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Closely arranged inshore ship detection using a bi-directional 
attention feature pyramid network
Hao Guoa and Dongbing Gub

aInformation Science and Technology College, Dalian Maritime University, Dalian, China; bSchool of 
Computer Science and Electronic Engineering, University of Essex, Colchester, UK

ABSTRACT
The detection of inshore ships in Synthetic Aperture Radar (SAR) 
images is seriously disturbed by shore buildings, especially for closely 
arranged inshore ships whose appearance is similar when compared 
with detection of deep-sea ships. There are many interference factors 
such as speckle noise, cross sidelobes, and defocusing in SAR images. 
These factors can seriously interfere with feature extraction, and the 
traditional Fully Convolutional One-Stage (FCOS) network often can
not effectively distinguish small-scale ships from backgrounds. 
Additionally, for closely arranged inshore ships, missed detections 
and inaccurate positioning often occur. In this paper, a method of 
inshore ship detection based on Bi-directional Attention Feature 
Pyramid Network (BAFPN) is proposed. In order to improve the 
detection ability of small-scale ships, the BAFPN is based on the 
FCOS network, which connects a Convolutional Block Attention 
Module (CBAM) to each feature map of the pyramid and can extract 
rich semantic features. Then, the idea from Path-Aggregation 
Network (PANet) is adopted to splice a bottom-up pyramid structure 
behind the original pyramid structure, further highlighting the fea
tures of different scales and improving the ability of the network to 
accurately locate ships under complex backgrounds, thereby avoid
ing missed detections in closely arranged inshore ship detection. 
Finally, a weighted feature fusion method is proposed, which 
makes the feature information extracted from the feature map 
have different focuses and can improve the accuracy of ship detec
tion. Experiments on SAR image ship datasets show that the mAP for 
the SSDD and HRSID reached 0.902 and 0.839 respectively. The 
proposed method can effectively improve the ship positioning accu
racy while maintaining a fast detection speed, and achieves better 
results for ship detection under complex background.
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1. Introduction

Synthetic Aperture Radar (SAR) is a kind of high-resolution imaging radar, which can 
obtain high-resolution radar images similar to optical photography all-day and all- 
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weather under extremely low visibility weather conditions. Ship detection research using 
SAR images has clear advantages, which make large-coverage all-weather ship surveil
lance task possible. Most detection methods in SAR images inherit from the field of optical 
remote sensing. Detection methods can be divided into four types: (1) Template match
ing-based object detection; (2) Knowledge-based object detection; (3) Object-Based 
Image Analysis (OBIA)-based object detection; (4) Object detection based on machine 
learning or deep learning.

However, compared to optical images, SAR images belong to microwave imaging, 
which records the backscatter information of ground targets on radar beams. The 
essence of ship detection in SAR images is to detect ship targets based on the 
differences in pixel greyscale values between ship targets and sea level back
grounds. However, different types of SAR sensors inevitably have differences in 
their speckle noise level, incidence angle, and polarization mode. Strong speckle 
noise (as well as the cross sidelobes and focusing phenomena) can greatly reduce 
the quality of SAR images. The incidence angle mainly affects the geometric shape 
of ships in SAR images, and different incidence angles can lead to three phenomena: 
overlap, perspective shrinkage, and shadow. Different polarization methods can also 
lead to diversity and uncertainty in ship contours. These factors can seriously 
interfere with feature extraction, which in turn has a great impact on the accuracy 
of ship detection.

In addition, for the detection of densely arranged inshore ships, it is affected by 
complex backgrounds, positioning of densely arranged ships, and insufficient feature 
information of small

ships. These factors further pose greater challenges to the effectiveness of ship detection.

1.1. Ship missed detection caused by complex nearshore background

The most important factor affecting ship detection is the complex background near shore. 
The high similarity in scattering characteristics between onshore buildings and ships has 
led to many land targets being mistakenly detected as ships, leading to a significant 
increase in false alarms. In addition, drilling platforms and reefs in the ocean can also have 
an impact on the ship detection performance in SAR images.

1.2. Inaccurate positioning of ships caused by closely arranged ships

Closely arranged ships may appear to stick together in space in the feature display image, 
making it difficult to distinguish the specific positions of two closely arranged ships. In the 
algorithm based on key point detection, the key centre points of two closely arranged 
ships will be extracted to the centre positions of the two ships during the detection 
process. The detection results are shown in Figure 1(b), which often mistakenly detects 
tightly arranged ships as a ship.

1.3. Missed detections of small-scale ships

There are many types and quantities of nearshore ships, and at the same resolution, the 
scale differences presented in SAR images are significant. A small target is considered if 
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the anchor box area S is less than 322 pixels, a medium scale target is considered if the 
anchor box area S is less than 962 pixels, and a large-scale target is considered if the 
anchor box area S is more than 962 pixels (Zhuang et al. 2019). Small ships occupy less 
pixels in SAR images, and even only show small bright spots. Their contrast with the sea 
background is not strong, making them easily confused with hidden reefs on the sea, 
leading to false or missed detections.

A detection method of Bi-directional Attention Feature Pyramid Network (BAFPN) 
under Fully Convolutional One-Stage (FCOS) network structure is proposed in the 
paper. Firstly, the Convolutional Block Attention Module (CBAM) is connected to FPN to 
obtain significant features at different scales. Then, a bottom-up pyramid module is added 
after the improved FPN to enrich the extracted feature information. In addition, weighted 
fusion operation is carried out during feature fusion, and different weights are given to 
different feature maps for feature fusion, thus improving the feature extraction capability 
of the network. In this way, the method can effectively avoid serious interference from 
complex background and improve the detection accuracy. Finally, in terms of data 
processing, this paper carries out training strategies such as image enhancement and 
transfer learning to further improve the detection performance.

The rest of this paper is structured as follows. The related work is presented in 
Section 2. Section 3.1 provides a detailed description of the proposed BAFPN framework 
model. Section 3 introduces the experiment of this method and analyzes the experimen
tal results. Finally, conclusions and outlooks are given in Section 4.

2. Related works

Inshore areas include land and sea. In SAR images, backscattering from the land and sea is 
generally different. These regions are usually bright and dark, respectively. SAR images are 
affected by the multiplicative noise known as speckle that makes the analysis and 
interpretation of SAR images difficult. Besides speckle, nonuniform characteristics of the 
signals returned from the sea surface, variety of sea states, and coastal regions complexity 
make accurate feature extraction a very challenging task (Modava, Akbarizadeh, and 
Soroosh 2018, 2019). The traditional methods of SAR ship detection have difficulty in 
detecting small-scale ships and avoiding the interference of inshore complex background.

Figure 1. Inaccurate positioning of ships caused by closely arranged ships.
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The detection methods based on deep learning are considered more effective, espe
cially the Convolutional Neural Network (CNN) evolves rapidly in the field of computer 
vision., and deep learning architectures include CNN, Artificial Neural Network (ANN), 
Recurrent Neural Network (RNN), feed backward, feed forward, Binary Long Short-Term 
Memory (BLSTM), and many others. The deep learning-based model performs well in 
generating high recognition rates with comparatively small amount of data, but its 
computational time is very high and most of these models are task driven (like some 
models such as BLSTM, RNN, feed forward, and feed backward are efficient for time 
related problems, CNN, VGG16, VGG32 perform better for spatial related problems) 
(Yasir et al. 2023).

Object detection methods based on CNNs are mainly divided into two categories: two- 
stage and one-stage. The representatives of two-stage object detection frameworks 
include R-CNN (Girshick et al. 2015), Faster R-CNN (Ren et al. 2017). The representatives 
of one-stage object detection frameworks include YOLO (Redmon et al. 2016) and SSD 
(Liu et al. 2016). However, these methods heavily rely on the final layer to predict the 
object detection results, which is prone to lose many high level important semantic 
features. In order to utilize more levels of features, it is proposed that the Feature 
Pyramid Network (FPN) (Liu et al. 2016) extracts the features from different levels for 
individual prediction, so as to achieve better detection performance. Woo et al. (2018) 
proposed an attention module that combines spatial attention and channel attention to 
refine the feature map adaptively. Liu et al. (2018) proposed a bottom-up path aggrega
tion network, which can enhance the feature extraction effect. Tian et al. (2019) proposed 
the FCOS detection algorithm based on a Full Convolutional Neural (FCN) (Shelhamer, 
Long, and Darrell 2017) network, which is a pixel-level prediction network and can avoid 
the sensitive size of candidate regions. Due to its better performance, we use the FCOS as 
the detector in this paper.

In the field of SAR ship detection. Kang et al. (2017) combined the traditional CFAR 
algorithm with the Faster R-CNN algorithm. Li et al. (2017) improved the Fast R-CNN 
detection algorithm and applied to the ship detection in SAR image, and a dataset called 
SAR Ship Detection Dataset (SSDD) was provided to train and test the model. Wang et al. 
(2018) improved the SSD with a semantic aggregation module and an attention module 
to detect ship and estimate orientation simultaneously. An et al. (2018) proposed a SAR 
ship detection method that combines sea clutter distribution with CNN. However, most of 
these methods aimed at ships in deep-sea areas.

It is more difficult to detect for small ships in inshore scenes under complex back
grounds. Potdar et al. (2021) proposed a SAR ship detection method based on size 
invariant. The research work undertaken assists the end-user to monitor the activities of 
the ships, measuring their dimensions, and thus preventing potential mishaps. Zhai et al. 
(2016) proposed a method to perform the inshore SAR ship detection through saliency 
and context information. Guo and Zhou (2022) proposed a lightweight SAR ship detection 
model named MEA-Net for imbalanced datasets to solve the problem of large model 
structures, high computing resources, and poor detection results of inshore and multi- 
scale ship targets. Zhang et al. (2022) proposed a SAR ship detection method based on 
CFAR and CNN. In response to the problem of small size and tight arrangement of ship 
targets, Li et al. (2020) combined CReLU with the shallow network of SSD, and gradually 
fused shallow feature information using FPN to detect nearshore ships. In response to the 
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problem of high background complexity in SAR ship detection, Song et al. (2022) pro
posed a rotation detection frame model based on RoI Transformer, which achieves multi- 
scale feature fusion and background suppression supervision. However, these inshore 
SAR ship detection methods need to deal with a large number of false alarms in the later 
period, and is not end-to-end. Recently, the anchor-free target detection methods have 
attracted lots of attention. They have achieved excellent performance, especially in the 
targets with multiscale sizes. Ma et al. (2022) proposed an anchor-free detection method 
and designed a key point estimation module to locate the centre point of target precisely 
and reduce the false alarm and missing alarm.

3. Methods

This paper proposes an inshore ship detection method for SAR images under complex 
background. The workflow of the method is shown in Figure 2. This method is based on 
the FCOS framework. FCOS solves the detection problem by predicting each pixel, similar 
to semantic segmentation. FCOS directly returns the object boundary box to the position 
for each location on the feature map, then selects the boundary box with the minimum 
area as its regression object and makes multi-level predictions through FPN. Next step, it 
adds the centre-ness branch to reduce the scores away from the boundary box of the 
object centre, and finally, through the Non-Maximum Suppression (NMS) algorithm, 

Classification

Center-ness

Regression

Input Image Backbone Feature EXtraction Detection Network Output Image

ResNet BAFPN

Convolutional Block Attention Module (CBAM)

Bi-directional Feature Pyramid Network based on
Weighted Feature Fusion

BAFPN

Figure 2. Workflow of proposed method.
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removes the redundant borders to produce the final detection results. We use ResNet as 
the feature extraction network. To obtain the image object feature pyramid, a Bi- 
directional Attention Feature Pyramid Network (BAFPN) is proposed in the feature extrac
tion stage. The specific steps include adding attention modules, establishing a bi- 
directional feature pyramid, and then fusing the features of different layers by using 
a weighted feature fusion mechanism. The post-processing structure of FCOS is kept 
unchanged in the detection stage.

3.1. Convolutional block attention module

The attention mechanism module CBAM is used in the feature extraction phase. The 
CBAM is used to highlight the significant features of specific scales from the spatial and 
channel aggregation information of the multi-level feature map. This can adaptively refine 
the multi-scale feature map, which is conducive to reducing error and improving the 
accuracy of ship detection at multiple scales.

A CBAM module consists of channel attention and spatial attention. As shown in 
Figure 3, given an intermediate feature map F 2 RC�H�W as input, MC 2 RC�1�1 is the 
channel attention map and MS 2 R1�H�W is the spatial attention map. The overall process 
of CBAM is as follows:

Where FC 2 RC�H�W is the feature map obtained by channel attention and � denotes 
element-wise multiplication. FR is the refined feature map.

The channel attention focuses on what is meaningful in the input image. It aggregates 
the spatial information of the feature map through the average-pooling and the max- 
pooling operations. Then it reduces the parameters with a multi-layer perceptron (MLP). 
The channel attention is computed as: 

Where AvgPool and MaxPool denote the operations of average pooling and max pooling, 
and σ denotes the sigmoid function.

Different from the channel attention, the spatial attention focuses on where an 
informative part is, which is complementary to the channel attention. It aggregates the 

Channel Attention
Mc

Spatial Attention
Ms

Input Feature F

Fc

Refined Feature FR

Figure 3. CBAM structure.
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channel information of a feature map by using the average-pooling and max-pooling 
operations. Those are then concatenated and convolved by a standard convolution layer. 
The spatial attention is computed as: 

Where σ denotes the sigmoid function and f 7�7 represents a convolution operation with 
the filter size of 7 × 7.

The CBAM improves the representation of feature maps through continuous channel 
attention and spatial attention. This can effectively eliminate the false alarm of various 
scenes in SAR images, especially the ground objects in inshore scenes. As shown in 
Figure 4(a), the CBAM is closely connected to the feature map, connected by the up- 
sampled high-level feature map, and then fused with the original feature map. The 
process is as follows:

Where A and U denote the operations of the CBAM and up-sample, respectively, and �
denotes the operation of concatenation.

3.2. Bi-directional feature pyramid network

Figure 4(a) shows the conventional top-down FPN. It is essentially limited by a one-way 
information flow. To solve this problem, PANet adds an additional bottom-up path aggre
gation network, as shown in Figure 4(b). The introduction of this network is to enhance the 
effect of feature extraction by using accurate low-level location information, thus short
ening the information path between shallow and deep features.

The proposed method is improved on the basis of FCOS, which is the detection of 
pixel level and is very important for the extraction of shallow feature information in 

C5

C4

C3

P5

P4

P3

P6

P7
C6

C7

N5

N4

N3

N6

N7

C5

C4

C3

P5

P4

P3

C6

C7 P7

P6

(a) FPN (b) PANet

Figure 4. Two traditional features of the pyramid network structure.
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the network. Inspired by PANet, the BAFPN is constructed in this paper. As shown in 
Figure 5, behind the top-down network of the FPN, a bottom-up path is connected 
horizontally. Then, we add an extra connection from the original input to output the 
feature map if they are at the same level, in order to fuse more features without 
adding much cost, as shown in the orange dotted line in Figure 5. By merging the 
global non-fuzzy features with the significant features of different scales in the local 
area through the horizontal connection, the feature mapping after fusion can be 
optimized, which can effectively reduce the tightly arranged ship detection error in 
complex scenes.

As shown in Figure 5, ResNet-50 is utilized as the backbone, which is a 50-layer 
residual network that adopts shortcut connections. {C3, C4, C5} represents the 
multi-layer feature map of the output of the backbone network, and {P3, P4, P5} 
represents the feature layer generated by the top-down network. The bottom-up 
pathway from P3 to P5 is added, and {N3, N4, N5} represents the newly generated 
feature map corresponding to {P3, P4, P5}. Figure 5(b) shows the operation 
between each building block of the bottom-up network. Each building block 
obtains a high-resolution feature map Ni through a horizontal connection, and 
after sampling it with a down-sampling operation of 2, it is fused with the feature 
map Piþ1 before the horizontal connection, and the original feature map Ciþ1. Then 
the fusion feature map is processed with 3 × 3 convolution layer, and a new 

2× Downsample

Weighted 
Feature FusionConv 1×1 Conv 1×1

Conv 3×3

N3

N4

P4
C4

P4

2× Upsample

CBAMWeighted 
Feature Fusion

Conv 1×1

Conv 3×3

C3

P3

C5

C4

C3

P5

P4

P3

N5

N4

N3

C6

C7

N6

N7

A

A

(a) CBAM (b) Bottom-up buildingblocks

Figure 5. The operational flow of BAFPN.
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feature map Niþ1 is generated. This is an iterative process that terminates after P5. 
The detailed calculation process is as follows: 

Where D denotes the operation of down-sample, and � denotes the operation of the 
proposed weighted feature fusion.

3.3. Weighted feature fusion

When fusing multiple input features with different resolutions, the common practice is 
to adjust them to the same resolution and then add them together. They treat all input 
features equally without distinction. However, we note that because different input 
feature maps have different resolutions, their contributions to the output feature map 
are often different. Therefore, we propose adding an additional weight for each input in 
the feature fusion, allowing the network to learn the importance of each feature map 
on its own. Based on this idea, we introduce a weighted fusion approach.

We apply SoftMax to each weight so that all the weights are normalized to a probability 
with the value ranging from 0 to 1, indicating the importance of each input feature map. 
The Softmax function is represented as follows: 

Where wi and wj denote the learning weights, and Ii represents the feature at level 
i. As a conceptual example, we describe the two fusion features at level 4 shown in 
Figure 5: 

Where C4 is the input feature at level 4, and A4 is the feature at level 4 after the CBAM. 
Respectively, P4 is the intermediate feature at level 4 on the top-down pathway, and N4 is 
the output feature at level 4 on the bottom-up pathway. All other features are constructed 
in a similar manner. Algorithm 1 presents the process of weighted feature fusion. 

Algorithm 1 Process of weighted feature fusion

Input: Ci , Ai 
Output: Pi 

for i  1 to n do 
w1

i  Parameter Cið Þ // obtain the weights of the original features 
w2

i  Parameter Aið Þ // obtain the weights of attention features 
w10

i ;w20
i  softmax w1

i

� �
, softmax w2

i

� �
// applying the Softmax function to weights 

Pi  add w10
i Ci;w20

i Ai
� �

//Fusion of features 
end for 

Return: Pi //Features after fusion
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3.4. Ship detection process

The core of BAFPN is the convolutional block attention module and the Bi-directional 
Feature Pyramid module, both of which use the weighted feature fusion. Algorithm 2 
presents the process of BAFPN. 

Algorithm 2 Ship detection process using BAFPN

Input: Original ship features Ci 
Output: Detected ship targets 

for i 1 to n do 
Ai  CBAM Cið Þ // Features processed by CBAM. 
Pi  w1

1 Ci þ w2
1 Ai // Features of FPN and CBAM after weighted fusion. 

N3 ¼ conv1�1 P3ð Þ

Ni  w1
2 Ci þ w2

2 Pi þ w3
2 upsample Ni� 1ð Þ //Features through bidirectional feature pyramid and fusion 

return Ni 
end for 
boxlist  BoxList tensor Nið Þð Þ //obtain the initial detection bounding box list 
score classification boxlistð Þ � centerness boxlistð Þ //obtain score for the detection bounding box 
bbox  nms boxlist; iou; scoreð Þ //the final detection result after processing with nms 

Return bbox

4. Experiments and discussion

All the experiments in this paper are programmed under the framework of Pytorch 1.1.0. The 
experimental platform is NVIDIA Titan RTX, the operating system is ubuntu 18.04, and the 
experimental environment is CUDA 10.0, Python 3.7.4. We use RestNet-50, which is pre-trained 
on the ImageNet18 dataset, as the initialization model. Especially, the batch size is set to 8, the 
learning rate is set to 0.001, the weight decay is set to 0.0001, the momentum is set to 0.9. And 
the maximum number of iterations is 50,000, and every 20,000 iterations is attenuated.

4.1. Datasets

The two datasets SAR Ship Detection Dataset (SSDD) (Li, Qu, and Shao 2017) and High- 
Resolution SAR Images Dataset (HRSID) (Wei et al. 2020) are used for training and testing, 
which are divided into training sets, validation sets, and test sets on a 7:1:2 scale. In 
addition, in order to test the effectiveness of the algorithm on the large scene SAR image, 
the proposed BAFPN is evaluated using Radarsat-2 SAR images from the Liugongdao Bay 
area of Weihai, China.

Deep learning requires sufficient training samples as support, but SAR image data is 
difficult to obtain in large quantities. In addition, since the imaging mechanisms of SAR 
image and visible image are different, a reasonable choice is needed for image enhancement 
strategy. To fully use the limited training data, we enhance the training data through a series 
of transformations. Data augmentation is beneficial to inhibit the potential overfitting and 
strengthen the generalization ability of models. In this paper, affine transformation, blurring 
and adding noise are used to enhance the dataset.

4.1.1. SSDD dataset
One of the datasets used is the exposed SAR ship dataset SSDD (Li, Qu, and Shao 2017), 
which imitates the POSCOL VOC dataset, with 1,160 images and 2,456 ships, and the SAR 
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images in the dataset are mainly from RadarSat-2, TerraSAR-X, and Sentinel-1 sensors, and 
the resolutions include 1 m, 3 m, 5 m, 7 m, 10 m. In addition, the ship object is small in low 
resolution images, and only ship targets with more than three pixels are labelled.

4.1.2. HRSID dataset
The HRSID dataset contains only one category of ships and annotates ship position 
information (Wei et al. 2020). Sensor types include Sentinel-1B, TerraSAR-X, and 
TanDEM. The dataset image size is 800 × 800, the scene includes a wide variety of 
nearshore areas of ships and areas where ships are difficult to distinguish from clutter 
interference. The HRSID dataset has a total of 5604 fully polarized SAR images, with 
below 32 × 32 corresponding to small objects, with 32 × 32 to 96 × 96 corresponding to 
the middle object, with above 96 × 96 corresponding to large objects, with small ships, 
neutral ships, and large ships accounting for 54.5%, 43.5%, and 2% of the total number 
of ships in the HRSID dataset, respectively.

4.1.3. Large scene SAR image
In order to test the effectiveness of the algorithm on large scene SAR images, the 
proposed BAFPN is evaluated using Radarsat-2 images from the Liugongdao Bay area of 
Weihai, China. The pixel size of the SAR image is 3248 × 6130, with the imaging time of 
17 July 2013, an incidence angle of 21.10 °, and a resolution of 8 m.

4.2. Comparative analysis

4.2.1. Inshore docked ship detection
Ships docked near shore are susceptible to the influence of onshore buildings during 
the detection process, which is extremely challenging for the detection task of the 
model. Figure 6 shows the detection results of several algorithms on the ships docked 
near shore in the nearshore scenario. Overall, the SSD algorithm and Faster R-CNN 
algorithm have poor detection performance for the ships docked near shore. Among 
them, the detection of SSD algorithm is easily affected by container interferences on 
shore, leading to missed detection. Compared to the SSD algorithm, the CenterNet and 
MEA-Net perform relatively well in detecting inshore ships. However, from the image 
corresponding to CenterNet in Figure 6(a) and mAP in Figure 6(c), it can be seen that 
this algorithm is still prone to missed detections for nearshore docked and adjacent 
ships. Our algorithm adds a channel attention module, which enables the network 
model to actively learn and add different weights to each channel. During the detec
tion process, it is not affected by the nearshore background and can accurately locate 
the position of ship targets.

4.2.2. Closely arranged shi
Figure 7 shows the visualization results of the SSD algorithm, CenterNet algorithm, and 
our algorithm for densely arranged ship detection at estuaries. Due to the large size of 
densely arranged ship targets in the images, both the SSD algorithm and CenterNet 
algorithm have shown good detection performance for this type of ship targets, which 
can accurately locate the ship targets. However, for densely arranged ships with smaller 
storage, the SSD algorithm still has missed detections and poor detection performance. 
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On the contrary, the CenterNet algorithm has improved the detection performance 
compared to SSD. However, the CenterNet algorithm is easy to recognize two adjacent 
ships as one ship, indicating that for small-scale ship targets, it is still necessary to 
strengthen the feature extraction methods, and distinguishing adjacent arranged ships 
is still a key concern. Our algorithm enhances the feature extraction to obtain the 
contextual information. From mAP in Figure 7(c), it can be seen that the detection results 

Figure 6. Detection results on different datasets.
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of our algorithm can effectively and accurately locate the size of small ships, which is more 
accurate for detecting densely arranged ship targets compared with other algorithms. 
This to some extent demonstrates the generalization ability of the proposed method.

Figure 7. Closely arranged ships in deep sea.
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4.2.3. Small ship detection
Figure 8 shows the effectiveness of several mainstream algorithms for detecting small ships. 
The SSD algorithm and CenterNet algorithm have poor performance in detecting small ships 
in the HRSID and SSDD. During the feature extraction process, the feature information of small 
ship targets is lost in multiple convolution processes, making it easy to miss detection during 
the detection phase. The algorithm in this article adds a feature fusion approach to better 

Figure 8. Small ship scenarios at deep sea.
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integrate shallow and deep feature information. In the feature extraction stage, richer ship 
target features are extracted, and the detection results are improved. The algorithm in this 
article can achieve accurate positioning results for both large-scale and small-scale targets.

4.3. Overall comparative analysis

In order to better explain the detection performance of the proposed algorithm, we compare 
the proposed method with other detection algorithms. The quantitative comparison with 
the SSDD dataset is shown in Table 1. As it can be seen from the table, compared with the 
SSD, MEA-Net and Faster R-CNN of different backbone networks, this method has the 
highest accuracy in the SSDD dataset. The training time of each image is faster than that 
of the other algorithms, and although it is slower than the SSD, it can still be used for real- 
time detection.

Further experiments are conducted on the HRSID dataset, comparing the algorithm 
with the current ship target detection algorithms based on deep learning. The experi
mental results are shown in Table 2. From it we can see that the proposed algorithm has 
an accuracy of 83.9%, which is the highest.

4.4. Ship detection performance on different scenarios

The ship detection performance of different scenarios in the HRSID dataset are shown 
in Figure 9. Figure 9(a) shows the results of ship target detection in complex back
grounds. It can be seen that the proposed algorithm can detect ships affected by 
background interference. Figure 9(b) shows the results of ships with spatially dense 
distribution at the river mouth. The ships are densely distributed and adjacent ships 
are densely arranged with a large number. It can be seen that the proposed algorithm 
can achieve good detection results for the ships docked at estuaries, whether sparsely 
or densely distributed in space. Especially, in Figure 9(c), the blurred background is 

Table 1. Comparison between the proposed method and other methods with SSDD dataset.
Model Backbone mAP Training time(s) Testing time(s) Memory(MB)

SSD VGGNet 0.7569 1.103 0.023 1189
YOLO-v3 DarkNet-53 0.7883 1.153 0.053 1769
Faster R-CNN ResNet-50 0.8170 2.159 0.169 1375
FCOS ResNet-50 0.8074 0.446 0.051 1164
CenterNet ResNet-50 0.8033 0.457 0.042 1289
MEA-Net CSPDarknet53 0.8747 0.695 0.078 1534
Ours ResNet-50 0.9022 0.487 0.049 1467

Table 2. Comparison between the proposed method and other methods on the HRSID dataset.
Model Backbone mAP Training time(s) Testing time(s) Memory(MB)

SSD VGGNet 0.5330 1.103 0.023 1189
YOLO-v3 DarkNet-53 0.6384 1.153 0.030 1769
Faster R-CNN ResNet-50 0.7570 2.159 0.104 1375
FCOS ResNet-50 0.8074 0.446 0.031 1164
CenterNet ResNet-50 0.7197 0.457 0.026 1289
MEA-Net CSPDarknet53 0.8158 0.695 0.097 1534
Ours ResNet-50 0.8386 0.487 0.028 1467
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affected by sea clutter. In this case, the ship features are blurry and cannot distinguish 
between the blurred background and the ship target. It may be difficult to distinguish 
whether it is the target or the background with the naked eye for the first and third 
detection images in Figure 9(c). However, the proposed algorithm can still detect the 
ship targets with significant scale differences and background interference.

4.5. Testing on large scene SAR images

We annotate the Radarsat-2 data from the Weihai Bay area using LabelImg. Due to the fact 
that some suspected ship targets in SAR images only have a few pixels, this article 
considers the targets larger than 10 pixels as ships and annotates them. The incident 
angle of 21.10 °, and we select the HV channel of Radarsat-2 for testing. Figure 10 shows 
the ship detection results in the RadarSat-2 fully polarized data image. These images are 
local images of the Weihai region. From Figure 10, it can be seen that firstly, overall in 
scenarios with complex backgrounds and high levels of noise, most ships can be accu
rately detected in both nearshore and deep-sea scenes, indicating that the proposed 
method has strong robustness. Secondly, in complex nearshore scenarios, the information 

Figure 9. Results on the HRSID dataset.
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features of these ship targets are usually similar to those of buildings and other interfering 
objects on land. However, our algorithm can still effectively detect the target, indicating 
that our algorithm is effective for nearshore ship targets.

4.6. Ablation analysis

In order to evaluate the detection performance of the different modules added in this paper 
on SAR ship images, four tests are conducted, as shown in Table 3. The FCOS+CBAM 
represents the model after adding the CBAM, the FCOS+BAFPN represents the model 
after adding the bi-directional attention feature pyramid, and the FCOS+BAFPN+Weight 
represents the model after the weighted feature fusion. Through the experiments, it can be 
seen that the CBAM has a more significant effect on the SAR ship target detection results, 

Figure 10. The ship detection results in the RadarSat-2 fully polarized data image.

Table 3. The accuracy of each mod
ule is evaluated and compared.

Model mAP

FCOS 0.8075
FCOS+CBAM 0.8697
FCOS+BAFPN 0.8877
FCOS+BAFPN+Weight 0.9046
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mainly because the original algorithm for the feature extraction is ambiguous and could 
mistakenly identify multiple ship as one target. The model after adding the CBAM is more 
accurate for the significant feature extraction of the ship. Moreover, with the addition of 
different modules, the positioning information for ship targets is more accurate, and the 
ship targets with different distributions can be effectively distinguished, so that the final 
detection accuracy is higher.

5. Conclusions and outlooks

In this paper, a new SAR image ship detection algorithm based on the FCOS framework is 
proposed, and the proposed algorithm is evaluated on the two datasets SSDD and HRSID. 
Aiming at the difficulty of detecting SAR ship targets in complex background, we apply the 
pixel-by-pixel detection method to the image detection of SAR ships. We add the CBAM in 
the network structure, which highlights the significant features of the target, and makes the 
algorithm effectively distinguish the tightly arranged ships. At the same time, this paper 
proposes a bi-directional attention feature pyramid network, which enhances the accuracy 
of the algorithm positioning function. In addition, a weighted feature fusion is introduced in 
the algorithm to improve the robustness for SAR ship targets in complex background. It 
should be pointed out that with the increase of SAR image data, in the future research work, 
we will further optimize the neural network structure to enhance the robust performance of 
the network, and improve the accuracy and efficiency of target detection.

The imaging quality directly determines the effectiveness of ship detection. Unlike 
optical images, SAR images vary depending on the incident angle, wavelength, and 
polarization method. Adil et al. (2022) conducted a study based on the L-band UAVSAR 
airborne dataset, which showed that the HV polarization provides the largest target-to- 
clutter ratio at lower incidence angles, while the HH polarization should be preferred at 
higher angles of incidence. Similarly, the incident angle of Radarsat-2 data (C-band) from 
the Weihai Bay area is 21.10 °. We found that better ship detection results can be obtained 
based on HV channel. However, considering the effectiveness of FPN and attention 
mechanism in optical image object detection, overall, as long as the sample space is 
abundant enough, this method has a great possibility of expanding to the L-band. 
However, further experimental verification is needed in the future.
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