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Decoding Multi-Brain Motor Imagery From EEG
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Abstract— Electroencephalography (EEG)-based motor
imagery (MI) is one of brain computer interface (BCI)
paradigms, which aims to build a direct communication
pathway between human brain and external devices by
decoding the brain activities. In a traditional way, MI BCI
replies on a single brain, which suffers from the limitations,
such as low accuracy and weak stability. To alleviate these
limitations, multi-brain BCI has emerged based on the inte-
gration of multiple individuals’ intelligence. Nevertheless,
the existing decoding methods mainly use linear averaging
or feature integration learning from multi-brain EEG data,
and do not effectively utilize coupling relationship features,
resulting in undesired decoding accuracy. To overcome
these challenges, we proposed an EEG-based multi-brain
MI decoding method, which utilizes coupling feature extrac-
tion and few-shot learning to capture coupling relationship
features among multi-brains with only limited EEG data.
We performed an experiment to collect EEG data from
multiple persons who engaged in the same task simulta-
neously and compared the methods on the collected data.
The comparison results showed that our proposed method
improved the performance by 14.23% compared to the
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single-brain mode in the 10-shot three-class decoding task.
It demonstrated the effectiveness of the proposed method
and usability of the method in the context of only small
amount of EEG data available.

Index Terms— Few-shot learning, hypergraph, multi-
brain brain computer interface, motor imagery, tensor
decomposition.

I. INTRODUCTION

MOTER imagery (MI) is one of the classic brain com-
puter interface (BCI) paradigms, which has been widely

used in neural rehabilitation. It refers to the utilization of
imagined motor movements, rather than actual physical actions
[1]. This endogenous spontaneous EEG pattern differs from
the evoked EEG activity, since it does not require any exter-
nal stimulus, but relies solely on the imagined movements
generated by the user. The EEG data collected from scalp
of users can be used to accurately identify the intended motor
tasks. Among various types of EEG signals, MI has received
considerable attention and is regarded as a flexible measure
of brain activities. As a result, MI-BCI has broad applications
in assisting patients with object control and self-care, as well
as serving as a tool for rehabilitation and physiotherapy to
help patients recover their motor abilities to the fullest extent
possible [2], [3]. The high temporal resolution of EEG data is
a desirable merit that enables the investigation and diagnosis
of various brain disorders or mechanisms [4], [5]. MI is a
response to the cognitive task of imagining hand or leg move-
ments and has been widely examined for BCI applications. As
such, automated MI classification using machine learning [6],
[7] and deep learning techniques [8], [9] has been extensively
explored. However, the single-brain MI-BCI paradigm faces
several technical challenges, such as low recognition accuracy
and weak stability since the decision is made by a single
person, and there may be a lack of cross-checking EEG
data [10].

The emergence of EEG hyperscanning technology aims
to overcome the limitations of traditional single-brain BCI
systems. Hyperscanning refers to the technique that syn-
chronously records the brain activity from two or more
users who engage in a specific cognitive task. Therefore,
the neural mechanisms of social interaction between brains
are revealed. Multi-brain BCI can be implemented using
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such techniques. The advent of hyperscanning technology has
allowed the study of social interaction neural mechanisms to
advance from a “stand-alone paradigm” to a “two-brain/multi-
brain neuroscience” by involving multiple individuals and
improved the ecological validity beyond observation of single
individual [11]. Though different brains might have different
underlying mechanisms in encoding the external world, the
mental distance among these encoded stimuli is expected to
remain constant to a great extent. Therefore, it is rational
to presume that inter-brain coupling relationships exist in
a representation space of a higher level [12]. This is the
reason why multi-brain synergistic BCI can be utilized in
multi-brain interaction experiments, such as MI. EEG-based
hyperscanning is a straightforward and cost-effective method
for recording brain activities, which is widely utilized in multi-
brain BCI systems.

The hyperscanning technique is often utilized to study social
interaction, including the joint decision and initiator-receiver
interactions [13]. In joint decision hyperscanning research,
it is indicated that an increasing number of subjects improves
the classification performance of multi-brain joint operation
hyperscanning systems through the fusion of multi-brain EEG
signals [14]. The application of multi-brain BCI in group reha-
bilitation offers benefits such as peer social support, increased
accessibility and opportunity for treatment [15].

To address the challenges mentioned above, we proposed
a novel coupling feature-based few-shot learning decoding
method for multi-brain MI-BCI. This approach achieved the
improved classification accuracy with a limited amount of
EEG data. In summary, the present study comprises the
following contributions.

• A multi-brain MI experimental paradigm is designed to
incorporate idle state detection, with the aim of con-
sidering the interactions and coupling features among
multi-brain. Therefore, more comprehensive information
such as the inter-brain connectivity and synchronization
patterns is captured, which was not typically provided in
traditional single-brain studies. This could potentially be
taken as a new paradigm for rehabilitation.

• The proposed method consists of a feature extraction
module for mining cross-brain coupling information,
as well as a few-shot learning module to conduct fea-
ture classification. Specifically, this method leverages
hypergraph learning to extract interpretable represen-
tations of brain-to-brain coupling relationships, which
can describe higher-order relationships between multiple
nodes. Furthermore, it exploits the property that tensor
decomposition can extract discriminative features of high-
dimensional data. We employ a few-shot learning MI-BCI
module to deal with the common problem that only
limited amount of data is usually available in MI-BCI
field.

• Experiments evaluated the effectiveness of the coupling
features as well as the recognizing MI task based on EEG
only using a small amount of data, which could facilitate
the development of stable MI-BCI with limited training
data. In addition, A new evaluation metric, to quantify the
impact of inter-brain coupling coordination relationships
on the joint classification decision among multi-brain
is proposed. The results show that there is a positive

correlation between the cross-brain coupling coordination
degree and the classification accuracy.

We structure the remainder of this paper as follows.
Section II presents the relevant works especially on the related
methods and section III indicates the implementation of our
proposed method. In section IV, we describe the multi-brain
experimental paradigm. Section V reveals the experimen-
tal results. The cross-brain coupling coordination degree is
investigated in section VI, followed by the conclusion in
section VII.

II. RELATED WORKS

In what follows, we present a description of the relevant
techniques that are involved in our proposed method. Specifi-
cally, these techniques include the hypergraph learning, tensor
decomposition, and few-shot learning.

A. Hypergraph Learning
Hypergraph structures are extensively employed in various

fields for modeling higher-order data correlations. It not only
preserves valuable information, but also models relationships
among multiple nodes. This idea was first introduced in
[16], which proposed a propagation process over hypergraph
structures. The goal of transition inference on hypergraphs
is to minimize the discrepancy of labels among strongly
connected vertices. Zhou et al. employed the hypergraph
theory to partition EEG samples into a predetermined number
of clusters, where each cluster corresponds to an emotional
category [17]. Vertices within the same cluster share similar
emotional characteristics. In [18], Gao et al. proposed a novel
seizure detection approach by integrating hypergraph features
with machine learning.

B. Tensor Decomposition
Similar to the matrix factorization, tensor decomposition

can be applied to tensor-structured data, which inherently
takes advantage of the interactions between multiple modes
of the tensor [19]. EEG signals are commonly represented
as matrices, and analyzed using methods like time series and
spectral analysis, as well as matrix decomposition. Typically,
EEG signals exhibit more than the two temporal and spa-
tial patterns and necessitate the tensors representations [20].
Recently, tensor decomposition has proven highly effective in
extracting and analyzing features of EEG signals, leading to
remarkable outcomes [21], [22]. In this paper, we primarily
employ the Tucker decomposition to extract the core feature
tensor of a hypergraph generated by EEG data from two
subjects.

C. Few-Shot Learning
Few-shot learning is another important machine learning

paradigm, it achieves fast adaptation and transfer abilities
of the model by utilizing a limited amount of data to learn
new target categories. For example, in [23], a universal few-
shot learning framework was proposed, wherein the classifier
is demanded to discern novel classes that are absent in
the training set, and only sparse examples are accessible
for each emerging class. In [24], the authors proposed to
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Fig. 1. The overall framework of our proposed method applied to EEG multi-brain MI scenario of three-classification task.

compute the distance between the input data and the pro-
totype representation of each class in the metric space, and
subsequently performed classification based on the proximity
to each prototype. In [25], a Siamese neural network was
proposed for single-shot image recognition, which achieved
comparable performance to human recognition abilities. Few-
shot learning methods can be applied to EEG signal decoding.
In [26], an end-to-end trainable learning paradigm, MLCL,
was proposed for decoding emotion recognition from EEG
signals. Reference [27] proposed a meta-learning strategy
to search for optimal parameters for BCI decoders, which
resulted in an increased motor imagery classification accuracy
for EEG-based MI-BCI decoding. A novel two-way few-
shot network was designed in [28], which was capable of
effectively learning representative features for unseen target
categories and classifying them with limited MI EEG data.

III. METHOD

This paper proposes a coupling feature-based few-shot
learning model for robust EEG decoding in MI-BCI, given
only limited data. In Fig. 1, we present the overall framework
of our proposed method consisting of a coupling feature
extraction module and a few-shot learning module, which
will be applied to the three-class decoding task in multi-brain
MI. In the first module, we employ the hypergraph learning
and Tucker decomposition to extract the coupling relationship
features among multi-brain in performing the same MI task.
To handle limited sample size, we adopt the relation network
as a few-shot learning module for the subsequent three-class
decoding task.

A. Hypergraph Learning-Based Coupling Feature
Extraction

Specifically, hypergraphs are defined on a finite set V as a
generalization of graphs to describe high-order relationships

among multiple vertices. Given their capacity to connect any
number of vertices, hypergraphs enable direct extraction of
complex relationships among vertices connected by an edge,
and even between different edges. The following overview
introduces the fundamental principles of hypergraphs.

A hypergraph is defined as G(V, ε, W), where V is a set of
vertices, ε is a set of hyperedges, and W is a diagonal matrix
representing edge weights. Hypergraph can be represented by
an |V| × |ε| association matrix H, which is defined as

H = h(v, e) =

{
1, if v ∈ e;
0, if v /∈ e.

(1)

In the hypergraph, the degree of each vertex is defined as
d(v) =

∑
e∈ε

w(e)h(v, e), which is the sum of weights of

all edges that contain the vertex. The degree of each edge
is defined as δ(e) =

∑
v∈V

h(v, e), which is the number of

vertices connected by the edge. Moreover, the degrees of
a hypergraph can be conveniently represented by means of
diagonal matrices. To be specific, Dv and De are diagonal
matrices whose diagonal elements correspond to the degrees
of vertices and edges, respectively.

Let X = [x1, x2, · · · , xN ]
T

∈ RN×P represents the EEG
data collected from a subject, where N denotes the number
of channels, xi ∈ RP represents the time series of the
i-th channel, and P is the total number of time points captured
in the EEG acquistion process. Assume that X in this study
has been subject to a preprocessing step that involves normal-
ization, resulting that each row has a zero mean and a unit
Euclidean norm. In our work, each channel is regarded as a
vertex in the hypergraph. We construct a hypergraph to model
the subject’s functional connectivity network (FCN), which
is used to capture high-order interaction features, such as
coupling relationships, among multiple channels. The specific
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approach employed to obtain the hypergraph matrix H is
described as follows.

By drawing inspiration from recent studies [29], [30], [31],
we utilize the sparse coding model (also named Lasso regres-
sion in statistics), to construct H. Specifically, the time series
of each EEG channel is regarded as a response vector that can
be estimated by a linear combination of the time series formed
by the other N −1 channels, which generates a representation
coefficient vector. That is, for xi , i |N

i=1, if the coefficient vector
is αi , we have

min
αi

1
2
∥xi − Aiαi∥

2
2 + λ∥αi∥1, (2)

where Ai = [x1, · · · , xi−1, xi+1, · · · , xN ] ∈ RP×(N−1)

denotes the collection of time series of all channels but the
i-th EEG channel. The vector αi ∈ RN−1 quantifies the
coefficients associated with the coupling relationship between
the the i-th channel and the remaining N − 1 channels. The
regularization parameter λ > 0 controls the sparsity of vector
αi , which is usually selected from {0.01, 0.02, · · · , 0.1}.

Through selecting an appropriate value for λ and then
optimizing the sparse learning model in equation (2), a hyper-
edge ei can be obtained. This hyperedge ei is comprised of
a central channel (i.e., the i-th channel selected each time)
and all the other channels in the coefficient vector αi that
have corresponding positive elements, indicating that they are
coupled with the central channel on one hyperedge. It is
worth noting that the hyperedge ei we constructed excludes
the channels with corresponding negative and zero elements
in αi . This decision is made because such channels have either
adverse or negligible effects on the central channel.

We assume that the coupling relationships among channels
should exhibit non-negative correlations. Accordingly, we can
obtain the coupling relationships (interactions) between the
selected central channel and other channels within the same
hyperedge, thereby filtering out any insignificant or spurious
connections. The methodology employed in this study enables
the effective representation of coupling relationships among
several channels by leveraging the local information within
each hyperedge in the hypergraph. After optimizing the N
sparse coding models, a hypergraph with N hyperedges is
ultimately acquired. It is noteworthy that the sparsity or
density of the obtained adjacency matrix H ∈ RN×N of the
hypergraph is dependent on the increment or decrement of the
parameter λ.

Based on the above analysis, hypergraph learning auto-
matically adjusts of the influence of different hyperedges by
learning their respective weight values, consequently reducing
redundancy within the hyperedges and generating distinc-
tive FCNs. Obviously, when λ is large enough in objective
function (2), the corresponding αi will be pretty sparse and
contain few non-zero elements. In the extreme case, the
hyperedge ei only comprises the central channel, which is
not the intended outcome. Therefore, our hypergraph learning
approach, as applied in this paper, excludes such hyperedges.

B. Tucker Decomposition-Based Feature Compression
Considering two matrices A ∈ RI1×I2 and B ∈ RI2×I3 , A×B

can be interpreted as a linear transformation that is applied to
matrix A. Then, the resultant matrix is (A × B) ∈ RI1×I3 .

Since tensors are multi-dimensional arrays with three or more
dimensions, we can consider them as high-order matrices.
Then, the matrix transformation method can be extended for
tensor-represented data, as illustrated below.

In this section, we will delve into the mode-n product of
tensors. Specifically, let χ ∈ RI1×I2×I3 and A ∈ RJ1×I1

be a tensor and a matrix, respectively, such that χ ×1 A
is the desired operation. It follows that the result of the
mode-1 product is an J1 × I2 × I3 dimensional tensor. We
can interpret the mode-1 product as a linear transformation
along the first mode of tensor χ , mapping the first mode from
I1 to J1. Notably, if J1 < I1, this operation corresponds to a
dimensionality reduction along the first mode of the tensor χ .
For a given tensor χ ∈ RD×E×F , its Tucker decomposition
can be expressed by

χ ≈ G ×1 A ×2 B ×3 C =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqr ap ◦ bq ◦ cr

= [G; A, B, C], (3)

where G ∈ RP×Q×R is a core tensor, A ∈ RD×P , B ∈ RE×Q ,
and C ∈ RF×R are factor matrices. Mathematically, Tucker
decomposition tries to identify a minimal core tensor and a
set of matrices that can approximate the original tensor χ

through their product. The core tensor captures the interaction
among components in each dimension, thereby integrating
multidimensional information. These factor matrices are also
known as factor arrays and generally exhibit orthogonality.
Additionally, the factor matrices can capture the dominant
features across each dimension of the original tensor. Tucker
decomposition is a commonly used method for reducing
the dimensionality of high-dimensional data and extracting
its features. This approach helps to understand the intrinsic
structure and patterns of the data, while also providing an
effective means for data compression and representation.

Below, we utilize the core tensor derived from the Tucker
decomposition for EEG decoding task. The element-wise
representation of tensor χ is

xde f ≈

P∑
p=1

Q∑
q=1

R∑
r=1

gpqr adpbeqc f r ,

d = 1, . . . , D, e = 1, . . . , E, f = 1, . . . , F. (4)

If P , Q, R are respectively less than D, E , F , the core tensor
can serve as the compressed form of the original tensor, which
achieves dimensionality reduction. Equivalently, the Tucker
decomposition constitutes a high-order implementation of the
principal component analysis technique for dimensionality
reduction.

Following the application of hypergraph learning on the
EEG data, two hypergraphs were obtained that depict the
intricate brain coupling relationships of paired-group subjects
during performing cognitive tasks. Both hypergraphs are con-
catenated to produce a three-dimensional tensor, which is
subjected to Tucker decomposition across three dimensions,
i.e., subject, channel and channel. As a result, the core tensor
is extracted to capture the coupling relationships between
the two subjects, which will be employed in the subsequent
classification module.
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C. Relation Network-Based Few-Shot Learning
The Relation Network is comprised of two modules, i.e., the

embedding module and the relation module. To be precise, the
embedding module is trained by the core tensors obtained by
hypergraph learning and Tucker decomposition, whereas the
relation module is trained on the merged feature map of the
train and the test core tensors. In particular, the training set is
S = {(xi , yi )}

m
i=1 (m = K × C), where K denotes the number

of labeled samples and C represents the number of categories.
Meanwhile, the test set T =

{
(x j , y j )

}n
j=1 (n = R × C) has

R samples, which is obtained by subtracting K from the total
number of samples. Subsequently, the relation score ri, j (i.e.,
a scalar value between 0 and 1) is generated by the network to
reflect the similarity between the train and test core tensors.
Finally, the category with the highest relation score ri, j is
selected as the ultimate classification outcome.

The selected loss function for the model is the mean square
error loss

argmin
m∑

i=1

n∑
j=1

(ri, j − 1(yi == y j ))
2, (5)

which performs regression of the relation score ri, j against
the ground truth. Specifically, matched pairs have a similarity
value 1, while mismatched pairs have a similarity value 0.

The embedding module consists of four convolutional
blocks, each among which comprises a 64-filter 3 × 3 convo-
lution, a batch normalization layer, and a rectified linear unit
(ReLU) nonlinearity layer. To enable additional convolution
of the output feature maps in the relation module, the first
two convolutional blocks in the embedding module include an
extra 2 × 2 max-pooling layer.

The structure of the relation module consists of two
convolutional blocks and two fully-connected layers. Each
convolutional block employs a 64-filter 3×3 convolution, fol-
lowed by a batch normalization, ReLU non-linear activation,
and 2 × 2 max-pooling. In consideration of the training and
inference time const for the deep model, the fully-connected
layers have been set to 8 and 1 dimensions, respectively, and
both of them utilize ReLU activation functions. To make the
relation scores ri, j be suitable for classification, the output
layer utilizes a sigmoid activation function.

IV. EXPERIMENTS

This section describes the multi-brain MI paradigm for EEG
data acquisition and the setup for the EEG decoding method.

A. The Multi-Brain MI Experiment Design
16 healthy participants were recruited and grouped into

eight pairs for the purpose of EEG data collection. All
participants were inexperienced with the BCI system, and
had received detailed instructions regarding the experimental
protocol prior to the commencement of this study. To optimize
the experimental experience for participants, adjustments were
made to the distance between the chair and LCD monitor based
on their feedback, as illustrated in Fig. 2(a). In the experiment,
two participants performed the MI task simultaneously and
two connected Neuroscan amplifier were used to record the
EEG signals according to international 10-20 system. The
sampling rate of the signal is 1000 Hz. It was down-sampled

Fig. 2. Multi-brain MI experimental environment and design. (a) Envi-
ronmental configuration of the multi-brain MI EEG data acquisition.
(b) Experiment protocol in each trial including the instruction for 1.5 s,
the MI execution for 4 s, and resting state for 2 s.

to 100 Hz in this study. Signal impedance was maintained at
or below 15K� throughout the experiment.

The purpose of this multi-brain MI experiment was to
decipher distinct user intentions within a three-class MI task,
including left hand, right hand motor imagery and idle state.
There were five sessions in the experiment and each session
consisted of 75 trials. Each trial lasted 7.5s, comprising
video clip cue for 1.5 seconds, the MI task for 4s, and the
rest duration for 2s. Fig. 2(b) showed the protocol of our
experiment. A short training phase was used to participants
to familiarize them with the experiment before the formal
sessions.

B. Model Setup of the Few-Shot Learning Framework
Initially, we present the C-way K -shot problem in the

domain of few-shot learning. In this scenario, assuming that
K instances per class are arbitrarily picked from the dataset as
the training set, and the remaining instances belonging to each
class constitute the testing set. The intended few-shot problem
is dubbed as C-way K -shot.

In the experimental setup, we implemented leave-one-
subject-out cross-validation, where among 8 groups of partici-
pants, signals from 7 groups of subjects were used as training
dataset, and the rest was used for testing. During the training
process, K samples are randomly selected for training, while
all remaining samples were used for validation.

To assess the effectiveness of our proposed approach com-
prehensively, we validated the approach on situations with
different numbers of few shots (i.e., K = {1, 5, 10, 15}). Given
that EEG is non-stationary and its statistical characteristics
fluctuate across trials and over time [32], [33], the EEG
decoding performance may vary due to the different training
sets. Therefore, we carried out the identical experiment ten
times and obtained the average accuracies for performance
assessment. Especially, analysis of variance (ANOVA) was
performed to evaluate whether or not there were significant
differences between dual-brain and single-brain modes. The
experimental data were filtered to 8-30Hz. In addition, we also
explored the performance of the approach in the different
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Fig. 3. Accuracy comparisons between the single-brain mode and the
dual-brain mode for the three-class MI decoding task. Asterisks repre-
sent statistical significance levels (* p<0.05; ** p<0.01; *** p<0.001).

frequency ranges and different lengths of data segments and
compared the performance between these cases.

V. RESULTS

In this section, we show the results of model evaluations
and performance comparisons. Specifically, the error-bar value
used in Fig.3-Fig.7 is the standard deviation.

A. Performance of Single-Brain and Dual-Brain Modes
We first compare the experimental performance between the

multi-brain MI paradigm and the single-brain. Specifically, the
multi-brain paradigm used here is the dual-brain paradigm.
The Fig. 3 shows that the average classification accuracy
of the multi-brain mode is nearly 10% higher than that of
the single-brain mode in the 1-shot case. More prominently,
around 15% performance improvement was achieved by the
multi-brain mode in the 5-shot, the 10-shot, and 15-shot cases.
As shown in Fig. 4, the dual-brain outperforms the single-
brain for all paired groups in all cases of 1-shot, 5-shot,
10-shot and 15-shot. The dual brain advantages of the fifth,
seventh and eighth groups gradually emerged as the number
of shots increased, with the improved accuracy of dual-brain
than single-brain modes ranging from 1.57% to 15.99%.
This obviously demonstrates the capability of capturing the
inter-brain coupling relationships in the multi-brain mode,
which is beneficial for improving the EEG decoding accuracy
and leads to superior performance compared to the popular
single-brain mode in motor imagery. The underlying rationale
is also intuitive. The multi-brain MI involves brain-to-brain
coupling relationships and enhances traditional MI by promot-
ing the mutual recognition, collaboration, and synchronization
between users. As a result, our study demonstrates that multi-
brain MI has greater classification accuracy than single-brain
mode.

B. Comparison to the State-of-the-Art Methods
We conduct experiments by comparing our proposed EEG

decoding method with state-of-the-art methods, including
the EEG Convolutional Neural Network (EEGNet) [8], the
Filter Bank Common Spatial Patterns (FBCSP) [7], the
Graph Convolutional Network (GCN) [34], the Prototypical

Fig. 4. Accuracy comparisons for each group between the single-brain
and the dual-brain modes.

TABLE I
PERFORMANCE COMPARISON AMONG METHODS

IN THE DIFFERENT CASES OF SHOTS (%)

Networks (Proto. Nets) [24], the Siamese Neural Network
(Siamese Nets) [25], the Model-Agnostic Meta-Learning for
EEG Motor Imagery Decoding in Brain-Computer-Interfacing
(MAML-BCI) [27] and the two-way few-shot network (DA-
RelationNet) [28].

Generally, EEGNet is a compact convolutional neural net-
work model, which was originally proposed for MI EEG
decoding. FBCSP is a common spatial pattern-based spatial
filtering technique, which is implemented by feature selection
combined with frequency band segmentation. GCN basically
incorporates graphs into convolutional neural network to better
model the data correlations, which was originally proposed
for solving semi-supervised learning. Prototypical Networks
and Siamese Neural Network are few-shot learning methods.
MAML-BCI is a meta-learning deep architecture with three
processing stages, designed to optimize the parameters of
BCI decoders so that they can quickly generalize to different
subjects. DA-RelationNet is a dual attention relation network
that can generalize on unseen subjects by using few-shot
learning and a FT strategy for EEG-based MI classification.

The parameters of the above compared methods were set
according to the original papers.

Table I presents the results for the three-class MI classifi-
cation task (i.e., left hand, right hand, and idle state). EEGNet
exhibited the lowest performance in small-sample tasks. For
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TABLE II
THREE-CLASS MI TASK DECODING ACCURACY(%) IN

TERMS OF DIFFERENT FREQUENCY BANDS

example, it achieved an accuracy of about 40% only when
K = 15. When given the same number of training samples,
FBCSP and GCN achieved classification accuracies of 49.02%
and 53.69%, respectively. Proto. Nets and Siamese Nets Proto.
Nets exhibited similar performance in terms of classifica-
tion accuracy, achieving approximately 60% accuracy when
K = 15. MAML-BCI and DA-RelationNet achieved accuracy
rates of 63.13% and 64.11%, respectively, with K = 15. In
contrast, our proposed method attained a significantly higher
decoding accuracy of 68.49%, improving the performance by
around 5%.

C. The Impacts of Frequency Bands and Time Windows
This section performs experiments with EEG data corre-

sponding to different frequency bands and time windows,
to identify the best one. Since the motor imagery task mainly
correlated to the α (8-12 Hz) and β (13-30 Hz) frequency
bands, We tested the classification accuracies based on the
four possible configurations of these two bands, and showed
the results in Table II. From these results, we noticed that
the differences among the classification accuracies of the four
configurations were negligible when K equals to 1 and 5.
However, as K increased, the α frequency data for both
participants resulted in the highest classification accuracy. This
might be due to that the MI features primarily lie within the
α frequency band.

Besides the different frequency bands, we tested the experi-
mental data with different time window periods, that is, we fix
the entire frequency band and then respectively divide the MI
task time windows (i.e., the 4 seconds from 1.5s to 5.5s) into
four segments, i.e., [0,1], [1,2], [2,3], and [3,4]. The classifi-
cation accuracy results corresponding to these different time
segments are presented in Table III. Obviously, the highest
accuracy was achieved when the time window is set as [1,2],
i.e., the time window from the first second to the second
second after the onset of MI and its accuracies corresponding
to different numbers of training samples are shown in the
second row. These findings indicate that there might be a
startup time required for the synchronization between the
two participants, which occurs after the second second of the
execution.

Furthermore, in order to explore the proper duration for
motor imagery task analysis, we conducted the experiment on
the decoding accuracy between data with 0-1s, 0-2s, 0-3s, and
0-4s time window cases. Results shown in the Table IV, it can
be observed that the 0-2s exhibits the better decoding accuracy
through different number of few-shots, which indicates that
the proper duration for the MI task lies within the first two
seconds.

TABLE III
THREE-CLASSIFICATION MI TASK DECODING ACCURACY(%) IN TERMS

OF DIFFERENT TIME WINDOWS(S)

TABLE IV
THREE-CLASSIFICATION MI TASK DECODING ACCURACY(%) IN TERMS

OF DIFFERENT LENGTH OF TASK DURATIONS(S)

Fig. 5. Investigation on the impacts of hypergraph learning and Tucker-
based tensor decomposition.

D. Ablation Experiments

In this section, we verify the effectiveness of each com-
ponent of our proposed EEG decoding method by ablation
experiments. We evaluate its performance by reserving or
deleting a sub-module. Fig. 5(a) shows us the classification
accuracies with and without the hypergraph learning, and in
Fig. 5(b), a comparison of recognition accuracies with and
without the Tucker decomposition is provided. From both
experiments, we can see that there are only slight differences
between using and not using a certain technique, in the case
of K = 1. Nevertheless, as the sample size increases, our
proposed method significantly improves the decoding perfor-
mance by increasing 5-10%.

Furthermore, we have performed ablation experiments to
demonstrate the effectiveness of each component in our pro-
posed methods, i.e., the hypergraph learning and the Tucker
decomposition. It is obvious that the combination of both com-
ponents leads to performance improvements of 8.12% (i.e.,
68.49% vs. 60.37% ) and 5.92% (i.e., 68.49% vs. 62.57%),
respectively.

To more intuitively show the results on each paired
group, we provide the ablation experimental results in
Fig. 6 and Fig. 7, which demonstrate that our proposed
method was consistently effective for all the eight groups. In
more detail, the results of the second, third and fourth groups
are superior to those of the remaining groups. As shown in
Fig. 6, the performance of these three groups increased by
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Fig. 6. Investigation on the impacts of hypergraph learning in each of
the eight groups.

Fig. 7. Investigation on the impacts of Tucker decomposition-based
feature compression in each of the eight groups.

15 percentage points with the help of the hypergraph learning
technique. Additionally, when K = 10, the improvement was
almost 20%. Similarly, in the Tucker decomposition ablation
experiment, we have around 10% performance improvements
in the best three groups. Furthermore, the hypergraph learning
in our proposed method brings more performance improve-
ments than the Tucker decomposition. This coincides our
understanding to the underlying decision-making mechanism
in multi-brain MI. That is, because hypergraph learning mainly
exploits the coupling relationship between two subjects during
synchronous experiments, it should play a more important role
than Tucker decomposition, which is mainly responsible for
feature compression.

To provide more insights into the learned hypergraph
between subjects, in Fig. 8, we visualize the inter-brain
and intra-brain hypergraph connections of subjects during
motor imagery and idle states. Notably, a greater number
of inter-brain connections were observed during the task.
In contrast, the idle state is characterized by almost non-
existent inter-brain connections and has primarily the intra-
brain connections. The more connections mean that there are
more information flow and synchronization. During the idle
state trials, the paired participants can imagine any different

Fig. 8. The visualization of brain hypergraph connections during task
(left subfigure) and idle (right subfigure) states.

Fig. 9. Illustration to the impact of Tucker decomposition by
low-dimensional data visualization.

motor imagery task independent content therefore the syn-
chronization becomes lower. This disparity allows for better
differentiating the task and idle states, leading to improved
decoding performance. This figure intuitively explains why the
hypergraph learning techniques can bring higher classification
accuracy in multi-brain MI decoding.

In Fig. 9, we visualize the low-dimensional data repre-
sentations with and without the Tucker decomposition. In
Fig. 9(a), where Tucker decomposition techniques were not
utilized, it is evident that there was inadequate differentiation
between the features of the left and right hands. Nonetheless,
in Fig. 9(b), the features respectively corresponding to the
left and right hands became more separable after utilizing the
Tucker decomposition techniques.

VI. DISCUSSION

In this section, we first introduce a quantitative metric for
measuring the cross-brain coupling coordination degree, which
is then evaluated on our collected multi-brain MI EEG data.

A. Cross-Brain Coupling Coordination Degree
To further investigate the impact on decoding accuracy,

we adopt a new metric in this paper inspired from the field
of economics, the cross-brain Coupling Coordination Degree
(CCD). This metric serves as an analytical tool for assessing
the level of coordinated development of phenomena.

Through a scholarly inquiry into the definitions and mod-
els of coupling in other disciplines such as economics and
engineering, we have the following definition of the coupling
degree between two brains:

Ci = 2
{

ui (1)ui (2)

(ui (1) + ui (2))2

}1/2

, (6)

where ui (1), ui (2) are the local efficiency El of brain 1 and 2
at the i-th moment, respectively.
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Inspired by the graph theory, the shortest path length is
employed to determine the most efficient route between two
vertices. However, in cases where two nodes in the network
are not connected, the calculation yields an infinite shortest
path length, which lacks practical significance. To mitigate this
issue, the concepts of global efficiency Eg and local efficiency
El are introduced in graph theory, i.e.,

Eg =
1

N (N − 1)

N∑
i ̸= j=1

1
li j

, (7)

ui = El =
1
N

N∑
i=1

Eg(i), (8)

where N is the total number of vertices and li j is the shortest
path length between vertices i and j . The global efficiency
Eg demonstrates an inverse relationship with the shortest
path length. As the shortest path length decreases, the global
efficiency increases, promoting faster information transmission
between vertices. Local efficiency El is an average of all global
efficiency values of nodes and serves as a parameter evalu-
ating the information transmission abilities among vertices in
localized network regions. Both global efficiency Eg and local
efficiency El are bounded between 0 and 1, where 0 indicates
no connectivity and 1 signifies optimal connectivity.

The Ti is known as the comprehensive coordination variable,
which can be calculated as

Ti = a × ui (1) + b × ui (2), (9)

where a, b are two coefficients to be determined. Due to the
equal significance granted to both brains in multi-brain MI,
both a and b are assigned 0.5.

To comprehensively present the coupling degree, intra and
inter the single-brain 1 and the single-brain 2, this study inte-
grates the coupling degree C with the coordination degree T .
Specifically, for the i-th moment, we have the definition of
CCD metric Di as

Di =

√
Ci × Ti , (10)

Similarly, Di also has the value range of [0,1], where a
larger value indicates a higher level of internal single brain
and between the two brains coupling coordination, whereas a
smaller value indicates weaker coupling coordination.

Consequently, CCD objectively reflects the level of coor-
dination development intra and inter each single brain in the
paired group, effectively avoiding abnormal situations where
the information transmission efficiency level is low, but their
coordination is high. The cross-brain coupling coordination
degree model is characterized by simplicity, comprehensive-
ness, operability, and visual analysis.

B. Evaluation of the CCD Metric
Table V provides an analysis to the cross-brain CCD metric

across the eight groups in our multi-brain MI experiments. The
results demonstrate that the second, third and fourth groups
(i.e,, the bold numbers) display the most effective cross-brain
coupling coordination degree among the eight groups. This
outcome is in line with our findings in section V-D, indicating
that the information flow for intra single brain as well as
the inter paired brains have positive impact on the decoding
accuracy.

TABLE V
CROSS-BRAIN CCD VALUES OF THE EIGHT GROUPS IN OUR

MULTI-BRAIN MI EXPERIMENTS

C. Performance of Multi-Brain Brain Computer Interface
From the View of Cognitive Neuroscience

Brain computer interface research has made tremendous
progress in recent years. However, it remains challenging to
transfer its results from the lab to the marketplace. Herein,
one of the big challenges is underdeveloped paradigm which
is invented about 30 years ago such as motor imagery [35].
To break the shortcomings of traditional BCI such as low
stability, poor performance, researchers also try to propose
a new scheme as hybrid BCI (hBCI), which is implemented
by combining two or more kinds of EEG signals (i.e. motor
imagery and P300), another combining EEG and other signals
(i.e. Electromyography (EMG) signal) [36]. In this paper,
we propose a new multi-brain experimental design and the
corresponding EEG decoding method for motor imagery. For
such multi-brain computer interface, it can be taken as a kind
of hBCI paradigm, which combines the various kind of EEG
signals as well as the interactions from multi-brains.

Our study demonstrated that the better classification perfor-
mance was obtained when the dual-brain mode was compared
to the single-brain mode. Previous studies on social interac-
tions based on hyperscanning reveal that the synchronization
between multiple brains is enhanced in the scenario of col-
laborative tasks since the participants share the same strategy
and objective [11], [37]. An intuitive reason is that inter-brain
synchrony is positively correlated with performance metrics.
Moreover, alpha band was relevant to the social interactions
[38] and effectively in motor imagery task, which might
explain why the decoding accuracy obtained from α-α is
higher than α-β,β-α and β-β cases.

VII. CONCLUSION

In this paper, we proposed an EEG-based multi-brain MI
decoding method embedding the coupling relation feature
extraction and few-shot learning to efficiently learn representa-
tive multi-brain features and classify them with limited amount
of EEG data. A comprehensive multi-brain MI-BCI decoding
study was conducted by employing the hypergraph learning,
Tucker decomposition and relation network. Our experimental
results validated the superiority of the multi-brain experimental
paradigm over the single-brain paradigm. Notably, the results
confirmed the effectiveness and importance of the coupling
relationships between participants to the classification of MI.
We also proposed a cross-brain CDC metric to quantify the
relationships between brains. The results reiterate the contribu-
tion of coupling relationship to the classification performance,
showing a positive correlation between the coupling strength
and classification performance. Finally, the results demonstrate
that our proposed method still works well even in the case of
the limited samples (i.e., few shots). This study could pro-
vide a solution for high-performance BCI involving multiple
participants.
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