoidance path in complex unknown environments with many
rregular obstacles. A new performance index function is designed to
btain the optimal or quasi-optimal path and avoid obstacles. The
ptimal value 𝐽 ∗(𝒙(𝑘)) derived from (7) (Wei et al., 2022) is defined
s
∗(𝒙(𝑘)) = min

𝒖(𝑘)
{𝐽 (𝒙(𝑘), 𝒖(𝑘)) ∶ 𝒖(𝑘) ∈  }

= 𝑈 (𝒙(𝑘), 𝒖∗(𝑘)) + 𝐽 ∗(𝒙(𝑘 + 1))
(10)

here  is the admissible control set.
The optimal control 𝒖∗(𝑘) is

∗(𝒙(𝑘)) = argmin
𝒖(𝑘)

{𝑈 (𝒙(𝑘), 𝒖(𝑘))} + 𝐽 ∗(𝒙(𝑘 + 1)) (11)

Commonly, it is difficult to know 𝐽 ∗(𝒙(𝑘)) before the sequence
𝒖∗(𝑘)} is determined. If optimal control methods have to calculate
∗(𝒙(𝑘)) at every time step 𝑘, this will impose a huge computational
urden on the processing units. This phenomenon makes it difficult to
olve the Hamilton–Jacobi–Bellman (HJB) equation directly.

To overcome these challenges, ADP (Wang et al., 2009; Werbos,
977) is developed to use a function to approximate the actual structure
f the system function. The ADP method is derived from Bellman’s
rinciple of optimality and is a kind of novel iterative optimal con-
rol method to approximate functions. It combines the ideas of dy-
amic programming, neural networks, and reinforcement learning (Liu
t al., 2021). Neural networks and some basis functions can be used
s approximation functions to replace some parts of the ADP. Since its
roposal, the theoretical research of ADP has received much attention,
nd ADP will have a bright future in solving dynamic path planning
roblems.

The structure of ADP is shown in Fig. 2. In general, the ADP consists
f three parts: model net, action net, and critic net. In this paper,
e use neural networks to approximate these modules. The model net
pproximates the system equation and predicts the next state. The input
s 𝒙(𝑘) and 𝒖(𝑘) at the time step 𝑘, and �̂�(𝑘 + 1) is an approximation of
he actual state 𝒙(𝑘+1). The training process is realized by minimizing
he following error function

𝑬𝑚(𝑘 + 1)‖ = 1
2

𝑛
∑

𝑖=1
[𝑥𝑖(𝑘 + 1) − �̂�𝑖(𝑘 + 1)]2 (12)

here ‖𝑬𝑚(𝑘 + 1)‖ is the sum of the squared error vector, 𝑛 is the
dimension of the state vector 𝒙(𝑘 + 1).
 r
The critic net takes the state 𝒙(𝑘) as the input value, and the
corresponding output value 𝐽 (⋅) is the approximation of 𝐽 (⋅) given in
(7), realized as follows

‖𝐸𝑐 (𝑘)‖ = 1
2
{𝐽 (𝒙(𝑘)) − [𝑈 (𝒙(𝑘), 𝒖(𝑘)) + 𝐽 (𝒙(𝑘 + 1))]}2 (13)

here ‖𝐸𝑐 (𝑘)‖ is the sum of the squared errors. If ‖𝐸𝑐 (𝑘)‖ = 0 for all
ime steps, then we have 𝐽 (𝒙(𝑘)) = 𝐽 (𝒙(𝑘)). Therefore, a trained critic
et could be obtained by optimizing the function defined in (13).

The action net is trained by minimizing the output 𝐽 (𝑘) of the critic
et to generate the optimal or suboptimal control variable. The output
epends on the utility function associated with the controlled system.
he common form of the 𝑈 (𝒙(𝑘), 𝒖(𝑘)) is a quadratic form.

(𝒙(𝑘), 𝒖(𝑘)) = 𝒙(𝑘)𝑨𝒙𝑇 (𝑘) + 𝒖(𝑘)𝑩𝒖𝑇 (𝑘) (14)

here matrix 𝑨 is an 𝑛-dimensional positive semidefinite matrix, and
atrix 𝑩 is an 𝑚-dimensional positive-definite matrix.

.2. Artificial potential field method

The APF method is derived from potential field methods (Khatib,
990) and has been widely used to solve path planning problems
ecause of its low complexity, good real-time performance, and easy
ontrolling operation. The core idea of the classical APF is to consider
he mobile robot as a free mass, and the mass is affected by the resultant
orce of potential fields. It is assumed that the robot can be guided to
each the newly generated position and keep it away from obstacles
t the next time step. However, the motion of a differentially-driven
odel is subject to its kinematical equation rather than a free mass. In
ractice, free motion could pose a risk to the internal mechanics of the
ifferentially-driven mobile robot. Therefore, we construct the novel
otential field for the dynamic path planning problem.

The attractive potential field 𝑈𝑎𝑡𝑡(𝑘) in this study is

𝑎𝑡𝑡(𝑘) =
1
2
𝐾𝑎𝑡𝑡 ∗ 𝜌21(𝑘) (15)

here the parameter 𝐾𝑎𝑡𝑡 is the attractive potential coefficient, 𝜌1(𝑘) =
𝒔(𝑘)−𝒔𝑓‖ is the distance from 𝒔(𝑘) to the desired target position 𝒔𝑓 , and
e have no requirements for the terminal heading angle. The mobile

obot is always affected by the field 𝑈𝑎𝑡𝑡(𝑘) until it reaches the target
𝑓 .

The attractive force 𝐹𝑎𝑡𝑡(𝑘) is the negative gradient of 𝑈𝑎𝑡𝑡(𝑘), when
he mobile robot reaches the desired point, then 𝐹𝑎𝑡𝑡(𝑘) = 0.

𝑎𝑡𝑡(𝑘) = −∇𝑈𝑎𝑡𝑡(𝑘) = −𝐾𝑎𝑡𝑡 ∗ 𝜌1(𝑘) (16)

The challenge for mobile robots is to move in unknown environ-
ents without a priori knowledge. When calculating the repulsive
otential field, only obstacles within the mobile robot’s perception

ange can be counted. And classical APF tends to treat the obstacle
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as a particle, using a point to represent the whole obstacle. However,
the obstacles encountered in practice are irregular, and sometimes the
mobile robot can only perceive part of the obstacle.

In our method, we calculate the repulsive potential field with the
outer surface of the obstacle. Once an obstacle is detected, its outer
urface is discretized into many points. Then, the repulsive potential

field 𝑈 𝑗
𝑟𝑒𝑝(𝑘) of the mobile robot and the outer surface of the obstacle 

s written as

𝑈 𝑗
𝑟𝑒𝑝(𝑘) =

⎧

⎪

⎨

⎪

⎩

1
2
𝐾𝑟𝑒𝑝[

1
𝜌𝑗2(𝑘)

− 1
𝑝
]2𝜌𝜄1(𝑘), 𝜌𝑗2(𝑘) < 𝑝

0, 𝜌𝑗2(𝑘) ≥ 𝑝
(17)

here the parameter 𝐾𝑟𝑒𝑝 is the repulsive potential coefficient, 𝜌𝑗2(𝑘) =
𝒔(𝑘) − 𝒔𝑗𝑜𝑏𝑠‖ is the length from the 𝒔(𝑘) to the position 𝒔𝑗𝑜𝑏𝑠 of the
th point on the outer surface of obstacle-𝑚, 𝑗 = {1, 2,… , 𝐽𝑚} denotes
he outer surface of obstacle-𝑚 is discretized into 𝐽𝑚 points, 𝑝 is the
erception range of the mobile robot, 𝜄 is the repulsive decay factor of
he target. If 𝜌𝑗2(𝑘) < 𝑝, the mobile robot will be affected by the repulsive
otential field 𝑈 𝑗

𝑟𝑒𝑝(𝑘). Otherwise the field 𝑈 𝑗
𝑟𝑒𝑝(𝑘) = 0.

The repulsive force 𝐹 𝑗
𝑟𝑒𝑝(𝑘) is the negative gradient of the potential

ield 𝑈 𝑗
𝑟𝑒𝑝(𝑘). 𝐹

𝑗
𝑟𝑒𝑝(𝑘) tends to infinity as the mobile robot approaches

he 𝑗th point on the outer surface of the obstacle-𝑚.
𝑗
𝑟𝑒𝑝(𝑘) = −∇𝑈 𝑗

𝑟𝑒𝑝(𝑘)

=

⎧

⎪

⎨

⎪

⎩

𝐾𝑟𝑒𝑝[
1

𝜌𝑗2(𝑘)
−

𝜌21(𝑘)
𝑝

]2
𝜌𝜄1(𝑘)

(𝜌𝑗2)
2(𝑘)

, 𝜌𝑗2(𝑘) < 𝑝

0, 𝜌𝑗2(𝑘) ≥ 𝑝

(18)

The total repulsive force 𝐹𝑟𝑒𝑝(𝑘) is the vectorial sum of repulsive
forces acting on the mobile robot, as follows

𝐹𝑟𝑒𝑝(𝑘) =
𝑎
∑

𝑗=1
𝐹 𝑗
𝑟𝑒𝑝(𝑘) (19)

here 𝑎 =
∑𝑀𝑘

𝑚=1 𝐽𝑚 is the number of points on the outer surface of
bstacles within the perception range 𝑝 at the time step 𝑘.

The APF assumes that the mobile robot moves in an abstract virtual
otential field. It can reflect the structure of the motion space. Before
lanning, the sensors provide the mobile robot with environmental
nformation about the distribution of obstacles and the target point.
he area of the attractive potential field is the whole motion space. The
rea of the repulsive potential field acts in an area close to obstacles.
he resultant force of the APF is expressed as

𝑎𝑝𝑓 (𝑘) = 𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘) (20)

To make the path generated by our method match the actual motion
situation, we integrate the resultant force as part of the OCP (9). The
motion is then restained by the kinematic Eq. (2).

3.3. Construction of the performance index function

This paper develops a novel iterative optimal control method to
solve dynamic path planning problems, which incorporates many ad-
vantages of ADP and APF. In order to obtain the optimal path and
avoid obstacles, we have designed a new performance index function
𝐽2(𝒙(𝑘)) to replace 𝐽1 in the OCP (9). The proposed function 𝐽2(𝒙(𝑘))
includes the total distance traveled 𝐽𝑝𝑎𝑡ℎ(𝑘), the change in heading angle
𝑎𝑛𝑔𝑙𝑒(𝑘), the distance 𝐽𝑔𝑜𝑎𝑙(𝑘) between the target and the robot, and the
esultant force of the APF method 𝐽𝑎𝑝𝑓 (𝑘).

To ensure optimality, we take into account distance traveled 𝐽𝑝𝑎𝑡ℎ(𝑘)
=
∑∞

𝑖=𝑘 𝑗
2
𝑝𝑎𝑡ℎ(𝑖), where 𝑗𝑝𝑎𝑡ℎ(𝑖) = 𝛥𝑆(𝑖) = ‖𝒔(𝑖 + 1) − 𝒔(𝑖)‖2 is the distance

traveled in adjacent time steps, 𝒔(𝑖) is the position of the mobile robot
at time step 𝑖, and the terminal variable 𝒔(∞) is the final position of the

obile robot. And we want the change in heading angle 𝑥3(𝑘) between
djacent time steps to be as small as possible, i.e. min ‖𝑥3(𝑘+1)−𝑥3(𝑘)‖2,
o that we can make the directional changes of a differentially-driven
 s
mobile robot more realistic. We therefore define the function 𝐽𝑎𝑛𝑔𝑙𝑒 =
∑∞

𝑖=𝑘 ‖𝑥3(𝑘 + 1) − 𝑥3(𝑘)‖22 as part of the designed function 𝐽2(𝒙(𝑘)).
To reach the desired target position, one of the fundamental indices

to consider is the distance between the desired position and our mobile
robot. The index is written as 𝐽𝑔𝑜𝑎𝑙(𝑘) =

∑∞
𝑖=𝑘(𝒔(𝑖) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑖) − 𝒔𝑓 ),

where 𝒔𝑡 is the desired position, and 𝑹 is a positive-definite matrix.
And if ‖𝒔(𝑘) − 𝒔𝑓‖ ≤ 𝜒 , it means that the mobile robot has reached the
esired target position.

To realize the function of dynamic obstacle avoidance in the un-
nown environment, this paper makes the resultant force 𝐽𝑎𝑝𝑓 (𝑘) of the
PF method part of the function 𝐽2(𝒙(𝑘)).

Correspondingly, the total function 𝐽2(𝒙(𝑘)) of the OCP is defined in
this form
𝐽2(𝒙(𝑘)) = 𝐽𝑝𝑎𝑡ℎ(𝑘) + 𝐽𝑎𝑛𝑔𝑙𝑒(𝑘) + 𝐽𝑔𝑜𝑎𝑙(𝑘) + 𝐽𝑎𝑝𝑓 (𝑘)

=
∞
∑

𝑖=𝑘

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎1(‖𝒔(𝑖 + 1) − 𝒔(𝑖)‖22
+‖𝑥3(𝑖 + 1) − 𝑥3(𝑖)‖22)

+(𝒔(𝑖) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑖) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑖) + 𝐹𝑟𝑒𝑝(𝑖))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=
∞
∑

𝑖=𝑘

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎1(
3
∑

𝑗=1
‖𝑥𝑗 (𝑖 + 1) − 𝑥𝑗 (𝑖)‖22)

+(𝒔(𝑖) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑖) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑖) + 𝐹𝑟𝑒𝑝(𝑖))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=
∞
∑

𝑖=𝑘

⎧

⎪

⎨

⎪

⎩

𝜎1(‖𝒙(𝑖 + 1) − 𝒙(𝑖)‖22)

+(𝒔(𝑖) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑖) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑖) + 𝐹𝑟𝑒𝑝(𝑖))

⎫

⎪

⎬

⎪

⎭

(21)

where 𝜎1 and 𝜎2 are the weighted factors, 𝑹 is the weight matrix.

3.4. Dynamic path planning method

We expect the mobile robot to move from the initial point to the
desired terminal point, avoiding all obstacles in the dynamic environ-
ment without a priori information. The mobile robot is constrained by
the kinematical equation and many complex constraints. According to
our designed performance index function, the OCP (9) is rewritten as
follows.

min
∞
∑

𝑖=𝑘

⎛

⎜

⎜

⎜

⎝

𝜎1(‖𝒙(𝑖 + 1) − 𝒙(𝑖)‖22)

+(𝒔(𝑖) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑖) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑖) + 𝐹𝑟𝑒𝑝(𝑖))

⎞

⎟

⎟

⎟

⎠

s.t. 𝒙(𝑘 + 1) = 𝐹 (𝒙(𝑘), 𝒖(𝑘))

𝐺(𝒙(𝑘), 𝒖(𝑘), 𝑘) ≤ 0

𝑘 = 0, 1, 2,…

(22)

The exact penalty function (Bertsekas, 1975) eliminates constraints
of the optimization problem, and the transformed problem becomes

min{𝐽2(𝒙(𝑘)) + 𝛾
∞
∑

𝑖=𝑘
max[0, 𝐺(𝒙(𝑖), 𝒖(𝑖), 𝑖)]}

s.t. 𝒙(𝑘 + 1) = 𝐹 (𝒙(𝑘), 𝒖(𝑘))
(23)

here 𝛾 is the penalty term of the exact penalty function.
To maximize the non-smooth operator (Nesterov, 2004), the

smoothing approximation function (Lian, 2012) is used to replace the
maximum function

𝑝𝜀,𝛾,𝐺(𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝐺 < − 𝜀
𝛾𝑚

𝛾𝑚
2𝜀

𝐺2 + 𝐺 + 𝜀
2𝛾𝑚

, − 𝜀
𝛾𝑚

≤ 𝐺 < 0

𝐺 + 𝜀
2𝛾𝑚

, 0 ≤ 𝐺

(24)

here the operator 𝑝𝜖,𝛾,𝐺 is the first-order differentiable of the con-
traint set 𝐺(𝒙(𝑘), 𝒖(𝑘), 𝑘), the notation 𝐺 = 𝐺(𝒙(𝑘), 𝒖(𝑘), 𝑘) represents
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the constraint set, the parameter 𝜀 is the smoothing coefficient, and
he limitation is given by lim𝜀→0+ 𝑝𝜀,𝛾,𝐺 = max{0, 𝐺(𝒙(𝑘), 𝒖(𝑘), 𝑘)}.

In other words, a smooth optimization problem (Beck and Teboulle,
012) is obtained, which can replace the penalty function based prob-
em (14), it is shown as

min𝐽 (𝒙(𝑘)) = 𝐽2(𝒙(𝑘)) + 𝛾
∞
∑

𝑖=𝑘
𝑝𝜀,𝛾,𝐺(𝑖)

s.t. 𝒙(𝑘 + 1) = 𝐹 (𝒙(𝑘), 𝒖(𝑘))
(25)

where 𝐽 (𝒙(𝑘)) is a new function. If the factor 𝜀 is small enough, then the
solution can approximate the original problem. And if the parameter 𝛾
s large enough, then the solution is also approximately equal to the
riginal problem.

The ADP searches for the solution to the dynamic path planning
roblem. The iterative approximation strategy is performed to get the
ptimal value and the optimal control. We assume that the 𝑉0(⋅) is equal
o 0. Then the corresponding initial control policy 𝑣0(⋅) is obtained as

follows

𝑣0(𝒙(𝑘)) = argmin

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝒙(𝑘 + 1) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉0(𝒙(𝑘 + 1))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(26)

Further iteration, performance index functions of the iteration 𝑉1(⋅)
can be obtained as follows

𝑉1(𝒙(𝑘)) = min

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝒙(𝑘 + 1) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉0(𝒙(𝑘 + 1))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝐹 (𝒙(𝑘), 𝑣0(𝒙(𝑘))) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉0(𝐹 (𝒙(𝑘), 𝑣0(𝒙(𝑘))))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(27)

For the index {𝑖 = 1, 2,… ,∞}, we can get iterative equations

𝑖(𝒙(𝑘)) = argmin

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝒙(𝑘 + 1) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉𝑖(𝒙(𝑘 + 1))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(28)

𝑉𝑖+1(𝒙(𝑘)) = min

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝒙(𝑘 + 1) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉𝑖(𝒙(𝑘 + 1))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝐹 (𝒙(𝑘), 𝑣𝑖(𝒙(𝑘))) − 𝒙(𝑘)‖22)

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉𝑖(𝐹 (𝒙(𝑘), 𝑣𝑖(𝒙(𝑘))))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(29)

In the process of finding the approximate optimal solution at time
𝑘, cycles between strategy improvement and value determination are

used until the value approaches optimal results. i
The 𝑉𝑖(𝒙(𝑘)) → 𝐽 ∗(𝒙(𝑘)), and 𝑣𝑖(𝒙(𝑘)) → 𝑢∗(𝒙(𝑘)) as 𝑖 → ∞. The
control policy at time 𝑘 can be obtained in time forward, and the
optimal path for the mobile robot can be generated. To clarify the
problem solving procedure of our proposed method, the pseudocode is
given in Algorithm 1, and the framework of the developed path planner
is shown in Fig. 3.

Algorithm 1 Pseudocode of the proposed method
Input: Parameters of neural network: learning-speed factor, weights,

discount factor, maximum iterative step
utput: Optimal path; Optimal control

1: Initialize the parameters of ADP
2: k=0
3: while true do
4: Receive environment information from sensors
5: Calculate the repulsive force and the attractive force
6: Calculate the resultant force of the mobile robot
7: Train the model net according to the kinematical equation (2)
8: if Reach the terminal condition of ADP then
9: Input 𝒙(𝑘) to the action net to calculate 𝒖(𝑘)
0: Input 𝒙(𝑘) and 𝒖(𝑘) to the model net to calculate 𝒙(𝑘 + 1)

11: Construct the utility function 𝑈 (𝒙(𝑘), 𝒖(𝑘))
12: Input 𝒙(𝑘 + 1) to the critic net to calculate 𝐽 (𝑘 + 1)
13: Input 𝒙(𝑘) to the critic net to calculate 𝐽 (𝑘)
14: Update the weight of the critic net and action net
15: end if
16: Obtain the control signal 𝒖∗(𝑘)
17: Drive the mobile robot to the next state
18: if the mobile robot reach the target location then
19: break
20: end if
21: k=k+1
22: end while
23: return 𝐽 ∗, 𝒙∗, 𝒖∗

4. Convergence of the iterative method

This section will prove that the control sequence 𝒖(𝑘) and function
𝐽 (𝒙(𝑘)) got by the proposed method can approximate the 𝒖∗(𝑘) and
optimum 𝐽 ∗(𝒙(𝑘)), respectively. Thus, the proposed method will not
all into the local optimum, can generate the optimal path, and avoid
bstacles in solving the OCPs.

First, a theorem is given to show that the new performance index
unction achieved by our proposed iterative method is bounded. This
heorem plays a key role in proving the following theorems.

heorem 1. Let the {𝑣𝑖(𝒙(𝑘))} be a control sequence obtained by the
roposed iterative algorithm at time 𝑘, and the sequence {𝑉𝑖(⋅)} be the
corresponding performance index functions gained by the iteration. Let
{𝜇𝑖(𝒙(𝑘))} be the control for the controlled dynamic system. Similar to the
iterative formula, the following formula is holding

𝛬𝑖+1(𝒙(𝑘)) = 𝜎1(‖𝐹 (𝒙(𝑘), 𝜇𝑖(𝒙(𝑘))) − 𝒙(𝑘)‖22)

+ (𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+ 𝜎2(𝐹𝑎𝑡𝑡(𝒙(𝑘)) + 𝐹𝑟𝑒𝑝(𝒙(𝑘)))

+ 𝛾𝑝𝜀,𝛾,𝐺(𝒙(𝑘))

+ 𝛬𝑖(𝐹 (𝒙(𝑘), 𝜇𝑖(𝒙(𝑘))))

(30)

Let 𝛬0(⋅) = 𝑉0(⋅) = 0, there holds 𝑉𝑖(𝒙(𝑘)) ≤ 𝛬𝑖(𝒙(𝑘)) for any index 𝑖.

The demonstration of Theorem 1 is obvious. Theorem 2 will show
he sequence of 𝑉𝑖(𝒙(𝑘)) is upper bounded.

heorem 2. Let the sequence {𝑉𝑖(⋅)} be the corresponding performance
ndex functions got by the proposed algorithm. Let the dynamic system be
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d

𝛷

𝑉

a

𝑉

𝑉

controllable. There is an upper bound 𝑌 , and the following formula holds
for each 𝑖

0 ≤ 𝑉𝑖(𝒙(𝑘)) ≤ 𝑌 (31)

Proof. Let the sequence {𝜂𝑖(𝒙(𝑘))} be an admissible control sequence.
As time 𝑘 towards infinity, the corresponding state value 𝒙(𝑘) ap-
proaches zero, and the performance index function is a bounded value.
Let 𝑍0(⋅) = 𝑉0(⋅) = 0. Let the {𝑣𝑖(𝒙(𝑘))} be a control achieved by the
iteration. The 𝑍𝑖(⋅) is calculated as follows

𝑍𝑖+1(𝒙(𝑘)) = 𝜎1(‖𝐹 (𝒙(𝑘), 𝜂𝑖(𝒙(𝑘))) − 𝒙(𝑘)‖22)

+ (𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+ 𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+ 𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+ 𝑍𝑖(𝒙(𝑘 + 1))

(32)

The function 𝑈 (𝒙(𝑘)) is written as follows

𝑈 (𝒙(𝑘)) = 𝜎1(‖𝐹 (𝒙(𝑘), 𝜂𝑖(𝒙(𝑘))) − 𝒙(𝑘)‖22)

+ (𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+ 𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+ 𝛾𝑝𝜀,𝛾,𝐺(𝑘)

(33)

Then we have the following equation

𝑍𝑖+1(𝒙(𝑘)) = 𝑈 (𝒙(𝑘)) + 𝑈 (𝒙(𝑘 + 1)) +⋯

+ 𝑈 (𝒙(𝑘 + 𝑖)) +𝑍0(𝒙(𝑘 + 𝑖 + 1))
(34)

The function 𝑈 (⋅) is positive definite. There exists a finite value 𝑌
for which the following formula holds

𝑍𝑖+1(𝒙(𝑘)) ≤ lim
𝑖→∞

𝑖
∑

𝑗=0
𝑈 (𝒙(𝑘 + 𝑗)) ≤ 𝑌 (35)

Thus, according to the Theorem 1, the following conclusion can be
drawn

0 ≤ 𝑉𝑖+1(𝒙(𝑘)) ≤ 𝑍𝑖+1(𝒙(𝑘)) ≤ 𝑌 □ (36)

Theorems 1 and 2 illustrate that the function 𝑉𝑖(𝒙(𝑘)) of our pro-
posed method is upper bounded.

Theorem 3. Let {𝑣𝑖(𝒙(𝑘))} be the control which is obtained by iterations
at time 𝑘, and {𝑉𝑖(⋅)} be the corresponding performance index functions. Let
𝑉0(⋅) = 0, there holds 𝑉𝑖(𝒙(𝑘)) ≤ 𝑉𝑖+1(𝒙(𝑘)) for each 𝑖 and lim𝑖→∞ 𝑉𝑖(𝒙(𝑘)) =
∗
𝐽 (𝒙(𝑘)).
Proof. The sequence {𝛷𝑖(𝒙(𝑘))} is defined by

𝛷𝑖+1(𝒙(𝑘)) = 𝜎1(‖𝐹 (𝒙(𝑘), 𝑣𝑖+1(𝒙(𝑘))) − 𝒙(𝑘)‖22)

+ (𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+ 𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+ 𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+ 𝛷𝑖(𝐹 (𝒙(𝑘), 𝑣𝑖+1(𝒙(𝑘))))

(37)

Next, let 𝛷0(⋅) = 0, and the mathematical induction (Bussey, 1917)
emonstrates the following inequality equation

𝑖(𝒙(𝑘)) ≤ 𝑉𝑖+1(𝒙(𝑘)) (38)

We have

1(𝒙(𝑘)) −𝛷0(𝒙(𝑘)) = 𝜎1(‖𝐹 (𝒙(𝑘), 𝑣0(𝒙(𝑘))) − 𝒙(𝑘)‖22)

+ (𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+ 𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+ 𝛾𝑝𝜀,𝛾,𝐺(𝑘)

≥ 0

(39)

Thus, 𝛷0(𝒙(𝑘)) ≤ 𝑉1(𝒙(𝑘)).
Next, assuming that 𝛷𝑖−1(𝒙(𝑘)) ≤ 𝑉𝑖(𝒙(𝑘)), then

𝛷𝑖(𝒙(𝑘)) = 𝜎1(‖𝐹 (𝒙(𝑘), 𝑣𝑖(𝒙(𝑘))) − 𝒙(𝑘)‖22)

+ (𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+ 𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+ 𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+ 𝛷𝑖−1(𝐹 (𝒙(𝑘), 𝑣𝑖(𝒙(𝑘))))

(40)

nd

𝑖+1(𝒙(𝑘)) = 𝜎1(‖𝐹 (𝒙(𝑘), 𝑣𝑖(𝒙(𝑘))) − 𝒙(𝑘)‖22)

+ (𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+ 𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+ 𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+ 𝑉𝑖(𝐹 (𝒙(𝑘), 𝑣𝑖(𝒙(𝑘))))

(41)

This gives us the following equation

𝑖+1(𝒙(𝑘)) −𝛷𝑖(𝒙(𝑘)) = 𝑉𝑖(𝒙(𝑘)) −𝛷𝑖−1(𝒙(𝑘)) ≥ 0 (42)

Then, we have 𝛷𝑖(𝒙(𝑘)) ≤ 𝑉𝑖+1(𝒙(𝑘)).
Combined with the Theorem 2, there holds 𝑉𝑖(𝒙(𝑘)) ≤ 𝛷𝑖(𝒙(𝑘)) ≤
𝑉𝑖+1(𝒙(𝑘)), {𝑉𝑖(𝒙(𝑘))} has an upper bound. □



X. Li et al.

f
t
d
[
t
a
A

o
D
2
a

5

u
e
i
t
s
g
a
i
d
0
t

o
c
e

Theorem 4. Let 𝑉∞(𝒙(𝑘)) = lim𝑖→∞ 𝑉𝑖(𝒙(𝑘)) and 𝒙(𝑘) be the state value of 
dynamic systems that can be fetched. The 𝑉∞(𝑥𝑘) satisfies the HJB equation

𝑉∞(𝒙(𝑘)) = min
𝒖(𝑘)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝐹 (𝒙(𝑘), 𝒖(𝑘)) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑹(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉∞(𝐹 (𝒙(𝑘), 𝒖(𝑘)))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(43)

Proof. Combined with Theorem 3, there holds the following inequality
equation for arbitrarily chosen control 𝑣 and 𝑖

𝑉𝑖(𝒙(𝑘)) ≤𝜎1(‖𝐹 (𝒙(𝑘), 𝒗(𝑘)) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑅(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉∞(𝒙(𝑘 + 1))

(44)

Therefore, the following equation holds

𝑉𝑖(𝒙(𝑘)) ≤ min
𝑣

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝐹 (𝒙(𝑘), 𝒗(𝑘)) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑅(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉∞(𝒙(𝑘 + 1))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(45)

When the iterative times 𝑖 → ∞, we get the following inequality
equation

𝑉∞(𝒙(𝑘)) ≤ min
𝑣

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝐹 (𝒙(𝑘), 𝒗(𝑘)) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑅(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉∞(𝒙(𝑘 + 1))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(46)

In addition, since

𝑉𝑖(𝒙(𝑘)) = min
𝑣

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝐹 (𝒙(𝑘), 𝒗(𝑘)) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑅(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉𝑖−1(𝒙(𝑘 + 1))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(47)

for each 𝑖,

𝑉∞(𝒙(𝑘)) ≥ min
𝑣

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝐹 (𝒙(𝑘), 𝒗(𝑘)) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑅(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉𝑖−1(𝒙(𝑘 + 1))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(48)

Let 𝑖 be the iteration times. When 𝑖 → ∞, we can get the following
inequality equation

𝑉∞(𝒙(𝑘)) ≥ min
𝑣

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝜎1(‖𝐹 (𝒙(𝑘), 𝒗(𝑘)) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑅(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

(49)
⎩

+𝑉∞(𝒙(𝑘 + 1))
⎭

e

Table 1
Parameters of the APF in our method.

Parameters Values

Attractive coefficient 𝐾𝑎𝑡𝑡 3
Repulsive coefficient 𝐾𝑟𝑒𝑝 10
Perception range 𝑝/𝑚 1
Repulsive decay factor 𝑛 2

Finally, the following equation is proved

𝑉∞(𝒙(𝑘)) = min
𝑣

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1(‖𝐹 (𝒙(𝑘), 𝒗(𝑘)) − 𝒙(𝑘)‖22)

+(𝒔(𝑘) − 𝒔𝑓 )𝑇𝑅(𝒔(𝑘) − 𝒔𝑓 )

+𝜎2(𝐹𝑎𝑡𝑡(𝑘) + 𝐹𝑟𝑒𝑝(𝑘))

+𝛾𝑝𝜀,𝛾,𝐺(𝑘)

+𝑉∞(𝒙(𝑘 + 1))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

□ (50)

Theorem 3 states that the function 𝑉𝑖(𝒙(𝑘)) obtained by the pro-
posed method converges to a bounded value. Theorem 4 shows that
the sequence {𝒖(𝑘)} can converge to the 𝒖∗(𝑘). Based on the above
theorems, our method can generate a feasible and safe path from the
initial position to the target position theoretically.

5. Simulation results

To evaluate of our proposed method, several simulations under
different complexities are tested on the Matlab R2021b platform for
dynamic path planning problems of differentially-driven mobile robots.
The software environment for all simulations is based on the Windows
10 system, and the hardware environment is based on a 2.90 GHz,
Intel(R) Core i5-10700M CPU with 16 GB RAM.

For all simulations in this paper, the initial position of the robot
is set as the origin of the global coordinate system, the state 𝑥1(𝑘) is
rom −1 m to 21 m, 𝑥2(𝑘) is from −1 m to 21 m, 𝑥3(𝑘) is from −𝜋
o 𝜋. For the differentially-driven model (Almomani et al., 2021), the
istance between two driven wheels 𝑑 = 0.37 m, the control 𝑢1(𝑘) ∈
0 m∕s, 1 m∕s] and 𝑢2(𝑘) ∈ [0 m∕s, 1 m∕s], the safety distance 𝛽 = 0.3 m,
he sampling interval 𝛥𝑡 = 0.1 s. The weighted factors 𝜎1 = 𝜎2 = 0.5,
nd the weight matrix 𝑹 is an identity matrix. The parameters of the
PF in our method are displayed in Table 1.

In this section, our proposed method is compared with some state-
f-the-art path planning methods, such as APF (Wang et al., 2022),
WA (Lee et al., 2021), and dynamic A-star algorithm (Yan et al.,
022). In each simulation experiment, the parameters for all methods
re the same.

.1. Case 1: Unknown environment with static obstacles

In this case, the differentially-driven mobile robot is tested in an
nknown environment with many static obstacles. We set the mission
nvironment as a 2D plane with a ground environment, whose region
s 22 m × 22 m, as illustrated in Fig. 4. There are three scenes to
est the efficiency and robustness of our method, with the number of
tatic obstacles increasing from 9 to 15. The initial position is randomly
enerated in the range 𝑥1(0) ∈ [−0.5 m, 0.5 m], 𝑥2(0) ∈ [−0.25 m, 0.25 m],
nd the initial heading angle 𝑥3(0) = 0 rad. There are three targets
n Scenes I-III and their positions are displayed in Table 2. When the
istance between the mobile robot and the target position is less than
.045 m, the robot is considered to have reached the target. In this part,
he number of repetitions for each simulated group is 50.

In Scene I, the paths generated by APF, DWA, dynamic A-star, and
ur method are plotted in Fig. 5. We can see that all four methods
an arrive at the target and generate the feasible path in an unknown
nvironment. We also compare the average distance traveled, the av-

rage computing time, and the success rates for the proposed method
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Fig. 4. The map information of (a) Scene I, (b)Scene II, and (c) Scene III.
Fig. 5. Planning results of Scene I with (a) APF, (b) DWA, (c) Dynamic A-star, and (d) our method.
Table 2
The target information in Scenes I-III.
Target Scene I Scene II Scene III Color

Target 1/m (20,20) (20,20) (20,20) Red
Target 2/m (20,02) (20,04) (20,02) Orange
Target 3/m (05,20) (04,20) (03,20) Green

and these comparative methods in this case, as shown in Table 3.
rom this table, it can be found that all methods can achieve similar
raveled lengths in this relatively simple environment. At the time level,
he DWA will consume the most computational resources. The other
hree methods consume approximately the same amount of time in
cene I. The success rates for all four methods are close to 100% when
he target position changes. The two simulations where APF fails are
ue to the fact that this method is sensitive to obstacles and may
all into a local optimum. In simple environments, our method can
chieve excellent performance comparable to that of state-of-the-art
path planning methods. Next, we will discuss the performance of these
three path planning methods in scenes with more complex obstacles.

In Scene II, we add obstacle-10, obstacle-11, and obstacle-12 to the
environment to validate these path planning methods, as plotted in
Fig. 4(b). Obstacle-12 is located close to target 1 and can impede the
motion of the mobile robot. The paths generated by these methods are
plotted in Fig. 6. The dynamic A-star, and our method are able to reach
the target and obtain a successful path in this environment. In all fifty
repetitions, obstacle-12 successfully prevented the APF-driven mobile
robot from reaching target 1, and the main reason for the failure of
the DWA to reach target 3 is obstacle-9, and suffers the infinite loop
problem. To reach target 2 and target 3, the APF and the dynamic A-
star method produce paths with severe oscillations, which may cause
damage to the structure of the mobile robot. From Table 3, we can
see that the average distance traveled has increased due to a more
complex environment, and the DWA also consumes the most computing
time. The success rate of all four methods decreases in this scene, but
our proposed method is the least affected, with only one simulation



Fig. 6. Planning results of Scene II with (a) APF, (b) DWA, (c) dynamic A-star, and (d) our method.
to target 1 failing. In this simulation, the ADP was not well trained
and the control signals generated by the ADP did not help the robot to
achieve the correct state when the mobile robot approached obstacle-
12. When the APF is applied to the autonomous navigation of target 1,
the success rate is only 0%, the same failure occurred in the situation
where the DWA drives the mobile robot to target 3. In this scene,
the proposed method outperforms the APF and the DWA methods in
mission completion and shows a better performance than the dynamic
A-star method on the path oscillation phenomenon.

In order to test the proposed method in the unknown narrow
environment, we change the position of the original obstacles and add
obstacle-13, obstacle-14, and obstacle-15 in Scene III. The distribution
of these obstacles is shown in Fig. 4(c). Obstacle-13 is located on the
line between the initial position area and target 1, which can further
increase the difficulty, obstacle-14 and obstacle-15 will provide a great
challenge for the mobile robot to reach the target 2, and the new
position of obstacle-6 blocks the movement of the mobile robot to
reach target 3. The space in which the mobile robot can move in
this scene becomes narrow and crowded, and the performance of the
path planning methods is greatly tested. The experimental results for
avoiding these obstacles are shown in Fig. 7 and Table 3. In Fig. 7, only
our method can successfully guide the mobile robot to target 1, target 2,
and target 3, respectively. When the destinations are target 1 and target
3, the APF falls into a local optimum, and the path to successfully reach
target 2 is highly oscillating. All simulations of DWA have failed. The
method stops iterating on the way to reach target 1 and target 2, and
the mobile robot drives out of bounds when searching for target 3. The
dynamic A-star suffers a similar situation to the APF. From Table 3, we
can see that only our method has shown outstanding performance in
the unknown narrow environment.

From the above simulations, it can be seen that our proposed

method has the advantage of good real-time planning and can avoid
static obstacles in an unknown environment. And the kinematical equa-
tion and constraints of the differentially-driven mobile robot can be
satisfied. Figs. 5 to 7 show the path generated by our method and three
comparative methods. Table 3 gives the average distance traveled, the
average computing time and the success rate for all methods in Scenes
I-III. All methods can generate a feasible path in a simple environment.
However, as the number of obstacles increases, the performance of
these comparative methods decreases. Compared to the APF method,
our method can avoid the local minimum, and always keep an appro-
priate distance from obstacles, which overcomes the main problems of
the APF method. Although the APF method generates shorter paths and
consumes less time, it can only successfully generate paths in a certain
simple environment, and the oscillation phenomenon is dangerous. The
DWA method is time consuming even in simple spaces, and the narrow
environment will limit its application in autonomous navigation. In
Scenes I-III, the dynamic A-star method outperforms the APF and
the DWA, but is still heavily influenced by obstacles. Our method
has demonstrated similar performance to state-of-the-art path planning
methods in simple spaces. When the environment becomes narrow and
crowded, the performance of our method does not drop significantly.
Hence, the proposed method is suitable for the autonomous navigation
of differentially-driven mobile robots in unknown environments with
static obstacles.

5.2. Case 2: Unknown environment with dynamic obstacles

In this case, our method guides the differentially-driven mobile
robot in an unknown environment with some dynamic obstacles. The
distribution of static obstacles in this case is consistent with Scene
II in Case 1, as illustrated in Fig. 4(b). The initial state is set as
𝒙(0) = (0 m, 0 m, 0 rad), and the target position is target 1 in Scene
II, i.e. (20 m, 20 m). In Case 1, we have verified the effectiveness of



t

Fig. 7. Planning results of Scene III with (a) APF, (b) DWA, (c) dynamic A-star, and (d) our method.
Table 3
Simulation result from different methods of Scenes I-III.

S-T APF DWA Dynamic A-star Our method

Length
/m

Time
/s

Success
rate

Length
/m

Time
/s

Success
rate

Length
/m

Time
/s

Success
rate

Length
/m

Time
/s

Success
rate

I-1 28.59 18.03 100% 29.57 47.26 100% 29.56 20.77 100% 28.89 19.21 100%
I-2 21.25 11.93 98% 20.97 31.76 100% 21.65 13.70 100% 21.44 15.17 100%
I-3 20.13 10.55 98% 20.56 30.93 100% 20.71 12.16 100% 20.51 12.10 100%
II-1 – – 0% 35.74 62.67 92% 33.85 38.56 90% 31.11 30.91 98%
II-2 22.90 15.63 84% 21.36 44.64 94% 22.35 18.77 94% 22.40 24.87 100%
II-3 21.24 15.47 88% – – 0% 23.15 19.98 94% 23.39 17.17 100%
III-1 – – 0% – – 0% – – 0% 37.76 38.17 94%
III-2 24.87 23.41 76% – – 0% 25.90 26.55 88% 24.95 25.71 100%
III-3 – – 0% – – 0% – – 0% 20.71 12.87 98%
p
i
a
F
a
p
i
m
d
a
p
p
t

m
b
m

Table 4
Detail information of two dynamic obstacles in Case 2.

Number Initial position Moving direction

Pedestrian-1 (10 m,13 m) Rightwards
Pedestrian-2 (15 m,13 m) Upwards

our method in this environment without dynamic obstacles. Now, two
pedestrians are introduced into the environment as dynamic obstacles,
and their detailed information is displayed in Table 4. To better il-
lustrate the problem solving process, only the path results after two
pedestrian appearances are discussed, as plotted in Fig. 8. The red line
represents the path of the mobile robot, the blue dashed line is the path
of pedestrian-1, and the green dotted line is the path of pedestrian-2.

Fig. 8 shows the position of the differentially-driven mobile robot
at different time steps (k=160, 170, 190,210, 225, 260, 270, 285, and
325). Before 𝑘 = 160, the real-time path is almost the same as that of
Scene II in Case 1. When 𝑘 = 160, two pedestrians suddenly appear in
he environment and start moving, and the mobile robot’s information
 m
about these pedestrians is unknown, as in Fig. 8(a). When 𝑘 = 170,
edestrian-1 moves to the right and pedestrian-2 moves upwards, as
n Fig. 8(b). When 𝑘 = 190, the mobile robot perceives pedestrian-1
nd starts to avoid the dynamic obstacle by turning downwards, as in
ig. 8(c). When 𝑘 = 210, the mobile robot is detouring pedestrian-1,
s in Fig. 8(d). When 𝑘 = 225, the mobile robot has already avoided
edestrian-1 and perceives pedestrian-2, as in Fig. 8(e). Under the
nfluence of pedestrian-2 and static obstacle-3, our method guides the
obile robot upwards, as plotted in Fig. 8(f). Then the mobile robot
ecides to avoid the obstacles by moving to the right when 𝑘 = 270,
s in Fig. 8(g). The mobile robot essentially achieves the avoidance of
edestrian-2 when 𝑘 = 285, as in Fig. 8(h). After that, the navigation
ath is influenced only by static obstacles and the target and reaches
he target position at 𝑘 = 325, as in Fig. 8(i).

From Case 1 and Case 2, we have demonstrated that the proposed
ethod can guide the differentially-driven mobile robot to the target

y avoiding dynamic and static obstacles in the unknown environ-
ent. Compared with three state-of-the-art path planning methods, our

ethod has advantages in obstacle-dense environments. Case 2 shows
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Fig. 8. Path history at different time steps with (a) k=160, (b)k=170, (c) k=190, (d) k=210, (e)k=225, (f) k=260,(g) k=270, (h) k=285, and (i) k=325.
hat our method can control the mobile robot to continuously avoid
ynamic obstacles. The above simulations highlight that our method is
obust and efficient in dynamic path planning for differentially-driven
obile robots.

. Conclusions

In this paper, we develop a novel dynamic path planning method for
he differentially-driven mobile robot, which combines the idea of ADP
nd APF. The main technical contributions include the transformation
f the original dynamic problem into an OCP, the design of a new
erformance index function, and the proof of convergence. The pro-
osed method can combine the advantages of path optimization and the
inematical constraints of the differentially-driven mobile robot. The
ewly designed performance index function includes the total distance
raveled, the effect of the heading angle, the distance from the target to
he robot, and the resultant force of the APF. The proposed method can
enerate a feasible path and avoid obstacles in an unknown environ-
ent. The theoretical analysis proves the convergence of our method.
he sequence {𝒖(𝑘)} and function 𝐽 (𝒙(𝑘)) can converge to the {𝒖∗(𝑘)}
nd 𝐽 ∗(𝒙(𝑘)). These features demonstrate that our proposed method is
ccurate, reliable, and suitable for autonomous navigation applications.
ompared with some state-of-the-art path planning methods, simula-
ions exhibit the effectiveness and robustness of the proposed method.
ur method can successfully drive the differentially-driven model to

he target position in unknown environments with static and dynamic
bstacles. We will focus on exploring dynamic path planning techniques
n some other mobile robot models, such as car-like robot models
nd UAVs, and the physical experiments on mobile robots through
mbedded development will also be conducted.
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