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Abstract. In most social choice settings, the participating agents express their preferences over the different
alternatives in the form of linear orderings. While this clearly simplifies preference elicitation, it inevitably leads
to poor performance with respect to optimizing a cardinal objective, such as the social welfare, since the values
of the agents remain virtually unknown. This loss in performance because of lack of information is measured by
the notion of distortion. A recent array of works put forward the agenda of designing mechanisms that learn the
values of the agents for a small number of alternatives via queries, and use this limited extra information to make
better-informed decisions, thus improving distortion. Following this agenda, in this work we focus on a class of
combinatorial problems that includes most well-known matching problems and several of their generalizations. For
problems such as One-Sided Matching, Two-Sided Matching, General Graph Matching, and Short Cycle Packing,
we design two-query mechanisms that achieve the best-possible worst-case distortion in terms of social welfare, and
outperform the best-possible expected distortion achieved by randomized ordinal mechanisms. Our results extend
to problems like k-Constrained Resource Allocation, General Graph k-Matching, and k-Clique Packing, when k is
restricted to be any constant.
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1. Introduction. The notion of distortion in social choice settings was defined to cap-
ture the loss in aggregate objectives due to the lack of precise information about the pref-
erences of the participants [38]. More concretely, the distortion was originally defined as a
measure of the deterioration of the total happiness of the agents when access is given only to
the (ordinal) preference rankings of the agents, rather than to the complete numerical (cardi-
nal) information about their preferences. This research agenda has successfully been applied
to a plethora of different settings, giving rise to a rich and vibrant line of work in major venues
at the intersection of computer science and economics. For a comprehensive overview, see
the survey of Anshelevich et al. [8].

Out of all of these scenarios, some of the most fundamental are matching problems, in
which agents are matched to items or other agents, aiming to maximize the social welfare of
the matching (the total value of the agents). An example is the classic One-Sided Matching
setting [29], where the goal is to match n items to n agents based on the preferences of the
agents over the items. For this setting, Filos-Ratsikas et al. [24] showed that the best achiev-
able distortion is Θ(

√
n). Importantly, this guarantee is only possible if one is allowed to use

randomization and the values of the agents are normalized, since if any of these assumptions
is relaxed, it is impossible to achieve sub-linear distortion using only ordinal information.

Moving on from merely preference rankings, Amanatidis et al. [4] recently put forward
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the agenda of studying the tradeoffs between information and efficiency, when the employed
mechanisms are equipped with the capability of learning the values of the agents via queries.
The rationale is that asking the agents for more detailed information about only a few options
is still cognitively not too burdensome, and could result in notable improvements on the
distortion. This was indeed confirmed in that work for general social choice, and in a follow-
up work for several matching problems [6]. Specifically, the latter work shows that it is
possible to obtain distortionO(n1/k) withO(log n) queries per agent for any constant integer
k, and distortionO(1) withO(log2 n) queries per agent. Crucially, the mechanisms achieving
these bounds do not use randomization nor demand the values to be normalized.

While these works make a significant first step, they leave some important questions
unanswered. The mechanisms they propose require a logarithmic number of queries to
achieve any significant improvement. Answering that many queries might still be cognitively
too demanding for the agents, especially when there is a large number of possible options.
The main high-level motivation of this research agenda is that a small amount of information
can be more valuable than randomization. But really constitutes a “small amount”? Ideally,
we would like to design mechanisms that make only a few queries per agent, independently
of the size of the input parameters. Since with a single query, sub-linear distortion bounds
are not possible [6, 4], the first fundamental question that we would like to answer is the
following:

What is the best achievable distortion when we can only ask two queries per agent?

1.1. Results and Technical Overview. We settle the aforementioned question for sev-
eral matching problems, such as One-Sided Matching, Two-Sided Matching, and General
Graph Matching; our approach extends to other more general graph-theoretic problems as
well. For all matching problems considered, we show that there is a deterministic mecha-
nism that makes two queries per agent, runs in polynomial time, and achieves a distortion
of O(

√
n). This upper bound is based on a novel mechanism, which we call MATCH-

TWOQUERIES in the case of One-Sided Matching (see Mechanism 3.2). The mechanism
asks two queries per agent and computes a maximum-weight matching based on the revealed
values due to these queries. It starts by querying the agents at the first position of their prefer-
ence rankings. For the second query, it computes a certain type of assignment A of agents to
items (or agents to agents in more general matching problems), to which we refer as a suffi-
ciently representative assignment, and queries the agents about the items they are assigned to
in A. The existence of such an assignment for all instances is far from trivial, and one of our
main technical contributions is to show its existence and efficient computation for the wide
range of problems we consider.

We also show that no deterministic mechanism for these settings that makes two queries
per agent can achieve a distortion better than Ω(

√
n). This lower bound follows by a more

general construction yielding a lower bound of Ω(n1/λ) on the distortion of any mechanism
that makes a constant number λ of queries per agent. This mirrors the corresponding lower
bounds of Amanatidis et al. [6] for One-Sided Matching.

These results extend to graph-theoretic problems where the maximum degree of a feasi-
ble solution is bounded by a parameter k, such as k-Constrained Resource Allocation, General
Graph k-Matching, and k-Clique Packing, although the corresponding mechanisms do not al-
ways run in polynomial time. The distortion in this case is O(k2

√
n) and the corresponding

lower bound is Ω(n1/λ/k3) for mechanisms that make λ queries per agent. That is, when k is
restricted to be any constant, our mechanisms still achieve the (asymptotically) best possible
distortion with two queries per agent.

Despite the generality of our results, their most impressive implications are for One-
Sided Matching: We show that by using only two cardinal queries per agent, we can match
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the bound of Θ(
√
n) for purely ordinal mechanisms, without requiring randomization or

any normalization. MATCH-TWOQUERIES clearly also outperforms another mechanism of
Amanatidis et al. [6], which uses two queries and achieves a distortion of O(n2/3

√
log n)

assuming that the values of each agent sum up to 1. In contrast, our mechanism works for
unrestricted values, and achieves the best possible distortion ofO(

√
n) based on conceptually

much simpler ideas.
Results for general social choice. Given that our approach works for a wide variety of

matching problems, one might be curious as to whether similar arguments could be used to
show bounds for the general social choice setting, where n agents have preferences over m
alternatives, and the goal is to select an alternative with high social welfare; this was, after all,
the original setting that Amanatidis et al. [4] studied in the introduction of the information-
distortion tradeoff research agenda.1 In this setting, the situation is quite similar: the upper
bounds follow by mechanisms that ask O(logm) queries, and nothing positive is known for
smaller numbers of queries.

For the upper bounds, we show a conditional result. We show that a mechanism with
structure similar to that of MATCH-TWOQUERIES can indeed achieve a distortion ofO(

√
m)

using only two queries, subject to being able to compute a sufficiently representative set
of alternatives, which is analogous to the sufficiently representative assignment in matching
problems. It turns out that this property is very closely connected to the notion of an (approxi-
mately) stable committee [30, 21], and it follows that it exists when m = Ω(n), thus allowing
us to obtain the desired bound of O(

√
m) when this is true. This case is quite natural, as it

captures instances where a group of people need to decide over a large set of possible options
(e.g., shortlisting candidates for a job, deciding the best paper for a conference, etc.). Inter-
estingly, in contrast to the matching setting for which we show that sufficiently representative
assignments can be found via a simple greedy algorithm, computing sufficiently representa-
tive sets of alternatives in general social choice requires rather involved techniques [30, 21].
An obvious open question here is whether the O(

√
m) bound can also be achieved by asking

only two queries when m = o(n). This seems to be a more challenging task to prove; we
discuss it further in Section 6.

We also show that the bound of O(
√
m) is the best possible, as part of a more gen-

eral distortion lower bound of Ω(m1/λ) for mechanisms that make a constant number λ of
queries per agent; the latter result significantly improves the previously known lower bound
of Ω(m1/2(λ+1)) [4].

Roadmap. For the sake of presentation, we fully demonstrate how our methodology
works for the One-Sided Matching problem in Section 3. Before doing so, we start with
some necessary notation and terminology in Section 2. In Section 4, we briefly discuss other
graph-theoretic problems for which our methodology can be applied. Our results for general
social choice are presented in Section 5. We conclude with some interesting open problems
in Section 6.

1.2. Additional Related Work. The literature on the distortion of ordinal mechanisms
in social choice is long and extensive, focusing primarily on settings with normalized utilities
(e.g., [16, 22, 18, 25]), or with metric preferences (e.g., [7, 10, 9, 19, 20, 28, 37, 31]); see the
survey of Anshelevich et al. [8] for a detailed exposition. The distortion of mechanisms for
One-Sided Matching and more general graph-theoretic problems has been studied in a series
of works for a variety of preference models, but solely with ordinal information [12, 2, 13,
11, 24, 17].

1 It is easy to see that the general social choice setting generalizes the matching setting, as any matching can be
seen as an alternative, but agents have the same value for alternatives/matchings that assign them to the same items.
See the proof of Theorem 6 of Filos-Ratsikas et al. [26] for details.
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Besides the papers of Amanatidis et al. [4, 6], the effect of limited cardinal information on
the distortion has also been studied in other works [3, 34, 35, 15]. The One-Sided Matching
problem has also been studied by Ma et al. [33] using a different type of cardinal queries and
focusing on Pareto optimality (rather than social welfare).

Our upper bound for the general social choice setting makes use of the results of Cheng et
al. [21] and Jiang et al. [30] for (approximately) stable committees (see also Aziz et al. [14]);
a stable committee is very similar to a representative set of alternatives in our terminology.
Cheng et al. [21] showed that, while exactly stable committees do not always exist [30], find-
ing a random version of such committees, coined stable lotteries, is always possible and can
be done in polynomial time. Later on, Jiang et al. [30] showed that, via an intricate deran-
domization process, stable lotteries can yield approximately stable committees, where the
approximation is a small multiplicative constant; for our purposes, this is sufficient. Inter-
estingly, very recently, Ebadian et al. [22] used stable lotteries to construct a purely ordinal
randomized social choice mechanism that achieves the best possible distortion under unit-sum
normalized values.

2. Preliminaries on One-Sided Matching, Mechanisms, and Distortion. In One-
Sided Matching, there is a set N of n agents and a set A of n items. Each agent i ∈ N
has a value vi,j for each item j ∈ A; we refer to the matrix v = (vi,j)i∈N ,j∈A as the val-
uation profile. A (one-sided) matching X : N → A is a bijection from the set of agents to
the set of items, i.e., each agent is matched to a different single item. Our goal is to choose
a matching X to maximize the social welfare, defined as the total value of the agents for the
items they have been matched to according to X: SW(X|v) =

∑
i∈N vi,X(i). Usually v is

clear from the context, so we then simplify our notation to SW(X) for the social welfare of
matching X .

As in most of the related literature, we assume that we do not have access to the valuation
profile of the agents. Instead, we have access to the ordinal preference �i of each agent i,
which is derived from the values of the agent for the items, such that a �i b if vi,a ≥ vi,b; we
refer to the vector �v= (�i)i∈N as the ordinal profile of the agents.

A mechanismM in our setting operates as follows: It takes as input the ordinal profile
�v of the agents. It then makes a number λ ≥ 1 of queries per agent to learn part of the
valuation profile. In particular, each agent is asked her value for at most λ items. Given the
answers to the queries, and also using the ordinal profile, M computes a feasible solution
(here a matching)M(�v).

In this paper we focus on mechanisms that make two queries per agent, i.e., λ = 2, and
compute a solution of high social welfare. However, pinpointing an (approximately) optimal
solution without having full access to the valuation profile of the agents can be quite challeng-
ing; the ordinal profile may be consistent with a huge number of different valuation profiles,
even after the queries. Nevertheless, we aim to achieve the best asymptotic performance
possible, as quantified by the notion of distortion.

DEFINITION 2.1. The distortion of a mechanismM is the worst-case ratio (over the set
V of all valuation profiles in instances with n agents and n items) between the optimal social
welfare and the social welfare of the solution chosen byM:

dist(M) = sup
v∈V,|N |=n,|A|=n

maxX∈X SW(X|v)

SW(M(�v)|v)
,

where X is the set of all matchings between N and A.

3. An Optimal Two-Query Mechanism. In this section, we present a mechanism for
One-Sided Matching that makes two queries per agent and achieves a distortion of O(

√
n).
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Due to the lower bound of Ω(n1/λ) on the distortion of any mechanism that can make up to
λ queries per agent shown by Amanatidis et al. [6], our mechanism is asymptotically best
possible when λ = 2.

Without any normalization assumptions about the valuation functions, it is easy to see
that a mechanism cannot have any guarantee unless it queries every agent about her favorite
item. However, there are no obvious criteria suggesting how to use the second query. Before
we present the details of our mechanism, we define a particular type of assignment of agents
to items that will be critical for deciding where to make the second queries.

DEFINITION 3.1. A many-to-one assignment A of agents to items (i.e., each agent i is
assigned to one item A(i), but multiple agents may be assigned to the same item) is a suffi-
ciently representative assignment if
(a) For every item j ∈ A, |{i ∈ N : A(i) = j}| ≤

√
n, i.e., there are at most

√
n agents

assigned to j;
(b) For any matching X , |{i ∈ N : X(i) �i A(i)}| ≤

√
n, i.e., there are at most

√
n agents

that prefer the item they are matched to in X to the item they are assigned to in A.

We show that a sufficiently representative assignment exists for any instance and can
be efficiently computed. We do so via a a simple polynomial-time algorithm, which we
call
√
n-SERIAL DICTATORSHIP (Mechanism 3.1). This algorithm creates

√
n copies of

each item and then runs a serial dictatorship algorithm, which first fixes an ordering of the
agents and then assigns each agent to her most preferred available item according to her
ordinal preference. It is easy to see that the running time of

√
n-SERIAL DICTATORSHIP is

polynomial (in particular, it is O(n1.5)).

Mechanism 3.1
√
n-SERIAL DICTATORSHIP(N ,A,�v)

1: Let B be a multiset containing
√
n copies of each j ∈ A

2: for every agent i ∈ N do
3: Let αi be a most preferred item of agent i in B
4: Remove αi from B
5: end for
6: return A = (αi)i∈N

THEOREM 3.2. For any instance, the output of
√
n-SERIAL DICTATORSHIP is a suffi-

ciently representative assignment.

Proof. Let A be the output of the algorithm. During the execution of the algorithm,
whenever every copy of an item has been assigned, we say that such an item is exhausted.
Assume, towards a contradiction, that A is not a sufficiently representative assignment. By
construction, every item is assigned to at most

√
n agents, so there must be a matching violat-

ing the second condition of Definition 3.1. That is, there is a subset of items A′ and a subset
of agentsN ′, such that |A′| = |N ′| >

√
n, and each agent i ∈ N ′ prefers to be assigned to a

distinct item βi ∈ A′ (i.e., βi 6= βj for i 6= j) instead of the item she is assigned to in A.
Consider any agent i ∈ N ′. The fact that this agent was not assigned to βi by the

algorithm implies that when the agent was picked, item βi was exhausted. Since this is true
for all agents in N ′, at the end of the algorithm all items of A′ must be exhausted. However,
an item is exhausted when all its

√
n copies have been assigned and there are n agents in total,

so we can only have as many as n/
√
n =
√
n exhausted items. This means that |A′| ≤

√
n,

a contradiction.

Now, our mechanism MATCH-TWOQUERIES (Mechanism 3.2) first queries every agent
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about her favorite item. Next, it computes a sufficiently representative assignment A and
queries each agent about the item she is assigned to in A. Finally, it outputs a matching that
maximizes the social welfare based only on the revealed values (all other values are set to 0).
Although computational efficiency is not our primary focus here, if we use a polynomial-time
algorithm for computing a maximum weight matching (e.g., the Hungarian method [32]),
MATCH-TWOQUERIES runs in polynomial time as well.

Mechanism 3.2 MATCH-TWOQUERIES(N ,A,�v)

1: Query each i ∈ N about her favorite item w.r.t. �i
2: Compute a sufficiently representative assignment A
3: Query each agent about the item she is assigned to in A
4: Set all non-revealed values to 0
5: return a maximum-weight perfect matching Y

Of course, if we compare the mechanism’s behaviour to an actual optimal matching
X , we expect to see that we asked agents about the “wrong” items most of the time: for
many agents the second query is about better items than what they are matched to in X , and
for many agents it is about worse items. The desired bound of O(

√
n) on the distortion of

MATCH-TWOQUERIES is established by balancing the loss due to each of these two cases.

THEOREM 3.3. MATCH-TWOQUERIES has distortion O(
√
n).

Proof. Consider any instance with valuation profile v. Let Y be the matching computed
by the MATCH-TWOQUERIES mechanism when given as input the ordinal profile �v, and
let X be an optimal matching. Let SWR(Y ) be the revealed social welfare of Y , i.e., the
total value of the agents for the items they are matched to in Y and for which they were
queried about. We will show that SW(X) ≤ (1 + 2

√
n) · SWR(Y ), and then use the fact that

SW(Y ) ≥ SWR(Y ) to directly get the desired bound on the distortion.
We can write the optimal social welfare as

SW(X) = SWR(X) + SWC(X),

where SWR(X) is the revealed social welfare of X that takes into consideration only the
values revealed by the queries, whereas SWC(X) is the concealed social welfare of X that
takes into consideration only the values not revealed by any queries. Since Y is the matching
that maximizes the social welfare based only on the revealed values, we have that

SWR(X) ≤ SWR(Y ).(3.1)

To bound the quantity SWC(X), let S be the set of agents who are not queried about the
items they are matched to in X . We partition S into the following two subsets consisting
of agents for whom the second query of the mechanism is used to ask about items that the
agents consider better or worse than the items they are matched to in X . Recall that an agent
i is queried about the item A(i) she is assigned to according to the sufficiently representative
assignment A. So, S is partitioned into

S≥ =
{
i ∈ S : vi,A(i) ≥ vi,X(i)

}
, and S< =

{
i ∈ S : vi,A(i) < vi,X(i)

}
.

Given these sets, we can now write

SWC(X) = SW≥C(X) + SW<
C(X),
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where
SW≥C(X) =

∑
i∈S≥

vi,X(i)

and
SW<

C(X) =
∑
i∈S<

vi,X(i).

For every item j, let S≥j = {i ∈ S≥ : A(i) = j} be the set of all agents in S≥ that are
queried about j by the mechanism using the second query. Thus, S≥ =

⋃
j∈A S

≥
j . Since A

is a sufficiently representative assignment, |S≥j | ≤
√
n for every item j. Therefore,

SW≥C(X) =
∑
j∈A

∑
i∈S≥

j

vi,X(i) ≤
∑
j∈A

∑
i∈S≥

j

vi,j

≤
∑
j∈A
|S≥j | · max

i∈S≥
j

vi,j ≤
√
n
∑
j∈A

max
i∈S≥

j

vi,j

≤
√
n · SWR(Y ).(3.2)

For the last inequality, recall that A assigns every agent to a single item, and thus the sets
S≥j are disjoint. In addition, the values of all the agents for the items they are matched to
according to A are revealed by the second query of the mechanism. Notice that there exists
a feasible matching in which the agent in S≥j that has the maximum value for j is matched
to j. Since Y is a matching that maximizes the social welfare based on the revealed values,
from the above, we obtain that SWR(Y ) ≥

∑
j∈Amax

i∈S≥
j
vi,j .

Next consider the quantity SW<
C(X). By the fact that A is a sufficiently representative

assignment, it follows that |S<| ≤
√
n; otherwise X would constitute a matching for which

there are strictly more than
√
n agents that prefer the item they are matched to in X to the

item they are assigned to by A. Combined with the fact that all agents are queried at the first
position of their ordinal preferences, we obtain

SW<
C(X) =

∑
i∈S<

vi,X(i) ≤
∑
i∈S<

max
j∈A

vi,j

≤ |S<| · max
i∈S<

max
j∈A

vi,j

≤
√
n · SWR(Y ).(3.3)

The bound follows directly by (3.1), (3.2) and (3.3).

4. Further Combinatorial Optimization Problems. The approach of Section 3 can
be extended to a much broader class of graph-theoretic problems. Informally, our approach
works when the objective is to maximize an additive function over subgraphs of a given
graph which contain all “small” matchings and have bounded maximum degree. Although
technically this is not necessary for our results, we consider this maximum degree to be a
constant in all of our definitions below, as this is the case when our results are asymptotically
tight. Nevertheless, we include it as a parameter in the statements of Theorems 4.2 and 4.5
for full generality. We make the space of feasible solutions more precise in the following
definition.

DEFINITION 4.1. Given a constant k ∈ N and a weighted graph G on n nodes, we say
that a family F of subgraphs of G is a matching extending k-family if:

• Graphs in F have maximum degree at most k;
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• For any matching M of G of size at most bn/3kc, there is a graph in F containing
M .2

Clearly, the set of matchings of a graph (viewed as subgraphs rather than subsets of
edges) is a matching extending 1-family, but it is not hard to see that Definition 4.1 captures
other constraints, like subgraphs that are unions of disjoint paths and cycles (matching ex-
tending 3-family) or unions of disjoint cliques of size k (matching extending (k−1)-family).

We are ready to introduce the general full information optimization problem that we
tackle here; we then move on to its social choice analog. As this is a special case of the
class of problems captured by Max-on-Graphs (introduced by Amanatidis et al. [6]), we use a
similar formulation and name. Note that, in the above definition, the family F is independent
of the weights w. This is necessary as w will be unknown in general.

k-Max-on-Graphs: Given some k ∈ N, a weighted graph G = (U,E,w), and a concise
description of a matching extending k-family F , find a solution

H∗ ∈ arg max
H∈F

∑
e∈E(H)

w(e).

One-Sided Matching, as studied in Section 3, is the special case of k-Max-On-Graphs, where
G is the complete bipartite graph on the set of agents N and the set of items A, the weight
of an edge {i, j} is the value vi,j of agent i for item j, and F contains all the 1-factors
(matchings) of G. Note that the weights of the graph in this case are defined in terms of
the valuation functions of the agents. Moreover, recall that in our setting only the ordinal
preferences of the agents are given and their cardinal values can be accessed only via queries;
so, we do not know the weights that have not been revealed by a query. This is the case
for all the problems we are interested in, and is captured by the next definition. To avoid
unnecessary notation, items are modeled as dummy agents with all their cardinal values equal
to 0. In addition, we write w(H) :=

∑
e∈E(H) w(e).

Ordinal-k-Max-on-Graphs: Fix a k ∈ N and let N be a set of n agents. A weighted graph
G = (N , E, w) is given without its weights. Every agent i ∈ N has a (private) valuation
function vi : N→ R≥0, such that, for every e = {i, j} ∈ E,

w(e) = vi(j) + vj(i).

We are also given an ordinal profile �v= (�i)i∈N that is consistent to v = (vi)i∈N ,
and a concise description of a matching extending k-family F . The goal is to find H∗ ∈
arg maxH∈F w(H).

Besides One-Sided Matching, a large number of problems that are relevant to compu-
tational social choice are captured by Ordinal-k-Max-on-Graphs as special cases where the
space of feasible input graphs is restricted. We give a few examples:

General Graph Matching: Given a weighted graph G = (U,E,w), find a matching of
maximum weight, i.e., F contains the matchings of G and clearly is a matching extending
1-family. In the social choice analog of the problem, U = N .

Two-Sided Matching: This is a special case of General Graph Matching in which G =
(U1 ∪ U2, E, w) is a bipartite graph. It is an extensively studied problem in economics and
computational social choice [27, 39].

2 The constant 3 used here is arbitrary, subject to allowing for our proofs to work. A definition that would fully
capture the intuition of what is done here would have two constant parameters k, ` ∈ N and would refer to matchings
of size at most bn/`kc.
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k-Clique Packing: Given a weighted complete graph G = (U,E,w), where |U | = n is a
multiple of k ≥ 2, the goal is to partition U into |U |/k clusters of size k to maximize the total
weight of the edges in the clusters. That is, F contains all spanning subgraphs of G that are
the union of cliques of size k. As claimed above, F is a matching extending (k − 1)-family:
clearly every graph inF has maximum degree k−1, and any matching of size bn/(3(k−1))c
(which is less than n/k) can be extended to a graph in F by arbitrarily grouping each pair
of matched nodes with k − 2 unmatched nodes, and then arbitrarily grouping the remaining
nodes k at a time.

This problem generalizes General Graph Matching (for which k = 2) and often is re-
ferred to as Max n/k-Sum Clustering in the literature; see [11]. In its social choice analog,
U = N .

General Graph k-Matching: Given a weighted graph G = (U,E,w), find a k-matching of
maximum weight, i.e., F contains all the subgraphs of G where each node has degree at most
k. As F already contains all matchings of G of any size, it is straightforward that it is a
matching extending k-family. In the social choice analog of the problem, U = N .

k-Constrained Resource Allocation: Given a bipartite weighted graphG = (U1∪U2, E, w),
the goal is to assign at most k nodes of U2 to each node in U1 so that the total weight of the
corresponding edges is maximized. That is, F contains the subgraphs of G where each node
in U1 has degree at most k and each node in U2 has degree at most 1. Again, F already
contains all matchings of G of any size, so it is a matching extending k-family.

This problem generalizes One-Sided Matching. In its social choice analog,N = U1∪U2

is partitioned into the “actual agents” N1 = U1 and the “items” N2 = U2, and vi(j) can be
strictly positive only for i ∈ N1, j ∈ N2.

Short Cycle Packing: Given an integer ` and a weighted complete graph G = (U,E,w), the
goal is to find a collection of node-disjoint cycles of length at most ` so that their total weight
is maximized. Here, F contains any such collection of short cycles. Arguing as in k-Clique
Packing, it is straightforward to see that F is a matching extending (`− 1)-family (although
it is not hard to show that it is actually a matching extending 3-family). The social choice
analog of the problem has U = N , and is closely related to Clearing Kidney `-Exchanges
[1].

It is straightforward to extend the notion of distortion (Definition 2.1) for Ordinal-k-
Max-on-Graphs by taking the supremum over all instances of a certain size n and letting X
be the set of feasible solutions of each instance.

As already discussed in the Introduction, for One-Sided Matching, Amanatidis et al. [6]
showed a lower bound of Ω(n1/λ) on the distortion of all deterministic mechanisms that
can make up to λ ≥ 1 queries per agent. Using this, we can get the analogous result for
all the aforementioned problems. Although for some of them, like Two-Sided Matching and
General Graph Matching, the lower bound is immediate, here we show it for any problem that
is captured by Ordinal-k-Max-on-Graphs and is general enough. To make the latter precise,
we only consider special cases of Ordinal-k-Max-on-Graphs where the space of feasible input
graphs contains all complete bipartite graphs. Note that this is true for all the problems we
explicitly defined herein. For the statement of the theorem, we assume that for every (feasible)
graph G a matching extending k-family F(G) is specified.

THEOREM 4.2. Consider any problem captured by Ordinal-k-Max-on-Graphs for which
any complete bipartite graph is a feasible input and its feasible solutions are given by F( · ).
No deterministic mechanism using at most λ ≥ 1 queries per agent can achieve a distortion
better than Ω(n1/λ/k3) for the problem.
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Proof. We are going to show that if we had a deterministic mechanismM for Ordinal-k-
Max-on-Graphs that makes at most λ ≥ 1 queries per agent and achieves distortion o(n1/λ),
then we could design a deterministic mechanism for One-Sided Matching that also makes
at most λ queries per agent and has distortion o(n1/λ). As the latter is impossible [6], that
would imply that the lower bound applies to Ordinal-k-Max-on-Graphs as well.

Let (N ,A,�v) be an arbitrary instance of One-Sided Matching with |N | = |A| = n
and underlying weights defined by v = (vi,j)i∈N ,j∈A. We essentially use the same instance
for Ordinal-k-Max-on-Graphs: A complete bipartite weighted graph G = (U1 ∪ U2, E, w)
with U1 = N , U2 = A, and valuation functions defined as ui(j) = vi,j and uj(i) = 0 for
every i ∈ N , j ∈ A; the induced ordinal profile is also well-defined. Clearly, the matchings
in the two instances are exactly the same and have the same weight (although they may not
be feasible with respect to F(G)). However, the feasible solutions for Ordinal-k-Max-on-
Graphs include subgraphs where the nodes may have degree up to k instead of 1. We need
to relate the weight of an (approximately) optimal solution for the Ordinal-k-Max-on-Graphs
instance to the value of an optimal matching for the One-Sided Matching instance.

Let M be a maximum weight matching in G (and thus a maximum-value matching for
the original One-Sided Matching instance) and H ∈ F(G) be an optimal solution. Consider
the submatching M̂ of M that uses the b2n/3kc heaviest edges of M . Using the fact that
bxc ≥ x/2 for x ≥ 1, we get

w(M̂) ≥ b2n/3kc
n

w(M) ≥ 1

3k
w(M).(4.1)

Since F(G) is a matching extending k-family and M̂ is sufficiently small (since |V (G)| =
2n), there is some Ĥ ∈ F(G) such that M̂ is a subgraph of Ĥ . As H is a maximum-weight
element of F(G), we directly get w(H) ≥ w(Ĥ) ≥ w(M̂) and, combining with (4.1), we
have

w(H) ≥ 1

3k
w(M).(4.2)

Now, ifH ′ ∈ F(G) is an α-approximate solution to the same Ordinal-k-Max-on-Graphs
instance, then (4.2) implies

w(H ′) ≥ 1

α
w(H) ≥ 1

3αk
w(M).(4.3)

We can construct a matching from H ′ using only ordinal information. In particular, for each
i ∈ U1, among the edges in H ′ that are incident to i, we keep the best one with respect to
�i. Of course, the resulting graph H ′′ may not be a matching, as each node in U2 may still
have degree up to k. However, note that this process also keeps at least a 1/k fraction of the
weight incident to each i ∈ U1, and thus of the total weight. So, (4.3) implies

w(H ′′) ≥ 1

k
w(H ′) ≥ 1

3αk2
w(M).

We repeat the process for the remaining nodes: for each j ∈ U2, we keep the best of its edges
in H ′′ with respect to �j . Now the resulting graph M ′ is a matching and has at least a 1/k
fraction of the total weight of H ′′ and, thus,

w(M ′) ≥ 1

k
w(H ′′) ≥ 1

3αk3
w(M).

If needed, we can extend M ′ to a perfect matching M ′′ by arbitrarily matching the
unmatched nodes of U1 and U2, and consider its analog in the original instance. Clearly,



THE TWO-QUERY DISTORTION OF MATCHING PROBLEMS AND BEYOND 11

w(M ′′) ≥ w(M ′), and thus M ′′ is a (3αk3)-approximate solution for the original One-
Sided Matching instance. Therefore, if there existed a mechanism M with distortion α =
o(n1/λ/k3) for Ordinal-k-Max-on-Graphs with feasible solutions given by F , we could use
it for the above instance to get H ′ and then M ′′, which would have weight within a factor of
o(3n1/λ) from a maximum weight matching. This would imply a distortion of o(n1/λ) for
One-Sided Matching, a contradiction.

We are particularly interested in the case of λ = 2. In the next two sections we are going
to present a mechanism for this case, which is asymptotically optimal for constant k, namely
it achieves distortion O(k2

√
n), matching the lower bound we just derived (up to k5).

4.1. Sufficiently Representative Assignments. We now revisit the notion of a suffi-
ciently representative assignment. We will appropriately adjust it to refer to a single set
of agents (which, for the case of One-Sided Matching, includes both the actual agents and
the items), and also incorporates the parameter k from the definition of Ordinal-k-Max-on-
Graphs.

DEFINITION 4.3. GivenN1,N2 ⊆ N and k ∈ N, a many-to-one assignmentA of agents
in N1 to agents in N2 is an (N1,N2, k)-sufficiently representative assignment if:
(a) For every agent j ∈ N2, |{i ∈ N1 : A(i) = j}| ≤

√
n, i.e., there are at most

√
n agents

from N1 assigned to j;
(b) For any bipartite graphH with node setN1∪N2 and maximum degree k, |{i ∈ N1 : ∃j ∈
N2 such that {i, j} ∈ E(H) and j �i A(i)}| ≤ k

√
n, i.e., there are at most k

√
n agents in

N1 that prefer some of their neighbors in H to the agent they are assigned to according to A.

For One-Sided Matching and k-Constrained Resource Allocation,N1 is the set of actual
agents and N2 is the set of items. In contrast, for all other problems considered here we have
N1 = N2 = N .

Similarly to what we did in Section 3, we need to show that an (N1,N2, k)-sufficiently
representative assignment exists for any instance of Ordinal-k-Max-on-Graphs and for any
N1,N2 ⊆ N . We rely on the same high-level idea for the construction:

√
n copies of each

agent in N2 are created and then a SERIAL DICTATORSHIP algorithm is run with respect to
the agents in N1. The running time of

√
n-SERIAL DICTATORSHIP remains O(n1.5).

Mechanism 4.1
√
n-SERIAL DICTATORSHIP(N1,N2,�v)

1: Let B be a multiset with
√
n copies of each j ∈ N2

2: for every agent i ∈ N1 do
3: Let αi be i’s most preferred agent in B w.r.t. �i
4: Remove αi from B
5: end for
6: return A = (αi)i∈N1

The following theorem is the analog of Theorem 3.2. While the proof is very similar,
the counting argument here is somewhat less intuitive compared to the case of One-Sided
Matching due to the differences between Definitions 3.1 and 4.3.

THEOREM 4.4. The assignment computed by
√
n-SERIAL DICTATORSHIP is an

(N1,N2, k)-sufficiently representative assignment.

Proof. Let A be the assignment produced by the algorithm. During the execution of
the algorithm, whenever all the copies of an agent j ∈ N2 have been matched, we will say
that j is exhausted. Assume towards a contradiction that A is not an (N1,N2, k)-sufficiently
representative assignment. By construction, the first condition of Definition 4.3 is obviously
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satisfied. So, there must be a graph H , as described in the second condition of Definition
4.3, with respect to which there exists a subset S1 ⊆ N1 with |S1| > k

√
n such that every

i ∈ S1 prefers her best neighbor in H , say βi, to agent αi she has been assigned to in A. Let
S2 ⊆ N2 be the set that contains all these βis. Because H has maximum degree at most k we
have |S2| ≥ |S1|/k >

√
n.

Consider any agent i ∈ S1. The fact that this agent was not assigned to βi by
√
n-

SERIAL DICTATORSHIP implies that when it was i’s turn to pick, agent βi was exhausted.
Therefore, at the end of the algorithm, all agents of S2 must be exhausted. Since an agent in
N2 is exhausted when all its

√
n copies have been assigned and there are at most n agents

in N1, we can only have as many as n√
n

=
√
n exhausted agents. The latter means that

|S2| ≤
√
n, a contradiction.

4.2. The General Mechanism. We are now ready to show that it is possible to achieve
distortionO(k2

√
n) for any problem that can be modeled as a special case of Ordinal-k-Max-

on-Graphs. Our mechanism generalizes the main idea of An Optimal Two-Query Mechanism
of querying each agent about for her overall favorite alternative, as well as the alternative
suggested by an appropriate sufficiently representative assignment. For the latter, we need
to specify N1 and N2: These are typically both equal to the whole N , unless the problem
distinguishes between actual agents and items, in which case these two groups are captured
by N1 and N2, respectively. In any case, all the edges in a feasible solution have at least one
endpoint in each of N1 and N2.

Mechanism 4.2 GENERAL-TWOQUERIES(G,F ,N1,N2,�v)

1: Query each agent i ∈ N1 for her favorite alternative in N2 w.r.t. �i
2: Compute A =

√
n-SERIAL DICTATORSHIP(N1,N2,�v)

3: Query each agent i ∈ N1 about the agent αi ∈ N2 she is assigned to in A
4: Set all non-revealed values to 0
5: return a maximum-weight member of F

Note that the final step of the algorithm involves computing a solution that is optimal
according to the revealed values. There are computational issues to consider here. However,
we first tackle the question of whether it is even possible to match the lower bounds of The-
orem 4.2 for λ = 2, despite the lack of information. We briefly discuss how to transform
GENERAL-TWOQUERIES into a polynomial-time mechanism after the proof of Theorem 4.5
below. Again, for the statement of the theorem we assume that k ∈ N is a constant and that,
for every G, a matching extending k-family F(G) is specified.

THEOREM 4.5. For Ordinal-k-Max-on-Graphs with feasible solutions given by F( · ),
GENERAL-TWOQUERIES has distortion O(k2

√
n).

Proof. Consider any instance with valuation profile v and relevant sets of agents N1

and N2. Let Y be the solution computed by the GENERAL-TWOQUERIES mechanism when
given as input (G,F ,N1,N2,�v), and let X denote an optimal solution. Let wR(Y ) be
the revealed weight of Y as seen by the mechanism, that is, the weight of Y taking into
account only the values that have been revealed by the queries. We will show that w(X) ≤
(1 + 10k2

√
n) · wR(Y ), and the bound on the distortion will then follow by the obvious fact

that w(Y ) ≥ wR(Y ).
We can write the optimal weight as

w(X) = wR(X) + wC(X),(4.4)
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where wR(X) is the revealed weight of X that takes into account only the values that have
been revealed by the queries, whereas wC(X) is the concealed weight of X that takes into
account only the values that have not been revealed by the queries of the mechanism. Since Y
is the solution that maximizes the social welfare based only on the revealed values, we have
that

wR(X) ≤ wR(Y ).(4.5)

Thus, it suffices to bound wC(X).
Let S be the set of agents in N1 who are not queried about all their neighbors in X . We

partition S into two subsets S≥ and S< consisting of agents for whom the second query of
the mechanism is used to ask about someone they consider better or worse than their best
neighbor in X , respectively. For an agent i ∈ N1, let χi be i’s favorite neighbor in X
and recall that i is queried about agent αi ∈ N2 to whom she is assigned according to the
(N1,N2, k)-sufficiently representative assignment A. So,

S≥ = {i ∈ S : vi,αi ≥ vi,χi} ,
S< = {i ∈ S : vi,αi < vi,χi} .

Let NX(i) be the set of agents who are neighbors of i in X and for which i was not
queried about. We now define

w≥C (X) =
∑
i∈S≥

∑
j∈NX(i)

vi,j

w<C (X) =
∑
i∈S<

∑
j∈NX(i)

vi,j

Clearly, wC(X) = w≥C (X) + w<C (X).
For every agent j ∈ N2, let S≥j = {i ∈ S≥ : αi = j} be the set of all agents in S≥ that

are queried about j by the mechanism using the second query. So, S≥ =
⋃
j∈N2

S≥j . Since
A is an (N1,N2, k)-sufficiently representative assignment, the first condition of Definition
4.3 implies that |S≥j | ≤

√
n for every j ∈ N2. Therefore,

w≥C (X) =
∑
j∈N2

∑
i∈S≥

j

∑
`∈NX(i)

vi,`

≤
∑
j∈N2

∑
i∈S≥

j

∑
`∈NX(i)

vi,j

≤
∑
j∈N2

∑
i∈S≥

j

k · vi,j

≤ k
∑
j∈N2

|S≥j |max
i∈S≥

j

vi,j

≤ k
√
n
∑
j∈N2

max
i∈S≥

j

vi,j(4.6)

where the first inequality holds by the definition of the sets S≥j , for every j ∈ N2. To complete
our bound on w≥C (X), we need the following claim.
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CLAIM 1. For all the problems of interest,∑
j∈N2

max
i∈S≥

j

vi,j ≤ 9k · wR(Y ).

Proof. For each j ∈ N2, let ij ∈ arg max
i∈S≥

j
vi,j . Consider the subgraph H of the

input graph G with edge set E(H) = {{ij , j} | j ∈ N2}, i.e., H contains exactly the edges
that define the sum of interest. In particular, we have∑

j∈N2

max
i∈S≥

j

vi,j =
∑
j∈N2

vij ,j = wR(H).

We now claim that each node inH has degree at most 2. To see this, consider an agent ` ∈ N .
There is at most one j ∈ N2 such that ` ∈ S≥j (since these sets are disjoint), and thus we may
have ` = ij for at most one j ∈ N2, resulting in the edge {j, `} in H . Additionally, ` may
itself be in N2, resulting in a second edge {`, i`} in H . Other than these two, there can be no
other edges of H adjacent to `.

Since H has maximum degree at most 2, it must contain a matching M of comparable
weight. Specifically, H must be the union of node-disjoint paths and cycles. We construct a
(possibly empty) matchingM1 onH by arbitrarily picking one edge from each odd cycle and
one edge from the beginning of each odd path. If we remove M1 from H , then the remaining
graph is the union of node-disjoint even paths and even cycles, and thus can be decomposed
into two disjoint matchings M2,M3 in a straightforward way. Since M1, M2, and M3 cover
all the edges of H , the best of them, say M , must have weight at least wR(H)/3, i.e,

wR(M |v) =
1

3
wR(H).

Now we can work with M like in the proof of Theorem 4.2. Consider the submatching M̂ of
M containing the b2n/3kc heaviest edges of M to get

wR(M̂) ≥ 1

3k
wR(M) ≥ 1

9k
wR(H).(4.7)

Since F is a matching extending k-family and M̂ is sufficiently small, there is some Ŷ ∈
F(G) such that M̂ is a subgraph of Ŷ . As Y is a maximum-weight element of F(G) with
respect to the revealed weights, we directly get wR(Y ) ≥ wR(Ŷ ) ≥ wR(M̂) and, combining
with (4.7), we have

wR(Y ) ≥ 1

9k
w(H),

as desired.

By combining (4.6) with Claim 1, we get

w≥C (X) ≤ 9k2
√
n · wR(Y ).(4.8)

We next consider the quantity w<C (X). By the fact that A is an (N1,N2, k)-sufficiently
representative assignment, it follows that |S<| ≤ k

√
n; otherwise X would be a graph that

violates the second condition of Definition 4.3. Combined with the fact that all agents in
N1 are queried about their favorite alternative, we can obtain the following upper bound on
w<C (X). Recall that for i ∈ N1, we have NX(i) ⊆ N2 and |NX(i)| ≤ k.

w<C (X) =
∑
i∈S<

∑
j∈NX(i)

vi,j
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≤
∑
i∈S<

k ·max
j∈N

vi,j

≤ k |S<| max
i∈S<

max
j∈N

vi,j

≤ k2
√
n · wR(Y ).(4.9)

The bound now follows by (4.4), (4.5), (4.8), (4.9).

A subtle point here is that of computational efficiency. Although designing polynomial
time mechanisms is not our primary goal, it is clear that the only possible bottleneck is the last
step of GENERAL-TWOQUERIES. Indeed, the mechanism runs in polynomial time whenever
there is a polynomial-time algorithm (exact or O(1)-approximation) for the full information
version of the corresponding optimization problem. The good news is that all variants of
matching problems we presented can be solved efficiently by Edmond’s algorithm [23] or its
extensions [36]. For the next corollary, recall that k = 1 for General Graph Matching and
Two-Sided Matching.

COROLLARY 4.6. There exist deterministic polynomial-time mechanisms for General
Graph Matching, Two-Sided Matching, General Graph k-Matching, and k-Constrained Re-
source Allocation which all use at most two queries per agent and have distortion O(k2

√
n).

5. Towards Tight Bounds for General Social Choice. Here we consider the general
social choice setting where a set N of n agents have preferences over a set A of m alterna-
tives. As in the One-Sided Matching problem, there is a valuation profile v = (vi,j)i∈N ,j∈A
specifying the non-negative value that each agent i has for every alternative j. The goal is
to choose a single alternative x ∈ A to maximize the social welfare, that is, the total value
of the agents for x: SW(x|v) =

∑
i∈N vi,x. Again, when v is clear from context, we will

drop it from notation. Similarly to One-Sided Matching and the problems discussed in the
previous section, v is unknown, and we are only given access to the ordinal profile �v that is
induced by v. Social choice mechanisms must decide a single alternative based only on �v

and the values they can learn by making a small number of queries. The notion of distortion
(Definition 2.1) can be extended for this setting as well, by taking the supremum over all
instances with n agents and m alternatives, and letting X be the set A of alternatives.

For this general social choice setting, Amanatidis et al. [4] showed a lower bound of
Ω
(
m1/(2(λ+1))

)
on the distortion of mechanisms that make at most λ ≥ 1 queries per agent.

We improve this result by showing a lower bound of Ω(m1/λ) for any constant λ.

THEOREM 5.1. In the social choice setting, the distortion of any deterministic mecha-
nism that makes at most a constant number λ ≥ 1 of queries per agent is Ω(m1/λ).

Proof. LetM be an arbitrary mechanism that makes at most λ ≥ 1 queries per agent.
Consider the following instance with n agents and m = n alternatives. We assume that
m is superconstant (otherwise the theorem holds trivially) and satisfies the condition m ≥
1
2

∑λ
`=1m

(λ−`+1)/λ + 2. We partition the set of alternatives A into λ + 2 sets A1, A2, ...
Aλ+1, Aλ+2, such that

• |A`| = 1
2m

(λ−`+1)/λ for ` ∈ [λ];
• |Aλ+1| = 2;
• |Aλ+2| = m− 1

2

∑λ
`=1m

(λ−`+1)/λ − 2.
The ordinal profile has the following properties:

• For every ` ∈ [λ+ 1], each alternative j ∈ A` is ranked at position ` by a set Tj,` of
m
|A`| = Θ

(
m(`−1)/λ) agents.

• For every ` ∈ [λ], every pair of agents that rank the same alternative inA` at position
`, rank the same alternative in A`+1 at position `+ 1.
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√
m

2

m

2

...

...

2

position 1 position 2 position 3 All other positions

arbitrary

2
√
m

2
√
m

FIG. 1. An overview of the instance used in the proof of Theorem 5.1 two queries (λ = 2). Each rectangle in the
first three positions corresponds to an alternative. Each rectangle at position 1 contains two agents. Each rectangle
at position 2 contains the agents from 2

√
m rectangles at position 1, as indicated by the arrows, meaning that those

agents rank the same alternative second. The rectangles at position 3 contain m/2 agents each, corresponding to√
m/4 rectangles at position 2. That is, the agents that rank second one of the first

√
m/4 alternatives at position

2, rank third the alternative corresponding to the first rectangle at position 3; similarly, the agents that rank second
one of the last

√
m/4 alternatives at position 2, rank third the alternative corresponding to the second rectangle at

position 3. The ranking of the alternatives in the remaining positions is consistent but otherwise arbitrary.

• For every agent, the alternatives that she does not rank in the first λ+1 positions are
ranked arbitrarily from position λ+ 2 to m.

An example of the ordinal profile when λ = 2 is depicted in Figure 1. For every agent i, a
query ofM for alternative j reveals a value of

• m−`/λ if i ranks j at position ` ∈ [λ+ 1], and
• and a value of 0 if i ranks j at any other position.

Given this instance as input, let y be the alternative thatM chooses as the winner. No
matter the choice of y, we will define the cardinal profile so that it is consistent to the infor-
mation revealed by the queries ofM, and the values of the agents for alternative y are also
consistent to the information that would have been revealed, irrespective of whether those
values have actually been revealed. That is, any agent has a value of m−`/λ for y if she ranks
y at position ` ∈ [λ + 1], and a value of 0 if she ranks y at any other position. Hence, the
social welfare of y is

• Θ
(
m(`−1)/λ) ·m−`/λ = Θ(m−1/λ) if y ∈ A` for ` ∈ [λ+ 1], or

• 0 if y ∈ Aλ+2.
Consequently, to show the desired bound of Ω(m1/λ) on the distortion ofM, it suffices to
assume that y ∈ A` for some ` ∈ [λ+ 1], and prove that the values of the agents that have not
been revealed and do not correspond to alternative y can always be defined such that there
exists an alternative x 6= y with social welfare Ω(1).

Suppose towards a contradiction that the cardinal profile cannot be defined in a way
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so that there exists an alternative x with social welfare Ω(1). We make the following two
observations:

(O1) If there exists an alternative x ∈ A1 \ {y} for which at least one agent in Tx,1 is
not queried byM for x, then we can set the value of this agent for x to be constant.
Consequently, all the agents in

⋃
j∈A1\{y} Tj,1 that rank alternatives different that y

at position 1, must be queried at position 1.
(O2) Let ε ∈ (0, 1) be a constant and ` ∈ {2, . . . , λ + 1}. Consider any alternative

x ∈ A`\{y} and any set of agents S ⊆ Tx,` such that |S| ≥ ε· m|A`| = Θ(m(`−1)/λ).
If at least 1

2 |S| agents in S are not queried byM for x, then we could set the value of
all these agents for x to be m−(`−1)/λ (which is the revealed value whenM queries
for alternatives ranked at position ` − 1), and the social welfare of x would be at
least

1

2
|S| ·m−(`−1)/λ = Θ(m(`−1)/λ) ·m−(`−1)/λ = Θ(1).

Consequently, for every alternative x ∈ A` \ {y} and set S ⊆ Tx,` such that |S| ≥
ε · m
|A`| , at least 1

2 |S| agents in S must be queried at position ` for x.
Given these two observations, we are now ready to show by induction that the mechanism

must make λ + 1 queries for a high proportion of the agents, contradicting thatM makes at
most λ queries per agent.

For the base case, consider an alternative x ∈ A2 \ {y}. By the definition of the ordinal
profile, the agents in Tx,2 who rank x at position 2 are partitioned into |A1|

|A2| subsets such that
all m
|A1| agents in each subset rank first the same alternative of A1. By (O1) we have that,

besides the agents that rank alternative y at position 1, all other agents must be queried at
position 1. Hence, there exists a set S ⊆ Tx,2 consisting of |S| ≥

(
|A1|
|A2| − 1

)
· m
|A1| agents

that are queried at position 1. By the definitions of A1 and A2, and since m is superconstant,
we have that |S| ≥ 1

2 ·
m
|A2| . By (O2) for ε = 1

2 and ` = 2, we have that at least 1
2 |S| ≥

1
4 ·

m
|A2|

of the agents in S must also be queried at position 2 for x.
Let ` ∈ {3, . . . , λ + 1} and assume as induction hypothesis that for every alternative

z ∈ A`−1 \ {y} there is a set of agents Sz ⊆ Tz,`−1 such that |Sz| ≥ 1
22(`−2) · m

|A`−1| who
are queried by M at the first ` − 1 positions. Consider an alternative x ∈ A` \ {y}. By
the definition of the ordinal profile, the agents in Tx,` who rank alternative x at position `
are partitioned into |A`−1|

|A`| subsets such that all m
|A`−1| agents in each subset rank the same

alternative in A`−1 at position `− 1. So, by our induction hypothesis, there is a set S ⊆ Tx,`
consisting of

|S| ≥
(
|A`−1|
|A`|

− 1

)
· 1

22(`−2)
· m

|A`−1|

agents that are queried at the first `−1 positions. By the definition ofA`−1 andA`, and since
m is superconstant, we have that

|S| ≥ 1

22(`−2)+1
· m
|A`|

.

Since ` ≤ λ + 1 and λ is a constant, by observation (O2) for ε = 1
22(`−2)+1 , we have that at

least
1

2
|S| ≥ 1

22(`−1)
· m
|A`|

agents in S must also be queried at position ` for x.
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Now, let x ∈ Ak+1 \ {y}. The above induction shows that there are at least 1
22λ
· m
|Aλ+1|

agents in Tx,λ+1 who must be queried byM at the first λ+ 1 positions. This contradicts the
fact thatM can make at most λ queries per agent, and the theorem follows.

Our approach for all the problems discussed in the previous sections can also be applied
to the much more general social choice setting, subject to being able to compute a particular
set of alternatives.

DEFINITION 5.2. Let c ≥ 1 be any constant. A subset of alternatives B ⊆ A with
|B| ≤ c ·

√
m is a sufficiently representative set if, for every alternative j ∈ A, at most

√
m

agents prefer j over their favorite alternative in B.

An interesting question is whether a sufficiently representative set of alternatives always
exists. Unfortunately, it is not difficult to construct examples when this is not the case, when
m is much smaller than n. For example, for any k >

√
m, consider an instance with n = k·m!

agents, such that for each possible ordering of the m alternatives there are exactly k agents
that have it as their preference. Then, for any subset B of at most

√
m alternatives and any

alternative j ∈ A \ B, there are at least k >
√
m agents that prefer j over any alternative in

B.
On the other hand, a sufficiently representative set of alternatives trivially exists when

m is much larger than n (namely, when m = Ω(n2)). We can actually obtain something
stronger than this, using the following result of Jiang et al. [30].

THEOREM 5.3 ([30]). For any ξ ∈ [n], there exists a set S of alternatives with |S| ≤
16 · n/ξ such that for every j ∈ A, there are at most ξ agents that prefer j over their favorite
alternative in S.

A set S as in the theorem above is called an approximately stable committee [21, 30].
Clearly, when m = Ω(n) and ξ =

√
n, an approximately stable committee is also a suffi-

ciently representative set with c = 16.
We now present a mechanism that works under the assumption that sufficiently repre-

sentative sets of alternatives can be (efficiently) computed. Given the discussion above, we
state an unconditional bound as a corollary of Theorem 5.4 at the end of the section.

Mechanism 5.1 SC-TWOQUERIES(N ,A,�v)

1: Query each agent about her favorite alternative
2: Compute a sufficiently representative set B
3: Query each agent for her favorite alternative in B
4: For every j ∈ A, compute the revealed welfare SWR(j)
5: return y ∈ arg maxj∈A SWR(j)

In particular, SC-TWOQUERIES (Mechanism 5.1) first queries each agent about her over-
all favorite alternative (the one ranked first). Then, given a sufficiently representative set of
alternatives B, it queries each agent for her favorite alternative in B. Given the answers to
these two queries per agent, the mechanism outputs an alternative that maximizes the revealed
social welfare which is based only on the values learned from the queries.

THEOREM 5.4. The mechanism SC-TWOQUERIES has distortion O(
√
m), when re-

stricted to the social choice instances for which a sufficiently representative set of alternatives
exists.

Proof. Consider any social choice instance with valuation profile v that induces the
ordinal preference profile �v. Let y be the alternative chosen by the mechanism when
given as input this instance, and denote by x the optimal alternative. We will show that
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SW(x) ≤ (1 + (1 + c) ·
√
m)SWR(y). The bound on the distortion will then follow by the

obvious fact that SW(y) ≥ SWR(y).
We can write the optimal welfare as

SW(x) = SWR(x) + SWC(x)

≤ SWR(y) + SWC(x) ,(5.1)

where SWC(x) is the concealed welfare of x, consisting of the values of agents for x that
were not revealed by the queries of the mechanism, and the inequality follows by the fact that
y is the alternative that maximizes the revealed welfare. Let S be the set of agents who were
not queried about their value for x, and partition S into the following two subsets:

• S≥ consists of the agents in S for whom the second query is about an alternative
that the agent considers better than x;

• S< consists of the agents in S for whom the second query is about an alternative
that the agent considers worse than x.

Given these sets, now let

SW≥C(x) =
∑
i∈S≥

vi,x and SW<
C(x) =

∑
i∈S<

vi,x.

be the contribution of the agents in S≥ and of the agents in S< to the concealed welfare of x,
respectively. That is,

SWC(x) = SW≥C(x) + SW<
C(x).

By the definition of the mechanism, each agent is queried about her favorite alternative
in the sufficiently representative set B. For every j ∈ B \ {x}, let S≥j ⊆ S≥ be the set of
agents in S≥ who are queried for alternative j instead of x. Thus, S≥ =

⋃
j∈B\{x} S

≥
j . By

the definition of S≥, the fact that y maximizes the revealed welfare, and since |B| ≤ c ·
√
m,

we obtain

SW≥C(x) =
∑

j∈B\{x}

∑
i∈S≥

j

vi,x

≤
∑

j∈B\{x}

∑
i∈S≥

j

vi,j

≤
∑

j∈B\{x}

SWR(j|v)

≤ |B| · SWR(y|v)

≤ c ·
√
m · SWR(y).(5.2)

Since all the agents in S< are queried for alternatives in the sufficiently representative
set B that they consider worse than x and B, it must be the case that |S<| ≤

√
m. Since all

agents are queried at the first position for their favorite alternative, we obtain

SW<
C(x) =

∑
i∈S<

vi,x

≤
∑
i∈S<

max
j∈A

vi,j

≤ |S<| · max
i∈S<

max
j∈A

vi,j
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≤
√
m · SWR(y).(5.3)

The bound now follows by (5.1), (5.2) and (5.3).

Finally, combining Theorems 5.3 and 5.4, we obtain the following result.

COROLLARY 5.5. When m = Ω(n), SC-TWOQUERIES has distortion O(
√
m).

6. Conclusion and Open Problems. In this paper, we showed that for a large class of
problems, which includes One-Sided Matching and many other well-studied graph-theoretic
problems, it is possible to achieve a distortion of O(

√
n) using a deterministic mechanism

that makes at most two queries per agent, and that this is best possible asymptotically. Our
whole methodology is based on computing assignments of agents to items or other agents that
exhibit a very particular structure. In addition, in the social choice setting, when m = Ω(n),
sets of alternatives with analogous properties can be computed, and our methodology yields
a two-query mechanism with best possible distortion for this setting as well.

A question that is left unresolved is the best possible distortion for the problems with
solutions bounded by a parameter k that is superconstant in general, such as k-Constrained
Resource Allocation, General Graph k-Matching, and k-Clique Packing. We suspect that
approaches which are problem-specific will be required to make progress in this direction.
Of course, an interesting open problem is to design a mechanism for the social choice setting
that makes two queries and achieves the best possible distortion of O(

√
m) when m = o(n),

or show that this is impossible. We believe that to obtain a positive result one would need to
come up with an adaptive mechanism, which decides where to ask each query based not only
on the ordinal information, but also on the answers to all previous ones. Another question,
about any of the problems we considered, is whether one can design mechanisms that make
at most a constant λ ≥ 3 queries per agent and their distortion matches the lower bound of
Ω(n1/λ) (or, in the case of social choice, Ω(m1/λ)). Again, we strongly suspect that the same
type of adaptivity will be required for this task as well.
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