
Structural Summarization of Semantic Graphs Using
Quotients
Ansgar Scherp #Ñ

Ulm University, Germany

David Richerby #

University of Essex, UK

Till Blume #

Ernst and Young Research, Germany

Michael Cochez #Ñ

Vrije Universiteit Amsterdam, The Netherlands
Elsevier Discovery Lab, The Netherlands

Jannik Rau #

Ulm University, Germany

Abstract
Graph summarization is the process of computing a
compact version of an input graph while preserving
chosen features of its structure. We consider seman-
tic graphs where the features include edge labels
and label sets associated with a vertex. Graph sum-
maries are typically much smaller than the original
graph. Applications that depend on the preserved
features can perform their tasks on the summary,
but much faster or with less memory overhead,
while producing the same outcome as if they were
applied on the original graph.

In this survey, we focus on structural summaries
based on quotients that organize vertices in equiv-
alence classes of shared features. Structural sum-

maries are particularly popular for semantic graphs
and have the advantage of defining a precise graph-
based output. We consider approaches and algo-
rithms for both static and temporal graphs. A
common example of quotient-based structural sum-
maries is bisimulation, and we discuss this in detail.
While there exist other surveys on graph summariza-
tion, to the best of our knowledge, we are the first
to bring in a focused discussion on quotients, bisim-
ulation, and their relation. Furthermore, structural
summarization naturally connects well with formal
logic due to the discrete structures considered. We
complete the survey with a brief description of ap-
proaches beyond structural summaries.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of compu-
tation → Graph algorithms analysis; General and reference → Surveys and overviews
Keywords and phrases graph summarization, quotients, stratified bisimulation
Digital Object Identifier 10.4230/TGDK.1.1.12
Category Survey
Funding Ansgar Scherp: Co-funded by the CodeInspector project (No. 504226141) of the DFG, German
Research Foundation.
Michael Cochez: Partially funded by the Graph-Massivizer project, funded by the Horizon Europe
programme of the European Union (grant 101093202).
Received 2023-07-03 Accepted 2023-11-17 Published 2023-12-21
Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, and Lalana Kagal
Special Issue Trends in Graph Data and Knowledge

© Ansgar Scherp, David Richerby, Till Blume, Michael Cochez, and Jannik Rau;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 1, Issue 1, Article No. 12, pp. 12:1–12:25
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ansgar.scherp@uni-ulm.de
http://ansgarscherp.net/
https://orcid.org/0000-0002-2653-9245
mailto:david.richerby@essex.ac.uk
https://orcid.org/0000-0003-1062-8451
mailto:till.blume@de.ey.com
https://orcid.org/0000-0001-6970-9489
mailto:m.cochez@vu.nl
https://www.cochez.nl
https://orcid.org/0000-0001-5726-4638
mailto:jannik.rau@uni-ulm.de
https://orcid.org/0000-0001-7764-6131
https://doi.org/10.4230/TGDK.1.1.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

12:2 Structural Summarization of Semantic Graphs Using Quotients

1 Introduction

Representing data as a graph is increasingly popular [45, 48], though the idea dates back to
at least the 1960s [5]. The strength of graphs as a data representation lies in their general
applicability and their focus on relationships between data points rather than just the properties
of the individual data points [45]. The same graph formalism can be used in various domains
ranging from relations in social networks, drug and protein interactions, connections between
terminals in a telecommunications network, pages on the World Wide Web, linked data on the
Semantic Web, and many others [45].

1.1 What are Semantic Graphs and Why Graph Summarization?

We are agnostic to the specific representation of graphs. We use the umbrella term semantic graph
for the kinds of graphs considered in this work. We assume that a graph is a collection of vertices
connected by directed edges. The vertices and/or edges may be labeled and one may perform
some semantic inference on them, e. g., generalizations and specializations [16].

▶ Definition 1 (Semantic Graph). A semantic graph is a finite, directed, labeled graph G =
(V, E, ℓV , ℓE). Here E ⊆ V × V is the edge relation, and the functions ℓV : V → ΣV and
ℓE : E → ΣE label the vertices and edges, respectively.

We also refer to the value ℓV (v) as the type set of a vertex, and we use the function ℓE to
define the property set of a vertex, which is defined over its outgoing edges. Some variants of
graph summarization also consider incoming edges (we discuss these in Section 3).

▶ Definition 2 (Property Set). The property set of a vertex v in a semantic graph G is the set
{ℓE(v, w) | (v, w) ∈ E} of labels on its outgoing edges. We abuse notation and write ℓE(v) for the
property set of v.

A semantic graph may be represented as a Resource Description Framework (RDF) graph [24],
labeled property graph (LPGs), or some other approach. RDF graphs do not directly support
vertex labels, but rdf:type edges can be used to simulate these, so RDF graphs and LPGs can be
transformed into one another [8]. A comprehensive overview of different kinds of semantic graphs
is given by Hogan et al. [48] under the term “Knowledge Graphs”. The term was coined in 2012
by Google as part of its knowledge representation and web search service extended by contextual
knowledge such as mapping queries to persons, companies, etc.

Classical graph algorithms focus on finding structures such as shortest paths or minimum
spanning trees, or invariants such as treewidth or chromatic number. In the context of graph-
structured data, the focus of algorithms shifts from the graph per se to the data it represents.
Typical tasks on such graphs include mere querying of the data, but also estimating cardinalities
for queries in graph databases [77], subgraph-based indices for data search [59], data modeling
recommendation [87], schema induction [99], data exploration [80], data visualization [41], and
related entity retrieval [22].

The motivation for graph summaries lies in the growing size of semantic graphs. As the graphs
can be extremely large, tasks become computationally expensive and might require a large amount
of memory. Structural graph summaries have been developed as useful abstractions of large graphs
to solve tasks more efficiently. A summary of a graph G is a smaller graph S, which retains the
information from G that is required to perform the desired tasks, but which discards information
that is not needed, and which may represent the retained information more compactly.

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:3

Example

Suppose we wish to count solutions to queries on a graph database G such as finding all
students studying the same course, or all books in the same genre by the same set of
authors. Many vertices in the graph G may be equivalent from the point of view of the
queries. Hence, we can summarize the graph by merging each set X of equivalent vertices
into a single vertex vX that is labeled with the cardinality of X. In doing this, we lose
the ability to answer certain queries that could be answered on the original database. We
can no longer distinguish between vertices that have been merged, and we no longer know
their identities. But we can still answer our class of counting queries, and we can do so
by processing a much smaller graph – graph summaries are typically orders of magnitude
smaller than the original graph, measured in numbers of edges [19].

Summary graphs can be constructed in several ways. The survey by Čebirić et al. [19] classifies
existing techniques into structural, pattern-mining, statistical, and hybrid approaches. A broad
overview of these summarization approaches can be found there. In this paper, we focus on
structural approaches based on quotients, due to their versatility and popularity for summarizing
semantic graphs. The idea here is to partition the vertices into equivalence classes, assigning
each vertex to exactly one equivalence class. These equivalence classes are used as the vertices
of the summary. A structural summary is again a graph that can be used to answer a given
application task exactly [19], i. e., as if it were executed on the original graph. Structural graph
summaries defined using quotients [20] are closely related to k-bisimulation [53,88]. Many summary
approaches for semantic graphs are in fact stratified bisimulations.

Such structural summaries are “lossless” with respect to the features defined in a summary
model: selected features of the original graph are accurately preserved to allow the task to be
exactly computed on the summary. The features preserved by the graph summary are defined in
the so-called graph summary model. Summaries can also be “lossy”, only allowing the task to be
approximated on the summary.

1.2 What is a Task, a Graph Summary, and a Graph Summary Model?

Since different works and communities deal with graph summarization from different perspectives,
we first need to provide a high-level clarification of the basic concepts. This shall provide the
reader with an intuition about the nature of graph summaries and how they are used. The basic
definitions are of a task (in the context of a graph summary) as well as the graph summary and
its model, based on Blume, Scherp, and Richerby [10].

▶ Definition 3 (Task). Given a graph G, a task T applied on G is a parameterized function
TΨ : G → Y that maps the input graph G to a task-specific range of values Y .

The set of parameters Ψ and the output of the function T , (the range Y) are specific to a
given application domain.

Example Task

For cardinality estimations of queries on the graph G the range Y is N+ and the parameter
Ψ is the graph-based query Q for which the cardinality is to be estimated [77].

TGDK

12:4 Structural Summarization of Semantic Graphs Using Quotients

▶ Definition 4 (Graph Summary Model). A graph summary model is a tuple M = (EQR, Φ, PAY),
where EQR specifies an equivalence relation on graph vertices, Φ are model parameters, and PAY
is a set of task-specific payload functions. They are computed during summarization and their
output is included in the summary.

Structural approaches summarize a graph G w.r.t. an equivalence relation EQR ⊆ V × V

defined on the vertices V of G [14, 19]. The vertices V (S) of the resulting summary graph S

correspond to equivalence classes of the equivalence relation EQR, and to equivalence classes of
subsidiary equivalence relations used in the definition of EQR – see Figure 1.

Example Summary Models

Example graph summary models are the attribute-based collection [18], where the EQR
defines vertex equivalence based on having the same set of labels of the outgoing edges. In
contrast, the class-based collection [18] is defined by an EQR that groups vertices sharing
the same vertex labels. There are also summary models that require both attribute and
class equivalence [22,59].

The model parameters Φ are applied to control the output. Φ can, e.g., limit the maximum
summary size (in terms of number of vertices or edges), the weights assigned to some graph
elements (preference for certain edges or vertices), or the minimum support of subgraph structures
summarized by S [19]. PAY describes what information must be stored about the summarized
vertices to allow the task T to be answered using the summary.

Example Payload Functions

In a data search task, such as in the first example, the set PAY contains one payload
function to compute cardinalities of the search results. Another commonly used payload
function for data search is computing the set of data sources (URIs where the results can
be found on the web) [43].

Different summary models serve different tasks. While a structural summary is a lossless
representation of the input graph with respect to the features defined in a summary model,
different summaries (with different payloads) will be needed for different tasks. Thus, the choice
of features and the tasks have to be aligned. Finally, based on the graph summary model, we
define the Graph Summary:

▶ Definition 5 (Graph Summarization). A graph summarization is a parameterized function
CM : G → S that computes a representation of the input graph based on a graph summary model
M = (EQR, Φ, PAY). The summary S preserves (selected) features of G in accordance with M .
Note that S also contains the output of the payload functions PAY.

For the full definition of a graph summary with respect to a graph summary model, see [10].

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:5

GP: QP: SP:

Figure 1 A colored Petersen graph GP (left) quotiented (center, QP; see Section 3) and summarized
(right, SP). The graph summary model defines two vertices of GP to be equivalent if they have the same
color and are adjacent to the same set of colors.

Example Summary of the Petersen Graph

In Figure 1, the semantic graph GP to be summarized is a colored version of the Petersen
graph. In this case, the graph is undirected and has vertex labels (the colors) but no edge
labels. We use a graph summary model that defines two vertices of GP to be equivalent
if they have the same color and are adjacent to the same set of colors. There are four
equivalence classes: the red vertex with only green neighbors (the top vertex), the three
red vertices with green and blue neighbors, the three green vertices with red and blue
neighbors, and the three blue vertices with red and green neighbors.
In the summary graph SP, these “primary” equivalence classes are on the left-hand side;
the vertices on the right are “secondary” equivalence classes of the “same color” relation,
which is used to define equivalence of the neighbors. In this example, there is no payload,
but payload would be stored as labels of additional vertices connected to the primary
equivalence classes.

1.3 What is Not a Graph Summary!

Graph summarization is distinct from other related concepts, some of which also use the term
summarization, but to mean something different.

The goal of compression is to allow the original graph to be exactly recovered (in the case of
lossless compression, for example, RDF HDT [38]), or approximately recovered (lossy compression).
Thus, compression must retain (or approximately retain) all information in the graph. Another
term in this context is “corrections” [58, 89]. Again, the goal is to (incrementally) compute a
lossless compression of a graph by determining a so-called corrections set, i. e., a set of edges that
must be added or removed to reconstruct the original graph [58, 89]. Another work on graph
compression is by Hajiabadi et al. [44], who propose an approach to reconstruct a graph exactly
(lossless) or with a small error (lossy). In contrast to compression and correction, summarization
only retains the information that is needed for specific tasks.

An intermediate operation between summarization and compression is graph contraction [34],
which uses the graph-theoretic concept of contraction minors [25]. Contraction makes graphs
smaller by replacing regular structures such as cliques and paths with “supernodes”. Each
supernode is annotated with a payload and a mechanism for recovering the original graph. This
can also be done hierarchically, to produce even smaller graphs [35]. Compared to summarization,
this only operates on parts of the graph; on the other hand, the entire graph can be recovered if
needed, so the contracted graph is not task-specific (albeit that tasks that can be performed using
the payload of the supernodes, without expanding out the graph, will run faster).

TGDK

12:6 Structural Summarization of Semantic Graphs Using Quotients

Further related research areas are graph transformation systems, graph rewriting, and model-
driven engineering [30]. These approaches have in common that they have rules and mappings to
manipulate input graphs to a desired output graph, e. g., to merge adjacent vertices by preserving
(hyper-)edge structures [57,81]. In general, the difference between structured graph summaries
and the communities of graph transformation and graph rewriting is as follows: The goal of
summarization is to provide concise representations of the input graph G while preserving specific,
defined features (e. g., structural features like which edges are attached to a vertex). The focus of
graph rewriting is to perform operations on the graph to transform G from one state to another
via rewrite rules. Nonetheless, graph summarization is an example of graph rewriting in the most
general sense.

1.4 Structure
The article is organized as follows: First, we consider applications of structural graph summaries
in Section 2. In Section 3, we introduce features and models of structural graph summaries for
static graphs that are based on quotients.

Bisimulation is a versatile and popular technique among structural graph summarization
models, which we discuss in further detail in Section 4. Logics are a natural partner of structural
summaries and this connection is discussed in Section 5. We consider graph summarization
approaches for temporal graphs in Section 6.

Finally, in Section 7, we briefly discuss alternative approaches to graph summaries that are
not based on graph quotients, such as pattern mining, and statistical approaches. We conclude
this article with a brief reflection, as well as an outlook on future directions and open questions.

2 Applications of Structural Graph Summaries

Many different structural graph summaries have been developed to solve different tasks [6, 18, 22,
23,41,53,59,71,72,77,87,88,91,95]. In the following, we describe four common applications of
structural (semantic) graph summaries in detail. These applications are typical applications for
managed graph database systems but also for the decentralized Semantic Web [1].

These applications showcase the universal nature of structural summaries. We connect the
applications with the basic notion of graph summarization by providing the specific definitions of
the graph summary model M being used in each application. These are the equivalence relation
EQR its parameters Ψ and equally important the set of payload functions PAY (see Definition 4).

2.1 Semantic Entity Retrieval
One application of structural graph summaries is to find semantically related entities in the
Semantic Web [22]. Entities on the Semantic Web are represented using vertices, each identified
with a unique IRI [29], and labeled edges indicate relations between them. Entities can have a set
of types, each of which is indicated by an edge labeled rdf:type to a vertex representing that
type. This graph data is typically stored as an RDF graph [1].

If two entities share the same set of RDF types and RDF properties (i.e., labels of outgoing
edges other than rdf:type), we can say they are semantically related [22]. Hence, we can create
a summary where the equivalence relation EQR represents that; i. e., it puts vertices in the same
partition if their RDF types and set of RDF properties are the same.

This structural graph summary summarizes vertices (entities), based on such structural
subgraph features. To find semantically related entities, we need to memorize the vertex identifiers
of each summarized vertex in the computed structural graph summary, this index gets created by

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:7

a function from PAY and is part of the output of the graph summary. We can now use that index
for immediate retrieval of related vertices since all semantically related vertices are summarized
together.

A variation of this task would be when the graph is dynamic. In that case, there is an interesting
trade-off between recomputing the index, which can be costly, versus updating it in place, which
requires more index information to be kept and leads to a more complex implementation.

2.2 Cardinality Computation

Cardinality computation is often desired in databases [77, 84]. For graph databases, graph
summaries can be used as an index to look up how many vertices will be returned by certain
queries. If the graph summary is smaller than the original graph, as it usually is, the query runs
faster on the graph summary than on the database. This task is related to the semantic entity
retrieval task described above. However, for this purpose, we only need to memorize the number
of summarized vertices rather than all vertex identifiers. Hence, EQR would be the same, but the
function in PAY would only compute the counts, rather than keeping the full index.

A graph summary that memorizes the number of summarized vertices enables fast implemen-
tations of query size estimation [77]. Analogously to the semantically related entities task above,
expensive re-computation of the graph summary from scratch when the database changes can yield
an unwanted performance overhead, and hence a way to deal with online updates is necessary.

Knowledge bases often have a data schema or ontology that defines how entities should be
modeled. Structural graph summaries can help determine how many entities strictly follow that
schema, match the schema partially, or even contradict the schema. The stored numbers of
summarized vertices can be used as an indicator of data completeness [84]. It is often desired
to evaluate the evolution of data quality over time [84]; also in that case an incremental update
mechanism is needed.

2.3 Data Source Search

As part of data source search, one needs to find (sub)graphs in the Semantic Web that match a
given schema structure [43]. Structural graph summaries can be used as an index that memorizes
the location of summarized vertices on the Web. This is illustrated in Figure 2.

The EQR of the graph summary model in this scenario is defined such that it summarizes
vertices that have the same set of RDF types, and are connected by edges with the same labels to
target vertices with the same set of types, known as SchemEX [59]. The set of payload functions
PAY is in this case a cardinality count and memorizing the data source URIs.

With a graph query, the structural graph summary is queried to get the URLs of relevant data
sources. Then, the data sources are accessed to download the graphs matching the query. Search
systems like LODatio [43], LODeX [6], Loupe [71], and LODatlas [80] rely on structural graph
summaries to offer a search for relevant data sources or exploration of data sources.

To implement this task, we need to memorize the locations where each summarized vertex
appears, which is computed by a function in PAY. As the data on the Web changes [51], the
summaries need to be updated as well. In contrast to the previous two tasks, for data source
search we neither memorize vertex identifiers nor the number of summarized vertices but only
their location.

TGDK

12:8 Structural Summarization of Semantic Graphs Using Quotients

Index

1
Person

title
Proceedings

author

2

Proceedings

v1

rdf:type

author

Graph Database

title

Max Power

name

rdf:type

Person

v2

Figure 2 Finding data sources on the Web using an index based on graph summaries (from [8]). A
structural query is executed over an index to identify relevant data sources (1). Subsequently, the data
sources are accessed to retrieve actual vertices (2).

2.4 Training Graph Neural Networks
Another application of graph summaries can be found in recent work by Generale, Blume, and
Cochez [39], who address scalability issues when training graph neural networks (GNNs) on larger
graphs. They suggest training the GNN on a summary, rather than on the original graph. The
summaries used in this case are actually quotient graphs (see Section 3), using either k-bisimulation
(see Section 4) or direct vertex attributes for EQR.

The machine learning task solved with this GNN is the prediction of vertex types. In the
normal training setting, the training set is a subset of the vertices of known type. The model
parameters are then optimized such that the outputs of the GNN, when passed through a classifier,
predict the correct vertex type for the test vertices. To evaluate whether the model works, one
uses it to predict the types of vertices outside the training set and compares these predictions
to the correct answer. An issue while training on the summary is that multiple vertices from
the original graph are in the same equivalence class and hence mapped to the same vertex in
the summary. Now, the difficulty is that we do not have a clear label for this vertex; it is not
the case that all nodes in the equivalence class have the same label, since this is not taken into
account when summarizing. The authors [39] suggest using a weighted multi-label classification
task during training where the labels are weighted by their frequency. To compute this label, we
need to collect the frequency of the labels of the vertices of each equivalence class, which is one of
the functions in PAY.

After training on the summary graph, the weights of the model are transferred back to the
original graph, where inference is performed to predict the types of vertices from the test set.
Inference can be done on the full graph because it is much faster than training and requires
much less memory. In some cases, this method of training can not only provide reasonable
results, but also the results can be improved if the model is further trained on the original graph.
This two-stage process can give better results than training only on the original graph, without
summarizing. To transfer the model weights, we include the index with the equivalence classes as
part of PAY.

A follow-up work by Bollen et al. [13] provides a theoretical foundation for the earlier work.
They prove that it is possible to create a specific graph summary that for a specific class of GNN
performs the same message-passing steps as on the original graph. In effect, this means that the
same outcome is obtained at inference time. The prior work is not covered by this proof because
the summary did not retain information about the cardinality of edges in the quotient graph, and
therefore the conditions for equivalence are not met. Error bounds for the approximation remain
open.

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:9

3 Structural Summarization of Static Graphs based on Quotients

In Section 1, we introduced structural graph summaries as a condensed representation of a graph
based on some summary model. Our focus is on quotient-based summaries. For context, we first
define graph quotients.

▶ Definition 6 (Graph Quotient). Consider a labeled graph G, and an equivalence relation ≡ on
G’s vertices. The quotient of G w.r.t. ≡ is the graph Q defined as follows. The vertices are the
equivalence classes of ≡. Q has an edge labeled p from class c to class c′ iff G contains an edge
labeled p from some vertex in c to some vertex in c′.

Example

Recall Figure 1. There, vertices of the colored Petersen graph GP are defined to be
equivalent if they have the same color and their neighbors have the same set of colors.
This leads to four equivalence classes among GP’s vertices: the blue vertices (which are
all adjacent to both red and green), the green vertices (which are all adjacent to red and
blue), and what we will call type-1 (adjacent to green and blue) and type-2 red vertices
(adjacent only to green). These are the four vertices of the quotient QP, with the type-1
red vertex on the left and the type-2 on the right. The edges can be read off from the
descriptions of the equivalence classes, noting that each green vertex is adjacent to a blue
vertex, a type-1 red and the type-2 red.

Quotient-based summaries are constructed along similar lines, but the summary stores rela-
tionships between multiple equivalence relations, instead of just between the classes of a single
one. For example, the equivalence relation described above for the colored Petersen graph GP
defines the overall equivalence on vertices with reference to a second equivalence relation: that
which only considers the vertex’s color and not its neighbors. Blume, Richerby, and Scherp [10]
define a language, FLUID, for specifying such combinations of equivalence relations. We omit the
details here, as the following intuition suffices.

The input semantic graph is summarized using a primary equivalence relation, which is defined
in FLUID by a logic-like expression that combines secondary equivalence relations. The secondary
equivalence relations may themselves be defined by combining other secondary equivalence relations.

▶ Definition 7 (Summary Graph). The summary S of a graph G w.r.t. a summary model M has
a vertex for each equivalence class of each equivalence relation used in the definition of EQR
in M. Primary and secondary vertices correspond to primary and secondary equivalence relations,
respectively. Between these vertices, edges are added similarly to quotient graphs. Suppose
equivalence relation R is defined by combining equivalence relations, one of which is R′. Then
there is an edge labeled p from class c of R to class c′ of R′ in the summary graph if and only if
there is an edge labeled p in the input graph from some vertex in c to some vertex in c′.

This can be seen in Figure 1. The primary vertices are on the left of SP (equivalence classes of
“same color and same colored neighbors”) and the secondary vertices (“same color”) are on the
right. All edges are between a primary vertex and a secondary vertex.

In this approach to structural graph summarization, each vertex v of the input graph G is
represented by exactly one primary vertex pv in the summary graph S. The structure around v

in G that is used to determine v’s equivalence class is represented by the edges between pv and
secondary vertices, and edges between the secondary vertices. Structure around v that is not used
to determine v’s equivalence class is not represented in the summary.

TGDK

12:10 Structural Summarization of Semantic Graphs Using Quotients

Bisimulation is a very common feature among structural graph summarization approaches, but
often the works on structural summarization using quotients and bisimulation do not explicitly
refer to each other. We discuss bisimulation in detail in Section 4, where we explain its relation to
summary models introduced in this section.

There are many structural graph summary models based on quotients, defining the features that
shall be captured by the summary, often targeted for solving one specific task [6, 22, 43, 71, 77, 80,
87,91,92]. Based on Blume et al. [10], we analyze existing structural graph summaries with respect
to the captured schema structure, i. e., what features of the input graph are used to summarize
vertices. This analysis complements existing surveys covering graph summaries [14, 19, 55, 66] and
the taxonomy is summarized in Figure 3. We distinguish features that only use triple information
(triple features), features that define how features of multiple vertices are combined (subgraph
features), and features that define explicit semantic rules such as joining and inference (semantic
rule features). Each group of features adds another level of complexity, i. e., intuitively, the
computational complexity of computing summaries grows when features of different groups are
used. There is no single graph summary model that supports all features. However, we see
common combinations of features. In the following, we summarize the graph summary models
along with the identified features.

Other features in quotient-based summaries include dependent compression [50], which sum-
marizes vertices v1 and v2 if and only if v1 is adjacent only to v2, or vice versa [50]. In another
variant of dependent compression, a set of vertices is grouped if they are connected to the same
set of other vertices in G [65].

3.1 Triple Features
Triple features are solely based on outgoing triples of vertices. A triple corresponds to a directed
edge between two vertices, namely the subject connecting to the object, which is labeled with the
predicate.

Edge Labels

To compute the equivalence of two vertices s and s′ of G, we compare the triples where the subject
is s with those where the subject is s′. The most commonly used feature in structural graph
summaries is using properties to compute the schema of vertices. More specifically, for each vertex
s in the data graph the set of edge labels ℓE(s) is compared. For example, the graph summary
model attribute-based collections, due to Campinas et al. [18], solely relies on the sets of edge
labels to compute the graph summary. If vertices s and s′ share the same property set, i. e.,
ℓE(s) = ℓE(s′), they are considered equivalent, so are summarized together.

Vertex Labels

Another common feature is using the vertices’ labels to compute the summary. Here, for each
vertex s in the data graph, the so-called type set ℓV (s) is compared. If vertices s and s′ share
the same type set, i. e., ℓV (s) = ℓV (s′), they are considered equivalent. For example, class-based
collections (again due to Campinas et al. [18]) is a summary model, which uses only the vertices’
label sets to compute the schema. These are used, along with the attribute-based collections
described above, to implement a query recommendation system for SPARQL,1 that facilitates
working with heterogeneous datasets, especially when the schema structure is unknown.

1 https://www.w3.org/TR/sparql11-overview/

https://www.w3.org/TR/sparql11-overview/

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:11

Summarization method

Quotient-based
Triple features (Sec. 3.1)

Edge labels
Vertex labels
Filtering labels
Neighbor identity

Subgraph features (Sec. 3.2)
Neighbor triples
Predicate path
Stratified bisimulation (highlighted in Sec. 4)

Semantic rule features (Sec. 3.3)
RDF Schema
OWL SameAs
OR combination
Related properties

Non–quotient-based (Sec. 7)
Non-quotient structural approaches
Pattern-mining approaches
Statistical methods

Figure 3 The taxonomy of features that are used in structural graph summarization, based on Čebirić
et al. [19]. These features are described in detail in the sections indicated, and can be summarized in
both static and temporal graphs. Section 3 introduces the different features of quotient-based methods.
Section 4 discusses stratified bisimulation methods in detail, as they are most prominent among quotient-
based methods. Section 5 further reflects on quotient-based summaries and their relation to logics, which
are by their nature orthogonal to the taxonomy. Quotient-based summaries for temporal graphs are
discussed in Section 6. The overview of summarization methods is complemented with a brief discussion
of non–quotient-based summarization methods in Section 7.

Filtering Labels

Tran et al. [95] proposed the feature of label parameterization for graph summaries. With the label
parameterization, only a subset of all edge labels is used to compute the schema. More precisely,
one defines a set of predicates Pl, the so-called label set, which are ignored when determining the
equivalence of vertices. Tran et al.’s graph summary combines property sets ℓE(s) with label sets.
Furthermore, they combine this with k-bisimulation (see Section 4 on k-bisimulation).

Neighbor Identity

The final triple feature uses the identity of outgoing neighbors Γ+(s) = {v | (s, v) ∈ E} to
determine the equivalence of vertices. It appears that no existing graph summary summarizes
vertices solely by comparing the neighbor identities. However, SemSets [22] summarize vertices
that share the same outgoing predicates, which are linked to the same vertices. To check if
vertices s and s′ are equivalent under SemSets, all triples where s or s′ are the subject vertices
are compared. For each triple (s, p, o) ∈ G there has to be a triple (s′, p, o) ∈ G, and vice versa.
Thus, they combine neighbor vertex identifiers Γ+(s) with predicate paths (see below).

TGDK

12:12 Structural Summarization of Semantic Graphs Using Quotients

3.2 Subgraph Features
The neighbor vertex identifier is the most direct approach to incorporate neighbor information
and leads to a wider range of summary models that consider neighbor information, e. g., vertices
in Γ+(s). We classify features as subgraph features when they combine triple features of multiple
vertices.

Neighbor Triples

SchemEX [59], SchemEX+U+I [11], ABSTAT [91], LODeX [6], and Loupe [71] summarize vertices
s and s′ based on having a common type set and common edge labels linking to vertices with
the same type sets. This means that, to compute the schema of one vertex s, also the type sets
of outgoing neighbors Γ+(s) are required to be equivalent, i. e., we compare neighbor triples. In
contrast to SemSets [22], these approaches use not the neighbor vertex identifiers Γ+(s) but the
type set ℓV (o) for each o ∈ Γ+(s). SchemEX [59], SchemEX+U+I [11], ABSTAT [91], LODeX [6],
and Loupe [71] combine type sets ℓV (s), property sets ℓE(s), and neighbor type sets ℓV (o) for
o ∈ Γ+(s) using predicate paths, introduced next. This mapping can aid in recommending related
queries and generally for finding relevant data sources [43].

Predicate Path

Almost all analyzed graph summaries that use neighbor information combine the schema structures
using predicate paths, i. e., they compare which predicates link to which neighbors. Predicate
paths are compared based on the edge labels and type sets that appear along paths. For example,
SchemEX [59], SchemEX+U+I [11], ABSTAT [91], LODeX [6], and Loupe [71] consider which
property links to which type set. TermPicker [87] follows a different strategy to integrate the
schema of neighboring vertices. TermPicker summarizes vertices s based on having the same
type set ℓV (s), the same property set ℓE(s), and the same set of types among the neighbors,
{ℓV (o) | o ∈ Γ+(s)}. Consequently, TermPicker’s graph summaries compress all type sets of all
neighbors into a single type set. Thus, TermPicker’s graph summaries do not contain information
about which specific property linked to which neighbor.

Stratified Bisimulation

Many graph summaries compute the schema of vertices by taking into account the schema
of neighbors over multiple hops [53, 59, 83, 95]. This is commonly defined as a bisimulation.
Bisimulation operates on state transition systems and defines an equivalence relation over states [86].
Two states are equivalent (or bisimilar) if they change into equivalent states with the same type
of transition. Inductively, this means that applying an arbitrary sequence of transitions to two
bisimilar states will result in bisimilar states. Interpreting a labeled graph as a representation of
a state transition system allows us to apply bisimulation on graph data to discover structurally
equivalent parts.

In practice, many graph summary models define a stratified k-bisimulation, e. g., [53,59,83,
95]. When states are k-bisimilar, applying any sequence of k transitions to them will result in
equivalent states, but applying more than k transitions may lead to inequivalent states. Thus,
stratified bisimulation only considers paths of lengths up to k when determining equivalence. This
increases the chance that two vertices are considered equivalent.

Some graph summaries combine the feature of using only incoming or only outgoing properties
with the k-bisimulation feature [23, 72, 88]. This is referred to as backward k-bisimulation and
forward k-bisimulation, respectively [41]. The T-index of Milo and Suciu [72] supports path

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:13

queries in semi-structured databases. This summarizes vertices s based on having the same set
of incoming property-paths, i. e., they use k-bisimulation only on incoming property sets ℓ−

E(s).
Consens et al. [23] propose a structural graph summary model to support navigational SPARQL
queries, so-called Extended Property Paths (EPPs). They summarize vertices s based on having
the same set of outgoing property-paths, i. e., they use k-bisimulation only on outgoing property
sets ℓE(s). In addition, for each hop, the type sets ℓV (s) have to be equivalent.

Stratified k-bisimulation is very popular in the summary models found in the literature. Often,
however, it is not referred to as such and/or the summary model is considering only the case of
the 1-bisimulation. Due to its importance for structural graph summarization, we discuss and
reflect on the k-bisimulation feature in detail in Section 4.

3.3 Semantic Rule Features in Graph Summaries
The last group of features for structural graph summaries defines explicit semantic rules. It
deals with RDF Schema (RDFS) reasoning, OWL’s owl:sameAs reasoning, as well as inference on
property sets in an OR-like fashion and via the inclusion of related properties.

RDF Schema

Several semantic structural graph summaries use RDF Schema inference to enhance their summaries.
ABSTAT [91] exploits RDF Schema type hierarchies to compute so-called minimal patterns. They
select the minimal number of types, i. e., they only keep the most specific types from the RDF
Schema type hierarchy. Goasdoué et al. [41] exploit RDF Schema type hierarchies, property
hierarchies, and RDF Schema domain and RDF Schema range. With domain and range, types for
the subject vertex and the object vertex can be inferred.

OWL’s SameAs

SchemEX+U+I [11] also uses the full RDF Schema inference but also exploits the semantics of
the owl:sameAs property. This property is part of W3C’s OWL [70], which is heavily used in the
context of RDF graphs. The owl:sameAs property defines an equivalence relation [70, Section
4.2], intended to identify vertices that represent the same real-world entity. To compute the
schema structure of one vertex v, the schema structures of all vertices v′ in the weakly connected
components in an owl:sameAs-labeled subgraph of G are merged (see Ding et al. [26] for details
on owl:sameAs networks).

OR Combination

Goasdoué et al. [41] define the Weak Summary using an OR-like combination. In the Weak
Summary, two vertices s and s′ are equivalent if they have the same outgoing property set and/or
the same incoming property set. This is not necessarily transitive, so the transitive closure is taken
as the equivalence relation. The authors also define a Typed Weak Summary, which combines
the Weak Summary based on properties with vertex types. There is also a variant of a Strong
Summary, which does not consider the OR-like combination. Details can be found in Goasdoué
et al. [41], see also the discussion in Blume et al. [10].

Related Properties

Goasdoué et al. [41] also propose to include property relations. Two properties p and p′ are source-
related if they co-occur in any property set ℓE(s) of any vertex s and they are target-related if they
co-occur in any incoming property set ℓ−

E(s) of any vertex s (i. e., the set {ℓE(v, s) | (v, s) ∈ E}).

TGDK

12:14 Structural Summarization of Semantic Graphs Using Quotients

4 Structural Graph Summarization by k-Bisimulation

We introduced bisimulation in Section 3.2 as a means of defining equivalence of vertices in a
graph. Bisimulations are specific kinds of equivalence relations that classify vertices v and w as
equivalent if, for each edge (v, v′) with label p, there is an edge (w, w′), also with label p, where w′

is, recursively, equivalent to v′. Complete bisimulation extends this recursively to all distances from
v and w, whereas k-bisimulation only requires equivalence out to distance k. Forward bisimulation
considers outgoing edges to determine equivalence, as described above; backward bisimulation
is analogous but uses incoming edges; backward-forward bisimulation uses both. In addition to
edge labels, bisimulation may also be based on vertex labels or both, but this makes no principal
difference.

In complete bisimulation, for the vertices v and w to be bisimilar, their in-/out-neighbors
must be bisimilar as well. This recursive definition is, essentially, an equivalence relation defined
in terms of itself. Since there is only one equivalence relation, this naturally lends itself to a
quotient representation, as exemplified in Section 2.4. However, stratified bisimulations are more
commonly used for graph summarization, and lead naturally to quotient-based graph summaries,
as we discuss below.

4.1 Stratified Bisimulation to Paths of Length k

As real-world graphs are quite heterogeneous, there may be only a few bisimilar vertices [19] if we
consider full bisimulation. Thus, k-stratified bisimulation is often used, restricting the paths to
length k. This increases the possibility that two vertices are bisimilar and, overall, reduces the
size of the summary.

A k-bisimulation on a graph G considers features a distance at most k from a vertex that is
to be decided equivalent to another vertex [85]. Formally, this can be defined for the forward
bisimulation on the outgoing edges as follows (based on [85]). Backward bisimulation is defined
similarly.

▶ Definition 8 (Stratified Forward Bisimulation based on Edge Labels). The forward k-bisimulation
≈k

fw ⊆ V × V with k ∈ N is defined as follows:
u ≈0

fw v for all u, v ∈ V ,
u ≈k+1

fw v iff u ≈k
fw v and, for every edge (u, u′), there exists an edge (v, v′) with the same label

such that u′ ≈k
fw v′, and vice-versa.

For bisimulation with vertex labels, we modify the base case of the definition so that u ≈0
fw v iff

u and v have the same labels. Note that stratified bisimulation defines a hierarchy of equivalence
relations ≈0

fw, ≈1
fw, . . . ≈k

fw, in contrast to complete bisimulation, which defines a single equivalence
relation, recursively in terms of itself. Thus, stratified bisimulation is best suited to summarization,
rather than quotienting. When producing a summary for k-bisimulation, the relation ≈k

fw will be
the primary equivalence relation, and ≈0

fw, . . . , ≈k−1
fw are secondary.

Bisimulation stratified to paths of length k is a popular technique to compute structural graph
summaries, though often k = 1 is used. We give examples in Table 1 and discuss them in detail
in this section. Note that TermPicker [87] is a relaxed version of bisimulation. Conventional
bisimulation requires the same edge label to the same type of neighbor, whereas TermPicker just
requires the same edge labels and the same neighbor types, without the correlation.

4.2 Examples of Stratified Bisimulation for Graph Summarization
Efficient algorithms for bisimulation have been developed by Paige and Tarjan [78], Kaushik
et al. [53], Dovier et al. [27], Schätzle et al. [88], and others.

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:15

Table 1 Example graph summary models based on bisimulation.

Summary model Depth Labels used Direction Application
Class collection [18] 0 vertex forward query recommendation
Attribute collection [18] 1 edge forward query recommendation
LODex [6], Loupe [71] 1 vertex and edge forward data exploration
SchemEX [43,59] 1 vertex and edge forward data search
TermPicker [87] 1 vertex and edge∗ forward modeling recommendation
Tran et al. [95] k edge backward-forward entity search
A(k)-index [53] k vertex backward general purpose
T -index [72] k vertex backward data indexing
Schätzle et al. [88] k edge forward general-purpose

(∗ relaxed version of bisimulation; see text)

A notion of k-bisimulation w.r.t. graph indices is introduced by seminal works such as the
k-RO index [76] and the T-index summaries [72]. Milo and Suciu’s T-index [72], the A(k)-Index by
Kaushik et al. [53], and others summarize graphs using backward k-bisimulation. Qun et al. [83]
extend the A(k)-Index to a D(k)-Index, which is also based on bisimulation but focuses on query
optimization. To this end, the D(k)-Index dynamically adapts its structure according to the
current query load. Another work using stratified bisimulation is by Fan et al. [33], for reachability
and graph pattern matching on large graphs.

Conversely, the k-RO index, the Extended Property Paths of Consens et al. [23], the SemSets
model of Ciglan et al. [22], Buneman et al.’s RDF graph alignment [17], and the work of Schätzle
et al. [88] are based on forward k-bisimulation. Buneman et al. use forward k-bisimulation
to summarize the union of two consecutive versions Gunion = G1 ∪ G2 of an RDF graph with
respect to k-bisimulation, which puts vertices to be aligned in the same partition. As well as to
k-bisimulation, they use a similarity measure to further refine the initial k-bisimulation partition,
as it does not capture all vertices to be aligned. The focus of their work is the optimization of
the alignment process so that every node pair (v1, v2), with v1 ∈ G1 and v2 ∈ G2, which have
to be aligned is identified and not the construction of a k-bisimulation-based partition of G.
Schätzle et al. compute a forward k-bisimulation on RDF graphs in sequential and distributed
settings [88]. For a small synthetic dataset (∼1M RDF-triples) the sequential algorithm slightly
outperforms the distributed one; for larger datasets, the distributed algorithm clearly outperforms
the sequential one.

Tran et al. compute a structural index for graphs based on backward-forward k-bisimulation [95].
Moreover, they parameterize their notion of bisimulation to a forward-set L1 and a backward-set
L2, so that only labels l ∈ L1 are considered for forward bisimulation and labels l ∈ L2 for
backward bisimulation. However, similar to Buneman et al., the particular focus of their work is
not the construction of the bisimulation partition. Rather, they evaluate how one can efficiently
optimize query processing on semi-structured data using an index graph based on bisimulation.

There are also structural summarization approaches that determine vertex equivalence only
based on local information (k ≤ 1). As shown in Table 1, many of the summary models introduced
in Section 3.2 are actually very shallow bisimulations.

4.3 Distributed and Parallel Bisimulation
Luo et al. [67, 68] examine structural graph summarization by forward k-bisimulation in a
distributed, external-memory model. They empirically observe that, for values of k > 5, the
summary graph’s partition blocks change little or not at all. Therefore they state that, for
summarizing a graph with respect to k-bisimulation, it is sufficient to summarize up to a value of
k = 5.

TGDK

12:16 Structural Summarization of Semantic Graphs Using Quotients

Martens et al. [69] introduce a parallel bisimulation algorithm for massively parallel devices
such as GPU clusters. Their approach is tested on a single GPU with 24 GB RAM, which limits
its use on large datasets. Nonetheless, their proposed blocking mechanism could be combined with
our vertex-centric approach to further improve performance.

5 Structural Graph Summarization and Logics

Logics are a natural framework for defining properties of graphs, queries on graphs, and trans-
formations between graphs. More specifically, logics can be used to define equivalence relations
on the set of vertices V of a graph, partitioning V into disjoint sets [10]. Thus, logics provide a
natural framework for defining structural graph summaries. The partitions and the relationships
between them are interpreted as summaries of the vertices, either in the sense of a quotient or a
structural graph summary. The question is what logics should be used to define graph summaries.

Since Fagin’s discovery [31] that existential second-order logic defines exactly the properties
of graphs in the complexity class NP, the field of descriptive complexity [49] has sought to
understand the relationship between the features of a logical language (e.g., the logical operators
and quantifiers it contains) and the computational complexity of the graph properties it can define.
A paradigmatic tension in descriptive complexity theory is the trade-off between a logic’s expressive
power and the computational cost of evaluating formulas [49,64]. Thus, we seek logics that are
expressive enough to define interesting summaries but not so expressive that summaries cannot
be computed in a reasonable time. To allow summarization of large graphs, it is essential that
formulas can be evaluated in polynomial time. For web-scale graphs, we need even more efficient
evaluation, which can be obtained by syntactically restricting the formulas that can be written,
e.g., by restricting the number of variables in formulas or using guarded fragments of the logics.
For example, evaluating a formula like ∃y P (y) requires searching the whole graph for a vertex
satisfying the predicate P , whereas, for a given vertex x, the guarded formula ∃y (E(x, y) ∧ P (y))
only requires us to search among x’s neighbors. We note that existing graph summaries are
typically expressible using guarded formulas, such as the neighborhood feature in FLUID [10] or
constraints on requiring certain vertex labels to appear with specific edge labels [99].

First-order logic (FO) is powerful but can also be evaluated efficiently. However, from analyzing
the existing graph summary approaches, we see that extensions to FO are needed to express more
complex summaries. For example, extensions with counting quantifiers [49, 64] can count vertices
and edges, and define vertex equivalences based on the number of neighbors of particular kinds,
rather than just the existence of such neighbors. This is required for pattern mining methods
with a min-supp threshold or summarizing vertices based on the number of edges having the same
label. Counting quantifiers and their expressive power have been extensively studied in descriptive
complexity [49,64] and similar ideas have also been introduced in graph pattern matching [36].
One can also express iterative constructs such as loops – as required for computing bisimulations –
by extending FO with fixed-point operators [49] or other recursive mechanisms such as those in
Datalog [21].

6 Summarization of Temporal Graphs

Existing structural graph summarization algorithms are often designed and/or evaluated using
static graphs only [6,22,66,77,87,91]. Few quotient-based structural graph summaries are designed
for evolving graphs [40,59].

There are two ways in which one could consider summarizing temporal graphs. First, we may
have a summary model that is not aware of time, and desire an algorithm that can update the
summary as the data graph changes, considering the changes as a sequence of versions of the

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:17

graph. Second, the summary model itself may depend on temporal features of the graph – that is,
whether two vertices are in the same equivalence class may depend on their history, rather than
just on their current state. The second approach might use temporal logics to define the summary
model [2, 62].

The literature predominantly uses the first approach. Thus, we discuss algorithms that
efficiently recompute quotient-based summaries as a graph changes over time. Subsequently, we
present related approaches to incremental graph indexing and schema discovery. Indices are often
based directly on quotients, often as bisimulations. Schema discovery classifies vertices according
to their properties, naturally defining equivalence classes that can be quotiented.

6.1 Incremental Graph Summarization
Konrath et al. [59] compute their graph summary over a stream of vertex-edge-vertex triples.
They can deal with the addition of new vertices and edges to the graph but not the deletion
of vertices or edges, or modification of their labels. Similarly, Goasdoué et al. [40] present the
summarization tool RDFQuotient, which only supports iterative additions of vertices and edges to
their structural graph summaries, and does not handle deletions. Thus, these approaches are not
suited to updating structural summaries of evolving graphs. Goasdoué et al. also do not support
payload information, which is needed for tasks such as cardinality estimations and data search.
The purpose of their summaries is to visualize them to a human viewer. Finally, Blume, Richerby,
and Scherp [9] propose an incremental algorithm to update graph summaries that also takes
deletions and payload into account. Experiments on benchmark datasets show that using the
incremental algorithm is beneficial even if up to half of the graph has changed from one version to
the next.

6.2 Incremental Subgraph Indices
Often, graph databases use path indices, tree indices, and subgraph indices [46]. A seminal
approach to computing subgraph indices is DataGuide [42], implemented in the Lore database
management system (DBMS) [102]. A DataGuide is a graph index built incrementally while
executing queries on an XML database. It indicates to the query engine if and how a specific
path defined in the query can be reached. To this end, a DataGuide represents all possible paths
between two vertices in an XML file. While DataGuides operate on semi-structured data in terms
of XML trees, a guide is essentially quotienting the graph.

Tran et al. [95,96] took up this idea and applied it to quotienting RDF graphs. Representative
Objects (ROs) by Nestorov et al. [76] take up the ideas of DataGuides and are also implemented in
the Lore DBMS with focus on path queries, query optimization, and schema discovery. While the
Full ROs capture a description of the global structure of the graph, the authors also introduce a
notion of a k-RO. which only considers paths of length up to k. These are examples of bisimulation
in graph summarization.

We now consider incremental subgraph indices based on frequent pattern mining. These
techniques group graph patterns, similarly to structural summarization. For example, Yuan
et al. [104] (see also extensions in [52, 105]) propose an index based on mining frequent and
discriminative features in subgraphs. Their algorithm minimizes index lookups for a given query
and regroups subgraphs based on newly added features.

A work directly based on quotients is Qiao et al. [82] who compute an index of isomorphic
subgraphs in an unlabeled, undirected graph G. The goal is to find the set of subgraphs in G that
are isomorphic to a given query pattern. The result is a compression of the original graph that
can be used to answer, e. g., cardinality queries regarding subgraphs. This is for static graphs,

TGDK

12:18 Structural Summarization of Semantic Graphs Using Quotients

but the algorithm of Fan et al. [32] can deal with graph changes for the subgraph isomorphism
problem. Their incremental computation of an index for isomorphic subgraphs is closely related
to structural graph summarization but, unlike in summarization, the graph pattern p is an input
to the algorithm, not the output.

Min et al. [73] propose an algorithm for continuous subgraph matching using a summary-like
data structure that stores the intermediate results between a query graph and a dynamic data
graph. They consider undirected graphs where only vertices are labeled. Dynamic graphs are
updated through a sequence of edge insertions and edge deletions. The TipTap [74] algorithm
computes approximations of the frequent subgraphs on up to k vertices w.r.t. a given threshold.
This is similar to a quotient, but vertices may appear in multiple subgraphs. It does this to count
occurrences of subgraphs in large, evolving graphs, modeled as a stream of updates on an existing
graph. Tesseract [7] is a distributed framework for executing general graph mining algorithms on
evolving graphs. It uses a vertex-centric approach to distribute updates to different workers. It
assumes that most changes affect only local graphs, so few duplicate updates need to be detected.
Tesseract supports the quotient-like ideas of k-clique enumeration, graph keyword search, motif
counting, and frequent subgraph mining.

Another area of incremental subgraph indices considers an evolving set of queries over a static
data graph. Duong et al. [28] propose a streaming algorithm using approximate pattern matching
to determine subgraph isomorphisms. They use k-bisimulation to determine equivalent subgraphs
and store them in an index. However, this index is computed offline for a static graph only and
their algorithm considers a stream of graph queries as input.

6.3 Incremental Schema Discovery
Another area related to quotient-based summarization is incremental schema discovery. Vertices
with the same schema are naturally equivalence classes that can be quotiented. Völker and
Niepert mine logical patterns in the Web Ontology Language from static RDF graphs [99]. Wang
et al. [100] incrementally discover attribute-based schemata from JSON documents. The schema
is computed incrementally as more documents are processed. Baazizi et al. [4] also compute
schemata from JSON objects, focusing on optional and mandatory attributes.

In addition to document-oriented formats like JSON, schema discovery is also used for graph
data. For example, XStruct [47] follows a heuristic approach to incrementally extract the XML
schema of XML documents. However, such schema discovery approaches cannot deal with
modifications or deletions of nodes in the XML tree. Other schema discovery approaches focus on
generating (probabilistic) dataset descriptions. Kellou-Menouer and Kedad [54] apply density-
based hierarchical clustering on vertex and edge labels in a graph database. This computes profiles
that can be used to visualize the schema of the graph. Recently, Bouhamoum et al. [15] used
density-based clustering to extract schema information from an RDF graph and incrementally
update the schema when new RDF instances arrive. While the work can deal with additions, the
deletion of edges and vertices is not considered.

7 Non-Quotient Graph Summaries

The methods for structural graph summarization discussed so far focus on analyzing the graph based
on pre-defined structural features such as paths and subgraphs encountered in the graph [10,19].
These structural graph summaries are based on quotient graphs [19] (see Section 3).

There are also structural summary models that are not formed from quotient graphs, which we
discuss below. Subsequently, we consider approaches for summarization based on pattern mining
and statistical approaches. The organization of the methods in these categories is taken from
Čebirić et al. [20].

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:19

7.1 Non-Quotient Structural Graph Summaries
Non-quotient summaries do not use equivalence relations to summarize a graph. Rather, the
summary graph is composed of vertex summaries vs, which group together vertices v of the
original graph G according to certain criteria [19].

The main difference from quotient summaries discussed above is that, in the non-quotient
summaries, a vertex v can belong to zero, one, or multiple vertex summaries vs. In contrast, in
quotient summaries every vertex v has exactly one corresponding vertex summary vs, which is
the equivalence class of v under ∼ [19].

Early work on non-quotient summarization includes that of Goldman and Widom [42], who
created a vertex summary vs for every labeled path in the original graph G. A vertex v of
G is associated with a vertex summary vs if it is reachable by the corresponding label path.
The summary graph is used as a path index, as well as a tool for understanding the schema
structure in semi-structured databases, and hence finds application in query formulation and
query optimization. Revisiting the summarization tool SchemEX [59], its first layer – the RDF
class layer – consists of vertex summaries vscj

representing all the classes cj present in the
input RDF graph G. A vertex v of G is associated with a vertex summary vscj

, iff v is of the
corresponding type cj . Since a vertex v can have multiple types cj1 , cj2 , . . ., it is possible that v is
associated with several vertex summaries vscj1

, vscj2
, . . . and therefore the index’s RDF class layer

is considered a non-quotient summary. Kellou-Menouer and Kedad [54] perform schema extraction
by using density-based clustering to establish a partition of the vertices based on type profiles.
For each type Tj , a type profile TPj = {(label1, α1), (label2, α2), . . .} is constructed, consisting
of tuples of edge labels for outgoing edges (v, w) and incoming edges (w, v), with v ∈ Tj . The
associated probabilities αi denote how likely it is that a vertex v ∈ Tj has an edge with the
respective labeli. If a type profile TPj contains all entries (labeli, αi) of another type profile TPk

and every αi is greater than a certain threshold θ (e. g., θ = 0.6), then the vertices in Tk are
added to Tj to create overlapping classes. Clustering can be found in more structural non-quotient
approaches [56,63,75,98].

Other structural graph summarization methods that do not use quotients are based on
structural measures such as centrality. They identify the most important vertices, cliques, and
others, and connect them in the summary [19]. The difference from quotient-based summaries
is that some graph vertices may not be represented in the summary, i. e., the summaries are
approximate. Examples of summary methods using structural features are [79,97,107]. These guide
the summaries using vertex centrality measures [12] such as vertex (in/out) degree, betweenness
(how often a vertex lies on the shortest path between two other vertices), (k, h)-cores, and the
well-known information retrieval measures PageRank and HITS (based on eigenvalue analysis
over vertices), as well as further measures of vertex centrality such as those applied by Pappas et
al. [79].

7.2 Pattern-Mining Approaches for Graph Summarization
Pattern-mining approaches identify frequent patterns in the input graph G, which are then used
to construct the summary graph SG [19]. Song et al. [90] construct d-summaries to summarize a
knowledge graph G. A summary P , which is a graph pattern found in G, is considered a d-summary,
iff all the summary vertices u ∈ P are d-similar (Rd) to all their respective original vertices v ∈ V .
Informally, uRdv iff (1) u and v share the same label and (2) for every neighbor u′ ∈ P of u

connected over an edge with label p there exists a respective neighbor v′ ∈ V connected via the
same edge label and u′Rd−1v′. Their definition of d-similarity is very similar to k-bisimulation
(Section 4) and mainly differs in the domain on which it is defined, namely summary vertices and
original vertices.

TGDK

12:20 Structural Summarization of Semantic Graphs Using Quotients

Pattern mining methods for graph summarization discover frequently occurring patterns in
the data [19]. Various algorithms exist for graph pattern mining, based either on the well-known
Apriori principle (e. g., [61]) or pattern-growth algorithms (e. g., [103]). These define a minimum
support (min-supp) threshold over subgraphs X ⊆ G. Only patterns that are frequent enough
are included in the summary. Pattern mining methods are approximate summaries of the input
graph G, as they do not include subgraphs that occur infrequently (thus, the summarization
function is no longer homomorphic). However, setting min-supp = 1 usually produces a lossless
summary, equivalent to a structural summary computation, as no subgraphs are omitted. Pattern
mining methods also have interesting features such as automatically mining specific types of
subgraphs like cliques, (bipartite) cores, stars, and chains [37,60]. While star-shaped subgraphs
and chains are in principle also supported by quotient summaries, the difference here is that the
selection of edges in star patterns and the length of the chains is determined in a data-driven
way, rather than being pre-defined in a summary model. Finally, some pattern mining methods
are also approximate because they use approximate methods such as locality-sensitive hashing
(LSH) to assign graph vertices to the summary [65]. This is an inaccuracy introduced by the LSH
function but not a characteristic of the underlying frequent pattern mining algorithms.

7.3 Statistical Methods for Graph Summarization
Statistical methods for graph summarization summarize the contents of a graph quantitatively
such as by counting occurrences of edge labels or computing histograms over the labels [19] and
define further constraints on the summary models. For example, in k-SNAP [94], the number k of
summary vertices in a summary graph can be specified by the user, which controls the size of the
summaries. The summarization operation k-SNAP [93] minimizes a function based on occurrences
of user-selected edge labels to produce a summary graph SG, which contains exactly k vertex
summaries. In its top-down approach, it starts by partitioning the graph based on user-selected
vertex attributes. Afterward, the algorithm splits elements (vertex summaries) of the partition
based on the aforementioned function, until the partition’s size is k. Combining the first step,
partitioning vertices by label, and the second step, minimizing a function that considers edge
labels, k-SNAP can be considered a hybrid approach, combining structural and statistical concepts.
CANAL is an extension of k-SNAP that supports numeric edge attributes [106]. Summarizing
edges labeled with numeric values is approached by bucketing the values into predefined categories.
Thus, the problem of supporting unbounded numerical values is reduced to summarizing graphs
with discrete categories only.

8 Conclusion and Outlook

8.1 Conclusion
We delved into the domain of graph summarization, a process aimed at generating concise
representations of input graphs while preserving specific structural attributes. Particularly, we
focus on structural graph summaries that can be applied to semantic graphs, i. e., labeled graphs
such as in the RDF or provided as labeled property graphs.

Different approaches and algorithms have been developed to address graph summarization.
Our focus has been on exploring the state-of-the-art methods for structural graph summarization
based on quotients. We have examined the relationship of structural summarization with other
pertinent fields, like the well-known k-bisimulation. A noteworthy observation is the natural
connection between structural summarization and logics, owing to the discrete structures under
consideration.

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:21

Finally, there are also hybrid approaches for graph summarization. They combine features of
quotient-based structural and non-quotient statistical and pattern mining techniques [19]. One
such example is the combination of bisimulation with clustering [3]. Hierarchical complete-link
clustering is applied over vertex features to group the vertices. Similar, Wang et al. cluster paths
in a graph to compute an approximate summary [101].

8.2 Outlook
This research contributes to a deeper understanding of graph summarization techniques and opens
avenues for future advancements in this domain. As directions of future research, we see:
1. Multi summaries: Existing works summarize a graph with respect to a single, defined summary

model only. Multi-summaries compute multiple condensed representations of the input graph
at once, stored in a joined data structure.

2. Summaries on temporal graphs: while there are already graph summarization approaches for
temporal graphs, including incremental summarization [9], there is still a lot of work to be
done. For example, we are currently missing approaches for summarization of rapidly evolving
graphs such as social media graphs.

3. Task-specific learned summaries: Graph summarization addresses different application needs.
Example applications are outlined in Section 2. Interesting future work would be to automati-
cally learn which features of a summary model are most relevant to a task (in general) or to
the workload of a task (e. g., the kinds of queries executed in the data search scenario).

4. Exploiting modern hardware such as GPUs: We have already briefly reflected on parallel and
distributed computation of graph summaries in Section 4.3. First steps have been taken on
using GPUs but there is still a lack of research in this direction.

5. PyGraphSum: Each graph summarization model and algorithm typically comes with its own
implementation, datasets, and evaluation measures. Comparing different algorithms and
methods is difficult and cumbersome, as a common standard library for efficient distributed
summarization of static and temporal graphs is missing. A standardized library that is used
among industry and researchers alike will contribute not only to more transparency and
comparability of the different approaches but also accelerate research in the field by facilitating
reuse.

References
1 Dean Allemang and James A. Hendler. Se-

mantic Web for the Working Ontologist - Ef-
fective Modeling in RDFS and OWL, Sec-
ond Edition. Morgan Kaufmann, 2011.
URL: http://www.elsevierdirect.com/product.
jsp?isbn=9780123859655.

2 James F. Allen. Maintaining knowledge about tem-
poral intervals. Commun. ACM, 26(11):832–843,
1983. doi:10.1145/182.358434.

3 Anas Alzogbi and Georg Lausen. Similar
structures inside RDF-graphs. In Workshop
on Linked Data on the Web. CEUR-WS.org,
2013. URL: http://ceur-ws.org/Vol-996/
papers/ldow2013-paper-05.pdf.

4 M. A. Baazizi, H. Ben Lahmar, D. Colazzo,
G. Ghelli, and C. Sartiani. Schema inference for
massive JSON datasets. In Proceedings of the 20th
International Conference on Extending Database
Technology, EDBT, pages 222–233. OpenProceed-
ings.org, 2017. doi:10.5441/002/EDBT.2017.21.

5 Charles W. Bachman. Data structure diagrams.
Data Base, 1(2):4–10, 1969. doi:10.1145/1017466.
1017467.

6 Fabio Benedetti, Sonia Bergamaschi, and Laura Po.
Exposing the underlying schema of LOD sources.
In Web Intelligence (WI), pages 301–304. IEEE,
2015. doi:10.1109/WI-IAT.2015.99.

7 Laurent Bindschaedler, Jasmina Malicevic, Bap-
tiste Lepers, Ashvin Goel, and Willy Zwaenepoel.
Tesseract: distributed, general graph pattern min-
ing on evolving graphs. In European Conf. on
Comp. Systems (EuroSys), pages 458–473. ACM,
2021. doi:10.1145/3447786.3456253.

8 Till Blume. Semantic structural graph sum-
maries for evolving and distributed graphs. PhD
thesis, University of Ulm, Germany, 2022.
URL: https://nbn-resolving.org/urn:nbn:de:
bsz:289-oparu-46050-1.

9 Till Blume, David Richerby, and Ansgar Scherp.
Incremental and parallel computation of struc-
tural graph summaries for evolving graphs. In

TGDK

http://www.elsevierdirect.com/product.jsp?isbn=9780123859655
http://www.elsevierdirect.com/product.jsp?isbn=9780123859655
https://doi.org/10.1145/182.358434
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-05.pdf
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-05.pdf
https://doi.org/10.5441/002/EDBT.2017.21
https://doi.org/10.1145/1017466.1017467
https://doi.org/10.1145/1017466.1017467
https://doi.org/10.1109/WI-IAT.2015.99
https://doi.org/10.1145/3447786.3456253
https://nbn-resolving.org/urn:nbn:de:bsz:289-oparu-46050-1
https://nbn-resolving.org/urn:nbn:de:bsz:289-oparu-46050-1

12:22 Structural Summarization of Semantic Graphs Using Quotients

Int. Conf. on Inform. and Knowledge Manage-
ment (CIKM), pages 75–84. ACM, 2020. doi:
10.1145/3340531.3411878.

10 Till Blume, David Richerby, and Ansgar Scherp.
FLUID: A common model for semantic structural
graph summaries based on equivalence relations.
Theoretical Computer Science, 854:136–158, 2021.
doi:10.1016/J.TCS.2020.12.019.

11 Till Blume and Ansgar Scherp. Indexing data on
the web: A comparison of schema-level indices
for data search. In Database and Expert Sys-
tems Applications (DEXA), pages 277–286, 2020.
doi:10.1007/978-3-030-59051-2_18.

12 Paolo Boldi and Sebastiano Vigna. Axioms for
centrality. Internet Math., 10(3-4):222–262, 2014.
doi:10.1080/15427951.2013.865686.

13 Jeroen Bollen, Jasper Steegmans, Jan Van den
Bussche, and Stijn Vansummeren. Learning graph
neural networks using exact compression. In Pro-
ceedings of the 6th Joint Workshop on Graph Data
Management Experiences & Systems (GRADES)
and Network Data Analytics (NDA), pages 8:1–8:9.
ACM, 2023. doi:10.1145/3594778.3594878.

14 A. Bonifati, S. Dumbrava, and H. Kondylakis.
Graph summarization. CoRR, abs/2004.14794,
2020. arXiv:2004.14794.

15 Redouane Bouhamoum, Zoubida Kedad, and
Stéphane Lopes. Incremental schema discovery
at scale for RDF data. In The Semantic Web
- 18th International Conference, ESWC, volume
12731 of Lecture Notes in Computer Science,
pages 195–211. Springer, 2021. doi:10.1007/
978-3-030-77385-4_12.

16 D. Brickley and R.V. Guha. RDF Schema
1.1, 2014. URL: https://www.w3.org/TR/2014/
REC-rdf-schema-20140225/.

17 Peter Buneman and Slawek Staworko. RDF graph
alignment with bisimulation. Proc. VLDB Endow.,
9(12):1149–1160, 2016. doi:10.14778/2994509.
2994531.

18 Stéphane Campinas, Thomas Perry, Diego Cecca-
relli, Renaud Delbru, and Giovanni Tummarello.
Introducing RDF graph summary with application
to assisted SPARQL formulation. In Database and
Expert Systems Applications (DEXA), pages 261–
266. IEEE, 2012. doi:10.1109/DEXA.2012.38.

19 Šejla Čebirić, François Goasdoué, Haridi-
mos Kondylakis, Dimitris Kotzinos, Ioana
Manolescu, Georgia Troullinou, and Mussab
Zneika. Summarizing semantic graphs: a
survey. VLDB J., 28(3):295–327, 2019.
doi:10.1007/S00778-018-0528-3.

20 Šejla Čebirić, François Goasdoué, and Ioana
Manolescu. A framework for efficient representa-
tive summarization of RDF graphs. In Int. Seman-
tic Web Conf. (ISWC). CEUR-WS.org, 2017. URL:
http://ceur-ws.org/Vol-1963/paper512.pdf.

21 S. Ceri, G. Gottlob, and L. Tanca. What you
always wanted to know about Datalog (but never
dared to ask). Trans. Knowl. Data Eng., 1(1):146–
166, 1989. doi:10.1109/69.43410.

22 Marek Ciglan, Kjetil Nørvåg, and Ladislav Hluchý.
The SemSets model for ad-hoc semantic list search.
In World Wide Web Conf. (WWW), pages 131–
140, 2012. doi:10.1145/2187836.2187855.

23 Mariano P. Consens, Valeria Fionda, Shahan
Khatchadourian, and Giuseppe Pirrò. S+EPPs:
Construct and explore bisimulation summaries,
plus optimize navigational queries; all on existing
SPARQL systems. PVLDB, 8(12):2028–2031, 2015.
doi:10.14778/2824032.2824128.

24 Richard Cyganiak, David Wood, and Markus Lan-
thaler. RDF 1.1 Concepts and Abstract Syn-
tax, 2014. URL: http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225.

25 Reinhard Diestel. Graph Theory, volume 173 of
Graduate Texts in Mathematics. Springer, 5th
edition, 2016. doi:10.1007/978-3-662-53622-3.

26 Li Ding, Joshua Shinavier, Zhenning Shangguan,
and Deborah L. McGuinness. SameAs net-
works and beyond: Analyzing deployment sta-
tus and implications of owl:sameAs in Linked
Data. In Int. Semantic Web Conf. (ISWC),
pages 145–160. Springer, 2010. doi:10.1007/
978-3-642-17746-0_10.

27 Agostino Dovier, Carla Piazza, and Alberto Poli-
criti. An efficient algorithm for computing bisim-
ulation equivalence. Theor. Comput. Sci., 311(1-
3):221–256, 2004. doi:10.1016/S0304-3975(03)
00361-X.

28 Chi Thang Duong, Dung Hoang, Hongzhi Yin,
Matthias Weidlich, Quoc Viet Hung Nguyen, and
Karl Aberer. Efficient streaming subgraph iso-
morphism with graph neural networks. VLDB En-
dow., 14(5):730–742, 2021. doi:10.14778/3446095.
3446097.

29 M. Dürst and M. Suignard. RFC 3987 int.ized
resource identifiers (IRIs), 2005. URL: https:
//www.ietf.org/rfc/rfc3987.txt.

30 Gregor Engels, Claus Lewerentz, Wilhelm Schäfer,
Andy Schürr, and Bernhard Westfechtel. Graph
transformations and model-driven engineering. In
Graph Transformations and Model-Driven Engi-
neering, pages 1–5. Springer, 2010. doi:10.1007/
978-3-642-17322-6_1.

31 Ronald Fagin. Generalized first-order spectra and
polynomial-time recognizable sets. In Complexity
of Computation, volume 7, pages 43–73, 1974.

32 W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu.
Incremental graph pattern matching. In Manage-
ment of Data (SIGMOD), pages 925–936. ACM,
2011. doi:10.1145/1989323.1989420.

33 Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui
Wu. Query preserving graph compression. In Pro-
ceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 157–168.
ACM, 2012. doi:10.1145/2213836.2213855.

34 Wenfei Fan, Yuanhao Li, Muyang Liu, and Can
Lu. Making graphs compact by lossless contrac-
tion. In SIGMOD ’21: International Conference
on Management of Data, pages 472–484. ACM,
2021. doi:10.1145/3448016.3452797.

35 Wenfei Fan, Yuanhao Li, Muyang Liu, and Can
Lu. A hierarchical contraction scheme for querying
big graphs. In SIGMOD ’22: International Con-
ference on Management of Data, pages 1726–1740.
ACM, 2022. doi:10.1145/3514221.3517862.

36 Wenfei Fan, Yinghui Wu, and Jingbo Xu. Adding
counting quantifiers to graph patterns. In Manage-
ment of Data (SIGMOD), pages 1215–1230. ACM,
2016. doi:10.1145/2882903.2882937.

https://doi.org/10.1145/3340531.3411878
https://doi.org/10.1145/3340531.3411878
https://doi.org/10.1016/J.TCS.2020.12.019
https://doi.org/10.1007/978-3-030-59051-2_18
https://doi.org/10.1080/15427951.2013.865686
https://doi.org/10.1145/3594778.3594878
https://arxiv.org/abs/2004.14794
https://doi.org/10.1007/978-3-030-77385-4_12
https://doi.org/10.1007/978-3-030-77385-4_12
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://doi.org/10.14778/2994509.2994531
https://doi.org/10.14778/2994509.2994531
https://doi.org/10.1109/DEXA.2012.38
https://doi.org/10.1007/S00778-018-0528-3
http://ceur-ws.org/Vol-1963/paper512.pdf
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/2187836.2187855
https://doi.org/10.14778/2824032.2824128
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-642-17746-0_10
https://doi.org/10.1007/978-3-642-17746-0_10
https://doi.org/10.1016/S0304-3975(03)00361-X
https://doi.org/10.1016/S0304-3975(03)00361-X
https://doi.org/10.14778/3446095.3446097
https://doi.org/10.14778/3446095.3446097
https://www.ietf.org/rfc/rfc3987.txt
https://www.ietf.org/rfc/rfc3987.txt
https://doi.org/10.1007/978-3-642-17322-6_1
https://doi.org/10.1007/978-3-642-17322-6_1
https://doi.org/10.1145/1989323.1989420
https://doi.org/10.1145/2213836.2213855
https://doi.org/10.1145/3448016.3452797
https://doi.org/10.1145/3514221.3517862
https://doi.org/10.1145/2882903.2882937

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:23

37 Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang,
Wenjie Zhang, Reynold Cheng, and Xuemin Lin.
A survey of community search over big graphs.
VLDB J., 29(1):353–392, 2020. doi:10.1007/
S00778-019-00556-X.

38 Javier D. Fernández, Miguel A. Martínez-Prieto,
Claudio Gutierrez, Axel Polleres, and Mario Arias.
Binary RDF representation for publication and
exchange (HDT). J. Web Semant., 19:22–41, 2013.
doi:10.1016/J.WEBSEM.2013.01.002.

39 Alessandro Generale, Till Blume, and Michael
Cochez. Scaling R-GCN training with graph sum-
marization. In Companion of The Web Confer-
ence 2022, pages 1073–1082. ACM, 2022. doi:
10.1145/3487553.3524719.

40 François Goasdoué, Pawel Guzewicz, and Ioana
Manolescu. Incremental structural summarization
of RDF graphs. In Proceedings of the Interna-
tional Conference on Extending Database Technol-
ogy (EDBT), pages 566–569. OpenProceedings.org,
2019. doi:10.5441/002/EDBT.2019.57.

41 François Goasdoué, Pawel Guzewicz, and Ioana
Manolescu. RDF graph summarization for first-
sight structure discovery. VLDB J., 29(5):1191–
1218, 2020. doi:10.1007/S00778-020-00611-Y.

42 Roy Goldman and Jennifer Widom. DataGuides:
Enabling query formulation and optimization in
semistructured databases. In VLDB’97, Proceed-
ings of 23rd International Conference on Very
Large Data Bases, pages 436–445. Morgan Kauf-
mann, 1997. URL: http://www.vldb.org/conf/
1997/P436.PDF.

43 Thomas Gottron, Ansgar Scherp, Bastian Krayer,
and Arne Peters. LODatio: using a schema-level
index to support users in finding relevant sources
of linked data. In Knowledge Capture (K-CAP),
pages 105–108. ACM, 2013. doi:10.1145/2479832.
2479841.

44 Mahdi Hajiabadi, Venkatesh Srinivasan, and Alex
Thomo. Dynamic graph summarization: Opti-
mal and scalable. In IEEE International Con-
ference on Big Data, pages 545–554. IEEE, 2022.
doi:10.1109/BIGDATA55660.2022.10020422.

45 William L. Hamilton. Graph Representation Learn-
ing. Morgan and Claypool, 2020. URL: https:
//www.cs.mcgill.ca/~wlh/grl_book/.

46 Wook-Shin Han, Jinsoo Lee, Minh-Duc Pham, and
Jeffrey Xu Yu. iGraph: A framework for compar-
isons of disk-based graph indexing techniques. Pro-
ceedings of the International Conference on Very
Large Data Bases (VLDB) Endowment, 3(1):449–
459, 2010. doi:10.14778/1920841.1920901.

47 Jan Hegewald, Felix Naumann, and Melanie Weis.
XStruct: Efficient schema extraction from multi-
ple and large XML documents. In Proceedings of
the International Conference on Data Engineer-
ing Workshops (ICDE), page 81. IEEE Computer
Society, 2006. doi:10.1109/ICDEW.2006.166.

48 Aidan Hogan, Eva Blomqvist, Michael Cochez,
Claudia d’Amato, Gerard de Melo, and others.
Knowledge graphs. CoRR, abs/2003.02320, 2020.
arXiv:2003.02320.

49 Neil Immerman. Descriptive Complexity. Springer,
1999. doi:10.1007/978-1-4612-0539-5.

50 Xiaowei Jiang, Xiang Zhang, Feifei Gao, Chu-
nan Pu, and Peng Wang. Graph compression

strategies for instance-focused semantic mining.
In Chinese Semantic Web Symposium/Chinese
Web Science Conf., pages 50–61. Springer, 2013.
doi:10.1007/978-3-642-54025-7_5.

51 Tobias Käfer, Ahmed Abdelrahman, Jürgen Um-
brich, Patrick O’Byrne, and Aidan Hogan. Ob-
serving linked data dynamics. In Proceedings of
the Extended Semantic Web Conference (ESWC),
volume 7882 of Lecture Notes in Computer Sci-
ence, pages 213–227. Springer, 2013. doi:10.1007/
978-3-642-38288-8_15.

52 A. Kansal and F. Spezzano. A scalable
graph-coarsening based index for dynamic graph
databases. In Int. Conf. on Information and
Knowledge Management (CIKM), pages 207–216.
ACM, 2017. doi:10.1145/3132847.3133003.

53 Raghav Kaushik, Pradeep Shenoy, Philip Bohan-
non, and Ehud Gudes. Exploiting local similarity
for indexing paths in graph-structured data. In Int.
Conf. on Data Engineering (ICDE), pages 129–140.
IEEE, 2002. doi:10.1109/ICDE.2002.994703.

54 K. Kellou-Menouer and Z. Kedad. Schema discov-
ery in RDF data sources. In Int. Conf. on Concep-
tual Modeling (ER), volume 9381 of Lecture Notes
in Computer Science, pages 481–495. Springer,
2015. doi:10.1007/978-3-319-25264-3_36.

55 Arijit Khan, Sourav S. Bhowmick, and Francesco
Bonchi. Summarizing static and dynamic big
graphs. VLDB Endowment, 10(12):1981–1984,
2017. doi:10.14778/3137765.3137825.

56 Kifayat-Ullah Khan, Waqas Nawaz, and Young-
Koo Lee. Set-based approximate approach
for lossless graph summarization. Comput-
ing, 97(12):1185–1207, 2015. doi:10.1007/
S00607-015-0454-9.

57 Aleks Kissinger, Alex Merry, and Matvey Soloviev.
Pattern graph rewrite systems. In Int. Work-
shop on Developments in Computational Models
(DCM), pages 54–66, 2012. doi:10.4204/EPTCS.
143.5.

58 Jihoon Ko, Yunbum Kook, and Kijung Shin.
Incremental lossless graph summarization. In
Conf. on Knowledge Discovery and Data Min-
ing (SIGKDD), pages 317–327. ACM, 2020. doi:
10.1145/3394486.3403074.

59 M. Konrath, T. Gottron, S. Staab, and A. Scherp.
SchemEX - efficient construction of a data cat-
alogue by stream-based indexing of linked data.
J. Web Semant., 16:52–58, 2012. doi:10.1016/J.
WEBSEM.2012.06.002.

60 Danai Koutra, U Kang, Jilles Vreeken, and Chris-
tos Faloutsos. Summarizing and understanding
large graphs. Stat. Anal. Data Min., 8(3):183–202,
2015. doi:10.1002/SAM.11267.

61 Michihiro Kuramochi and George Karypis. Fre-
quent subgraph discovery. In Int. Conf. on Data
Mining (ICDM), pages 313–320. IEEE, 2001. doi:
10.1109/ICDM.2001.989534.

62 Kostis Kyzirakos, Manos Karpathiotakis, Kon-
stantina Bereta, George Garbis, Charalam-
pos Nikolaou, Panayiotis Smeros, Stella Gi-
annakopoulou, Kallirroi Dogani, and Manolis
Koubarakis. The spatiotemporal RDF store
Strabon. In Advances in Spatial and Tempo-
ral Databases - 13th International Symposium,

TGDK

https://doi.org/10.1007/S00778-019-00556-X
https://doi.org/10.1007/S00778-019-00556-X
https://doi.org/10.1016/J.WEBSEM.2013.01.002
https://doi.org/10.1145/3487553.3524719
https://doi.org/10.1145/3487553.3524719
https://doi.org/10.5441/002/EDBT.2019.57
https://doi.org/10.1007/S00778-020-00611-Y
http://www.vldb.org/conf/1997/P436.PDF
http://www.vldb.org/conf/1997/P436.PDF
https://doi.org/10.1145/2479832.2479841
https://doi.org/10.1145/2479832.2479841
https://doi.org/10.1109/BIGDATA55660.2022.10020422
https://www.cs.mcgill.ca/~wlh/grl_book/
https://www.cs.mcgill.ca/~wlh/grl_book/
https://doi.org/10.14778/1920841.1920901
https://doi.org/10.1109/ICDEW.2006.166
https://arxiv.org/abs/2003.02320
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-3-642-54025-7_5
https://doi.org/10.1007/978-3-642-38288-8_15
https://doi.org/10.1007/978-3-642-38288-8_15
https://doi.org/10.1145/3132847.3133003
https://doi.org/10.1109/ICDE.2002.994703
https://doi.org/10.1007/978-3-319-25264-3_36
https://doi.org/10.14778/3137765.3137825
https://doi.org/10.1007/S00607-015-0454-9
https://doi.org/10.1007/S00607-015-0454-9
https://doi.org/10.4204/EPTCS.143.5
https://doi.org/10.4204/EPTCS.143.5
https://doi.org/10.1145/3394486.3403074
https://doi.org/10.1145/3394486.3403074
https://doi.org/10.1016/J.WEBSEM.2012.06.002
https://doi.org/10.1016/J.WEBSEM.2012.06.002
https://doi.org/10.1002/SAM.11267
https://doi.org/10.1109/ICDM.2001.989534
https://doi.org/10.1109/ICDM.2001.989534

12:24 Structural Summarization of Semantic Graphs Using Quotients

volume 8098 of Lecture Notes in Computer Sci-
ence, pages 496–500. Springer, 2013. doi:10.1007/
978-3-642-40235-7_35.

63 Kristen LeFevre and Evimaria Terzi. Grass: Graph
structure summarization. In SIAM International
Conference on Data Mining, SDM, pages 454–465.
SIAM, 2010. doi:10.1137/1.9781611972801.40.

64 Leonid Libkin. Elements of Finite Model
Theory. Springer, 2004. doi:10.1007/
978-3-662-07003-1.

65 Xingjie Liu, Yuanyuan Tian, Qi He, Wang-Chien
Lee, and John McPherson. Distributed graph sum-
marization. In Int. Conf. on Information and
Knowledge Management (CIKM), pages 799–808.
ACM, 2014. doi:10.1145/2661829.2661862.

66 Yike Liu, Tara Safavi, Abhilash Dighe, and Danai
Koutra. Graph summarization methods and appli-
cations: A survey.ACM Comput. Surv., 51(3):62:1–
62:34, 2018. doi:10.1145/3186727.

67 Yongming Luo, George H. L. Fletcher, Jan Hid-
ders, Paul De Bra, and Yuqing Wu. Regulari-
ties and dynamics in bisimulation reductions of
big graphs. In First International Workshop
on Graph Data Management Experiences and
Systems, GRADES, page 13. CWI/ACM, 2013.
doi:10.1145/2484425.2484438.

68 Yongming Luo, George H. L. Fletcher, Jan Hidders,
Yuqing Wu, and Paul De Bra. External memory
k-bisimulation reduction of big graphs. In 22nd
ACM International Conference on Information
and Knowledge Management, CIKM’13, pages 919–
928. ACM, 2013. doi:10.1145/2505515.2505752.

69 Jan Martens, Jan Friso Groote, Lars B. van den
Haak, Pieter Hijma, and Anton Wijs. A lin-
ear parallel algorithm to compute bisimulation
and relational coarsest partitions. In Formal As-
pects of Component Software (FACS), volume
13077 of LNCS, pages 115–133. Springer, 2021.
doi:10.1007/978-3-030-90636-8_7.

70 D. L. McGuinness and F. van Harmelen. OWL
Web Ontology Language, 2014. [Online, accessed:
December 6, 2023]. URL: https://www.w3.org/
TR/2004/REC-owl-features-20040210/.

71 Nandana Mihindukulasooriya, María Poveda-
Villalón, Raúl García-Castro, and Asunción
Gómez-Pérez. Loupe – an online tool for inspecting
datasets in the linked data cloud. In Int. Semantic
Web Conf. (ISWC). CEUR-WS.org, 2015. URL:
http://ceur-ws.org/Vol-1486/paper_113.pdf.

72 Tova Milo and Dan Suciu. Index structures for
path expressions. In Int. Conf. Database The-
ory (ICDT), pages 277–295. Springer, 1999. doi:
10.1007/3-540-49257-7_18.

73 Seunghwan Min, Sung Gwan Park, Kunsoo Park,
Dora Giammarresi, Giuseppe F. Italiano, and
Wook-Shin Han. Symmetric continuous subgraph
matching with bidirectional dynamic program-
ming. Proc. VLDB Endow., 14(8):1298–1310, 2021.
doi:10.14778/3457390.3457395.

74 Muhammad Anis Uddin Nasir, Cigdem Aslay,
Gianmarco De Francisci Morales, and Matteo
Riondato. Tiptap: Approximate mining of frequent
k-subgraph patterns in evolving graphs. ACM
Trans. on Knowledge Discovery from Data, 15(3),
apr 2021. doi:10.1145/3442590.

75 Saket Navlakha, Rajeev Rastogi, and Nisheeth
Shrivastava. Graph summarization with bounded
error. In ACM SIGMOD International Conference
on Management of Data, pages 419–432. ACM,
2008. doi:10.1145/1376616.1376661.

76 Svetlozar Nestorov, Jeffrey D. Ullman, Janet L.
Wiener, and Sudarshan S. Chawathe. Representa-
tive objects: Concise representations of semistruc-
tured, hierarchial data. In Proceedings 13th Intl
Conference on Data Engineering, pages 79–90.
IEEE Computer Society, 1997. doi:10.1109/ICDE.
1997.581741.

77 T. Neumann and G. Moerkotte. Characteristic
sets: Accurate cardinality estimation for RDF
queries with multiple joins. In Int. Conf. on Data
Engineering (ICDE), pages 984–994. IEEE, 2011.
doi:10.1109/ICDE.2011.5767868.

78 Robert Paige and Robert Endre Tarjan. Three par-
tition refinement algorithms. SIAM J. Comput.,
16(6):973–989, 1987. doi:10.1137/0216062.

79 Alexandros Pappas, Georgia Troullinou, Gian-
nis Roussakis, Haridimos Kondylakis, and Dim-
itris Plexousakis. Exploring importance measures
for summarizing RDF/S KBs. In The Seman-
tic Web ESWC, pages 387–403. Springer, 2017.
doi:10.1007/978-3-319-58068-5_24.

80 Emmanuel Pietriga, Hande Gözükan, Caroline Ap-
pert, Marie Destandau, Sejla Čebirić, François
Goasdoué, and Ioana Manolescu. Browsing linked
data catalogs with LODAtlas. In Int. Semantic
Web Conf. (ISWC), pages 137–153. Springer, 2018.
doi:10.1007/978-3-030-00668-6_9.

81 Detlef Plump. Essentials of term graph rewriting.
Electron. Notes Theor. Comput. Sci., 51:277–289,
2001. doi:10.1016/S1571-0661(04)80210-X.

82 Miao Qiao, Hao Zhang, and Hong Cheng. Sub-
graph matching: on compression and computa-
tion. Proceedings of the International Confer-
ence on Very Large Data Bases (VLDB) En-
dowment, 11(2):176–188, 2017. doi:10.14778/
3149193.3149198.

83 Chen Qun, Andrew Lim, and Kian Win Ong.
D(k)-index: An adaptive structural summary for
graph-structured data. In Management of Data
(SIGMOD), pages 134–144. ACM, 2003. doi:
10.1145/872757.872776.

84 Mohammad Rashid, Giuseppe Rizzo, Nandana
Mihindukulasooriya, Marco Torchiano, and Ós-
car Corcho. KBQ - A tool for knowledge base
quality assessment using evolution analysis. In
Proceedings of Workshops and Tutorials of the
International Conference on Knowledge Capture
(K-CAP), volume 2065 of CEUR Workshop Pro-
ceedings, pages 58–63. CEUR-WS.org, 2017. URL:
http://ceur-ws.org/Vol-2065/paper13.pdf.

85 Jannik Rau, David Richerby, and Ansgar Scherp.
Computing k-bisimulations for large graphs: A
comparison and efficiency analysis. In Graph
Transformation - 16th International Conference,
ICGT 2023, volume 13961 of Lecture Notes in
Computer Science, pages 223–242. Springer, 2023.
doi:10.1007/978-3-031-36709-0_12.

86 Davide Sangiorgi. On the origins of bisimula-
tion and coinduction. ACM Trans. Program.
Lang. Syst., 31(4):15:1–15:41, 2009. doi:10.1145/
1516507.1516510.

https://doi.org/10.1007/978-3-642-40235-7_35
https://doi.org/10.1007/978-3-642-40235-7_35
https://doi.org/10.1137/1.9781611972801.40
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1145/2661829.2661862
https://doi.org/10.1145/3186727
https://doi.org/10.1145/2484425.2484438
https://doi.org/10.1145/2505515.2505752
https://doi.org/10.1007/978-3-030-90636-8_7
https://www.w3.org/TR/2004/REC-owl-features-20040210/
https://www.w3.org/TR/2004/REC-owl-features-20040210/
http://ceur-ws.org/Vol-1486/paper_113.pdf
https://doi.org/10.1007/3-540-49257-7_18
https://doi.org/10.1007/3-540-49257-7_18
https://doi.org/10.14778/3457390.3457395
https://doi.org/10.1145/3442590
https://doi.org/10.1145/1376616.1376661
https://doi.org/10.1109/ICDE.1997.581741
https://doi.org/10.1109/ICDE.1997.581741
https://doi.org/10.1109/ICDE.2011.5767868
https://doi.org/10.1137/0216062
https://doi.org/10.1007/978-3-319-58068-5_24
https://doi.org/10.1007/978-3-030-00668-6_9
https://doi.org/10.1016/S1571-0661(04)80210-X
https://doi.org/10.14778/3149193.3149198
https://doi.org/10.14778/3149193.3149198
https://doi.org/10.1145/872757.872776
https://doi.org/10.1145/872757.872776
http://ceur-ws.org/Vol-2065/paper13.pdf
https://doi.org/10.1007/978-3-031-36709-0_12
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/1516507.1516510

A. Scherp, D. Richerby, T. Blume, M. Cochez, and J. Rau 12:25

87 Johann Schaible, Thomas Gottron, and Ansgar
Scherp. TermPicker: Enabling the reuse of vocab-
ulary terms by exploiting data from the Linked
Open Data cloud. In The Semantic Web (ESWC),
pages 101–117. Springer, 2016. doi:10.1007/
978-3-319-34129-3_7.

88 Alexander Schätzle, Antony Neu, Georg Lausen,
and Martin Przyjaciel-Zablocki. Large-scale bisim-
ulation of RDF graphs. In Semantic Web Infor-
mation Management Workshop, pages 1–8. ACM,
2013. doi:10.1145/2484712.2484713.

89 Kijung Shin, Amol Ghoting, Myunghwan Kim,
and Hema Raghavan. SWeG: Lossless and lossy
summarization of web-scale graphs. In World Wide
Web Conf. (WWW), pages 1679–1690. ACM, 2019.
doi:10.1145/3308558.3313402.

90 Qi Song, Yinghui Wu, and Xin Luna Dong. Mining
summaries for knowledge graph search. In ICDM,
pages 1215–1220. IEEE, 2016. doi:10.1109/ICDM.
2016.0162.

91 Blerina Spahiu, Riccardo Porrini, Matteo Pal-
monari, Anisa Rula, and Andrea Maurino. AB-
STAT: ontology-driven linked data summaries
with pattern minimalization. In The Seman-
tic Web (ESWC), pages 381–395, 2016. doi:
10.1007/978-3-319-47602-5_51.

92 Giorgio Stefanoni, Boris Motik, and Egor V.
Kostylev. Estimating the cardinality of conjunc-
tive queries over RDF data using graph summari-
sation. In Proceedings of the 2018 World Wide
Web Conference, pages 1043–1052. ACM, 2018.
doi:10.1145/3178876.3186003.

93 Yuanyuan Tian, Richard A. Hankins, and Jig-
nesh M. Patel. Efficient aggregation for graph
summarization. In ACM SIGMOD International
Conference on Management of Data, SIGMOD,
pages 567–580. ACM, 2008. doi:10.1145/1376616.
1376675.

94 Yuanyuan Tian and Jignesh M. Patel. In-
teractive graph summarization. In Link Min-
ing: Models, Algorithms, and Applications,
pages 389–409. Springer, 2010. doi:10.1007/
978-1-4419-6515-8_15.

95 Thanh Tran, Günter Ladwig, and Sebastian
Rudolph. Managing structured and semistruc-
tured RDF data using structure indexes. Trans.
Knowl. Data Eng., 25(9):2076–2089, 2013. doi:
10.1109/TKDE.2012.134.

96 Thanh Tran, Haofen Wang, Sebastian Rudolph,
and Philipp Cimiano. Top-k exploration of query
candidates for efficient keyword search on graph-
shaped (RDF) data. In Proceedings of the 25th

International Conference on Data Engineering,
pages 405–416. IEEE Computer Society, 2009.
doi:10.1109/ICDE.2009.119.

97 Georgia Troullinou, Haridimos Kondylakis, Evan-
gelia Daskalaki, and Dimitris Plexousakis. Ontol-
ogy understanding without tears: The summariza-
tion approach. Semantic Web, 8(6):797–815, 2017.
doi:10.3233/SW-170264.

98 Octavian Udrea, Andrea Pugliese, and V. S. Sub-
rahmanian. GRIN: A graph based RDF index.
In AAAI, pages 1465–1470. AAAI Press, 2007.
URL: http://www.aaai.org/Library/AAAI/2007/
aaai07-232.php.

99 Johanna Völker and Mathias Niepert. Statistical
schema induction. In Extended Semantic Web
Conf. (ESWC), pages 124–138. Springer, 2011.
doi:10.1007/978-3-642-21034-1_9.

100 Lanjun Wang, Oktie Hassanzadeh, Shuo Zhang,
Juwei Shi, Limei Jiao, Jia Zou, and Chen Wang.
Schema management for document stores. Pro-
ceedings of the International Conference on Very
Large Data Bases (VLDB) Endowment, 8(9):922–
933, 2015. doi:10.14778/2777598.2777601.

101 Qiu Yue Wang, Jeffrey Xu Yu, and Kam-Fai Wong.
Approximate graph schema extraction for semi-
structured data. In Advances in Database Tech-
nology (EDBT), pages 302–316. Springer, 2000.
doi:10.1007/3-540-46439-5_21.

102 Jennifer Widom. Data management for XML: re-
search directions. IEEE Data Eng. Bull., 22(3):44–
52, 1999. URL: http://sites.computer.org/
debull/99sept/jennifer.ps.

103 Xifeng Yan and Jiawei Han. gSpan: Graph-based
substructure pattern mining. In Int. Conf. on
Data Mining (ICDM), pages 721–724. IEEE, 2002.
doi:10.1109/ICDM.2002.1184038.

104 D. Yuan, P. Mitra, H. Yu, and C. L. Giles. It-
erative graph feature mining for graph indexing.
In Int. Conf. on Data Engineering (ICDE), pages
198–209. IEEE, 2012. doi:10.1109/ICDE.2012.11.

105 D. Yuan, P. Mitra, H. Yu, and C. L. Giles. Up-
dating graph indices with a one-pass algorithm.
In Management of Data (SIGMOD), pages 1903–
1916. ACM, 2015. doi:10.1145/2723372.2746482.

106 Ning Zhang, Yuanyuan Tian, and Jignesh M. Pa-
tel. Discovery-driven graph summarization. In Int.
Conf. on Data Engineering (ICDE), pages 880–891.
IEEE, 2010. doi:10.1109/ICDE.2010.5447830.

107 Xiang Zhang, Gong Cheng, and Yuzhong Qu. On-
tology summarization based on RDF sentence
graph. In World Wide Web (WWW), pages 707–
716. ACM, 2007. doi:10.1145/1242572.1242668.

TGDK

https://doi.org/10.1007/978-3-319-34129-3_7
https://doi.org/10.1007/978-3-319-34129-3_7
https://doi.org/10.1145/2484712.2484713
https://doi.org/10.1145/3308558.3313402
https://doi.org/10.1109/ICDM.2016.0162
https://doi.org/10.1109/ICDM.2016.0162
https://doi.org/10.1007/978-3-319-47602-5_51
https://doi.org/10.1007/978-3-319-47602-5_51
https://doi.org/10.1145/3178876.3186003
https://doi.org/10.1145/1376616.1376675
https://doi.org/10.1145/1376616.1376675
https://doi.org/10.1007/978-1-4419-6515-8_15
https://doi.org/10.1007/978-1-4419-6515-8_15
https://doi.org/10.1109/TKDE.2012.134
https://doi.org/10.1109/TKDE.2012.134
https://doi.org/10.1109/ICDE.2009.119
https://doi.org/10.3233/SW-170264
http://www.aaai.org/Library/AAAI/2007/aaai07-232.php
http://www.aaai.org/Library/AAAI/2007/aaai07-232.php
https://doi.org/10.1007/978-3-642-21034-1_9
https://doi.org/10.14778/2777598.2777601
https://doi.org/10.1007/3-540-46439-5_21
http://sites.computer.org/debull/99sept/jennifer.ps
http://sites.computer.org/debull/99sept/jennifer.ps
https://doi.org/10.1109/ICDM.2002.1184038
https://doi.org/10.1109/ICDE.2012.11
https://doi.org/10.1145/2723372.2746482
https://doi.org/10.1109/ICDE.2010.5447830
https://doi.org/10.1145/1242572.1242668

	1 Introduction
	1.1 What are Semantic Graphs and Why Graph Summarization?
	1.2 What is a Task, a Graph Summary, and a Graph Summary Model?
	1.3 What is Not a Graph Summary!
	1.4 Structure

	2 Applications of Structural Graph Summaries
	2.1 Semantic Entity Retrieval
	2.2 Cardinality Computation
	2.3 Data Source Search
	2.4 Training Graph Neural Networks

	3 Structural Summarization of Static Graphs based on Quotients
	3.1 Triple Features
	3.2 Subgraph Features
	3.3 Semantic Rule Features in Graph Summaries

	4 Structural Graph Summarization by k-Bisimulation
	4.1 Stratified Bisimulation to Paths of Length k
	4.2 Examples of Stratified Bisimulation for Graph Summarization
	4.3 Distributed and Parallel Bisimulation

	5 Structural Graph Summarization and Logics
	6 Summarization of Temporal Graphs
	6.1 Incremental Graph Summarization
	6.2 Incremental Subgraph Indices
	6.3 Incremental Schema Discovery

	7 Non-Quotient Graph Summaries
	7.1 Non-Quotient Structural Graph Summaries
	7.2 Pattern-Mining Approaches for Graph Summarization
	7.3 Statistical Methods for Graph Summarization

	8 Conclusion and Outlook
	8.1 Conclusion
	8.2 Outlook

