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ABSTRACT

The envelope model is a useful statistical technique that can be applied to multivariate linear regression 
problems. It aims to remove immaterial information via sufficient dimension reduction techniques while still 
gaining efficiency and providing accurate parameter estimates. Recently, envelope tensor versions have 
been developed to extend this technique to tensor data. In this work, a partial tensor envelope model is 
proposed that allows for a parsimonious version of tensor response regression when only certain predictors 
are of interest. The consistency and asymptotic normality of the regression coefficients estimator are also 
established theoretically, which provides a rigorous foundation for the proposed method. In numerical 
studies using both simulated and real-world data, the partial tensor envelope model is shown to outperform 
several existing methods in terms of the efficiency of the regression coefficients associated with the 
selected predictors.
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1  INTRODUCTION

Envelope models were proposed initially by Cook et al. (2010) as a method to simultaneously achieve dimension reduction on response and

improved parameter estimation in multivariate linear regression. Serial developments and extensions of the envelope method have been made in

the literature since then. Generally speaking, envelope regression models and associated inference are derived under different data regimes.

In the context of the multivariate linear regression model, both response and predictors are vector-valued (one-way tensor). The developed

methods include envelopes (Cook et al., 2010), partial envelopes (Su & Cook, 2011), envelopes and partial least-squares (Cook et al., 2013), and

new envelope methods extending the linear model to a general multivariate context (Cook & Zhang, 2015), such as weighted least-squares,

generalized linear model, and Cox regression. Moreover, Zhang et al. (2018) extended the envelope methodology beyond the usual multivariate

regression setting to functional data analysis. In addition to vector-valued predictors, some envelope extensions allow the predictors to be

tensor-valued (Zhang & Li, 2017). Ding and Cook (2018) studied complex structures in which the response is a random matrix variate, and

predictors can be either scalar, vector, or matrix.

In many modern statistical applications, tensor-valued data, that is, multidimensional arrays, are commonly encountered in science, engineer-

ing, and medicine. Examples of tensor-valued data include electroencephalography (EEG, two-way tensor), anatomical magnetic resonance imag-

ing (MRI, three-way tensor), and functional magnetic resonance imaging (fMRI, four-way tensor), among others (Zhang & Li, 2017). Therefore,

methods that deal with multiple tensor-valued regressions have been developed. Kong et al. (2019) developed a low-rank linear regression model

to correlate a matrix response with a high-dimensional vector of predictors when coefficient matrices have low-rank structures. Zhou et al. (2013)

proposed a new family of tensor regression models that efficiently exploit the special structure of tensor covariates. Li and Zhang (2017)

developed a parsimonious tensor response regression model with a multidimensional array (tensor) response and a vector predictor.

Zhang and Chen (2020) discussed a principal envelope model, showing that any subset of principal components can preserve most of the informa-

tion of the sample.

All the above-mentioned works tackle regression with vector-, matrix-, or tensor-valued predictors. However, little work exists on regression

with a tensor-valued response. In this work, we study a class of envelope models with tensor-valued responses and vector-valued predictors. In
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the case where some of the predictors are of particular interest, we propose a parsimonious tensor partial envelope by extending the multivariate

linear regression of Su and Cook (2011) to a tensor version. Though the proposed method is an extension of their work, we can present many

results formally under the framework of tensor-valued response. We show that the parsimonious models have milder restrictions and also can

result in improved efficiency. Finally, we perform simulation studies and real data analysis to verify the developed theoretical results.

The rest of this paper is organized as follows. We first introduce tensor notations and review the existing envelope methods in Section 2.

Section 3 presents the methodology of the proposed partial tensor envelope model, including model setup, parameter estimation, and theoretical

properties of the estimator. Section 4 presents the simulations and real data analysis. Some concluding remarks are finally made in Section 5.

2 | NOTATIONS AND ENVELOPE MODELS REVISITED

2.1 | Notations

Throughout the paper, we use the following tensor notations and operations. More details can be found in Kolda and Bader (2009). A

multidimensional array A�ℝr1�…�rm is called an m-order tensor. In particular, vectors and matrices are tensors of orders one and two, respectively.

The vecðAÞ operator stacks the entries of a tensor A into a column vector, that is, an entry of A, ai1…im maps to the ℓ-th entry of vecðAÞ, where

ℓ¼1þ
Pm

k¼1ðik�1ÞΠk�1
j¼1 rj. Matricization, also known as unfolding or flattening, is the process of reordering the elements of an m-way array into a

matrix. The mode-k matricization of a tensor A maps A into a matrix, denoted by AðkÞ �ℝ
rk�

Q
j ≠ k

rj

� �
. The k-mode ðmatrixÞ product of a tensor A and

a matrix M�ℝl�rk leads to an m-way tensor denoted by A�kM�ℝr1�…�rk�1�l�rkþ1�…�rm . Similarly, the k-mode (vector) product of a tensor A and a

vector X �ℝp results in an ðm�1Þ-order tensor denoted by A�kX �ℝr1�…�rk�1�rkþ1�…�rm . The Tucker decomposition of a tensor is defined as

A¼M�1D1�2…�mDm ¼ ½½M;D1,…,Dm��,

where M�ℝt1�…�tm is called the core tensor and its entries show the level of interaction between the different components, Di �ℝri�ti , i¼1,…,m,

are the factor matrices; the second equality is the shorthand notation ½½M;D1,…,Dm�� introduced in Kolda (2006). For a symmetric matrix

A�ℝr�r , the vechðAÞ�ℝrðrþ1Þ=2 stacks the unique entries of a symmetric matrix into a column vector.

2.2 | Response envelope model

Envelope method was developed by Cook et al. (2010) for the multivariate linear model,

Y¼ βXþε, with covðεÞ¼Σ, ð1Þ

where Y �ℝr is the random response vector, X �ℝp is a vector of predictors, and the random error vector ε�ℝr is normally distributed with mean

0 and unknown Σ. The envelope method is built on a key assumption that some linear combinations of Y are immaterial to the regression, while

other linear combinations of Y depend on X and are thus important to the regression. In fact, envelopes separate the material and immaterial parts

of Y. More specifically, let PξY denote the projection of Y onto a subspace ξ⊆ℝr with the following two properties: (i) the marginal distribution of

QξY does not depend on X, and (ii) PξY is conditionally independent of QξY given X. The two conditions, when combined, imply that the distribu-

tion of QξY is not affected marginally by X or through an association with PξY. As a result, changes in X influence this distribution only through

PξY. The Σ-envelope of span ðβÞ, denoted by ξΣðBÞ, is defined as the intersection of all reducing subspaces of Σ containing B. Let ðΓ ,Γ0Þ�ℝr�r be

an orthogonal matrix with Γ �ℝr�u being a column orthogonal matrix and span ðΓÞ¼ ξΣðBÞ, and u denotes the dimension of ξΣðBÞ. This then leads

directly to the following envelope model,

Y ¼ βXþε, with Σ¼ΓΩΓT þΓ0Ω0Γ0
T , and β¼Γη, ð2Þ

where η�ℝu�p represents the coordinates of β relative to the basis Γ , Ω�Su�u and Ω0 �Sðr�uÞ�ðr�uÞ are both positive definite matrices, and η, Ω

and Ω0 depend on the basis Γ . It should be mentioned that the parameters β and Σ depend only on ξΣðβÞ instead of the basis. The envelope

estimator β̂ of β, denoted by β̂¼Pξ̂β̂OLS, is the projection of the ordinary least-squares (OLS) estimator β̂OLS of β onto the estimated envelope

space. A detailed review of envelope models can be found in Cook (2018) and Lee and Su (2020).



2.3 | Tensor response model

Now, we review the tensor response model. For an m-order tensor response variable Y �ℝr1�…�rm , and a vector of predictor variable X �ℝp,

Li and Zhang (2017) studied a class of tensor response linear model,

Y¼B�ðmþ1ÞXþε, ð3Þ

where the symbol �ðmþ1Þ represents the ðmþ1Þ-mode vector product, B�ℝr1�…�rm�p denotes an ðmþ1Þ-order tensor regression coefficient that

is the parameter of interest, and ε�ℝr1�…�rm is an m-order tensor denoting a random error that is independent of X and has mean 0. In this model,

it is assumed that the covariance of ε has a separable Kronecker covariance such that cov½vecðεÞ� ¼Σ¼Σm�…�Σ1, where Σj, j¼1,…,m, are

positive-definite matrices. The assumption of separable structure is also used in some other works about tensors (Fosdick & Hoff, 2014;

Hoff, 2011; Li & Zhang, 2017; Zhang & Li, 2017). It is useful to reduce the number of free parameters in tensor regression. An alternative form of

the tensor response linear model (3) is

vecðYÞ¼BT
ðmþ1ÞXþvecðεÞ, ð4Þ

where Bðmþ1Þ �ℝ
p�

Qm
j¼1

rj

� �
is the coefficient matrix that can be regarded as mode-ðmþ1Þ matricization of the tensor coefficient B. The main

difference between (3) and (4) is that there is no separable covariance structure restricted to ε in (4). Thus, for a given set of sample data with size

n, the OLS estimator based on the model (3) is given by

B̂OLS ¼U�ðmþ1Þ FFT
� ��1

F

� �
, ð5Þ

where U �ℝr1�…�rm�n and F�ℝp�n are the stacked response array of Y and predictor matrix of X, respectively.

3 | METHODOLOGY

3.1 | Partial tensor envelope model

Li and Zhang (2017) and Zhang and Li (2017) gave a generalized sparsity principle similar to the vector situation for the tensor response linear

model. Assume that we can find a series of subspaces, Sk ⊆ℝrk , k¼1,…,m, such that

Y�kQkjX�Y�kQk , Y�kQk ⊥ ⊥Y�kPkjX, ð6Þ

where Pk �ℝrk�rk is the projection matrix onto Sk , Qk ¼ Irk �Pk is the projection matrix onto the complement space of Sk , and the symbol ⊥ ⊥

denotes statistical independence. For any Sk with those properties, Y�kPk carries all of the material information and perhaps some immaterial

information, while Y�kQk carries only immaterial information. Therefore, we refer to Y�kPk informally as the material part and to Y�kQk as the

immaterial part of the regression Y on X, respectively. Using a Tucker decomposition, (6) can be expressed as

QðYÞjX�QðYÞ, QðYÞ⊥ ⊥PðYÞjX: ð7Þ

where QðYÞ¼ ½½Y;P1,… ,Pm���Rr1�…�rm is a Tucker decomposition with Y as the core tensor and P1,…,Pm as the factor matrices, and

QðYÞ¼Y�PðYÞ. This results in Y¼PðYÞþQðYÞ, where PðYÞ is the material part and QðYÞ is the immatertial part.

In practice, part of the predictors may be of special interest. In this case, we partition X into two sets of predictors X1 �ℝp1 and X2 �ℝp2 , with

p1þp2 ¼ p, and also partition the columns of B into B1 �ℝr1�…�rm�p1 and B2 �ℝr1�…�rm�p2 . Then, the partial tensor response linear model can be

expressed as

Y ¼B1�ðmþ1ÞX1þB2�ðmþ1ÞX2þ ε, ð8Þ

where B1 is the coefficient associated with the predictors of interest. Accordingly, an alternative representation of (8) is given by



vecðYÞ¼BT
1ðmþ1ÞX1þBT

2ðmþ1ÞX2þvecðεÞ, ð9Þ

where B1ðmþ1Þ �ℝ
p1�

Qm
j¼1

rj

� �
and B1ðmþ1Þ �ℝ

p2�
Qm
j¼1

rj

� �
are the coefficient matrix that can be regarded as mode-ðmþ1Þ matricization of the tensor

coefficient B1 and B2, respectively.

Now, we consider the Σ-envelope for ℬ1 = spanðB1Þ and B2 as unrestricted parameter, which results in the parametric structure

span ðB1Þ⊆ T Σðℬ1Þ and Σk ¼P1kΣkP1kþQ1kΣkQ1k , where P1k is the projection matrix onto spanðℬ1Þ and Q1k ¼ I1k�P1k . Motivated by Su and

Cook (2011), let R1j2 represent the population residuals from the regression X1 on X2. Then, the partial tensor linear model can be expressed as

Y ¼B1�ðmþ1ÞR1j2þB ∗
2 �ðmþ1ÞX2þε, ð10Þ

or

vecðYÞ¼BT
1ðmþ1ÞR1j2þB ∗ T

2ðmþ1ÞX2þvecðεÞ, ð11Þ

where B ∗
2 is a linear combination of B1 and B2. Furthermore, let RYj2 ¼Y�B ∗

2 �ðmþ1ÞX2, corresponding to the population residuals from the

regression of Y on X2 alone. Thus, a linear model involving B1 alone can be parameterized as

RYj2 ¼B1�ðmþ1ÞR1j2þε, ð12Þ

or alternatively as

vecðRYj2Þ¼B1ðmþ1Þ
TR1j2þvecðεÞ: ð13Þ

In practice, we use R̂1j2 ¼X1�CovðX1,X2Þ ΣX2

� 	�1
X2 and R̂Yj2 ¼Y�CovðY,X2Þ�ðmþ1Þ ΣX2

� 	�1
X2 as estimators of R1j2 and RYj2 , respectively,

where ΣX2
denotes sample covariance matrix of predictors X2.

3.2 | Parameter estimation

Our goal is to estimate B1 by the tensor envelope T Σðℬ1Þ, including the estimation of Σ, and then estimate B2 via the ordinary least-squares

(OLS) method to fit the residuals Y�cB1�ðmþ1ÞX1 on X2. Given a set of data samples with size n, the objective function is given as follows:

lðB1,ΣÞ¼ log jΣjþ1
n

Xn
i¼1

vec Ri
Yj2

� �
�B1ðmþ1Þ

TRi
1j2

n oT
Σ�1 vec Ri

Yj2

� �
�B1ðmþ1Þ

TRi
1j2

n o
: ð14Þ

The procedure to estimate parameters is given by the following:

Step 1: Initialization, Bð0Þ
1 , Σð0Þ ¼Σð0Þ

m �…�Σð0Þ
1 .

Step 2: Estimate the envelope basis Γðtþ1Þ
k

n om

k¼1
, given BðtÞ

1 and ΣðtÞ. This can be obtained by minimizing the objective function in (15), subject to

ΦT
kΦk ¼ Iuk ,

fðtÞk ðΦkÞ¼ log ΦT
kΣ

ðtÞ
k Φk




 


þ log ΦT
k NðtÞ

k

� ��1
Φk





 



, ð15Þ

where Nk
ðtÞ ¼ nΠj≠ krj

� 	�1Pn
i¼1R

iðkÞ
Yj2 ΣðtÞ

m

� ��1
�…� ΣðtÞ

kþ1

� ��1
� ΣðtÞ

k�1

� ��1
�…� ΣðtÞ

1

� ��1
� �

RiðkÞ
Yj2

� �T
.

Step 3: Estimate Bðtþ1Þ
1 , Σðtþ1Þ ¼Σðtþ1Þ

m �…�Σðtþ1Þ
1 and Bðtþ1Þ

2 , given Γðtþ1Þ
k

n om

k¼1
. First, Bðtþ1Þ

1 and Σðtþ1Þ
k are updated respectively by

Bðtþ1Þ
1 ¼U� 1Γ

ðtþ1Þ
1 Γ ðtþ1Þ

1

� �T
�2…�mΓ

ðtþ1Þ
m Γ ðtþ1Þ

m

� �T
�ðmþ1Þ FFT

� ��1
F

� �

and



Σðtþ1Þ
k ¼Γ ðtþ1Þ

k Ωðtþ1Þ
k Γ ðtþ1Þ

k

� � >
þΓ ðtþ1Þ

0k Ωðtþ1Þ
0k Γ ðtþ1Þ

0k

� � >
:

After that, Bðtþ1Þ
2 is updated via OLS to fit the residuals Y�cB1

ðtþ1Þ
�ðmþ1ÞX1 on X2.

Step 4: Repeat steps 2–3 until convergence by satisfying the termination condition, say, the objective function smaller than the desired level of

tolerance.

We remark that the envelope dimension of uk is not required to be given in step 1 since no envelope-based estimator is needed. The initial

sample covariance matrix Σð0Þ
k is an OLS estimator for the full model Y ¼ βXþ ε, which is

ffiffiffi
n

p
consistent. In step 2, the right hand of (15) is

equivalent to log ΓkΣ
ðtÞ
k Γk




 


þ log Γk NðtÞ
k

� ��1
Γk





 



: Then the envelope basis can be estimated via

Γ̂
ðtþ1Þ
k ¼ argmin

Γk

log ΓT
kΣ

ðtÞ
k Γk




 


þ log ΓT
k NðtÞ

k

� ��1
Γk





 



:

3.3 | Asymptotic properties of the estimators

We show asymptotic properties of the estimators B̂1 and B̂2. First, we prove their
ffiffiffi
n

p
-consistent under some weak conditions, where the error

term in model (8) is not limited to be normally distributed.

Theorem 1. Suppose the error term vecðεiÞ, i¼1,…,n, in the model (8) are independent and identically distributed with the finite

fourth moment and the starting value Σð0Þ
k of the covariance estimator is

ffiffiffi
n

p
-consistent, k¼1,…,m. Then, both B̂1 and B̂2 areffiffiffi

n
p

-consistent.

Proof of Theorem 1 is given in Appendix A. We now show their asymptotic normalities. Denote

g¼
g1
g2
g3

0B@
1CA¼

vecðB2Þ
vecðB1Þ
vechðΣÞ

0B@
1CA, ψ ¼

ψ1

ψ2

ψ3

..

.

ψmþ2

0BBBBBBB@

1CCCCCCCA¼

vecðB2Þ
vecðB1Þ
vechðΣ1Þ

..

.

vechðΣmÞ

0BBBBBBB@

1CCCCCCCA, θ¼

θ1

θ2

..

.

θ3mþ2L

0BBBB@
1CCCCA,

where θ1 ¼ vecðB2Þ, θ2 ¼ vecðΘÞ, fθjgmþ2
j¼3 ¼fvecðΓkÞgmk¼1, fθjg

2mþ2
j¼mþ3 ¼fvechðΩkÞgmk¼1, fθjg

3mþ2
j¼2mþ3 ¼fvechðΩ0kÞgmk¼1.

Theorem 2. Suppose the error term vecðεiÞ, i¼1,…,n, in the model (8) are independent and identically distributed with a normal

distribution. Then,
ffiffiffi
n

p
vec B̂j

� �
�vecðBjÞ

� �
, j¼1,2, converge in distribution to normal random vectors.

Proof of Theorem 2 is given in Appendix A. For the proof of Theorem 2, we use Proposition 4.1 in Shapiro (1986) to derive the

asymptotic distribution:
ffiffiffi
n

p
ðĝ�gÞ�N 0,Λ0ð Þ, where the details of the Λ0 is given in the proof of Theorem 2. The asymptotic covariances for

vec B̂2

� �
and vec B̂1

� �
are the first two diagonal blocks of Λ0. Due to the complexity of the asymptotic covariances, the closed form is not

provided. Since Shapiro's result is built on the normal assumption, the normality of vecðεiÞ is thus required in Theorem 2. When vecðεiÞ is

not normal, the asymptotical normality of vec B̂j

� �
may still hold. But the asymptotic covariance matrix will be even more complex than that

in Theorem 2.

3.4 | Selection of u

In the above discussion, the dimension u of the envelope is assumed to be known. In practice, however, this is unknown. Common methods to

select u include cross-validation (CV), likelihood ratio testing (LRT), or an information criterion like AIC, BIC, and so forth. Cook (2018)

discussed the details of these methods. AIC tends to select a model that contains the true model, but it usually overestimates u. BIC

tends to select the correct u with probability tending to one as n!∞, but it may be slow to respond in small samples. LRT tends to perform

best with small samples, but asymptotically it makes an error with rate α. In any particular application, the factors that constitute a small or

large sample depend on other characteristics of the regression model, including the strength of the signal. The cross-validation method tends

to balance variance and bias in the selection of u and so may naturally result in choices that are different from those suggested by LRT or



information criterion. In the simulations, we have listed and discussed all possible values of envelope dimensions of uk by setting u1 ¼…¼ um. In

real data analysis, we select the envelope dimension uk ,k¼1,…,m respectively via BIC given by Li and Zhang (2017), an explicit formula of BIC

that minimizes

BICk ukð Þ¼�n
2
log Γ >

k Σð0Þ
k Γk




 


� n
2
log Γ >

k Nð0Þ
k

� ��1
Γk





 



þ logðnÞpuk:

More discussion on the reasonability of the BIC criterion is given by Li and Zhang (2017).

4 | NUMERICAL STUDY

4.1 | Simulations

In this section, we consider a 3-order tensor dataset with error covariance matrices generated from Σk ¼ΓkΩkΓ
T
k þΓ0kΩ0kΓ

T
0k , k¼1,2,3, where

ðΓk ,Γ0kÞ are obtained by standardizing an rk� rk matrix of independent uniform(0, 1) variables, Ωk ¼ Iuk and Ω0 ¼0:01Irk�uk . For B�ℝr1�r2�r3�p,

Bk ¼Γkηk �ℝrk�p, where the entries in ηk are generated from uniform(0, 1) identically and independently, k¼1,2,3. X follows a multivariate normal

distribution with mean 0 and covariance matrix Ipk . The error criterion is defined as

SMSE¼E B̂1�B1

��� ���: ð16Þ

We then compare the proposed method with the envelope and OLS estimators in terms of the accuracy and stability of SMSE. The performance

of the methods is assessed using simulation settings with p¼10,u¼ð1,1,1Þ > ,r¼ð10,10,10Þ > ,c¼2. We also consider different n and candidates

of u. Table 1 presents the averages and standard deviations of SMSE that were obtained based on 500 simulations. As Table 1 shows, when

envelope dimensions u -are correctly selected, the proposed P-Envelope achieves the smallest SMSE, and so -does its standard deviation. It shows

that the P-Envelope method outperforms the Envelope and OLS uniformly in terms of prediction accuracy and robustness. Moreover, when the

dimension u is misspecified, the proposed method still performs best and has the least variation for different dimensions.

4.2 | Real data analysis

In this section, we use data based on blood sugar concentration in rabbits after insulin injection. These data were analyzed earlier by Ding and

Cook (2018) and Vølund (1980). The experiment used 36 rabbits and divided them equally into four groups, each with different treatments

TABLE 1 The average SMSE and standard deviations (in parenthesis) over 500 simulations.

n Method

u

(1,1,1) (2,2,2) (3,3,3) (4,4,4) (5,5,5)

100 P-Envelope 0.4345(0.0725) 0.6409(1.1246) 1.0440(1.5327) 1.9131(2.8940) 2.8297(3.2181)

Envelope 1.0615(3.3561) 1.9894(4.0962) 2.9078(4.5642) 3.5572(5.1294) 4.0327(5.8183)

OLS 5.5664(8.7157) 5.5664(8.7157) 5.5664(8.7157) 5.5664(8.7157) 5.5664(8.7157)

200 P-Envelope 0.4490(0.2584) 0.5716(0.8046) 1.0661(2.3145) 1.7246(3.5551) 2.4647(4.0131)

Envelope 1.8618(3.5259) 2.4586(6.2476) 2.8574(7.9752) 3.2291(10.1167) 3.4892(10.8583)

OLS 4.5200(13.4513) 4.5200(13.4513) 4.5200(13.4513) 4.5200(13.4513) 4.5200(13.4513)

500 P-Envelope 0.4348(0.0997) 0.4967(0.3034) 0.7515(0.9606) 1.1596(1.5257) 1.6656(1.8179)

Envelope 1.8099(2.4935) 1.9654(2.5297) 2.1077(2.6188) 2.2273(2.6786) 2.3300(2.7256)

OLS 2.7710(3.0195) 2.7710(3.0195) 2.7710(3.0195) 2.7710(3.0195) 2.7710(3.0195)

1000 P-Envelope 0.4298(0.0731) 0.4938(0.2504) 0.6892(0.7150) 1.0686(1.3298) 1.5026(1.9128)

Envelope 1.7919(2.3752) 1.8833(2.3987) 1.9565(2.4320) 2.0317(2.4896) 2.0990(2.5571)

OLS 2.3804(2.8114) 2.3804(2.8114) 2.3804(2.8114) 2.3804(2.8114) 2.3804(2.8114)



and dose levels. Let S1 and T1 denote standard treatment and test treatment with low dose levels, 0.75 units per rabbit, while S2 and T2 denote

standard treatment and test treatment with high dose levels, 1.50 units per rabbit. After administering the insulin dose every day, the blood sugar

concentration levels of rabbits in each group were measured at 0, 1, 2, 3, 4, and 5 h. Our interest is to study the percentage decreases in blood

sugar concentrations at 1, 2, 3, 4, and 5 h compared with the initial concentration at 0 h. We then write the measurements for each rabbit as a

matrix Y �ℝ5�2. The rows denote the percentage decreases in blood sugar concentration per hour per day under two different treatments. The
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F IGURE 1 SMSE of three methods over different values of u1, and P-Envelope denotes the envelope technology used for (a) X1 and X3,
(b) X1 and X2.
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F IGURE 2 Ratio of the standard deviation of the estimated value of the corresponding coefficients. P-Envelope denotes the envelope
technology used for (a) X1 and X3, (b) X1 and X2. P-Envelope/Envelope denotes the ratio of the proposed partial envelope method to the standard
envelope method, and P-Envelope/OLS denotes the ratio of the proposed partial envelope method to the ordinary least squares method.



columns are the percentage reductions under two different treatments assigned on day one and day two. Two treatments and two different days

form a predictor vector X� ℝ4�1. For groups 1–4, the predictor vector X ¼ðX1,X2,X3,X4ÞT can be designated as ð0:75,0,0,1:5ÞT , ð1:5,0,0,0:75ÞT ,

ð0,1:5,0:75,0ÞT , and ð0,0:75,1:5,0ÞT , respectively. This study aims to find the relationship between these predictors and the percentage decreases
in blood sugar concentration in terms of the model (10).

For these real data, we consider the proposed partial envelope method under two scenarios. In the first scenario, we use envelope technology
for the effects of the two treatments on the first day, and the ordinary least-squares method for the effects on the second day. For the second

scenario, we are interested in the standard treatment effects in two different days. Using BIC, we select the envelope dimension u1 to be one.
From Figure 1, we see that, for both scenarios, the smallest prediction errors occur at u1=1. Moreover, as seen in Figure 1, the proposed partial 
envelope method and the standard envelope method improve the OLS method. However, the P-Envelope method performs the best over

different choices of u1. Figure 1b shows that both the partial envelope and standard envelope methods have similar performance in terms of
prediction error. Figure 2 shows the standard deviations of the regression coefficient estimates. The partial envelope method achieves the
smallest deviations, revealing that the proposed method outperforms other methods in terms of stability.

5 | CONCLUDING  REMARKS

This paper proposes a partial envelope regression model that allows the response to be tensor-valued and the predictors to be vector-valued. It
leads to a parsimonious version of tensor response while some predictors are of interest. Although the proposed method is an extension of a
series of envelope methods, we formally report many results under the tensor-valued response framework. Theoretically, we prove that the

regression coefficient estimators are consistent and asymptotic normality under mild conditions, resulting in improved efficiency. Experimentally,

we show that the proposed method achieves significant gains in accuracy compared to some other methods.
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APPENDIX A: APPENDIX PROOFS OF THEOREMS

A.1 | Proof of Theorem 1

Proof. For B̂1 , the proof is similar to that of Theorem 1 in Li and Zhang (2017) and is therefore omitted.

Next, we prove the coefficient B2 is also
ffiffiffi
n

p
-consistent. Let Y ∗ denote Y�B̂1�ðmþ1ÞX1. Then, Equation (8) can be expressed as

Y ∗ ¼B2�ðmþ1ÞX2þ ε: ðA1Þ

This results in the least-squares estimator of B2 based on model (A1), given the data fðX1i,X2i,YiÞgni¼1, as

B̂2OLS ¼U ∗�ðmþ1Þ F2F
T
2

� ��1
F2

� �
¼ U�B̂1�ðmþ1ÞF1
h i

�ðmþ1Þ F2F
T
2

� ��1
F2

� �
:

ðA2Þ

Recall that B1�B̂1 ¼Op n�1=2
� 	

, ε¼Op n�1=2
� 	

and that F is bounded. Then, by (A2), we have

B̂2OLS ¼ U�B̂1�ðmþ1ÞF1
h i

�ðmþ1Þ F2F
T
2

� ��1
F2

� �
¼ B1�B̂1

� �
�ðmþ1ÞF1þB2�ðmþ1ÞF2þε

h i
�ðmþ1Þ F2F

T
2

� ��1
F2

� �
¼ B1�B̂1

� �
�ðmþ1Þ F1

T F2F
T
2

� ��1
F2

� �
þB2�ðmþ1Þ F2

T F2F
T
2

� ��1
F2

� �
þε�ðmþ1Þ F2F

T
2

� ��1
F2

� �
:

This leads to

B̂2OLS�ðmþ1Þ F2
T F2F

T
2

� ��1
F2

� �
¼ B1�B̂1

� �
�ðmþ1Þ F1

T F2F
T
2

� ��1
F2

� �
þB2�ðmþ1Þ F2

T F2F
T
2

� ��1
F2

� �
þε�ðmþ1Þ F2F

T
2

� ��1
F2

� �
;

that is,

B̂2OLS�B2

h i
�ðmþ1Þ F2

T F2F
T
2

� ��1
F2

� �
¼ B1�B̂1

� �
�ðmþ1Þ F1

T F2F
T
2

� ��1
F2

� �
þε�ðmþ1Þ F2F

T
2

� ��1
F2

� �
:

Thus, we have



B̂2OLS�B2 ¼Op n�1=2
� �

þOp n�1=2
� �

¼Op n�1=2
� �

,

which completes the proof of Theorem 1.

A.1.1 | Proof of Theorem 2

Proof. As g¼ gðψÞ¼ gðθÞ is overparameterized, by Proposition 4.1 in Shapiro (1986), we have
ffiffiffi
n

p
ðĝ�gÞ converging in distribution

to Nð0,Λ0Þ, where Λ0 ¼Ψ Ψ TJΨ
� 	þ

Ψ T and Ψ ¼ ∂gðθÞ=∂θ is the gradient matrix. Let Δ represent the limit of the sample covariance

matrix of X as the sample size n tends to infinity, and Δij ði, j¼1,2Þ represent the covariance matrices corresponding to the partition

Xij ði, j¼1,2Þ of X. The Fisher information matrix J of vecðB2ÞT ,vecðB1ÞT ,vechðΣÞT
h iT

is given by

J¼

Δ22�Σ�1 Δ21�Σ�1 0

Δ12�Σ�1 Δ11�Σ�1 0

0 0
1
2
ETh Σ�1�Σ�1

� 	
Eh

0BB@
1CCA,

where Eh �ℝh2�hðhþ1Þ=2 is the expansion matrix and h¼Πm
k¼1rk .

Moreover, let M¼ ∂gðψÞ=∂ψ and N¼ ∂ψðθÞ=∂θ. By chain rule, we then obtain Ψ ¼ ∂gðθÞ=∂θ¼ ∂gðψÞ=∂ψ � ∂ψðθÞ=∂θ¼MN.

Further, we have

M¼

Ip2Πm
k¼1rk

0 0 … 0

0 Ip1Πm
k¼1rk

0 … 0

0 0
∂vechðΣÞ
∂vechðΣ1Þ

…
∂vechðΣÞ
∂vechðΣmÞ

0BBB@
1CCCA

and

N¼ ∂vecðB2Þ
∂θ

� �T

,
∂vecðB1Þ

∂θ

� �T

,
∂vechðΣ1Þ

∂θ

� �T

,…,
∂vechðΣmÞ

∂θ

� �T
" #T

,

where

∂vecðB2Þ
∂θ

¼ Ip2Πm
k¼1rk

, 0, 0,…,0
� �

:

As in Li and Zhang (2017), we then obtain

∂vecðB1Þ
∂θ

¼ ∂vecðB1Þ
∂vecðΘÞ ,

∂vecðB1Þ
∂vecðΓ1Þ

,…,
∂vecðB1Þ
∂vecðΓmÞ

,0,…,0

� �
,

where

∂vecðB1Þ
∂Θ

¼ Ip1�Γm�…�Γ1
� 	

,

∂vecðB1Þ
∂vecðΓkÞ

¼ΠB1
k ðΓm�…�Γkþ1�Γk�1�…�Γ1ÞΘðkÞ

T�Irk
� �



and

∂vechðΣkÞ
∂θ

¼ 0,…,0,
∂vechðΣkÞ
∂vecðΓkÞ

,0,…,0,
∂vechðΣkÞ
∂vechðΩkÞ

,0,…,0,
∂vechðΣkÞ
∂vechðΩ0kÞ

,0,…,0

� �
,

with

∂vechðΣkÞ
∂vecðΓkÞ

¼2Crk ΓkΩk�Irk �Γ rk�Γ0kΩ0kΓ
T
0k

� 	
,

∂vechðΣkÞ
∂vecðΩkÞ

¼Crk ðΓk�ΓkÞEuk ,

∂vechðΣkÞ
∂vecðΩ0kÞ

¼Crk ðΓ0k�Γ0kÞErk�uk ,

and Crk �ℝrkðrkþ1Þ=2�r2k is the contraction matrix.

For ∂vechðΣÞ
∂vechðΣkÞ, we obtain

∂vechðΣÞ
∂vechðΣkÞ

¼CΠm
i¼1ri

∂vecðΣÞ
∂vecðΣkÞ

Erk :

Next, we calculate ∂vecðΣÞ
∂vecðΣkÞ. When k¼1 and k¼m, we have

∂vecðΣÞ
∂vecðΣ1Þ

¼ Kr2�IðΠm
i¼2riÞ

2

� �
Ir1�vecðΣm�…�Σ2Þ�Ir1ð Þ

and

∂vecðΣÞ
∂vecðΣmÞ

¼ IΠm
i¼1ri

�KΠm
i¼1ri

� �
Irm�vecðΣm�1�…�Σ1Þ�Irmð Þ:

When 2≤ k ≤m�1, these derivatives cannot be written in matrix form, but they are indeed unique. This completes the proof of

Theorem 2. □
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