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‘Remember that ‘seeing is believing’ puts the cart before the
horse. Art is the concrete artifact of faith and expectation, the
realization of a world that would otherwise be little more than a veil

of pointless consciousness stretched over a gulf of mystery.”

- Stephen King, Duma Key
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Thesis abstract

Perception of depth in natural viewing is based on information reported by many
cues. These cues have been studied extensively individually, but many experiments
in this area isolate a single cue, or a pair, in order to measure their relative
reliabilities, and therefore weighting within the depth estimate under Bayesian cue
combination. However, isolating cues does not simulate natural viewing, and studies
show that simplifying viewing can make decoding a scene challenging for the visual
system. Additionally, much work in this area presents overly-simplified stimuli, such
as lines or dots, although these do not represent the complexities of natural objects,
and are a poor fit for simulating the challenge posed to the visual system in decoding
natural scenes. A branch of research has sought to address these issues of
simplification of viewing and stimuli alike, by presenting more complex stimuli under
naturalistic viewing conditions. However, the stimuli chosen, often photographs of
smooth real or simulated shapes, often do not represent complex, naturally-occurring
scenes, and report relative interactions rather than discrete weightings. The work
presented in this thesis sought to address these issues by using advanced
technological equipment and techniques to produce complex, naturalistic scenes
with which to measure the contribution of depth cues to the weighted Bayesian
estimate. The experiments contained within explore both retinal and extraretinal
cues, binocular and pictorial cues, and a range of global and local viewing
conditions. Overall, results show modest weightings for binocular cues such as
disparity and vergence, little benefit to the overall weighting for the occluding contour
and surface luminance pictorial cues, and a clear result of pictorial shape from
shading in a real-world facial makeup study, with evidence throughout of benefits for

the inclusion of complex naturalistic stimuli in future work of this kind.
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1 Introduction

1.1 Perceiving the world

In order to safely navigate the world around it, an animal needs to be able to
perceive obstacles in its path (Chen, McNamara, Kelly, & Wolbers, 2017). To
perform this task well, the perception of the distance to, and shape of, objects needs
to be as accurate as possible. However, there are competing models of how the
brain interprets the world around us, which Linton et al. (2022) summarise in their
recent work on approaches to three-dimensional (3D) vision. These fall into three
main groups: approaches and models that recover the 3D metric properties of the
scene, 3D models that recover non-metric properties of the scene, and approaches

that do not include a 3D model of any kind.

The dominant approach to human vision consists of 3D models that recover
metric properties from scenes (Linton, et al., 2022). These include Bayesian models
that are based around likelihood functions that express the probability density
function or probability distribution of the most likely scene properties to have created
a given image on the retina. Bayesian models and related frameworks have
remained the most dominant approaches in vision research for the last 25 years.
There are three variations of the Bayesian approach, two of which are highly relevant

to this work and will be outlined here.

The first Bayesian approach is the linear cue combination, or weak fusion,
model. This model defines perception as a process of combining a series of sensory
cues, assuming that cues are unbiased and accurate, although noisy and uncertain.

By taking a weighted average, where cues are weighted by their relative reliabilities



1.1 Perceiving the world

derived from how uncertain they are, the effect of noise on the overall depth estimate

is reduced.

This approach makes two key assumptions. Firstly, the model assumes that
cues are unbiased, such that the most likely scene property specified by the
likelihood function corresponds with the true value in the physical world. Secondly,
the weak fusion model predicts that more reliable cues should be given more weight
in the weighted average. Many studies have provided evidence consistent with the
weighted-averaging model for motion (Glennerster, Tcheang, Gilson, Fitzgibbon, &
Parker, 2006; Johnston, Cumming, & Landy, 1994; Scarfe & Hibbard, 2011,
Svarverud, Gilson, & Glennerster, 2010), texture (Hillis, Watt, Landy, & Banks, 2004;
Johnston, Cumming, & Parker, 1993; Knill & Saunders, 2003; Saunders & Chen,
2015), shading (Lovell, Bloj, & Harris, 2012), stereopsis (Chopin, Levi, & Bavelier,
2017) and focus cues (Watt, Akeley, Ernst, & Banks, 2005), as well as for other
aspects of depth judgements (Baird, 1970; Brenner & van Damme, 1998), visual and
haptic combinations (Burge, Girshick, & Banks, 2010; Ernst & Banks, 2002;
Gepshtein, Burge, Ernst, & Banks, 2005; Helbig & Ernst, 2007), and other sensory
modalities (Ernst, 2006; Hillis, Ernst, Banks, & Landy, 2002). However, biases in the
estimation of 3D scene properties (Koenderink, van Doorn, Kappers, & Todd, 2002;
Koenderink, van Doorn, & Lappin, 2000; Wagner, 1985; Foster, Fantoni, Caudek, &
Domini, 2011), derived from several cues (Bradshaw, Parton, & Glennerster, 2000)
or integration of many cues (Tyler, 2019; Scarfe & Hibbard, 2011; Domini, 2023;
Koenderink, van Doorn, Kappers, & Lappin, 2002) and deviations from optimal cue-
weighting (Landy & Kojima, 2001; Orug, Maloney, & Landy, 2003; Rosas,
Wichmann, & Wagemans, 2007; Chen & Tyler, 2015; Scarfe, 2022; Rahnev &

Denison, 2018; Rosas & Wichmann, 2011) have both been reported.
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Another Bayesian approach is the nonlinear cue combination, or strong fusion,
model. This model handles some of the potential limitations of the weak fusion model
by accepting that individual cues inherently contain some level of bias, and the
process is focused rather on constraints around the most likely scene to create the
given retinal image, rather than reducing sensory noise in the weighted average. It is
based on the Gregorian theory of perceptual hypothesis testing that uses a
probabilistic match between the sensory input data and prior knowledge (Gregory,
1963). Given that this model suggests a full 3D representation of any scene is
available (Tyler, 2020), it still concerns itself with metric scene recovery (Linton, et
al., 2022) and therefore cue combination rules around the inverse mapping from
images to world remain for this approach. The strong model addresses another
important criticism of the weak fusion model in that the latter does not account for the
increased perception of depth from weak depth cues observed empirically (Tyler,
2020). For instance, Tyler (2020) discusses how weak fusion as an averaging model
would not sum multiple weak cues to approach veridical depth, instead averaging to

a flattened percept, and instead suggests the addition of cues to address this.

Another consideration is how the visual system identifies which estimates come
from the same surface or object and therefore should be combined in the weighted
average. Girshick and Banks (2009) explored the role of conflict in cue combination
by introducing bias to cues. They presented participants with surfaces with differing
levels of conflict between the available cues of disparity and texture, and asked them
to report the slant of the surface. They found that small levels of conflict led to the
weighted averaging. However, large conflict resulted in robust averaging behaviour,
in that variation was not overly skewed by outlier estimates. This meant that where

estimates were so far removed from the central tendency they became outliers, i.e.
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with longer tails than a Gaussian distribution, they were no longer included in the
weighted average and the perceived slant was instead determined by a single cue.
Rideaux and Welchman (2018) purport that this robust averaging of cues is due to

proscription of unrealistic combinations of neuron excitation.

Other work on the strong fusion model proposes interdependencies between
cues to combat the idea from weak fusion that posterior distributions, that is the
likelihood of a certain scene given the observed image, are independent, whereas it
is argued that this form of prior information may cause them to be dependent and
even contradictory at times (Yuille & Bulthoff, 2008). Indeed, some work in this area
has shown integrating non-independent cues such as shading and texture under
strong fusion results in better depth accuracy than if the cues were used

independently (Bulthoff & Mallot, 1988).

Another approach to vision outlined by Linton et al. (2022) concerns 3D models
that do not recover metric properties from scenes. Given the documented failures of
the visual system to accurately retrieve the metric properties of the scene, this group
of approaches questions whether the visual system is trying to retrieve this metric
information at all, instead focusing on qualitative models of scene geometry, for
example the ability to identify flowing topographical landscapes of hills and dales
(Koenderink, van Doorn, & Wagemans, 2015; Koenderink, 2012). This method,
however, would work differently between simply observing a scene, and interacting
with it, for example reaching to grasp an object, which would require metric

estimates (Goodale & Milner, 1992).

Finally, there are theoretical approaches that do not include a 3D model,

referred to as direct perception and sensorimotor perception. Under Gibson’s direct
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perception account, vision operates through a process in which we directly perceive
the structure of the world through the recognition of invariants in the retinal image
(Gibson, 1950; Gibson, 1966; Gibson, 1979) which, as the name suggests, derive
directly from the constantly changing image on the retina, rather than this process
being mediated by the construction of an explicit three-dimensional model (Marr,
1982). Wagner (1985) argued that this model implies that visual space should be
strictly Euclidean in nature, conflicting with empirical findings that suggest non-
Euclidean aspects of visual space which includes recovery of 3D structure from
motion (Domini & Braunstein, 1998; Domini & Caudek, 2003; Domini, Caudek, &
Richman, 1998; Tittle, Todd, Perotti, & Norman, 1995; Todd & Bressan, 1990; Todd
& Norman, 1991), as well as other cues such as texture, shading and disparity
(Norman & Todd, 1992; 1993; Todd & Reichel, 1989; Fernandez & Farell, 2009;
Glennerster, Rogers, & Bradshaw, 1996). Sensorimotor approaches to
understanding perception, in which the focus is on how sensory information is used
to directly control behaviour, can also be classified as direct theories that do not

make use of an explicit three-dimensional representation (O'Regan & Noég, 2001).

1.2 Cues to depth

Possessing two forward-facing eyes, humans have a number of sources of
information on which to base visual judgements of the structure of the environment,
some involving both eyes which creates binocular cues, and some stemming from
the information of each eye individually, giving monocular cues. The cues relevant to
this body of work will briefly be outlined here through illustrative examples, with

further detail provided in the subsequent chapters. Cutting and Vishton (1995)
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1.2 Cues to depth

provide an in-depth look at the differing cues to depth, including their reliabilities and
limitations. This work is used as a reference guide to cues throughout this body of

work to discuss depth and distance judgements.

We define distance as the egocentric distance between an observer and a
location in 3D space, and depth as the difference in distance between two points
(Tresilian & Mon-Williams, 2000). For clarity, this description shall be used
throughout this work, as defined in Figure 1.1, where distance (D) is the length along
the line of sight between the observer and the object, and depth (z) is the measure

across the object itself.

Observer Object

Line of sight

Distance (D)

>
Depth (z)

Figure 1.1: Distance versus depth. Image illustrating the difference between distance
and depth in this work, showing the distance (D) from the observer to the object, and
the depth (z) across the object.

1.2.1 Binocular cues
1.2.1.1 Binocular disparity

Being separated by, on average, 6.3cm (Dodgson, 2004), the two eyes see a
slight variation in their image of the world, the differences between which can provide
information about the location and shape of objects. These differences are referred

to as binocular disparities. The brain combines these two images in a process called
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fusion, and the differences provide information about depth. Binocular disparities are
illustrated in Figure 1.2 where the apple and the tree fall on differing points on the
retina. When fixating the tree, the image falls on the same location on each retina,
resulting in no disparity (Stidwell & Fletcher, 2011). However, the apple falls on
different, non-corresponding points on each retinal image, giving it a non-zero
disparity, which in this case creates a crossed disparity and makes the apple appear
closer than the tree. Binocular disparity is often cited as the most reliable cue to
depth (Harris, 2004; Keefe, Hibbard, & Watt, 2011), and it has been shown that
depth can be perceived with only this cue available (Julesz, 1971). Related to this
cue is stereopsis, defined as the awareness of 3D space (Koenderink, van Doorn, &

Wagemans, 2011).

Scene view:

L

) @

R

@4

Apple moves relative to
the tree - apple appears
closer

Figure 1.2: Binocular disparity. Image to illustrate how objects at different distances
correspond to differing points on the retina, the difference between which creates the
cue of disparity.
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1.2 Cues to depth

1.2.1.2 Vergence

The angle at which the two eyes’ views meet, or converge, on an object
provides information for the cue of vergence (Mon-Williams, Tresilian, & Roberts,
2000), as illustrated in Figure 1.3. When the two eyes meet on an object close to the
observer, the angle they subtend is wider than the angle at which they would join on
an object further away in the visual field. When viewing an object on the horizon, the

lines of sight of the eyes are almost parallel.

L R

Figure 1.3: Vergence angle. Image illustrating how the vergence angle (a) is created
when the two eyes converge on an object.

1.2.2 Monocular cues

1.2.2.1 Accommodation

Although the majority of cues in the monocular category are pictorial in nature,
meaning deriving from the visual information in the environment, accommodation is
the only monocular cue to derive from information within the person. For
accommodation, the ciliary muscles in the eye flex the lens to change its shape and

focus the image of an object on the retina in order to provide a clear image. This can
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be seen in Figure 1.4, where the shape of the lens changes to accommodate
between a far point where the lens is expanded and near point where the lens is
contracted. Accommodation can act as a reflex, such as in conjunction with
vergence in the accommodation-vergence reflex, but it can also be consciously
controlled (Stidwell & Fletcher, 2011). The signal from the ciliary muscles provides
an estimate of depth, along with vergence and pupil reflex in the ‘near triad’ system

of mechanisms of eye control (Takeda, Hashimoto, Hiruma, & Fukui, 1999).

Near
point

Figure 1.4: Accommodation. Diagram showing how the shape of the lens changes by
way of the ciliary muscles to accommodate far and near points.

1.2.2.2 Light and shading

Variations in light and shadow within the visual image provide a cue to depth
in the form of shading (Ramachandran, 1988). The visual system assumes the light
source to be above the visual field, as is the case for the sun (Mamassian &
Goutcher, 2001). This allows us to use shading as a cue to orientation. Figure 1.5a
demonstrates how the shadows in the scene infer the position of the sun. In addition,
with diffuse light, arriving at each point in the scene from many directions, points
closer to the light source in a local region are hit with more of this light, and therefore
are lighter than points further away, where less light can reach, such as a hole or

crevice. This is known as the ‘Dark is Deep’ rule (Likova & Tyler, 2003). In Figure
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1.5b, the centre of the ball is closest to the observer, and therefore appears

brightest.

a O 1

Figure 1.5: Light and shading. Image demonstrating the two shape from shading
effects in this work, where (a) shows directional lighting, and (b) shows the 'Dark is
Deep' rule.

1.2.2.3 Occlusion or interposition

When viewing a scene, objects that overlap with others in the 2D projection,
and whose edges intersect those of the other objects are perceived as in front of
these and therefore closer to the observer, through the cue of occlusion or
interposition (Koenderink, 1984). Figure 1.6 shows how the pear is partly occluded

by the apple, and is therefore seen as further away from the observer.

Figure 1.6: Occlusion. lllustrating an example of occlusion, where the pear is partly
hidden from view by the apple, suggesting that the apple is closer.
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1.2.2.4 Relative size and linear perspective

The cue of relative size, or relative density, describes the idea that similar
objects will be viewed as being at different distances if they differ in their retinal size
(Knill, 1998). Some objects are known to be a familiar or predictable size, for
example humans. When one is viewed as smaller than the other in the retinal image,
it is interpreted to be further away. In addition, if two people were to be stood next to
each other, and one walks away from the observer, they would extend a smaller size
in the visual field but this would be interpreted as them getting further away, not
getting smaller, which is known as size or shape constancy (Johnston, 1991). In
Figure 1.7:, the road appears to recede into the distance due to the markers in the
middle of the road reducing in retinal image size, with the trees also appearing to

recede in depth as they get smaller in the image size.

YAV
/1 \4

Figure 1.7: Relative size. Image showing an example of relative size, or density, as
well as linear perspective.

Linear perspective is also observed in Figure 1.7:, where the sides of the road
are perceived as parallel as they recede to the horizon, despite the gap between the

lines on the retinal image being wider at the bottom than at the top. Cutting and
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1.2 Cues to depth

Vishton (1995) describe this cue, often cited in the literature, as a combination of
other pictorial cues such as relative size and density of texture, which can be seen
as the lines in the middle of the road decrease in size and increase in density with

distance.

1.2.2.5 Texture gradient

Related to the idea of relative size, but here considering the texture of the
surface of an object rather than objects themselves, the cue of texture gradient
concerns the change in texture across the object as a measure of depth (Saunders &
Backus, 2006; Warren & Mamassian, 2010; Witkin, 1981). When looking at surfaces
close to the observer, it creates a ‘texture unit’ whereby the shape and size of the
pattern is measured against this scale. As the observer views surfaces further away,
the texture becomes finer in detail, as the size and shape subtended on the retina
changes, and the surface appears smoother, in comparison to the texture unit
observed on closer surfaces. This scaling of texture across an object gives a
measure of depth, as well as of overall object size, as shown in Figure 1.8 (Gibson,

1950).

[ [ 1WA

Figure 1.8: Texture gradient. Image showing how the ‘texture unit' changes across
the image to give the impression of the surface, here a brick path, receding in
distance away from the observer.
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1.2.3 Retinal and extraretinal cues

Retinal cues are, as the name suggests, cues to depth using information that
originates from the retina of the eye. Pictorial cues are all retinal cues as they stem
from the visual image. From the above, binocular disparity, light and shading,
occlusion/interposition, relative size and linear perspective, and texture gradient are
all retinal cues. Extraretinal cues are a source of visual information coming from
sources other than the picture on the retina, meaning they come from the person
viewing and are biological in nature. For instance, the vergence angle at which the
two eyes meet on an object is provided through extraretinal signals originating from
the extraocular muscles which control movement of the eyes, and the
accommodation is provided by information about the flexing of the ciliary muscles in

the eye.

1.3 Combining cues

As highlighted above, judgements of visual depth perception are made up of
information provided by many cues. In fact, no other sensory modality contains so
many sources of information (Cutting & Vishton, 1995), but when considering the
complexity of natural scenes, this makes sense; as Wagner (1985) states, as the
guality and quantity of perceptual information increases, the perception of the visual
field becomes more veridical to the Euclidean ideal. This means that the visual
system can perceive the underlying geometry of scenes and make more accurate
judgements by utilising many of these cues to depth at once. Indeed, experiments

have shown that increased information generally results in more consistent and
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accurate judgements (Kunnapas, 1968; Mather & Smith, 2004; Landy, Maloney,

Johnston, & Young, 1995).

When viewing an object, each individual cue reports an estimate to the brain of
the depth of that object. For instance, if an observer were to estimate the depth of a
bottle of water on a table, the pictorial shape from shading cue may report the depth
as 6.5cm. The Minimum Principle, based on Gestalt theory (Wagemans, et al.,
2012), suggests that the visual system selects the simplest explanation for a given
scene. An example of this is perceptual filling-in, whereby the visual system
compensates for gaps in sensory input by perceptually filling in the scene, such as
perceiving an object as whole when viewed through a picket fence, despite no
corresponding retinal input (Revina & Maus, 2020). Another well-known example is
the ‘blind spot’, which we generally do not perceive despite there being no
photoreceptors relating to this area (Raman & Sarkar, 2016). However, some
criticisms of this theory include a lack of motivation or justification for this principle

(Hatfield & Epstein, 1985).

Alternatively, the likelihood theory purports that this is achieved by the cue
working out the most likely depth to have produced the corresponding signal in the
brain, which from an evolutionary point of view is advantageous to ensure safe
interpretation of the world (Feldman, 2009). However, these maximum likelihood
estimates are subject to bias and signal noise (Cutting & Vishton, 1995; Hillis, Watt,
Landy, & Banks, 2004; Keefe, Hibbard, & Watt, 2011). If the cue is particularly noisy,
the reported depth may not be a reliable one. Knill, Kersten and Yuille (2008) present
an example of the Bayesian formulation of visual perception using the analogy of a

communications system. They present the idea that the signal picked up by the
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'receiver’ is noisy and bandlimited, meaning an estimation must be made by the
‘decoder’ on the most likely stimuli to have produced such a signal. They attribute
this noise and uncertainty from bandwidth limitation to several things. Firstly, there
are physical issues such as improper light diffraction and optical aberrations, where
imperfections in the surface of the eye cause the light to be focused incorrectly on
the retina. This creates a blurry image that is usually corrected with glasses or
lenses. A further physical issue is the high variability in photon emission and
absorption, giving rise to additional noise and uncertainty in the visual system.
Secondly, additional noise and uncertainty is introduced during the process of
receptors in the retina converting light to electrochemical energy. The authors point
out that even without this additional noise and uncertainty, the very task of mapping

a 3D representation of space to a 2D retinal image results in some loss of specificity.

This noise can cause uncertainty in the maximum likelihood estimates, and
therefore different estimates of depth. For example, as before, for an observer
viewing a bottle of water on a table, the pictorial shape from shading cue may report
a depth of 6.5cm, and the binocular disparity cue may report a depth of 6.2cm. This
noise can be reduced or partially cancelled out by utilising multiple cue inputs (Chen,
McNamara, Kelly, & Wolbers, 2017). While combining information between senses
often requires a recalibration of cues (Ernst, Banks, & Bulthoff, 2000; Burge,
Girshick, & Banks, 2010), cues within senses are often highly correlated due to
estimating based on the same source of information, such as that from the retina

(Hillis, Ernst, Banks, & Landy, 2002).

One possible strategy for the brain to combine differing estimates between

cues would be to take an average of the available estimates. However, as previously
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stated, each cue has its own level of reliability, which can change dependent on a
number of factors, such as the distance to the object and lighting. The question then
becomes: how does the visual system combine these sometimes-conflicting

estimates of depth? This is where Bayesian statistics can help.

Bayesian approaches are a branch of statistics that can take into account
prior knowledge, known as a priori, and can combine this with information from
sensory input to create posterior information. Returning to the example of a bottle of
water, prior experience of common dimensions of such an object can be used to
make sense of the sensory input. In this approach, differences in the reliabilities of
cues can be taken into account when combining the information to produce a single
estimate. This is achieved by acknowledging which cues have proven to be the most
reliable in a certain situation, and weighting their estimates accordingly, with a
weighted linear sum of the cues where the weight of each cue is inversely related to

its variance (Alais & Burr, 2019).

In their text about the study of perception using the Bayesian approach, Knill
and Richards (2008) provide a clear account of how this method can offer a
weighted solution to the problem of noisy signals, a short introduction to which shall
be presented here. Bayes' formula defines how weighted estimates may be

calculated to take into account this a priori and posterior information:

Equation 1.1

rIS)p(S)

p(sin = =7

Here, p is the prior information, I is the image viewed by the observer and S

represents scene properties. By treating p(l) as the probability of the occurrence of
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an image as a normalising constant (Knill, Kersten, & Yuille, 2008), the above

eqguation can be simplified as:

Equation 1.2

p(S[D) « p(1|S)p(S)

The concepts of uncertain and noisy cues, and combining the Bayesian prior

with sensory input to create a posterior estimation are illustrated in Figure 1.9.

Prediction error :

Likelihood

Expected Estimated Veridical
depth from depth from depth from
prior posterior MLE

Figure 1.9: Bayesian inference. lllustrating how a noisy MLE and uncertain Bayesian
prior are combined into a posterior estimate of depth.

Here, the purple slope shows the expected depth from the Bayesian prior. The
spread of the curve shows how uncertain the cue is, with a steeper curve indicating
increased likelihood of a cue estimating a certain depth. The blue curve shows the
depth estimated from the MLE for the veridical depth. Here, variability represents
noise in the sensory input signal, such that a noisier cue will have a shallower curve,

and a less noisy cue will report a certain depth with a greater likelihood from a
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steeper curve. The difference between the most likely depth estimates from the
Bayesian prior and the MLE is the prediction error. Under Bayesian inference, the
prior knowledge and sensory input are combined into a posterior depth estimate, as

shown in green.

The information above provides a way to integrate cue weightings into the
depth estimate average. Hibbard, van Dam and Scarfe (2020) present an equation
that accounts for the individual weightings given to cues in the depth estimate,
allowing for comparison between cues when bias is purposely introduced in order to
measure the weightings. In their work, the weighting for binocular disparity is
compared against all other available cues, but this same reasoning can be used for

any combination of cues, and the equation can be adapted as such:

Equation 1.3
Dp = WaD, + (1 — W,)Dy,

This estimates the perceived depth (Dp), predicted by a combination of the
depth estimated by the manipulated cue (D,) according to its weighting (W,) and the
estimated depth from all other cues available in the scene (D). In some traditional
studies, the other cues may only represent a single other cue, but for the work
presented here, this denotes a combination of all other scene cues available. This

premise of cue combination is illustrated in Figure 1.10.

34



1 Introduction

Cuel

Likelihood

— Combined

Estimated depth

Figure 1.10: Cue combination. lllustrating how the information from two cues (or any
combination of cues) can be combined into a more reliable estimate of depth through
cue weighting.

Here, two cues are combined into a single weighted depth estimate. The purple
curve shows a cue that is less reliable, denoted by the shallower curve. The green
curve exhibits less variability, and therefore a cue with increased reliability, which
would be weighted more in the weighted depth estimate. The blue curve shows the
combination of depth estimates from these two cues based on their individual

weightings.

The theory shown in this illustration can be expanded to include any number of
cues, or groups of cues. For instance, if the purple curve is taken to represent a
combination of pictorial cues, and the green slope represents more reliable binocular
cues, it can be seen that the cue combination would result in an estimate closer to
that of binocular cues given their increased reliability and therefore increased

weighting, but also taking into account the depth reported by pictorial cues as well.

Weightings for cues are complementary and are summed to a value of 1

(Chen, McNamara, Kelly, & Wolbers, 2017). Equation 1.3 assumes that the cues are

35



1.3 Combining cues

weighted despite reporting conflicting estimates (Muller, Brenner, & Smeets, 2009),
despite some evidence that the cue in conflict with the others may be weighted less
(Landy, Maloney, Johnston, & Young, 1995), and that the weighted average may not
incorporate cues that are too discrepant (Cheng, Shettleworth, Huttenlocher, &
Rieser, 2007; van Ee, van Dam, & Erkelens, 2002). These equations form the basis
of the cue perturbation and manipulation studies contained within this work, and
allow for measurement of the individual weightings of cues when combined with

multiple others to assess their contribution to the depth estimate.

1.3.1 The ‘ideal Bayesian observer’

The Bayesian model makes certain assumptions about the information
provided by cues (Knill & Richards, 2008). For instance, one assumption is that the
likelihood functions for individual cues are Gaussian. Additionally, is it assumed that
sources of noise in each cue are independent of one another. Therefore, under
maximum likelihood estimation, each aspect of sensory input is assumed to report
an unbiased or accurate, independent estimate, which can be compiled into a
singular representation of 3D scene structure (Landy, Maloney, Johnston, & Young,

1995). These assumptions represent the ideal observer (Knill & Richards, 2008).

However, evidence suggests that these assumptions are not always met, and it
has been argued that systematic errors in perception, rather than being indicative of
noisy or impoverished signals, may instead represent misunderstood parameters of
the encoding of sensory signals themselves (Vishwanath, 2022). Despite this, the
Ideal Observer is a convenient shorthand for expected performance based on

theoretical predictions. Therefore, this work will refer back to this mystery participant
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when comparing expected and actual perceptual judgements, as a way of relating

the empirical findings to the theory upon which it is based.

1.4 Limitations

Much work has been undertaken to examine how these cues work, and how
reliable they are as a source of information to the brain. However, there are some

limitations to these methods that will be discussed here.

Often these studies look at a single cue, or the interaction of two. This is often
for practical reasons, as when designing an experiment, two cues can be tested for
individually, and then compared to investigate how they interact. For instance, when
investigating the cue of convergence, cue isolation allows for a direct study of the
vergence cue, without including other confounding cues such as binocular disparity.
Viguier and colleagues (2001), whose work is covered in depth in Chapter 3,
presented observers with light-emitting diodes with either retinal disparity cues, or
extraretinal vergence, available upon which to make distance judgements. This was
achieved by asking observers to move the test diode to either the same, double or
half the distance of the reference diode. By isolating extraretinal cues in this manner,
they were able to work out the relative weightings of vergence compared to when
retinal cues were available as well, given the difference in distance reported under

each condition.

While studies such as this provide insight into relative weightings within the
depth estimate, showing the interaction of two or more cues, little work has been
presented that discretely measures these weightings. The experiments contained

within this thesis are designed to create a direct measure of weightings for cues

37



1.4 Limitations

within the depth estimate. Additionally, conflicts between cues, such as those
purposely introduced in this kind of study, can result in unnatural or uncomfortable
viewing conditions, creating visual discomfort for the observer (Lambooij, ljsselsteijn,
& Heynderickx, 2007), such as common symptoms like motion sickness, eye strain
and double vision experienced when using a poorly-calibrated and unstable 3D

stereoscopic display (Hwang & Peli, 2014).

Another criticism of studies of this kind is that the stimuli used are overly-
simplified in comparison to naturalistic objects in natural scenes. In order to isolate
information provided by individual depth cues, many studies present simplistic
stimuli, such as dots or lines, often in a darkened laboratory, to reduce extraneous
depth information such as that reported by accommodation of the eyes on the
surface of a screen, or by knowing how far away a reference point is, such as
knowing the dimensions of the room. Some psychophysical studies have utilised
physical objects to create stimuli, such as a light emitting diode (Bradshaw, Parton, &
Glennerster, 2000), or printed random dot stereograms, viewed with the use of a
stereoscope device (Julesz, 1971). With advances in the power and availability of
computers, studies can now present similar stimuli using computer screens, for
instance, random dot stereograms can be rendered in 3D for stereoscopic viewing

using advanced technology (Hibbard, Goutcher, Hornsey, Hunter, & Scarfe, 2023).

However, these simplistic stimuli presented to participants with reduced cue
information, is far removed from natural viewing conditions, as the human visual
system is highly complex (Nadenau, Reichel, & Kunt, 2002). In natural viewing, one
has access to a full complement of depth cues that provide rich information on which

to base estimates (Hibbard, 2021). In fact, it has been shown that experiments in a
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laboratory setting can easily make perception of a scene challenging for the observer
(Sedgwick, 1986). Yuille and Bulthoff (2008) make the highly relevant point that
although previous research has found less reliable results for natural images
compared to synthetic images, the human visual system actually performs much
better and is more easily able to perceive depth using multiple cues in natural
scenes than with isolated cues with synthetic images. This means there is currently
relatively little understanding of how cues contribute to the perception of depth in

complex natural scenes (Hibbard, Hornsey, & Asher, 2022).

The work presented here aims to address this criticism of previous work by
presenting participants with stimuli that represent complex scenes of realistic objects
under more natural viewing conditions, by utilising recent advancements in methods
and technology, details of which are covered in the next chapter. The work follows
the examples of Koenderink and colleagues (Koenderink, van Doorn, & Kappers,
1992; 1995; 1996; Koenderink, van Doorn, Kappers, & Todd, 2001), who presented
observers with photographs of natural stimuli under multi- or full-cue viewing
conditions, and measured the relative contribution of cues by introducing bias within
a cue while holding the others constant, creating an ‘operating point’. This allows for

manipulation of cues to assess their contribution, while using naturalistic stimuli.

However, these methods raise the issue of how to manipulate just the cue of
interest while holding the others constant. Hibbard, Hornsey and Asher (2022) detail
how experiments that probe pictorial space do not directly measure 3D space, given
that pictorial space exists as a representation of 3D space within the mind of the
observer. Additionally, while photographs contain rich pictorial information, they do

not provide information from cues such as binocular disparity and vergence

39



1.5 Perception of surfaces

(Hibbard, Hornsey, & Asher, 2022). The use of artificial stimuli viewed
stereoscopically can afford sufficient experimental control (Rust & Movshon, 2005),
while accounting for these issues, further details of which are covered in Chapter 2:

Methods.

1.5 Perception of surfaces

Given the limitations outlined above, a major drive for this thesis is to explore
the contribution of depth cues within complex scenes of naturalistic stimuli,
presented under natural viewing conditions. The locations of points in space are
denoted using the Cartesian coordinates of x, y and z. However, Gibson (1950)
criticises this approach for the theory of vision, stating that we perceive surfaces, not
just points in space. As such, the next step is to understand how we perceive these

surfaces.

Perceiving surfaces is an important aspect of making judgements of depth,
particularly for this thesis, where the focus is on natural objects in naturalistic
scenes. Within the visual field, there are many different types of surfaces, each with
differing considerations. For example, knowing distance and safe navigation of one’s

surroundings depends on successful interpretation of the ground plane.

Hugely influential in this area of visual perception is Gibson. He outlined his
theory of surface perception as the identification of the distance, depth and
orientation of an object purely by means of the difference in pattern of an array of
surfaces (Gibson, 1950). He detailed a list of essential properties by which a surface
may be considered ‘determinate’; that is, that the surface is one which makes up part

of the ordinary visual scene, such as the face of an object, the ground, or a building.
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An indeterminate surface is classified as one beyond this visual scene, such as a
cloudless sky (Gibson, 1950). The list of eight properties includes if the surfaces
appears solid, the colour including the brightness, hue and saturation, whether the
surface is illuminated or in shadow, and the amount and direction of the slant of the

surface.

Another type of surface important to navigating the world is the surface of
objects themselves. Accurate perception of object shape allows for recognition of the
object, as well as being a vital part of reaching and grabbing in order to interact with
the object (Melmoth & Grant, 2006; Watt & Bradshaw, 2000). While there are many
methods of measurement for psychophysical studies (Anderson, 1970), methods
such as a gauge figure task have proven successful for probing local surface attitude
in pictorial space (Koenderink, van Doorn, & Kappers, 1992; 1995; 1996; Nefs,
2008). While the specifics for this method are covered extensively in Chapter 2:
Methods, the premise of the task allows for the capture of the slant and tilt of
surfaces, which define their orientation. Studies of this kind have used the orientation
of responses to recreate a depth map of the perceived surface, showing how the
local settings are consistent with global perception of the scene (Koenderink, 1998;

Koenderink, van Doorn, & Kappers, 1995).

1.6 Measuring the contributions of depth cues in complex natural

scenes

In summary, limitations of depth cue combination studies include overly-simplified
stimuli and viewing conditions, with many studies reporting relative cue interactions,

rather than providing a discrete measure of this weighting. As such, the overall aim
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of this thesis is to measure the contributions of depth cues in complex natural
scenes. Specifically, this is achieved through simulating natural full-cue viewing
conditions, for complex scenes of naturalistic stimuli, and introducing conflict
between cues in order to measure their contributions to the overall depth estimate.
Each chapter provides key insight into a different topic highlighted in this introduction
chapter. This introduction included a broad outline of the visual cues available for the
perception of depth, and how they are recovered, in order to introduce the reader to
the problems with cue combination research that form the rationale for this thesis.
Each empirical chapter provides a more detailed discussion of the most relevant
background concepts and literature for each study. The remaining chapters are

summarised as follows:

e Chapter 2: A number of options for psychophysical study are available, but some
are more suited to addressing the concerns outlined above. Chapter 2 considers
these, and outlines the methods designed to address these issues raised in the
literature, and how these can be used to explore depth cue contributions in

complex natural scenes.

e Chapter 3: In order to scale disparity information appropriately to judge object
depth, an estimate of object distance is required. This distance estimate can be
provided by the angle at which the two eyes convergence on the object. Chapter
3 explores the contribution of the cue of vergence to shape constancy, for depth

judgements over distance.
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Chapter 4: Shading cues provide pictorial depth information, and are interpreted
relative to the light source in a scene. Chapter 4 explores the ‘Dark is Deep’ rule
for shape from shading, investigating the contribution of pictorial and binocular
cues under various luminance and viewing distance conditions for complex

natural scenes.

Chapter 5: The gauge figure task is an intuitive method for capturing perceived
surface shape to assess depth perception. However, parameters of gauge size
and distance scaling remain arbitrary within the literature. Chapter 5 explores the
impact of gauge size and distance scaling on the captured shape for rough and

smooth objects, and for local and global viewing of complex natural scenes.

Chapter 6: Binocular disparity is often cited as one of the most reliable, and
therefore most relied upon, cues to depth perception. Chapter 6 seeks to
measure this contribution directly in a series of cue-perturbation experiments
exploring binocular cues at close and far distances, and for natural objects in

isolation, as well as in cluttered and complex natural scenes.

Chapter 7: The previous chapter sought to directly measure the contribution of
binocular cues. Chapter 7 presents a similar cue-perturbation method, this time
for pictorial cues, seeking to measure their direct contribution to the weighted

depth estimate for natural scenes.
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e Chapter 8: The final experimental chapter presents a real-world application of
some observations in this thesis, in the form of measuring the contribution of

cues from a pictorial depth manipulation using a digital makeup filter.

e Chapter 9: The final chapter in this work summarises the experiments in the
context of the overall aim of the thesis, presents the main findings, and proposes

future directions for this work.
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2.1 Limits of traditional methods

Having outlined the key theoretical considerations for this thesis in the previous
chapter, here, an overview of the methods used to explore these are presented. This
chapter contains specifics relating to the methods used, with summarised
information covered in the context of the relevant chapters, where referring back

would break the flow of the text.

The methods outlined here have been explored and selected to address some
of the key issues raised in Chapter 1. In summary, this thesis addresses three main
issues. Firstly, in order to measure the contribution of depth cues, many studies
reduce those available down to either the cue of interest in isolation, or a pair of
cues, neither of which simulates natural viewing and can in fact make decoding
scenes overly-challenging for the visual system compared to naturalistic viewing
(Sedgwick, 1986). Likewise, simplified stimuli under multi- or full-cue viewing do not
capture the complexity of the problem faced by the visual system for natural viewing
of complex naturalistic scenes (Yuille & Biilthoff, 2008). Finally, studies that do
address natural viewing of natural objects do so with photographic representations,
which present their own issues, and are often centred on smooth real or simulated

objects that lack complexity or the context of a scene to replicate true-to-life viewing.

2.2 Use of advanced technology

The criticism of previous work highlighted above, in that stimuli were presented

in an overly-simplified form, is due in part to the need to maintain a high level of



2.2 Use of advanced technology

control over viewing conditions, which is not easily obtainable with traditional
methods. For instance, it is important to control for the luminance level of the
laboratory, size and shape of stimuli, and physical distance of the participant in order
to measure exactly what is intended. In a typical laboratory setting, these issues can
be addressed by implementing stringent control of these variables, such as by using
simplified stimuli. Presenting natural objects in these conditions would clearly
present a challenge; if a fruit or vegetable was presented to a participant, this would
not be replicable much beyond the single laboratory session, as the item would
change in colour and shape due to decomposition. Likewise, presenting a physical
object which would appear different depending on the viewing angle, gives rise to

problems of replicability if the object should fall or be nudged during testing.

An option previously used in depth perception studies to mitigate these issues
was to use photographs of natural objects or scenes. For instance, Koenderink, van
Doorn and Kappers (1992) presented observers with pictures of a smooth sculpture,
and probed observers’ perception of the local surface attitude via a gauge figure
task, which is covered in more depth below. However, many of these objects are
smooth and simplistic, and do not fully reflect the complexities of naturalistic scenes.
They also do not allow for direct manipulation of certain parameters such as physical
shape or size. The use of images in studies that incorporate binocular cues also
presents issues with converging cameras, with misalignment potentially resulting in

distorted stereoscopic depth (Allison, 2004).

One way to incorporate natural objects whilst maintaining a high level of control
is by using several recent advances in technology, that allow for the presentation of

natural objects that invoke natural viewing conditions, whilst ensuring uniformity of
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size, shape and colour. Rendered objects presented in cluttered natural scenes in
this way allow for full customisation and manipulation of physical aspects, including
but not limited to size, shape, surface colour, surface texture, shading and scene
lighting. The studies presented here take advantage of a range of different
technologies to isolate and perturb various cues to depth in order to measure their
contribution through their weighting in the overall depth estimate. These are covered
in more depth within their relevant chapters, but illustrative examples will be

presented here.

For instance, binocular cues are manipulated in two chapters within this work.
Chapter 3 isolates the cue of vergence from other typically confounding cues such
as binocular disparity, by presenting one image independently to each eye, ensuring
no disparity information is present, and that results are from the cue of vergence.
This is done using a 3D screen system called VIEWPixx™, the various products of
which were designed to replace traditional CRT displays in vision science
laboratories (VPixx Technologies, Quebec). The system is made up of a 3D screen,
120Hz LCD goggles and an infrared (IR) emitter that synchronises the glasses with

the 3D stimuli on the screen, shown in Figure 2.1.

Figure 2.1: 3DPixx system. Image taken from https://vpixx.com/products/3dpixx/
showing the infrared (IR) emitter and 120Hz LCD glasses used to synchronise 3D
stimuli on screen with the glasses.
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2.2 Use of advanced technology

One of the major benefits of using this technology over traditional display
methods is the ability to easily display images dichoptically, where one image goes
to the left eye, and one to the right. In doing so, it is possible to manipulate various
depth cues and simulate unnatural viewing conditions in ways which would not be

otherwise achievable.

A gain on binocular disparity is created in the stimuli in Chapter 6 by rendering
left and right eye viewpoints and presenting these dichoptically using the VIEWPixx
goggles. This simulates a different IOD for the observer, which is not physically

possible, but is made easy and convenient with the use of this technology.

Pictorial cues are likewise manipulated using various technologies in this work.
In Chapter 7, shape from shading and occlusion are manipulated by ‘stretching and
squashing’ the 3D models, manipulating their depth relative to veridical settings. This
chapter also manipulates the surface colour of objects by painting them uniformly
grey in order to isolate the cues of interest, a process that is both convenient and
reliable with the use of technology. Chapter 8 also manipulates shape from shading,
this time by applying digital makeup ‘filters’ through use of software to apply targeted

shadowing to manipulate shape from shading.

While this technology offers huge benefits to address the issues raised, there
are some limitations. For instance, focus and accommodation cues are not
manipulated in the above designs, and therefore would be in conflict with the
perturbed cues, reporting the scene to be flat given the accommodation of the
screen. This effect is known as vergence-accommodation conflict (Kim, Kane, &

Banks, 2014), and has been observed for 3D screens (Karpicka & Howarth, 2013),
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3D televisions (Hoffman, Girshick, Akeley, & Banks, 2008), and Augmented and

Virtual Reality (Wang & Lin, 2021).

The online experiments presented in Chapters 5, 7, and 8 are presented on
participants’ own computer or laptop screens. Whilst binocular cues are not of
interest and therefore are not manipulated in these experiments, information from
binocular cues was still available, as these were not completed monocularly. When
using a screen, binocular cues, similarly as above, would directly conflict with the
information presented from pictorial cues, reporting the scene to be flat. However, it
has been suggested that as this cue is not present within pictorial space, it may be

ignored within the weighted cue estimate (Koenderink, 2012).

2.3 Creating naturalistic 3D models

2.3.1 Scanning technology and procedures

Most of the naturalistic stimuli presented in this work were captured using laser
scanning technology. The exception is the faces stimuli used in Chapter 8, which will
be covered in detail below. In total, three different scanners were used to capture the

models, details of which shall be outlined.

2.3.1.1 NextEngine 3D scanner and multidrive turntable

The NextEngine 3D scanner was used to capture objects using a multidrive
turntable. This scanner has settings to capture a single scan from a fixed angle, a
‘bracket’ which completes a scan of three angles, or a full 360-degree scan of the

object achieved by using various tilt settings, starting at O degrees tilt and ranging
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from -35 degrees to + 45 degrees tilt, to create a full mesh. Objects are gripped in
place on the rotating platform, and captured with the scanner which consists of a
flash, a camera, and a laser to detect depth of surfaces. The scanner has multiple
division settings, which indicate the number of rotations the base will complete
during the 360-degree scanning, where more divisions gives the scan more data but
takes longer to complete. This is between four and 16 times, with the meshes
created for this work using eight divisions. Scans are then processed using the
proprietary NextEngine Scan Studio HD software to create 3D meshes for use in

rendering software to create the experiments.

2.3.1.2 Artec Eva™

The Eva is a handheld 3D scanner suitable for making 3D models of medium
sized objects such as the wheel of a car (Artec 3D, Luxembourg). It uses a flashbulb
as its 3D light source, with an additional array of 12 white LEDs for the 2D light
source. The device captures the image information using structured light scanning
technology, which poses no health risks, so the scanner is even suitable for creating
a human bust. The scanner retails for around €13,700, and claims to be suitable for
scanning black and shiny surfaces which are often difficult to capture using light-
based scanners, due to the possibility of glare and breaks in the surface captured
(Kesik, Zyta, Montusiewicz, Neamtu, & Juszczyk, 2023). The accuracy of the Eva is
reported as up to 0.1mm, with accuracy reducing by up to 0.3mm per metre
scanning distance. It has a 3D resolution of up to 0.2mm and is capable of capturing
texture detail up to a resolution of 1.3 megapixels (Mpx) and colour depth information

of up to 24 bits per pixel (bpp). Its working range is between 0.4m and 1m, and it is
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capable of capturing up to 61,000cm3. Objects are scanned on a smooth, flat
surface, such as a table, by moving the scanner around the object in a steady arc.
To create full meshes, both sides of the objects are scanned, and identifiable points
on the objects referred to as ‘landmarks’ are used to align scans to fuse them into a

water-tight model within Artec Studio, the proprietary scan processing software.

2.3.1.3 Artec Space Spider™

The Space Spider is a similar technology to the Eva, in that both scanners use
structured light scanning technology to capture images. It differs from the Eva in that
it is more suited to capturing small objects or high levels of precise detail, such as
coins or a human ear (Artec 3D, Luxembourg). This scanner also uses an array of
white LEDs for the 2D light source, but this time six compared to the Eva’s 12, and it
utilises a blue LED for the 3D light source instead of a flashbulb. At €19,700 it is
more expensive than the Eva, but with this it is more accurate, giving an accuracy of
up to 0.05mm, with a 0.1mm 3D resolution. The working range of the Space Spider
is closer than the Eva at 0.2m to 0.3m and it is capable of capturing a volume up to
2,000cm?, losing up to 0.3mm accuracy per metre of scanning distance. The Spider
can capture texture information with a resolution of up to 1.3Mpx, and depth of colour
information of 24bpp. Much like the Eva, scans are created by moving the Spider
around the object in a smooth arc, capturing both sides of the model against a
smooth, flat surface and aligning scans to create a water-tight 3D model within Artec

Studio as above.
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2.4 Producing 3D scenes

2.4.1 Creating 3D meshes

Figure 2.2 below shows a selection of results obtained from using the scanners

detailed above.

Figure 2.2: Results of scanning. Showing a selection of naturalistic fruit and
vegetable 3D models created using the scanners listed above. The sweetcorn was
scanned using the Artec Spider, and the remaining models were scanned on the
NextEngine scanner using the turntable.

Due to the availability of the different scanning technologies, and the
perishable nature of the stimuli captured in this work, it was not possible to capture
data from the same fruit or vegetable on each of the scanners used for the stimuli
within this thesis. However, given the similar high resolution and accuracy levels
between the types of scanners, this did not affect experimental design, and therefore

a variety of stimuli created between the scanner types was used in this work.
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2.4.2 Rendering the scenes

The majority of stimuli used in these experiments within this work were
rendered in MATLAB using OpenGL and the Psychophysics Toolbox extension
(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). OpenGL lighting
modules were used to illuminate scenes, with the specific component magnitudes

reported in each chapter.

Stimuli were either rendered for viewing binocularly, or from the ‘cyclopean’
viewpoint, shown in Figure 2.3, depending on the requirements of the experiments.
For instance, some work was presented with differing left and right eye views, such
as in Chapter 6 which explores the contribution of binocular disparity to the depth
estimate. This was achieved by rendering two view points, one for the left eye and
one for the right, separated by an inter-camera distance simulating observer
interocular distance (I0D). For the work in Chapter 6, differing view points for both
the left and right eye were rendered to cover a range of typical adult IODs between
52mm and 78mm as outlined by Dodgson (2004) for use in the experiments, creating
stereoscopic pairs of images to accurately simulate disparity specified by the 3D

structure of the scene.

Left Right Left ‘Cyclopean’ Right
ceye eye eye eye eye
Binocular render Cyclopean render

Figure 2.3: Binocular versus cyclopean viewpoint rendering.
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The cyclopean view was rendered using the midpoint along the axis that
connects the two eyes, and simulates monocular viewing from the imagined
‘cyclopean’ eye in the middle of head (Stidwell & Fletcher, 2011). This approach was
taken where binocular disparity information was not isolated and manipulated, such

as for the pictorial cue experiments in Chapters 5, 7 and 8.

2.4.3 Face stimuli

The faces used in Chapter 8 are the only artificially-generated complex stimuli
used in this work, and were processed in a slightly different way to the other
naturalistic models. These were generated using random face generating software
FaceGen (Singular Inversions Inc, Toronto), and manipulated to create experimental
conditions within image manipulation software FaceFilter Pro (Reallusion, California).
These faces were rendered in 3D rendering software Blender (Hess, 2010) using a
central light source placed directionally above and in front of the face to reduce

additional shape from shading.

2.5 Introduction of experimental methods

Four main psychophysical tasks were used in this work to gauge perception of
depth from various cues. Three of these are limited to individual chapters, and will be
briefly outlined here, and covered in more depth within the relevant chapter. The
fourth method is used extensively in four chapters, and will be explained in detalil

within this section to avoid repetition within these.
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In Chapter 3, a nonius line task, typically used to measure the precision of
vergence judgements (Jaschinski, 1997; Jaschinski, Brode, & Griefahn, 1999;
Chopin, Levi, Knill, & Bavelier, 2016; Chopin, Levi, & Bavelier, 2017), is employed to
create a measure of how certain observers are with using the cue of vergence to
make depth judgements. This measure of the certainty of vergence is compared to
observers’ depth perception by way of the second task in this work, recovering the
depth of a triangle represented by three dots in 3D space (Bradshaw, Parton, &
Glennerster, 2000). Judgements for these are compared over distance to assess

shape constancy.

Chapter 4 introduces the third task of the work. Observers are presented with a
scene upon which two dots have been superimposed, and are tasked with estimating
the 3D distance between them (Lovell, Bloj, & Harris, 2012). This provides a
measure of depth, used in Chapter 4 to investigate within- and between-object
distance judgements under various luminance manipulations (Hibbard, Goutcher,

Hornsey, Hunter, & Scarfe, 2023).

Here, the final task, which is used in Chapters 5, 6, 7 and 8, is a gauge figure

task. This is covered extensively below.

2.5.1 Gauge figure task

One way to probe the local surface attitude of images is with a surface normal
gauge figure task. A gauge figure consists of a circle and a rod (as per Figure 2.4:),
and is superimposed onto the surface of an image so that it can be manipulated

such that the circle element appears painted flat on the surface of the object in
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pictorial space, with the rod sticking straight up from the object at a right angle

(Koenderink, van Doorn, & Kappers, 1995).

Figure 2.4: Gauge rotations. Image showing examples of how a gauge figure might
be set at various locations on the surface of an object.

The orientation of the gauge figure to perceptually fit’ the apparent surface
(Koenderink, van Doorn, & Kappers, 1992) provides a measure of slant and tilt. The
terms slant and tilt can have various definitions. To avoid confusion, these terms will

be specifically defined here for use in this work.

Figure 2.5: shows possible gauge figure settings and their corresponding slant
and tilt values. The slant value will be defined as the size of the angle in degrees by
which the surface is rotated away from the observer on the horizontal axis, and
includes positive and negative values, described by Gibson (1950) as extremes
creating a ceiling and floor. These can range from 0 degrees, where the surface is
exactly perpendicular to the line of sight, which creates a gauge figure that
resembles a bullseye (as in Figure 2.4:c), through to 90 degrees where the surface
runs parallel with the line of sight and is no longer directly visible, such as seen

around the edge of the diagram in Figure 2.5:. When holding tilt constant, the same
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slant value across an entire object would show a surface which is flat in all areas;
where the slant values differ, this denotes curves or bends on the surfaces of the

object (Gibson, 1950).
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Figure 2.5: Gauge slant and tilt. Diagram showing slant settings, tilt settings, and
how these can be combined to describe the local attitude of any surface.

The definition of tilt as used in this work is the axis around which slant rotates,
as shown in Figure 2.5:, sometimes also referred to as the direction of slant (Gibson,
1950; Stevens, 1983). Here, a value of 0 degrees shows a vertical tilt axis around
which a surface may slant by any degree as outlined above. This could be thought of
as a flagpole around which a flag can move, depending on the direction of the wind.
A 45 degree or 135 degree tilt creates a diagonal slant axis, and a tilt of 90 degrees
creates a horizontal slant axis. A value here of 180 degrees also creates a vertical
axis, but this is the opposite of that created at O degrees, as if the flagpole were

upside-down. When taken together, the slant and tilt provide information on the
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perceived local surface attitude, or depth gradient (Koenderink, van Doorn, &

Kappers, 1996).

Stevens (1983) highlights the values of slant and tilt as the only two needed to
identify the orientation of a patch of surface relative to the line of sight, referencing
Gibson’s (1950) statement that the magnitude and direction of slant are the two
degrees of freedom of surface orientation. Gibson (1950) also proposed that
identifying objects in a scene is less about identifying the form of the object itself,
and more about consistent patterns between the object and the background, stating
that perception in general can be reduced simply to the perception of a series of
surfaces, and that orientation, distance and depth may all be derived from the details

of such surfaces.

The gauge figure task is used in several chapters in this body of work due to
several benefits over the other measurements listed above. Firstly, the gauge figure
task is described in the literature as an intuitive task for measuring perception.
Koenderink, van Doorn, Kappers and Todd (2001) report that observers rate the task
as more ‘natural’ than several other tasks, a view echoed by Nefs (2008).
Additionally, the task allows for the capture of perceived local surface orientation,
which accounts for the argument that we perceive surfaces, not points in space
(Gibson, 1950). Finally, as discussed below, the use of a gauge figure task to
capture the perceived slant and tilt of surfaces allows for a reconstruction of the

perceived global surface. Specifics of this shall now be discussed.
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2.5.2 Recreating a 3D mesh

Several chapters in this work use a method of recreating a 3D mesh from the
depth gradients calculated with slant and tilt settings in a gauge figure task. The
specifics will be presented here in detail, and summarised within the context of the

relevant chapters for ease of reading.

Nefs (2008) used a gauge figure task to probe the perceived surface of globular
convex objects, with or without specular highlights, using pairs of stereo images. A
red gauge figure probe was superimposed on the left-hand image of the pair, which
observers rotated until it appeared painted flat to the surface of the object. In this
paper, Nefs clearly outlines the method used to create a mesh surface from a set of
depth gradients, which has been used successfully previously in other works

(Koenderink, van Doorn, & Kappers, 1992), and will be used in the present work.

Nefs (2008) describes how the x and y coordinates for each of the gauge probe
positions create a point, where three points refer to as a set of vertices, with the
straight line connecting each pair of points an edge. Figure 2.6: shows how three
vertices (V1, V2, V3) define a face, as shown by the shaded triangle. The middle of
this triangle, or the centre of mass, is the barycentre. In the experiments in this work
that use this triangulated face mesh, this barycentre is the point at which the gauge

figure probes the local surface attitude.
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X = barycentre

face=(V,V,V)
1 2 3

Figure 2.6: Barycentres. Diagram showing how a face (shaded area) is defined by a
set of three vertices (V1, V2, V3), with the barycentre being the middle point or
centre of mass of the created triangle.

Nefs used these gauge settings between two vertices to calculate the depth
gradient, which shows the change in depth given a change in horizontal or vertical
direction. This calculates the gradient as the change in a dimension, written as delta
(6). When calculating the steepness of a slope in two dimensions, this is calculated
as the difference in the x and y dimensions between two points, see Equation 2.1.

Equation 2.1

change in S
slope = =921 or slope =2
change in x ox

This can then be extended to calculate the slope of a surface in three

dimensions by incorporating depth (z) in Equation 2.2:

Equation 2.2
{6z/6x, 8z/8y}
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Using this set of gradients, a best-fitting surface can be calculated in the form
of a mesh grid, which can be directly compared against perceptions for other
conditions. Chapters 5, 6, 7 and 8 all employ these methods of capturing slant and
tilt settings with a gauge figure task and recreating meshes using Nefs’ approach

(2008). These are discussed in the context of the rationale within each chapter.

2.5.2.1 Comparing shape and depth of meshes

When converting slant and tilt settings to gradients, it is important to set a
maximum angle. In the work contained in this thesis, a maximum angle of 85
degrees was applied. Constraining the angle in this way is important because of the
non-linearity of the tangent of the angle of the gradients. As the slant approaches 90

degrees, the tan of the angle approaches infinity, as displayed in Figure 2.7:.

«10%

Exponential
[#%]

0 10 20 30 40 50 60 70 80 90
Gradient angle (degrees)

Figure 2.7: Exponential gradients. Graph showing exponential nature of the tan of
gradient angles, approaching infinity for angles up to 90 degrees.

Given this relationship, very small changes in the settings for slant and tilt at
these angles result in large differences in the fit of the mesh. Therefore, the angle

was limited to 85 degrees to reduce this sensitivity.
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Nefs (2008) describes how these mesh grid models may be compared through
the process of affine transformation. This is a way to quantify the differences in the
locations of points in space. The image below illustrates four qualities of affine

transformation (Bazargani, Anjos, Lobo, Mollahosseini, & Shahbazkia, 2012).

Translation Rotation Shearing Scaling

N
7 —>

Figure 2.8: Affine transformations. Diagram showing four qualities of affine
transformation, used to describe the changes between meshes.

Translation describes a shift in either the x or y coordinates of points, or both,
with no scaling, meaning the location of the object changes but the overall size and
shape remains the same. Likewise, rotation defines a shift with no scaling, here the
object is rotated around its centre of mass so as to provide a different viewpoint.
Unlike the previous two examples, shearing does not retain the original shape of the
object, instead illustrating here how the points may change such that the edges
connecting vertices are no longer at the same angle as before. Shearing is defined
by both an orientation, shown as either a positive or negative slope, and a
magnitude, from the steepness of the slope, and ranges from a value of 0, showing
no shearing, to a maximum value of 1 (Koenderink, van Doorn, Kappers, & Todd,
2001). Finally, scaling shows how the overall shape of the object remains the same,
but the size and therefore cartesian coordinate positions change. While these are

illustrated here for two-dimensional images, the principle can be applied to three-
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dimensional meshes, with the above qualities being combined to describe the

transformation in any dimension.

Nefs (2008) uses the horizontal and vertical positions of x and y of the
vertices sampled with the gauge figure, as well as the original depth, as a predictor
in regression analysis to calculate the degree of affine transformation, using the

following formula:

Equation 2.3

zZ'=az+bx+cy+d

Using this, the depth of a target model (z') may be predicted using the x and y
coordinates, and the depth (z) of the surface in the reference model, where a shows
the depth scaling between models, with a constant of d mediating the transformation

in depth, and b and ¢ shearing parameters for the x and y axes.

2.6 Analyses

Here, some background on the analyses used in this work is provided,
including a discussion of the pros and cons of each method, and what they offer to
this body of work. For readability, significant p values have been flagged in bold
throughout the work, with bold denoting significance for at least a 95% alpha level,
and the number of asterisks denoting the alpha level, where one shows significance
at a 95% level, two shows 99% and three shows more than 99.9%. Some chapters
contain a type of analysis limited to that work, such as Chapter 3 which presents a
psi-marginal method for fitting a psychometric function, and these are covered in

depth within those chapters.
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2.6.1 Statistical power

To begin with, this section briefly discusses statistical power in the work
contained in this thesis. Statistical power quantifies the likelihood of significance
testing producing a statistically significant difference in results when the null
hypothesis is false (Hallahan & Rosenthal, 1996). Power analysis is an important
step in designing research to ensure effects of interest are observed (Abraham &

Russell, 2008), although it depends on the type of analysis being conducted.

Chapter 3 uses correlation to explore the relationship between certainty of
vergence and shape constancy. No significant correlation between the two was
found, and using a correlation power calculator (Hulley, Cummings, Browner, Grady,
& Newman, 2013) with a two-tailed alpha level of 0.05 for a 95% confidence rate,
and a beta of 0.2 which equates to 80% power, the sample size of 35 participants in
this experiment should have been able to detect a correlation up to r=.46, were one

there to be detected.

Chapters 5, 6, 7 and 8 employ the gauge figure method, and for these types of
experiment is has been argued that the number of trials per person is just as
important as the number of participants when considering statistical power
(Koenderink, van Doorn, Kappers, & Todd, 2001; Baker, et al., 2021). As such, the
experiments within these chapters contain large numbers of trials, with the total sum
of work representing nearly 85.000 individual gauge figure settings being made. Not
only this, but each setting itself produces two numbers for slant and tilt. Koenderink
et al (2001) purport that the vast quantity of data gathered using this methodology

produce a rich set of data for analysis with sufficient depth.

64



2 Methods

In fact, relatively small numbers of participants, but large numbers of trials in
experiments is the norm for psychophysics, with very few studies conducting power
analysis. Much of the work cited in this thesis is based on as few as three
participants, sometimes just the researchers themselves. The experiments within this
thesis are tested on a relatively large number of participants compared with other
traditional work in this field, to balance between participant numbers and data point
numbers in consideration statistical power. However, this could potentially be a
limitation of this work, and future studies in this field should aim to recruit participant
numbers more akin to the standard in other fields of psychology to address this,

making use of recent work on the ways to address this (Baker, et al., 2021).

2.6.2 Regression
Regression analysis is used in several chapters to compare the change in
depth of reconstructed meshes to look for a linear relationship between variables

using the following equation:

Equation 2.4
Y =Bo+B(x)

This explores how much the predicted response () can be predicted by the

predictor variable (x), with the average unit of change being the difference between

where x = 0 (B,) and where x = 1 (5;).

In chapters where meshes have been compared through affine
transformation, the x, y and z Cartesian coordinate positions in the reference mesh
were used as predictor variables to assess how well these parameters predicted the

depth of points in the reconstructed mesh. This provides a measure of the change in
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depth between conditions, derived from how well the depth of points in the reference
can predict the depth of the reconstructed mesh. It also gives a measure of the
change of shape perception between conditions, as the x and y parameters provide
shearing information, that is how much the model is stretched in those dimensions
compared to the reference. Finally, as the reconstructed meshes in these chapters
are normalised to the average distance from observer to object, the intercept term
provides a measure of how close or far the object was perceived to be. Therefore,
this style of analysis provides a reliable measure of depth relief, and shape and

distance perception by which to compare conditions.

Standard linear regression is used in the literature to compare the depth of a
reference mesh with a target mesh, by examining how well the reference depth
predicts the target depth. Egan and Todd (2015) present a comparison between
linear correlations and affine transformations to quantify depth. They presented
observers with randomly deformed objects under varying lighting conditions and
probed the surface orientation with a gauge figure task. They found that 60% of
variance in observers’ judgements was accounted for by a linear correlation of
relative reported depth and relative depth of the reference, which in their case was
the simulated object. When an affine correlation was applied, using the x, y and z
Cartesian coordinates, 89% of the variance was accounted for, showing that affine
transformations provide a better fit of the change in 3D meshes than linear
correlations of depth alone. Indeed, Koenderink, van Doorn, Kappers and Todd
(2001) similarly compare linear and affine transformations for their experiment
probing pictorial relief with a gauge figure task, and say that by their very design, the
values for affine transformations always exceed those for linear regression, by

building on the single parameter of depth with shearing and intercept
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transformations. Given these benefits, affine transformations have been favoured

over linear correlations in this work.

2.6.3 Linear mixed effects models

Many studies in this body of work have a repeated measures design. To
account for this, linear mixed effects (LME) models have been utilised to fit the data
to account for the fact that residuals between scores for one observer are more
similar than the residuals between observers, and should therefore be nested by
observer within the model given this heterogeneity amongst observers, which allows
their intercepts and partial slopes to vary from the overall average (Morrell, Pearson,
& Brant, 1997). This is because individual observers are expected to have a different
baseline for depth perceptions and therefore their own intercepts, as well as
differences in the scaling of their judgements across the gain conditions. For
instance, Nefs (2008) found that scores between conditions for the same observer
were more highly correlated than scores between different observers. Given this,
individual observer’s slopes are expected to vary, and this method can take account
of this and model the variance accordingly. The required formula to include the

correlated random intercept and slopes (Bates, Machler, Bolker, & Walker, 2015) is:

Equation 2.5

z~14+x +(1+x|y)

Where the response variable (z) is predicted using the predictor variable (x)
as a fixed effect, with a grouping variable (y) to account for the correlated random
intercept and slopes, and a default intercept of 1. Models may contain either just

random intercepts (1] y) which allows for observers’ data to start at different points,
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both random slopes and intercepts (1 + x | y), or neither, by subtracting 1 to remove
the default intercept. These different models are compared using the Akaike
Information Criterion (AIC), which evaluates how well the model fits the variance in
the data from which it was generated, with a lower AIC indicating a better fit to the
data, including negative values. Models throughout this work were compared with

their AIC values, and the results are shown in the Appendix for completeness.

While this method is used a lot on this body of work due to its many benefits,
there are some instances in which it is not the analysis of choice. For instance,
Chapter 5 explores observers’ preference in a gauge figure task with varying sizes.
This categorical type data is not suited to an LME approach as the categories are not
linearly related and therefore the response variable needs to be continuous data,
and as such a Chi-square analysis was conducted to compare preference. However,
the LME approach does handle categorical predictor variables, and this is used in

several chapters.

In summary, a number of advanced technologies and methods have been
outlined to address the three main issues highlighted in the introduction. These allow
for the creation of complex natural scenes of naturalistic stimuli. The experimental

work based on these methods is now presented.
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3 Vergence scales binocular depth estimates, but does

not account for shape constancy

3.1 Abstract

The same object viewed at different distances will produce a different size of retinal
image — the closer the object is, the larger the image on the retina. For a given
depth, the binocular disparity also varies with distance. The visual system needs
therefore to take account of the distance to an object in order to correctly estimate its
3D shape and size, a process known as constancy. This constancy is not perfect,
and systematic errors are made in the estimation of size and depth across varying
distances. Typically, objects viewed at far distances are estimated to be smaller

and shallower than their physical size and depth. It has been proposed that these
errors could be due to uncertainty in the estimation of binocular convergence, the
difference in viewing direction between the two eyes when fixating an object. The
current work was designed to test this explanation. In a darkened lab, participants
were asked to complete two tasks. One task assessed the precision of vergence, the
other assessed shape constancy across distance. It was predicted that the extent to
which the apparent depth of an object decreased with increasing viewing distance
could be predicted from the precision of vergence. When considering individual
observers, we predicted a positive correlation, such that a participant with a high
degree of precision in their estimate of convergence would make smaller systematic
biases in shape constancy. Results showed that general vergence precision was
better at far distances. We also found that observers had a failure of shape

constancy with distance, but did not find a relationship between this failure of shape
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constancy and certainty of vergence. A systematic fixation disparity bias was
observed, but this was not of a magnitude high enough to explain the failure of
constancy. From these results we conclude that there is no evidence of a
relationship between the variation in certainty of vergence and shape constancy and

that further work is needed to explain this failure by other means.

3.2 Introduction

Humans, like other animals, use visual information about the world around
them in order to safely navigate and interact with it (Warren & Hannon, 1988;
Rushton, Harris, Lloyd, & Wann, 1998; Servos, Goodale, & Jakobson, 1992; Watt &
Bradshaw, 2000; Bradshaw, et al., 2004; Melmoth & Grant, 2006). For instance, in
order to grasp something, such as a piece of food, one must use information about
the distance from the self to the object, as well as the physical dimensions of the
object itself to execute a successful reaching and grasping movement (Servos,
Goodale, & Jakobson, 1992; Watt & Bradshaw, 2000; Bradshaw, et al., 2004,

Melmoth & Grant, 2006; Hibbard & Bradshaw, 2003; Keefe, Hibbard, & Watt, 2011).

This chapter focuses on a very simple aspect of the visual judgement of 3D
properties of scenes — the judgement of the depth separation between points, and
how information about distance from binocular convergence contributes to these
judgements. As discussed in the introduction, rather than relying on a single cue to
provide depth information, in the Bayesian approaches to depth perception the brain
combines the information received from several cues to make judgements about

depth.
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Studies have shown that combining the information from multiple cues can lead
to more reliable estimates than depending on a single source of information
(Kunnapas, 1968; Mather & Smith, 2004; Landy, Maloney, Johnston, & Young,
1995). As covered in Chapter 1, a number of cues to depth perception provide
information directly from the retina, such as pictorial cues. As humans have two
forward-facing eyes, a number of cues combine information from both eyes together,
in the form of binocular cues, which will be the focus of this chapter. Given that a
human's eyes are separated by around 6.3cm on average for adults, known as the
interocular distance, or IOD (Dodgson, 2004), the image presented on each retina is
slightly different, creating the cue of binocular disparity. These differences in the
relative position of projections of the same points between the two retinal images
provide information about distance and depth (Cutting & Vishton, 1995). The

geometry behind this will be explored in more detail later in the chapter.

3.2.1 Calculating the vergence angle

In addition to information provided by the retinas, the brain also relies on
extraretinal information, such as the cue of convergence (Cutting & Vishton, 1995).
The rotation of the two eyes when viewing an object creates a vergence signal in the
brain through the state of the extraocular muscles, which provides the central
nervous system with an estimate of vergence (Tresilian, Mon-Williams, & Kelly,
1999). Convergence is measured as the angle between the optical axes of the two
eyes when fixating an object. This vergence angle is largest for near distances, and
reduces with distance. When viewing an object in the far distance, the eyes are

effectively parallel with a convergence angle of O degrees.
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Cutting and Vishton (1995), on discussing the measurement and assumptions
of binocular disparity, highlight that the visual system requires at least a roughly
accurate assumption about IOD, as well as the current state of vergence angle when
viewing an object, as this information is used for the scaling of disparity by identifying
the location of points which correspond with the sensory input. This is because
disparity scales with viewing distance, so the brain needs a way to interpret this
signal (Mon-Williams, Tresilian, & Roberts, 2000). The basic geometry of binocular

distance and depth cues is outlined next.

The underlying principles of these cues are based in the geometry created by
the triangulation of the two eyes and the viewed object. Linton (2022) describes early
1600s theories on triangulation of stereo depth perception by Kepler and Descartes.
This principle is shown in Figure 3.1 below, where a fixation distance, D, may be
calculated given the known interocular distance, I, and the rotation of the eyes, or

vergence angle, a:

/N
a
a/2
D
1/2 \/
I

L R

Figure 3.1: Triangulation. Diagram showing triangulation model of stereo depth
perception, and how this geometry may be used to calculate distance (D), for a
known interocular distance (I) and a given vergence angle (a).
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As with many other depth cues, the vergence angle is measured in degrees of
arc, with each degree being made up of 60 minutes of arc, and each minute of arc
being made up of 60 seconds (Purves & Lotto, 2011). The vergence signal provides
the brain with important information, as the brain can interpret the angle at which the
eyes converge as an indicator of distance (Mon-Williams, Tresilian, & Roberts,
2000), see Figure 3.1. Indeed, one study has shown that external measurements of
participants' vergence eye movements can in principle be utilised as a way of
estimating distances, with an accuracy over short distances of over 90% (Inoue,
Bounyong, Kato, & Ozawa, 2013). This is likely a similar mechanism employed by
the brain to use the information it receives from the vergence angle in order to make

an estimate about distance.

As can be seen in Figure 3.1, the triangle created between the viewed object
and the two eyes can be halved, to create two right-angled triangles. From this area,
denoted with a right angle, basic trigonometry principles can be applied. The formula
for calculating the tangent of an angle, for instance half of the vergence angle (a/2),

would be as follows in Equation 3.1:

Equation 3.1

1/2

tan(%/,) = D

This formula can then be rearranged to use this information to estimate

distance (D) as shown in Equation 3.2:

Equation 3.2

1/2

" tan (/)
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For instance, using the above equation, for an observer with an interocular
distance (/) of 6.3cm, with a vergence signal reporting a vergence angle (a) of 3.6°,
the estimated distance (D) between themselves and their fixation point should be
reported as 100cm. Likewise, should the same observer view another object at a
different distance with a vergence angle of 9°, they would be expected to report a

distance estimate of 40cm.
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Figure 3.2: Predicted vergence angles. Plot of predicted vergence angle per viewing
distance for average female (6.2cm), average adult (6.3cm) and average male
(6.5cm) 10Ds.

Figure 3.2 plots expected vergence angles for differing viewing distances,
using the average female IOD of 6.2cm, the average adult IOD of 6.3cm and the
average for males of 6.5cm (Dodgson, 2004). Extending this, as can be seen in
Figure 3.3, as distance (D) increases, vergence angle (a) decreases, to the point
where the eyes are effectively parallel. If we assume a just noticeable change in

vergence (v) of 10 arc min (Cutting & Vishton, 1995) and an interocular distance (I)
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of 6.4cm, the distance (D) beyond which vergence is no longer useful can be

calculated as such:
Equation 3.3

D= 5

This shows that the maximum distance over which vergence is beneficial is

22m, which is considerably further than the distance of 6m that is often assumed

(Gregory, 1973).

. /N

Figure 3.3: Difference between vergence angles. Diagram showing how the left (L)
and right (R) eyes converge on objects. For a given interocular distance (), a wider
convergence angle (a) would be observed when fixating the closer object at distance
D, than when fixating the further object at distance D+z, which creates a smaller

vergence angle (b).
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3.2.2 Vergence, disparity and depth

The geometry of vergence can also be used to calculate binocular disparity,
and how this can be used to estimate depth. Figure 3.3 shows two points at two
distances, D and D + z. Where H = [ /2 is half the interocular distance, the

corresponding convergence angles for the two points a and b are:
Equation 3.4

tan(Y/p) = &

Equation 3.5

tan(b/,) = D’j -

Binocular disparity can be derived from the formulae for the difference

between these two angles:

Equation 3.6

tan(a) — tan(b)

tan(a —b) = (1 + tan(a)tan(b))

Therefore, binocular disparity can be derived from Equation 3.4 and Equation

3.5 as such:

Equation 3.7

"o ="+ 2
1+ 4 29

tan(a/z — b/z) =

Equation 3.8

H(D +z) — HD
tan(%/, = 1/3) = DD +z2) + H?
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Equation 3.9

Hz
a/, _b —
tan(%/, /2)_D2+Dz+H2

Assuming that both H and z are small relative to the distance D, then the

disparity dis given by:

Equation 3.10

. (Hz
6 = 2tan 1<ﬁ>

This shows that the size of the disparity increases with the interocular
distance, but decreases approximately with the square of distance. For an individual
observer the interocular distance is fixed. This means that, for objects at the same
distance, binocular disparity increases linearly with depth. However, the disparity of a
fixed depth interval between two points on an object will decrease with the square of

distance as the distance between the observer and object increases.

In summary, the difference between the two retinal images creates relative
depth information in the form of disparity, but the brain needs a measure of absolute
depth by which to scale this information. Here, the vergence signal can be used as a
way to scale this information for depth estimates. Having outlined the underlying

geometry, the notion of shape constancy will now be explored.

3.2.3 Shape constancy
Constancy describes the degree to which objects moving away from the
observer appear to stay a constant size and shape, despite the image on the retina

and the disparity reducing in size as the object gets further away (Wallach &
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Zuckerman, 1963; Foley, 1980; Johnston, 1991). The change in the size of the
image on the retina occurs because the angle in the visual field taken up by the
object is greater for closer objects than for those further away from the observer. As
outlined above, the binocular disparity of points on this image will also reduce with
distance, but in this case with the square of distance. Shape constancy would
require that, as an object moves further away from the observer, it does not appear
to shrink and flatten, but maintains its constant size and shape, despite the changes

in retinal size and binocular disparity.

This difference in dimension in the retinal image is called the visual angle. For
example, the width of the thumb is said to extend a visual angle of approximately 2
degrees when held at arm’s length (O'Shea, 1991). Figure 3.4 shows how an object
with a height of H, at a distance of D, extends a visual angle (a), and that an object

of twice the height (2H) can extend the same visual angle at twice the distance (2D).

Observer

N

< >

2D

Figure 3.4: Visual angle. Diagram showing how an object with a height (H) at a
distance (D) creates a visual angle (a), and that an object with twice the height (2H)
may subtend the same visual angle (a) at twice the distance (2D).
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Additionally, the same object with height H but at twice the distance (2D)

would extend a smaller visual angle than at the closer distance D:

Observer

Observer

Figure 3.5: Change in visual angle. Diagram showing the change in visual angle with
viewing distance increasing from D to 2D.

These diagrams provide an explanation as to what would happen if the
observer were to over- or underestimate distance. Were the observer to
overestimate distance and perceive that an object is further away than it truly is, say
at distance 2D instead of D as per Figure 3.4, the object would be perceived to be
twice its true height at 2H instead of H. The equation (Kaiser, 2017) to measure the
visual angle (V) using height (H) and distance (D) for objects level with the line of
sight is:

Equation 3.11

H/2
V = 2arctan (T)
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Say an object of height H of 5¢cm is viewed at a distance D of 40cm. This
would subtend a visual angle of 7.15 degrees. The equation can be rearranged to

calculate the height that the object would then appear to the observer:

Equation 3.12
vV
H=2 (tan (E) X D)

Using this, an object of 5cm viewed at 40cm, erroneously believed to be at
60cm would be perceived as 7.5cm in height to extend the same visual angle, and
therefore would be perceived as bigger than it truly is, creating a scaling distance
error. Equally, if the distance is underestimated, the object would be perceived as
closer and therefore smaller, in order to be congruent given the visual angle it
subtends. This can be used to measure an effective scaling distance denoting the
effective distance perceived by observers given their reported judgements

(Bradshaw, Parton, & Glennerster, 2000).

Much work in this area has shown that the human depth perceptual system,
like many other systems, is subject to noise. Additionally, it has been shown that
judgements made at far distances are often underestimated (Baird, 1970; Brenner &
van Damme, 1998; Johnston, 1991; Scarfe & Hibbard, 2006; Viguier, Clément, &
Trotter, 2001) as space within the visual field tends to be squashed at further
distances, so that objects are seen and reported as being closer than they really are,
and do not scale correctly. Objects seen at a closer distance appear stretched, and
only things seen at an intermediate distance appear veridical (Johnston, 1991). As
discussed above, triangulation assumes the ability for the brain to accurately

estimate vergence to make estimates of distance, but as highlighted previously,
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depth cues are subject to noise and uncertainty. It will now be discussed how this

imprecision may affect the depth estimate.

3.2.4 Vergence uncertainty

Included in this array of work are several studies that have shown that an
underestimation of perceived distance also occurs when specifically relying on
binocular convergence (Mon-Williams, Tresilian, & Roberts, 2000; Viguier, Clément,
& Trotter, 2001). Viguier and colleagues (2001) investigated participants' ability to
perceive and estimate distances using either retinal disparity cues or only
extraretinal information such as vergence. They presented participants with light-
emitting diodes at distances ranging from 20cm to 120cm. Participants were tasked
with reproducing this seen reference at either the same, double or half the original
distance. Results showed that when retinal disparity cues were available to
participants, they were able to successfully reproduce the seen reference with high
accuracy across the range of distances. However, when only the extraretinal cue
of vergence was available to provide information, participants were only able to
reliably reproduce the reference distances when within arm's reach, but
underestimated distances beyond 60cm. This shows that biases occur, and
therefore errors are made, with increasing distance when relying solely on

extraretinal cues compared to when retinal information is available.

One idea put forward to explain these systematic errors is that when relying
on the convergence angle alone, biases in depth estimates stem from uncertainty
of vergence, such that a person who is more uncertain of vergence will exhibit higher

levels of bias, and therefore misestimation of depth, than a person who is relying
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more on the measurement of vergence to aid in depth perception (Scarfe & Hibbard,
2017). As such, if the vergence signal contains a lot of noise, the prediction would be
that the scaling of disparity and therefore shape constancy will be poor at estimating
the true depth, as would be evidenced by a negative correlation between vergence

noise and shape constancy.
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on a Bayesian model of dlstance perception from ocular convergence Graph (@)
shows probability densities of vergence angle for distances between 30 and 100cm,
making the assumption that variance is constant across vergence angles. Graph (b)
shows information from graph (a) as a function of distance, showing the probability of
a distance being selected from the observed vergence angle as the most likely
estimate at a given distance. Graph (c) shows perceived distance against physical
distance for differing levels of noise (bias) in vergence angle, here shown by
standard deviations, between 0.25° and 1.75°, as well as results from a previous
study that is concordant with their work (Viguier, Clément, & Trotter, 2001).

Figure 3.6 shows a theoretical interpretation of distance underestimation
proposed by Scarfe and Hibbard (2017), which assumes that the uncertainty of
vergence is constant across distance. The theory they have put forward suggests
that errors in the estimation of physical distances may stem from increased noise in
distance estimates derived from the vergence signal, which leads to maximum
likelihood errors. Relating this back to the trigonometry presented earlier, for an

observer with an 10D of 6.3cm, with a vergence signal reporting a vergence angle of
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3.6°, an observer should give an answer of distance estimated at 100cm. However,
as the graphs show, there is noise in several stages of this process. When
estimating the vergence angle, multiple neurons in the primary visual cortex are
excited by any given vergence signal, including the correct responses, as well as
many around it (Kaufman & Alm, 2003). As such, the brain selects the most

likely vergence angle to have excited the neurons in such a pattern. The first graph
shows the probability of vergence for the given distances between 30 and 100cm
(Figure 3.6a). These are assumed to be normally distributed, with the mean
indicating the most likely vergence angle for a given distance. As such, this

represents an opportunity for errors to be made, due to a noisy signal.

These probability densities can be replotted as a function of distance, such that
the next graph shows the probability density that a given distance will be estimated
from the measured vergence angle (Figure 3.6b). The peaks of the curves represent
the most likely distance to be estimated by an observer. This creates a potential for
bias. At 30cm, the peak estimate is accurate, as this shows an observer would be
most likely to estimate the distance at 30cm to be 30cm. However, the predicted bias
(underestimation of distance) increases with increasing distance, so that a
noisy vergence signal for an observer viewing an object at 100cm is predicted to
produce a distance estimate of around 70cm. This can be seen in the third graph,
which displays how maximum likelihood estimates of distances progressively cause
observers to underestimate the physical distance of a fixation point (Figure 3.6c).
Viguier et al. (2001) reported data that fit with this theory that increased noise in
the vergence signal, indicating increased biases, leads to progressively less
accurate estimates of physical distances, in that these are increasingly

underestimated at further distances.
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The purpose of the current study was to measure the precision of vergence,
as well as the accuracy of shape constancy, and see if the first predicted the second.
This was achieved through two tasks, one which tested participants' certainty and

bias of vergence, and one which measured their shape constancy across distance.

3.2.5 Measuring certainty of vergence and shape constancy

The task designed to assess a participant's certainty of vergence was
a nonius lines task which involved presenting participants with a pair of nonius,
or vernier, lines which were presented dichoptically - one to each eye (Jaschinski,
Brode, & Griefahn, 1999). Presenting one image to each eye in this way removed
binocular disparity information, allowing for measurement of vergence noise for the
perceived fixation point, since uncertainty or bias in vergence leads to uncertainty or
bias in the nonius line alignment judgement. The nonius line task is typically used to
measure visual acuity, but instead here the task was used to assess certainty of
vergence by measuring the bias and noise of the vergence estimates. Observers
were presented with the pair of nonius lines and asked which line appeared
rightmost. The lines were generated with differing horizontal offsets to explore
certainty through the smallest just noticeable difference (JND) in the stimuli intensity,
and the bias through the point at which the lines appeared lined up to observers. An
observer with more certainty of vergence would therefore show better precision in
this task than one who is less certain, who would present with a smaller just

noticeable difference.

Chopin, Levi, Knill and Bavelier (2016) used a nonius lines task to measure

noise of the vergence signal to explore the suggestion that vergence noise accounts
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for the observed difference between accuracy of absolute and relative depth
estimates. They estimated a value for vergence noise of 225 arc seconds. They also
found a difference between absolute and relative disparity acuities but concluded

that this could not be explained by vergence noise alone.

Similar methods were used by Chopin, Levi and Bavelier (2017) to study
individual differences in binocular visual acuity by comparing dressmakers to a
control group. They were interested to see if dressmakers, who need to be able to
converge their eyes accurately for their work, and use disparity to perceive depth
differences, would show less vergence noise than people of other professions. They
presented dressmakers with pairs of nonius lines by flashing them on screen and
asked them to report whether the line above fixation was to the left or the right of the
line below. From this they measured how accurate observers were with vergence as
a measure of bias, and looked at the spread of variability of their staircase procedure
as a measure of noise of the vergence signal. They found that dressmakers had
better stereoacuity than non-dressmakers, although vergence bias and noise were
not found to differ significantly between the groups. We adopted the methods
outlined in these two studies by Chopin and colleagues (2016; 2017) to calculate an
estimate of vergence noise in order to find the JND as a measure of observer's

certainty of vergence.

The second task was designed to measure accuracy of depth perception
across distance, in order to assess the observer's shape constancy. Participants
were presented with stimuli at four distances ranging from 40 to 100cm, and asked
to make a judgement about the depth of the stimulus presented (Bradshaw, Parton,

& Glennerster, 2000). In line with previous work, errors made here were expected to

85



3.2 Introduction

increase with increasing physical distance, showing a lack of shape constancy.
Specifically, it was predicted in the present work that the JND would increase with
distance and also that perceived depth would tend to decrease with increasing

distance (Johnston, 1991; Bradshaw, Parton, & Glennerster, 2000).

The stimulus for the depth task in the present work was a triangle in 3D space,
defined by three dots in a vertical line. The top and bottom dot were presented at the
same distance, and the middle dot at a closer distance to create a triangle in depth.
Participants judged whether the depth of this triangle was larger or smaller than half
its height as the standard stimulus. This allowed us to calculate a Point of Subjective
Equality (PSE) indicating the point at which the presented stimulus appears to be
exactly equal to the standard stimulus (Rajamanickam, 2002). A JND was calculated
to quantify the precision of these judgements. A regression slope was then
calculated from the PSE scores from the four distances, which provided a measure
of the change in bias with increasing distance, showing shape constancy, or a lack
thereof. With perfect constancy, the slope of this line would be zero. If participants
underestimated depth at far distances relative to close distances, the slope of the
line would be positive, since this would show that observers required an increasing
amount of depth in the stimulus to maintain a constant perceived depth. Therefore,

the bigger the slope value, the worse the shape constancy.

This approach is similar to the work of Bradshaw, Parton and Glennerster
(2000), who probed the relationship between relative and absolute depth recovery in
a shape constancy task. Based on Johnston’s (1991) ‘apparently circular cylinder’
task, they presented participants in their shape task with a set of Light Emitting

Diodes (LEDSs) to create a triangle, and asked them to adjust the location of the
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LEDs to match the distance between the base LEDSs, so to set the height of the
triangle equal to the width. The LEDs were placed along the horizontal line of sight of
the observers to remove the potential of vertical disparity information. The separation
of the two LEDs that formed the base of the adjustable triangle was fixed at 20cm for
the closer condition viewed at 150cm, and 40cm for the further condition viewed at
300cm. This experiment was conducted both monocularly and binocularly, in a
darkened room with no additional light sources, and observers used a headrest, that
either kept their position fixed in the static conditions or allowed free movement side

to side of 6.5cm in the motion conditions.

In order to complete this task, the viewing distance needed to be recovered
from the scene by observers, in order to scale the depth information received
between the relative disparities of retinal images from the two eyes such as for static
binocular viewing. As the base height of the triangle scaled with viewing distance,
the observers were expected to scale their responses accordingly between the
further and closer viewing conditions if singularly taking into account viewing
distance. However, they found systematic biases for shape constancy that had not
been observed in their other experiments using the same viewing distances. An
effective scaling distance was calculated as the distance at which the disparity of the
stimuli set by the observer matches the expected correct response of either 20cm or
40cm for the 150cm and 300cm viewing conditions respectively. The difference
between this scaling distance and veridical performance was found to increase with
viewing distance, in that further distances produced a higher rate of
underestimations of depth than at a closer distance, showing reduced shape

constancy across viewing distances.
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Given the expected differences in bias between observers, the current work
was interested in individual differences of certainty of vergence and associated
shape constancy, and correlated scores to look for a relationship between the two.
Nefs, O’Hare and Harris (2010) used an individual differences approach to explore
motion in depth perception. Their work presented participants with two random dot
stereogram (RDS) frames, one above the other, that simulated motion in depth over
time in the form of dots moving towards or away from the observer. They present two
theories as to how depth from motion is deduced, and as such they presented stimuli
containing information for either Changes in Binocular Disparity over Time (CDOT),
Interocular Velocity Differences (I0VD), or information for both mechanisms
together, and asked participants to report if they perceived the motion of the upper
panel to be moving towards or away from themselves. They correlated scores
between the different mechanism conditions to look for a relationship between
stimulus type and one or more mechanisms underlying performance, and found
evidence of two opposite patterns of sensitivity between participants. From this, they
highlight the importance of consideration of individual differences for mechanisms
underlying visual perception. Likewise, Hibbard, Bradshaw, Langley and Rogers
(2002), looked at individual differences and the mechanisms that underlie these for
the perception of stereoscopic surface slant. They correlated results of thresholds for
orientation and spatial frequency discrimination with 3D slant perception, and found
a positive correlation between the two, from which they argued that perception of
surface slant is limited by sensitivity to the underlying orientation and spatial

frequency differences.

Firstly, as the main focus of this work, we predicted that there would be a

positive relationship between the slope of the PSE in the depth task, and the JND in
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the vergence task, such that as the slope of the PSE in the depth task increased, the
JND in the vergence task would also increase. This would show that if a participant
is less certain of vergence, as shown by a larger JND in this task, they would also
show less shape constancy through a steeper slope of PSE scores in the depth task.
Equally, those with lower JND scores in the vergence task, showing greater certainty
of vergence, were expected to show more shape constancy across the four

distances, as indicated by a shallower PSE slope.

From the information outlined above, it was predicted that all participants would
exhibit increasing levels of systematic bias for depth estimates with increasing
stimulus distance, requiring a deeper triangle, and therefore larger PSE score, for
further distances. As the JND scales with the size of the stimuli, we also predicted

that the JND would naturally increase as the PSE increased in the depth task.

We were not expecting a systematic bias in the vergence task, as the
PSE score should not have differed with increasing stimuli distance. This is because
the PSE in the vergence task indicates the point at which participants viewed the
lines as lined up. This point was not expected to change with distance. Although
some observers may exhibit bias in this task, this bias should remain constant
across the four distances. However, the JND was expected to decrease with
increasing stimuli distance, as it scaled with the size of the vergence angle, which in

turn reduced with distance.

In summary, observers’ certainty of vergence was tested with a nonius lines
vergence task to establish a JND, their shape constancy was measured using the
PSE from the triangles depth task, and the two were correlated to look for a

relationship between certainty of vergence and shape constancy. This work
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predicted that observers with less certainty of vergence shown in the nonius lines
task would exhibit reduced shape constancy and greater variability in the triangles

task.

3.3 Methods

3.3.1 Participants

35 participants between the ages of 18 and 28 were recruited. 74% identified
as female and 26% identified as male. All were screened prior to the start of the
experiment for normal or corrected-to-normal vision, as well as stereoscopic acuity.
Participants included one of the researchers, as well as 34 people naive to the

purpose of the experiment.

3.3.1.1 Recruitment

Participants were recruited through the University of Essex’s online SONA
system, as well as through word of mouth. Some participants who were enrolled as
Psychology students received course credit for their participation, while others were

compensated financially.

3.3.1.2 Screening

Two vision tests for normal vision and stereo acuity were administered to see
if participants qualified for the experiment. The Stereo Optical Butterfly random dot
depth test (Stereo Optical, 2020) was administered to screen for sufficient gross

stereopsis, with the cut-off point for participation being if participants could view the
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entire 3D butterfly, which equated to 700 seconds of arc. This was viewed

through polarised glasses at a distance of 41cm (16 inches), as per the instructions.
Participants were also screened for normal or corrected-to-normal vision using the
Lighthouse Distance Visual Acuity Test. The cut-off point for participation was
receiving a Snellen score of 32 or better, as this gave participants a visual acuity
score of 90, with the Snellen ratio 20:20 being considered normal vision, which
indicates a visual acuity score of 100. Participants who did not meet the screening
criteria were thanked for their time and did not participate. Those who did pass the
screening then underwent set up tasks. Participants’ IOD was measured as the
distance between the two eyes using a standard ruler. This was measured three
times and average taken to ensure accuracy. The participant’s dominant eye was
assessed by holding up a pen at arm’s length with both eyes open and aligning it
with a mark on the far wall, then alternately closing each eye to see which remained

aligned (Porac & Coren, 1976).

3.3.2 Apparatus

The stimuli for both tasks were generated and presented using MATLAB with
the Psychophysics Toolbox extension (Brainard, 1997; Kleiner, Brainard, & Pelli,
2007; Pelli, 1997) and were viewed on a 52 by 29cm VIEWPixx3D monitor with a
resolution of 1920 by 1080 pixels. VIEWPixx 3D synchronisation LCD shutter
goggles synchronised to the 120Hz refresh rate of the screen, along with a 3DPixx
IR emitter, presented a different image to each eye individually, giving a total of 60
frames per second to each eye. Stimuli were presented in red and the crosstalk

between eyes was measured to be 0.12% using a Minolta LS-110 photometer.
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Participants sat with their head on a chin rest, adjusted so that the middle of the
screen was at eye level for each participant, to minimise head movements during
trials to eliminate additional depth cue information. Responses were recorded using

either the ‘Up’ or ‘Down’ arrow keys on a standard computer keyboard.

3.3.3 Stimuli
The stimuli presented for the vergence task were a pair of red vertical
nonius lines, 10mm tall and 4mm wide, set against a black background. These were

presented one line to each eye as shown in Figure 3.7 using the VIEWPixx goggles.

Left eye Convergence Right eye
view view

Figure 3.7: Nonius lines stimuli. Image showing left and right eye views of example
nonius line stimuli, with the view of convergence.

The stimuli presented to participants in both the vergence and the depth tasks
were generated using a ‘psi-marginal’ psychophysical staircase method (Prins,
2013), using the Palamedes Toolbox extension (Prins & Kingdom, 2018) within

MATLAB. This calibrates the stimulus level based on participants’ response in the
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previous trial to get a good fit for the psychometric function by positioning points
along the curve to get a good measure of both the midpoint and the slope, and
calculates the main parameters including the standard error for each trial, ensuring a
robust result and giving increased confidence in the estimates it provides. A
maximum of 20 steps in stimuli intensity were set, calculated using the angle of the
stimuli in degrees. Figure 3.8 shows three example presentations of pairs

of nonius lines.

(@) (b) ©)

Figure 3.8: Differing nonius orientations. Representation of three different variations
of stimuli that could have been presented to participants during the vergence task.
Participants were presented with a single pair of lines where the top line was either
on the left (a), in line with the bottom line (b) or to the right (c).

The psi-marginal method also allows for inclusion of differing guess and lapse
rates, where other methods predetermine these. The guess rate, or gamma, is the
starting point of the psychometric function, which in this work is always 0 as the
starting point of the proportion of responses. The lapse rate, or lambda, is the point
at which the psychometric function lapses, and can vary up to 100%. Ensuring these
parameters can vary reduces floor and ceiling effects. This way, participants were

presented with stimuli that measured their individual ability level in the tasks,
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meaning individual differences were better recorded than if a set range of stimuli had
been presented. This method is also beneficial in addressing issue of participants
making a mistake. Were an observer to accidentally press up instead of down, this
method would adjust the stimuli intensity, but this would then be corrected in
subsequent trials. In other adaptive methods, mistakes made by the observer may
result in stimuli intensities skewed by this error (Prins, 2013). Additionally, this
method presents a number of trials with intensities away from the threshold, ensuring
optimal slope estimation (King-Smith & Rose, 1997), a main benefit over traditional

staircase methods (Cornsweet, 1962).

The stimuli used in the depth task consisted of three red dots presented
against a black background in a vertical line, representing a triangle in 3D
space (see Figure 3.9). The dots were 5mm in diameter and the base height of the
triangle, as represented by the top and bottom dots, was 4cm. The dots were
rendered as spheres within MATLAB so as to scale appropriately with distance, and
no light source was added to the scene which ensured they appeared as dots and

not spheres.

Left eye Convergence Right eye
view view

Figure 3.9: Triangles stimuli. Image showing stimuli in the triangles depth task,
including the view presented to the left and right eyes, and image seen by
participants when converging the scene.
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100 trials were displayed per block. Although the range of stimuli seen by each
participant was unigue to them, there were limitations on the range of stimuli that the
program was able to present. For the vergence task, the range for the distance
between the nonius lines was between 0 and 2000 seconds of arc. For the depth
task, two ranges were used. At the closer distances from the monitor (40 and 60cm),
the depth of the triangle presented could be between 0 and 8cm, and for the further
distances (80 and 100cm), the range of triangle depths was between 0 and 15cm.
these ranges were tested during piloting of the study and found to offer a wide

enough range of stimuli to capture sufficient data.

3.3.4 Procedure

Written consent was obtained from participants, and the screening tests were
administered, with only those whose performance was better than the set criteria
being invited to take part in the study. Both tasks took place in a darkened room, and
stimuli were presented at a distance of either 40cm, 60cm, 80cm or 100cm by
moving the monitor to these distances from participants’ eye level. Each of the two
tasks was presented at each of the four distances, giving a total of eight blocks.
Blocks of trials were randomised between participants to avoid practice effects.
Participants were seated in the darkened room with their chin in the chin rest prior to
the start of the experiment. Between each of the eight blocks, the dark room was
illuminated to allow setup of the next block, as well as reduce participants’ adaptation

to the lack of light, which may have provided additional depth cue information.

For the vergence task, a 10mm fixation cross appeared at the centre of the

screen for 1 second. This was then automatically replaced by a set of nonius lines,
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which were presented for 100ms. These were then replaced by a black screen and
participants were given as long as they required to respond. Participants were
required to report the location of the line which appeared to them to be on the right.
For instance, if participants thought the line on the right was the top of the pair of
lines (as per Figure 3.8c) they were instructed to press the ‘Up’ arrow key on the
keyboard, and to press the ‘Down’ key when the line on the right appeared to be the
bottom of the pair of lines (see Figure 3.8a). If participants were unsure of which line
was right-most, or if the lines appeared to line up perfectly (as per Figure 3.8b)
participants were instructed to guess either ‘Up’ or ‘Down’. Once participants had
pressed the key corresponding to their answer, the next trial began automatically, as

indicated by the fixation cross.

Observer

< >

Distance (D)

Figure 3.10: View of the experiment. Representation of a side view of the participant
in the experiment, where D is the distance of the monitor, either 40cm, 60cm, 80cm
or 100cm. Participants were tasked to decide if a presented triangle was too shallow
or too deep, with the ‘perfect triangle’ being one in which the distance between the
closest dot and the line created by the other two dots (z) was equal to half of the
height of the vertical line (H).
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For the depth task, again a 10 mm fixation cross appeared for 1 second at
the centre of the screen, aligned to the depth of the base of the triangle. This was
then replaced with the three dots. These were presented for 100ms, before being
replaced by a black screen, and allowing participants as long as required to input an
answer. Again, this was done by pressing either the ‘Up’ or ‘Down’ arrow key. Figure
3.10 shows a side view representation of the participant in the experiment.
Participants were informed that a ‘perfect’ triangle in this task would be one where
the distance of the closest dot (z) was equal to half the height (H). If the triangle
presented on the screen looked too shallow to be a ‘perfect’ triangle, participants
were instructed to press the ‘Up’ arrow key, and to press the ‘Down’ arrow key if the
presented triangle looked too deep. Once participants had pressed the key
corresponding to their answer, the fixation cross appeared once more to indicate the
start of the next trial. Once the block of trials was finished, the room was illuminated
and the screen moved to the appropriate distance for the next block of trials, as per
the randomised order for each participant. At the end of the eighth block, participants

were debriefed on the purpose of the experiment.

3.4 Results

3.4.1 Data treatment and psychometric functions

Raw scores for each participant were in the form of responses to the task
stimuli. For the triangles depth task, this was a response of 0 from pressing the
‘Down’ arrow key if the depth was deemed deeper than the reference stimuli, and 1

from pressing ‘Up’ if it was deemed shallower. For the nonius lines vergence task,
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this was a response of 0 from pressing the ‘Down’ arrow key to indicate the line on

the right was at the bottom, and a 1 to indicate it was at the top of the pair.

The psi-marginal method used in this work fit a new psychometric function to
the data and calculated four key parameters, as well as the standard error, for each
of the 100 trials: alpha, beta, gamma and lambda, and used these to identify each
participant’s individual level of performance. This process can be seen in Figure 3.11
where the slope estimates and standard errors start off high in the first few trials and

quickly reduce with changing stimuli intensity as the psychometric function is refit

each trial.

Slope estimates and standard errors
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Figure 3.11: Psychometric fit. Graph showing example of change in slope estimate
and standard error from refit of psychometric function across trials with the psi-
marginal method for one participant in the vergence task at a distance of 100cm.

From these, cumulative Gaussian psychometric functions can be calculated

for each participant at each distance. Here, two parameters are most important, the

98



3 Vergence scales binocular depth estimates, but does not account for shape
constancy

threshold and the slope of the psychometric function (Prins, 2013). The threshold, or
alpha parameter, indicates the location of the psychometric function and denotes the
PSE stimulus intensity that specifies a desired level of performance has been
achieved, which for this task represents the point at which observers were equally
likely to press up or down. Values were expected to match the veridical 50% point,
which is 2cm for the depth task, and 0 minutes of arc for the vergence task, if no bias
was present. The slope value, or beta, denotes the function’s rate of change, with a

smaller result indicating a shallower slope and therefore less certainty of response.
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Figure 3.12: PSE and JND. Graphs to show how the PSE and JND were calculated
for this experiment from the psychometric function. PSE in the depth task was
calculated as the point at which 50% of responses were ‘Down’ and the JND in the
vergence task was taken as one standard deviation which here gave a criterion JND
of between 16 and 84%.

Figure 3.12 above illustrates how the PSE and JND were calculated from the
cumulative Gaussian psychometric function curve, and the values used for the cut
off. In this work, the graphs plot the percent of Down arrow key responses made by

participants when viewing a stimulus of that size or intensity against the size of the

99



3.4 Results

stimulus presented. The shape of the curve shows how participants change from
confidently always indicating that the stimulus shown was shallower than the
standard stimulus indicated by 0% of Down responses, to always pressing that the
stimulus shown was deeper than the standard stimulus, indicated by 100% Down
responses, when presented with a stimulus of a larger magnitude. This would
represent, for instance, a triangle that is obviously deeper always causing the
participant to press the Down arrow key. The middle of the curve represents a
participant’s uncertainty when presented with a stimulus closer to the veridical

magnitude of the standard stimulus.

From the psychometric functions, two parameters were used for both the depth
and the vergence tasks. The Point of Subject Equality (PSE) was calculated as the
point at which participants gave each answer 50% of the time, indicating the size of
the stimulus that participants believed to be the same size as the standard stimulus,
which comes from the alpha parameter. For the depth task, this was the point that
participants would have said that the presented triangle was the same depth as the
standard stimulus, and therefore were equally likely to say deeper or shallower 50%
of the time. For the vergence task, this is the point at which participants would have
said that the lines were exactly lined up. Specifically of interest in this work is the
PSEs in the depth task, which show how the bias changes with increasing stimuli

distance, showing shape constancy.

The standard deviation of the underlying Gaussian was also determined as the
inverse of the estimated slope. This value determines the Just Noticeable Difference

(JND), the difference in stimuli magnitude required for participants to notice a
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difference at a criterion level of reliability. The measured value of one standard

deviation corresponds to a criterion JND of between 16 and 84%.
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Figure 3.13: Psychometric curve. Example psychometric function slopes for one
participant at all four presentation distances. Bigger circles indicate more trials of this
stimuli intensity presented to participants.

This graph shows the percent of responses where the participant pressed the
down arrow key to indicate that the line on the right was at the bottom of the pair of
nonius lines. Here, the more trials presented to a participant by the psi-marginal
method, the bigger the circle. The curve at 40cm is fairly steep, as seen from the
sudden shift to 100% of responses resulting in the Down arrow being pressed at
around 0.15 degrees of arc. This shows the observer confidently reported the

rightmost line with a small difference in presented stimuli, showing less noise in the
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vergence signal and therefore higher certainty of vergence. The PSE and JND were

extracted directly from the psi-marginal output.

3.4.2 Effect of distance of PSE and JND

Means and standard errors (SE) for the PSE and JND were calculated for both
tasks. These are plotted in Figure 3.14. The dashed line indicates what perfect
performance would look like, without the expected systematic bias, here, 2cm for the

triangles depth task, and a PSE of 0 seconds of arc for the vergence task.
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Figure 3.14: Vergence and depth task results. Graph showing mean (SE) PSE and

JND scores for the depth and vergence tasks. Black dashed line shows predicted
performance.
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As this experiment uses a repeated measures design, linear mixed effects
models were used to account for the fact that residuals between scores for one
observer are more similar than the residuals between observers. By including a
grouping variable in the model, this allows their individual intercepts and slopes to
vary from the average (Morrell, Pearson, & Brant, 1997). The formula used for the

linear mixed effects model is:

Equation 3.13
pf~1+d +(1+d]|o)

This tested whether the fitted psychometric function parameter (pf) of PSE or
JND changed significantly over distance (d) as a fixed factor, with random slopes
and intercepts and a grouping factor of observer (o). This model was fit four times to
account for the depth task PSE (pd) and JND or sigma (sd), and the vergence task

PSE (pv) and JND or sigma (sv).

All four parameters varied significantly with distance (p<.05 with confidence
intervals not including 0), as shown in Table 3-1. This model takes into account the
random slopes and intercepts, but it was found that changing this model to other
combinations of random factors did not significantly change the estimates, and the
full random slopes and intercepts model provided the best goodness of fit using the

lowest AIC values.

Table 3-1: LME results for PSE and JND of both tasks.

Variab Estima p Lower Upper
le Model te SE DF Value Cl Cl
d~1
Depth p
PSE  * ? . 00647 “° 138 <20 00484 00809

®d) d)o)
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Depth
JND
(sd)

Vergen
ce
PSE

(pv)

Vergen
ce JND

(sv)

sd~1

+d 0.0011 0.000
+(1 5 4
+d|o)

pv~1
+d
+(1
+d|o)

-2.252 0.638

sv~1
+d
+(1
+d|o)

-5.35 1.40

138

138

138

.013*

.001**

<.001

**k*

0.0002

-3.514

-8.13

0.0020
5

-0.990

-2.57

As can be seen, the PSE for the depth task does indeed increase with

increasing stimulus distance as predicted, showing a general failure of shape

constancy. The participants were instructed to set the depth of the triangle to half the

height of the 4cm base, and we find that observers set the depth veridically at 40cm,

with increasing errors (underestimation) with increasing viewing distance. The JND

in the depth task also increased with distance as predicted, although to a lesser

extent than the PSE.

Figure 3.14 shows both the PSE and JND scores for the vergence task

decreasing with increasing stimuli distance. A systematic bias was observed in the

PSE scores in the vergence task. The dashed line indicates performance with no

bias, as the PSE score here indicates the point at which the lines appear to be lined

up, and this was not expected the change with increasing stimuli distance. However,

it can be seen that, in general, participants were the most accurate at 80cm, with

accuracy increasing with increasing stimuli distance, as shown by the slope of the

red line. This suggests that participants were fixating on a point closer than the point

at which the stimuli were being presented at the far distance, causing a slight
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crossed disparity, and fixating on a point beyond the screen at a closer distance,

creating an uncrossed disparity. This fixation disparity is shown in Figure 3.15.
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Figure 3.15: Fixation error. Graph plotting mean (SE) fixation error, showing change
from crossed to uncrossed disparity with increasing stimulus distance.

To explore this potential fixation disparity effect, the bias and noise of vergence
were correlated using the PSE and JND. A modest correlation was found between
vergence noise and bias at the closer distance of 60cm, however confidence

intervals denote a wide range:

Table 3-2: Correlation coefficients for PSE and JND in the vergence task.

Distance R DF p value Lower CI Upper CI
40cm 0.19 33 272 -0.15 0.49
60cm 0.37 33 .028* 0.04 0.63
80cm -0.04 33 .810 -0.37 0.30
100cm 0.03 33 879 -0.31 0.36
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An LME model with random slopes and intercepts was fit with the following
eqguation to see if fixation distance (fd) is predicted by viewing distance (d), when

grouped by observer (o).

Equation 3.14
fd~1+d+ (1 +do)

The ideal observer would be expected to have a slope of 1. Here, stimulus
distance was found to predict fixation distance very highly, as can be seen in the
figure below, with an estimate of 0.99 (p<.001, 95% CI [0.98 1.00]). As fixation
distances, despite these small biases, were largely congruent with the veridical

stimulus distance, fixation disparity alone does not explain the findings.
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Figure 3.16: Fixation distance. Graph showing the mean (SE) calculated fixation
distance against veridical stimulus distance.
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3.4.3 Shape constancy

The disparity produced by a depth of 2cm will reduce with the square of
distance. However, as stated above, the observed bias in the vergence task
suggests that observers are fixating a point other than the target distance, known as
fixation disparity. A possible source of error is if observers are using the fixated
distance, rather than the target dist