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Abstract 

 
Kernel methods are often used for nonlinear regression and classification in statistics and machine 

learning because they are computationally cheap and accurate. The wavelet kernel functions based on 

wavelet analysis can efficiently approximate any nonlinear functions. In this article, we construct a 
novel wavelet kernel function in terms of random wavelet bases and define a linear vector space that 

captures nonlinear structures in reproducing kernel Hilbert spaces (RKHS). Based on the wavelet 

transform, the data are mapped into a low-dimensional randomized feature space and convert kernel 

function into operations of a linear machine. We then propose a new Bayesian approximate kernel 
model with the random wavelet expansion and use the Gibbs sampler to compute the model’s 

parameters. Finally, some simulation studies and two real datasets analyses are carried out to 

demonstrate that the proposed method displays good stability, prediction performance compared to 
some other existing methods. 
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1 Introduction

Machine learning problems with observations substantially smaller than the num-
ber of available variables, known as large p small n problem, are widespread and 
full of challenges. It is normal to use principal component analysis to lower the 
dimensions (Wang and Du 2000) or to use variable selection to reduce the num-
ber of variables (Chakraborty et  al. 2012). Variable selection is well-developed 
for linear regression models, but it might not be practical or applicable in some 
situations. In this article, we focus on using nonlinear regression models to han-
dle the large p small n problem in the reproducing kernel Hilbert spaces (RKHS) 
(Aronszajn 1950). Since support vector machine (SVM) (Vapnik 1999) was pro-
posed, kernel supervised learning methods in RKHS have been widely used. Gen-
eralized kernel models (Zhang et al. 2011) are extensions of the generalized lin-
ear models induced by a reproducing kernel in the feature space. A usual way to 
train a nonlinear support vector machine is to approximate the factorization of 
the kernel matrix and process the columns of the factor matrix as features in a 
linear machine (deCoste and Mazzoni 2003). Bayesian approaches are applied to 
nonlinear classification and regression. Bayesian b inary c lassification models in 
RKHS are proposed to analyze microarray data and produce smaller classifica-
tion errors than some existing classification methods (Mallick et al. 2005). Bayes-
ian approximate kernel regression model for nonlinear regression (Crawford et al. 
2018) performs well in genomic selection and association mapping.

In the present work, we approximate the kernel function by factoring the kernel 
function itself. This method maps high-dimensional data into low-dimensional ran-
domized feature space. Rahimi and Recht (2007) introduces that the kernel in the 
models can be approximated by random Fourier features. Inspired by their work, we 
construct a novel wavelet kernel function in terms of random wavelet bases. We then 
develop a new Bayesian approximate kernel model using the random wavelet bases. 
The experiment results indicate that random wavelet method yield higher accuracy 
in solving classification and regression problems.

1.1  Review of reproducing kernel Hilbert space

There is an issue that for many well-adopted kernels, the dimension of the Hilbert 
space is infinite (Wahba 1990). When training the dataset, it is preferred to solve 
an optimization problem in a finite-dimensional space. We define a class of  space 
called reproducing kernel Hilbert space (RKHS) that transfers the infinite-dimen-
sional space to finite-dimensional space.

Definition 1.1 Let X be a set. A reproducing kernel Hilbert space over X is a Hilbert 
space H consisting of functions on X such that for each x ∈ X , there is a function 
kx ∈ H with the property

⟨f , kx⟩H = f (x) (∀f ∈ H),



where k(⋅, x) ∶= kx(⋅) is called a reproducing kernel of H . The reproducing kernel 
k(x, y) is symmetric and positive definite: k(xi, xj) = k(xj, xi) and for x1,⋯ , xn ∈ X  
and a1,⋯ , an ∈ ℝ

Suppose we are given a set of training data 
{(

xi, yi
)}n

i=1
 , where xi ∈ X ⊆ ℝ

p is an
input vector and yi ∈ Y ⊆ ℝ is the continuous output for a regression problem or 
yi = ±1 is the binary output for a classification problem. Consider the standard non-
parametric problem and estimate f (x) by the following penalized loss function

where L(f (x), y) is a loss function, ‖ ⋅ ‖K is the RKHS norm, see Hastie et al. (2009).

Lemma 1.1  (Nonparametric Representer Theorem) (Scholkopf et al. 2001). Let X  be 
a non-empty set, k is a positive definite real-valued kernel on X × X  , g is a strictly 
monotonically increasing real-valued function on [0,∞],L is an arbitrary cost func-
tion and F  is a class of functions that satisfy

Then, any f ∈ F  minimizing the penalized loss function

admits a representation of the form

where

By the representer theorem, the solution for (1) can be written as

where 
{
�i
}n

i=1
 are the corresponding kernel coefficients.

Notice that ‖f‖2
K
=
∑n

i,j=1
k
�
xi, xj

�
�i�j , substituting it into (1) we obtain

∑
i,j=1,⋯,n

aiajk
(
xi, xj
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C
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(
x1
))
,… ,

(
xn, yn, f

(
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1

n

n∑
i=1

L
(
f
(
xi
)
, yi

)
.

f̂ (x) =

n∑
i=1

�ik
(
x, xi

)
,



where � =
(
�1,⋯ , �n

)T is an n × 1 regression vector and K =
(
k1,⋯ , kn

)
 is the

n × n kernel matrix with ki =
(
k
(
xi, x1

)
,⋯ , k

(
xi, xn

))T , see Hastie et al. (2009).

1.2 � Review of random features

The kernel trick can be used to generate features for algorithms easily. It is 
based on the inner product between pairs of input points (Rahimi and Recht 
2007). However, the kernel tricks consume substantial computational and stor-
age resources when dealing with large training sets. Instead of using the normal 
kernel function, we introduce a randomized feature map z ∶ ℝ

p
→ ℝ

d that maps 
the data into a low-dimensional inner product space. It utilizes the inner product 
between a pair of transformed points to approximate the kernel function:

where x ∈ ℝ
p and z(x) ∈ ℝ

d . when d > p , the approximation also holds in the case 
of a low-dimensional d.

With the kernel trick, evaluating the machine at a test point x requires com-
puting f (x) =

∑n

i=1
�ik

�
x, xi

�
 , which has a time complexity of O(np). For large

datasets, the scaling of this kernel method is at least quadratic in the number of 
examples (Bazavan et al. 2012). Therefore, this method is impractical if the data-
set is beyond 104 elements.

After introducing the randomized feature map and learning a hyperplane w , 
a linear machine can be evaluated by simply computing f (x) = wTz(x) . With the 
randomized feature maps presented, the computation requires only O(p + d) oper-
ations and storage (Rahimi and Recht 2007). We can transform the input x with 
the low-dimensional z and apply linear methods to approximate the nonlinear ker-
nel machine at high speed.

Lemma 1.2  (Mercer-Hilbert-Schmidt Theorem) (Wahba 1990). Let 
{
�j

}
 be an

orthogonal sequence of continuous eigenfunctions on L2(X) and eigenvalues 
l1 ≥ l2 ≥ ⋯ ≥ 0. Let k be a continuous kernel on compact metric space X  , then
∀ x, y ∈ X

We define the feature functions �(x) =
�√

lj�j(x)
�r

j=1
 , i.e. �j(x) =

√
lj�j(x) . Conse-

quently, the estimated function f can be expressed as follows

f̂ = argmin
f∈H

[
1

n

n∑
i=1

L
(
f
(
xi
)
, yi

)
+ ��TK�

]
,

k(x, y) = ⟨�(x),�(y)⟩ ≈ z(x)Tz(y),

k(x, y) =

r∑
j=1

lj�j(x)�j(y).



where b =
(
b1,… , br

)T , r represents the dimension of the feature space, see Zhang 
et al. (2011).

Let b = �(x)T� . From f (x) =
∑n

i=1
�ik

�
x, xi

�
 , we get k = �(x)T�(x) . For the

shift-invariant kernel function: k
(
xi, xj

)
= k

(
xi − xj

)
 , we have

where k̃ is the approximate kernel. To be more explicit, Similar to Crawford et al. 
(2018), we represent z as �̃ and specify a matrix �� =

[
�̃
(
x1
)
,… , �̃

(
xn
)]

 with a 
corresponding approximate kernel matrix

2 � Bayesian approximate kernel methods

2.1 � Random wavelet bases

The motivation of wavelet analysis is to approximate a signal or a function by 
using a mother wavelet function �

where x, a, b ∈ ℝ , x is a variable, a ≠ 0 , a is a dilation factor and b is a translation
factor. � , for all practical purposes, should satisfy the requirement ∫ �(x)dx = 0 . 
If |a| < 1,𝜓a,b(x) has smaller time-width than �(x) and is in a higher frequency; if 
|a| > 1,𝜓a,b(x) has larger time-width than �(x) and is in a lower frequency. Thus
wavelet has time-widths adapted to their frequencies (Sifuzzaman et al. 2009). If a
function f (x) ∈ L2(ℝ) , the wavelet transform of f(x) is written as

The wavelet coefficients are

If �(⋅) is a mother wavelet and xi, xj ∈ ℝ
p , i, j = 1,… , n , then the dot-product wave-

let kernel is

f (x) =

r∑
j=1

bj�j(x) = �(x)Tb,

k
(
xi − xj

)
= �(x)T�(x) ≈ z

(
xi
)T
z
(
xj
)
= k̃

(
xi − xj

)
,

K̃ = �̃
T
�̃.

�a,b(x) = |a|−1∕2�
(
x − b

a

)
,

∑
j∈Z

∑
k∈Z

< f ,𝜓j,k > 𝜓j,k(t).

⟨
f ,�j,k

⟩
= dj,k = ∫

∞

−∞

f (t)�j,k(t)dt.



where xi =
(
xih, h = 1, 2,… , p

)
.

In Zhang and Ding (2017), the translation-invariant wavelet kernel is given

Definition 2.1  (Mercer’s condition) (Vapnik 2013). A real-valued function k(x, y) is 
said to fulfill Mercer’s condition if for all square-integrable functions g(x) , we have

If the Mercer’s condition holds, we can write k(x, y) as a dot product k(x, y) = 
⟨Ψ(x),Ψ(y)⟩ , see Zhang et al. (2004).

Lemma 2.2  The dot-product wavelet kernel satisfies Mercer’s condition, i.e. it can 
be written as a dot product.

Proof  For ∀g(⋅) ∈ L2(ℝ
p) , we have

Thus the dot-product wavelet kernel can be represented as

We then can use the dot product of Ψ(xi) and Ψ
(
xj
)
 to approximate the kernel func-

tion k
(
xi, xj

)
 . Selecting a mother wavelet � is essential for the random wavelet fea-

tures method. In this article, we construct a dot-product wavelet kernel function in 
terms of the mother wavelet of Morlet wavelet function (Shyu and Sun 2002). The 
mother wavelet of Morlet wavelet function is defined as

k
(
xi, xj

)
=

p∏
h=1

(
�

(
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a

)
⋅ �

(
xjh − b

a

))
,

k
(
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)
=
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(
�

(
xih − xjh

a

))
.

� g(x)k(x, y)g(y)dxdy ≥ 0.

�
ℝp⊗ℝp

k
(
xi, xj

)
g(xi)g

(
xj
)
dxidxj
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ℝp

p∏
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𝜓

(
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g(xi)dxi
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≥ 0.

k
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)
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The dot-product wavelet kernel function based on the mother wavelet of Morlet 
wavelet function can be expressed as

The approximation of the wavelet kernel function using random wavelet bases is 
formulated as follows:

Let �̃ =
[
�̃
(
x1
)
,… , �̃

(
xn
)]

 , we then use K̃ = �̃
T
�̃ to approximate the kernel func-

tion, where �(⋅) is the mother wavelet of Morlet wavelet function.

2.2 � Generalized kernel models

We can treat the loss function L
(
f
(
xi
)
, yi

))
 in (1) as a negative conditional loglikeli-

hood using the logarithmic scoring rule (Bernardo and Smith 2009). The general-
ized linear model (GLM) is defined as

where p(y ∣ �) is a distribution function, � is the expected value of response y con-
ditional on the input X , X� is the linear operator, a linear combination of unknown 
parameters � . g(⋅) is the link function.

The generalized kernel model (GKM) (Zhang et  al. 2011) is derived from the 
GLM and can be written as

This model can be obtained from the model

where � = K̃
−1
�̃

T
b.

The generalized models have been widely used in classification and regression 
problems which are based on kernel methods (Chakraborty 2009). According to the 
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m
𝓁

iid
∼ N(0, 1), n

𝓁

iid
∼ N(0, 1), 𝓁 = 1,… , d,

m =
[
m1,… ,md

]
∈ ℝ

d, � =
[
n1,… , nd

]
∈ ℝ

d,

��
(
xj
)⊤

=

(
p∏
i=1

𝜓
(
m1xji − n1

)
,⋯ ,

p∏
i=1

𝜓
(
mdxji − nd

))
, j = 1,⋯ , n.

y ∼ p(y ∣ �) with � = g(X�),

(2)y ∼ p(y ∣ �) with � = g(K̃�).

y ∼ p(y ∣ �) with � = g(�̃b),



application interests, we can specify a proper likelihood and link function. To be 
specific, the likelihood is set as the likelihood of the normal distribution, and the 
link function is set as the identity in the regression problems (Crawford et al. 2018). 
This article applies these generalized kernel models to regression and classification 
problems.

Since the approximate kernel matrix K̃ is symmetric and positive definite, the 
spectral decomposition of K̃ is as follows:

where Q̃ is an n × n orthogonal matrix whose ith column is the eigenvector qi of K̃ 
and �̃ = Diag

(
�1,⋯ , �n

)
is a diagonal matrix, where eigenvalues �1 ≥ �2,⋯ ,≥ �n.

We rewrite the Eq. (2) as

where � = �̃Q̃
T
� . Eigenvectors corresponding to small eigenvalues can be trun-

cated to reduce the computational complexity. Thus, we can keep the top s eigen-
values and consider Q̃ as an n × s matrix and �̃ as an s × s diagonal matrix. We can 
further reduce the dimension from n to s parameters. This new representation can 
substantially speed up estimating the model parameters, especially when n is large.

Considering a nonlinear function E[y] = f =
[
f
(
x1
)
,⋯ , f

(
xn
)]T , we have

where X† =
(
XTX

)−1
XT is the Moore-Penrose generalized inverse.

Recall that � = K̃
−1
�̃

T
b and � = �̃Q̃

T
� , we have the following representation

Thus, �̃ can be written as

2.3 � Bayesian hierarchical model and Gibbs sampler

By Bayes’ theorem for probability distributions, the posterior distribution is propor-
tional to

K̃ = Q̃�̃Q̃
T
,

(3)y ∼ p(y ∣ �) with � = g(Q̃�),

�̃ = X†f ,

b =
(
�̃Q̃

T
K̃

−1
�T

)−1

�.

�̃ = X†�Tb.

p
(
� ∣

{
yi, xi

}n

i=1

)
∝ exp

{
−

n∑
i=1

L
(
f
(
xi
)
, yi

)}
�(�),



where �(�) is the prior distribution and exp
�
−
∑n

i=1
L
�
f
�
xi
�
, yi

��
 is the likelihood

function.
Let xj be an observation and �j is a parameter governing the data generating process 

for xj. Assume that the parameters �1, �2,… , �j are generated from the distribution 
governed by a hyperparameter � . For the Bayesian hierarchical model, Bernardo et al. 
(1985) gives the following stages.

Stage 1. xj ∣ �j,� ∼ p
(
xj ∣ �j,�

)
.

Stage 2. �j ∣ � ∼ p(�j ∣ �).
Stage 3. � ∼ p(�).
Thus, the posterior distribution is proportional to

Markov chain Monte Carlo (MCMC) methods include a class of algorithms for sam-
pling from probability distributions. The development of MCMC methods allows 
us to compute the large Bayesian hierarchical model with thousands of unknown 
parameters (Banerjee et  al. 2003). In the application of the Bayesian hierarchical 
model, the Gibbs sampler is the most basic MCMC method (Lynch 2007). A general 
Gibbs sampler follows the following iterative process, 

0. Assign a vector of starting values S , �j=0 = S , where j is the iteration count.
1. Let j = j + 1.
2. Sample

(
�
j

1
∣ �

j−1

2
, �

j−1

3
,… , �

j−1

k

)
.
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(
�
j

2
∣ �

j

1
, �

j−1

3
,… , �

j−1

k

)
.

k. Sample
(
�
j

k
∣ �

j

1
, �

j

2
,… , �

j

k−1

)
.

	k+1.	Return to step 1.

2.4 � Bayesian approximate kernel method for regression

We restate Eq. (2) for the regression problem as,

where � is the random error vector, N
(
0, �2I

)
 is the multivariate normal distribution

with the mean zero vector and the covariance matrix �2I , and I is the identity matrix.
Combining the hierarchical model with the factor representation in Eq. (3), we can 

formulate the specific hierarchical model for the nonlinear regression model as follows

p
(
�,�j ∣ xj

)
∝ p

(
xj ∣ �j,�

)
p
(
�j,�

)

∝ p
(
xj ∣ �j

)
p
(
�j ∣ �

)
p(�).

(4)y = K̃� + �, � ∼ N
(
0, �2I

)
,

(5)

y = Q̃� + �, � ∼ N
(
0, �2I

)
,

� ∼N
(
0, �2�̃

)
,

�2, �2 ∼ Scale-inv- �2(�,�).



The idea of using � in (5) instead of using � in (4) is from the Silverman g-prior 
(Zhang et al. 2011). The variance of random error �2 and the shrinkage parameter 
�2 both come from the scaled inverse chi-squared distribution with the degrees of 
freedom � and the scale parameter � . The probability density function of the scaled 
inverse chi-squared distribution over the domain x > 0 is

Given the Bayesian hierarchical model in (5), we propose the conditional densities 
p
(
� ∣ �2, �2, y

)
 using the Bayes’ theorem. To be specific,

where n∗ = �2�2
(
�2�̃

−1
+ �2Iq

)−1

 and m∗ = �2n∗Q̃
T
y.

Similarly, we propose the conditional densities for �2 and �2 . Inspired by Craw-
ford et  al. (2018), we then use a Gibbs sampler to generate the joint posterior 
p
(
�, �2, �2 ∣ y

)
 , and the procedures are as follows 

1. � ∣ �2, �2, y ∼ N(m∗, n∗) , with n∗ = �2�2
(
�2�̃

−1
+ �2Iq

)−1

 and m∗ = �−2n∗Q̃
T
y.

2. �̃ = X†�̃
T
(
�̃Q̃

T
K̃

−1
�̃

T
)−1

�.

3. �2 ∣ �, �2, y ∼  S c a l e - i n v  −�2
(
v∗
�
,�∗

�

)
 ,  w h e r e  v∗

�
= v + q  a n d 

�∗
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�
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v� + �T�̃

−1
�
)
.

4. �2 ∣ �, �2, y ∼ Scale-inv −�2
(
v∗
�
,�∗

�

)
 , where v∗

�
= v + n and �∗

�
= v∗−1

�

(
v� + eTe

)
 , 

with e = y − Q̃�.

We achieve the following set of posterior samples by repeating the above procedure for 
T times

For the sample test X observed, the prediction is stated as

2.5 � Bayesian approximate kernel method for classification

We extend the Bayesian approximate kernel method to binary classification. We also 
use the generalized kernel model for the classification problem,

f (x;�,�) =
(��∕2)�∕2

Γ(�∕2)

exp
[
−��

2x

]

x1+�∕2
.

p
(
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)
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(
y ∣ �, �2

)
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(
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)
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{
�(t), �2(t), �2(t), �̃

(t)
}T

t=1
.

𝐲̂ = X�̃.



We can specify the hierarchical model for classification using the factor representa-
tion, where K̃ = Q̃�̃Q̃

T
,

The vector of latent responses is defined as s =
[
s1,… , sn

]T . The MCMC procedure
here is similar to the posterior sampling of probit regression (Albert and Chib 1993). 
Posterior samples are generated by iterating the following procedures: 

(1) For i = 1,… , n , 
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)
.

We obtain the following set of posterior samples by repeating the above procedure 
T times.
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𝜎2 ∼ Scale-inv- 𝜒2(𝜈,𝜙).
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.

{
�(t), �2(t), �̃

(t)
}T

t=1
.

yi =

{
1 if yi > 0

0 if yi ≤ 0
.



3 � Simulations

In this section, we conduct simulations to evaluate the performances of the proposed 
method in both regression and classification problems. We also compare the ran-
dom wavelet kernel method (WKM) with other classical methods, such as random 
Fourier features kernel (FKM) (Crawford et  al. 2018), polynomial kernel (PKM) 
(Chakraborty et  al. 2012), support vector machine (SVM) with Gaussian kernel 
(Noble 2006).

3.1 � Simulations for regression problems

To evaluate the performance of proposed method in regression, we create con-
tinuous outcomes using the following generating polynomial model: y = X3� + � , 
where � ∼ MVN(0, I) and all elements of the coefficient vector � are indepen-
dently generated from uniform (0, 1). X3 = X◦X◦X is the element-wise third 
power of X . The row vectors of of X are independently generated from 0.05 + �
uniform (0, 1), where � is a constant. � is used to control the fluctuation of ele-
ments in X . Here, the larger the value of � , the more severe the fluctuation of 
elements in X . The number of iteration in the simulation is 30. For the regression 
problems, we use prediction mean squared error (PMSE) to compare out-of-sam-
ple predictive accuracy. The PMSE is defined as

where (yt,Xt) represents the test dataset, nt denotes the size of test dataset, we let 
nt = 0.2n in this simulations. 𝜷  represents the estimator of � corresponding to each 
method.

From Tables 1 and 2 and Fig. 1, we can see that, in general, the performance 
of the proposed method (WKM) is the best in terms of prediction accuracy and 
robustness among all considered methods. WKM has the smallest PMSE and 
standard deviation (SD) compared with the other two methods. More specifically, 
the proposed method can still maintain the best performance when the elements 

PMSE = ‖yt − X3
t
𝜷‖2

2
∕nt,

Table 1   Comparisons of prediction mean squared error (PMSE) for random wavelet kernel method 
(WKM), random Fourier features kernel method (FKM) and polynomial kernel (PKM) based on n=500

Standard deviations for the replicates of each model are given in the parentheses

PMSE p = 500 p = 2000 p = 4000

� = 0.01 � = 0.05 � = 0.1 � = 0.01 � = 0.05 � = 0.1 � = 0.01 � = 0.05 � = 0.1

FKM 1.251 2.533 2.884 1.480 2.122 2.854 2.436 3.512 4.724
(0.190) (0.373) (0.494) (0.286) (0.221) (0.290) (0.275) (0.341) (0.562)

PKM 0.524 1.022 1.156 1.401 1.932 2.697 2.301 3.278 4.778
(0.084) (0.186) (0.185) (0.219) (0.236) (0.366) (0.319) (0.465) (0.541)

WKM 0.377 0.547 0.625 1.205 1.761 2.526 2.115 3.079 4.495
(0.062) (0.093) (0.093) (0.210) (0.201) (0.258) (0.215) (0.271) (0.532)



in X fluctuate and the dimension of X increases. On the other hand, random Fou-
rier features kernel method (FKM) is more sensitive to fluctuation of data, and 
it performs poorly compared to the other two methods. The polynomial kernel 
method (PKM) is seen to be better than the FKM based on prediction accuracy 
and robustness, but its PMSE and SD are greater than those of WKM.

3.2 � Simulations for classification problems

In order to evaluate the performance of the proposed method in classification prob-
lems, we still use the polynomial model: f (Z) = Z� + � , where � ∼ MVN(0, I) and 
Z = X◦X◦X is the element-wise third power of X . But the generating model is differ-
ent from the previous model in regression analysis. All elements of the data matrix X 
are independently generated from normal distribution N(0, �2) . The coefficient vector � 
is generated from multivariate normal distribution with mean vector 0 and covariance 

Table 2   Comparisons of prediction mean squared error (PMSE) for random wavelet kernel method 
(WKM), random Fourier features kernel method (FKM) and polynomial kernel (PKM) based on p=1000

Standard deviations for the replicates of each model are given in the parentheses

PMSE n = 500 n = 1000 n = 2000

� = 0.01 � = 0.05 � = 0.1 � = 0.01 � = 0.05 � = 0.1 � = 0.01 � = 0.05 � = 0.1

FKM 0.909 1.225 1.450 1.033 1.729 2.380 0.285 0.438 0.632
(0.131) (0.160) (0.174) (0.094) (0.181) (0.281) (0.022) (0.033) (0.042)

PKM 0.659 0.953 1.182 0.593 0.888 1.192 0.201 0.324 0.455
(0.103) (0.146) (0.162) (0.078) (0.115) (0.114) (0.016) (0.024) (0.034)

WKM 0.587 0.772 1.016 0.302 0.440 0.576 0.149 0.228 0.311
(0.082) (0.102) (0.154) (0.036) (0.045) (0.074) (0.013) (0.017) (0.024)

Fig. 1   Comparisons of PMSE based on different � values



matrix Ip . Here, the binary response variable y with values 1 or 0 is generated from the 
logistic model:

where Zi denotes the ith row of Z , i = 1,… , n.
We use Accuracy to evaluate the models of classification. The Accuracy is 

defined as

p
(
yi = 1

)
=

exp
{
f
(
Zi

)}

1 + exp
{
f
(
Zi

)} ,

Table 3   Comparisons of the accuracy and standard deviation for the random wavelet kernel (WKM), 
random Fourier features kernel (FKM) and support vector machine (SVM) methods based on n = 500

Standard deviations for the replicates of each model are given in the parentheses

Accuracy p = 100 p = 500 p = 2000

� = 0.75 � = 1.00 � = 1.50 � = 0.75 � = 1.00 � = 1.50 � = 0.75 � = 1.00 � = 1.50

SVM 0.77 0.46 0.48 0.60 0.47 0.46 0.55 0.52 0.61
(0.07) (0.05) (0.06) (0.04) (0.03) (0.04) (0.04) (0.02) (0.02)

FKM 0.70 0.69 0.72 0.58 0.59 0.59 0.63 0.61 0.60
(0.04) (0.07) (0.06) (0.05) (0.05) (0.05) (0.04) (0.05) (0.05)

WKM 0.81 0.82 0.85 0.62 0.63 0.63 0.65 0.63 0.62
(0.03) (0.04) (0.02) (0.03) (0.03) (0.04) (0.03) (0.02) (0.02)

Fig. 2   Comparisons of PMSE based on different � values



From Table 3, we conclude that the the random wavelet kernel (WKM) has 
the highest accuracy and the lowest standard deviation among the three meth-
ods. Especially, when the ratio p/n is small, the WKM method performs better. 
Figure 2 shows that the results of the WKM method are more accurate and sta-
ble than those of FKM and SVM methods when the data fluctuate.

In a word, the proposed method has a good performance in both regression 
and classification simulations.

Accuracy =
Number of correct predictions

Total number of predictions
.

Fig. 3   The NIR spectrum of the observations in the biscuit dough piece dataset

Table 4   Comparisons of the 
prediction mean square error 
(PMSE) for the random wavelet 
kernel method (WKM) and 
random Fourier features kernel 
method (FKM)

Standard deviations (SD) are given in the parentheses

Compositions Methods PMSE (SD)

Fat FKM 0.459 (0.201)
WKM 0.401 (0.237)

Sucrose FKM 0.614 (0.271)
WKM 0.347 (0.144)

Flour FKM 0.526 (0.271)
WKM 0.348 (0.139)

Water FKM 0.387 (0.216)
WKM 0.378 (0.177)



4 � Real data study

4.1 � Real data for the regression problems

We further evaluate and compare the random wavelet kernel method with ran-
dom Fourier features kernel method by analyzing the biscuit dough piece dataset 
from the R package functional datasets (fds) (brown et  al. 2001). This example 
uses the near-infrared reflectance (NIR) spectra to measure the composition of 
biscuit dough pieces. The NIR spectrum of the observations is continuous curves, 
as shown in Fig.  3. The information from these curves can be used to predict 
the composition of the biscuit. The compositions of the biscuit we estimated 
include fat, sucrose, flour and water, and they all record in percent. We treat them 
as response values. The dataset contains 32 observations with 700 features. The 
results are shown in Table 4, Figs. 4 and 5.

Fig. 4   Boxplots of the random wavelet kernel method and random Fourier features kernel method results 
for the prediction of the fat and sucrose in the biscuit. Fou_F represents using Fourier method for the 
prediction of the fat; Wav_F represents using wavelet method for the prediction of the fat; Fou_S repre-
sents using Fourier method for the prediction of sucrose; Wav_S represents using wavelet method for the 
prediction of sucrose

Fig. 5   Boxplots of the random wavelet kernel method and random Fourier features kernel method results 
for the prediction of the flour and water in the biscuit. Fou_Fl represents using Fourier method for the 
prediction of the flour; Wav_Fl represents using wavelet method for the prediction of the flour; Fou_W 
represents using Fourier method for the prediction of water; Wav_W represents using wavelet method for 
the prediction of water



We conclude that the random wavelet kernel method performs better than ran-
dom Fourier features kernel method in our real data study. To be specific, the WKM 
method has smaller prediction mean square errors for all four compositions of the 
biscuit, which are 0.401, 0.347, 0.348 and 0.378. The standard deviations of the 
WKM method are lower than those of the FKM method. These results are consistent 
with our simulation studies.

4.2 � Real data for the classification problems

In this real data study for the classification problems, we use the Duke Breast Cancer 
database that consists of 86 tumour samples and 7129 genes. The data is numerical 
and has no missing values. The aim is to classify these tumour samples into estrogen 
receptor-positive (ER+) and estrogen receptor-negative (ER-) (west et al. 2001). We 
can access the dataset from the following website: https://​www.​kaggle.​com/​andre​
icosma/​duke-​breast-​cancer-​datas​et.

We compare the results of three methods applied to the Duke Breast Cancer data-
set: (1) random wavelet kernel method (WKM); (2) random Fourier features ker-
nel method (FKM); (3) support vector machine (SVM) with Gaussian kernel. The 
results are shown in Table 5 and Fig. 6. We conclude that the method WKM per-
forms the best among the three methods with an accuracy of 0.957. It is stable and 
accurate to use the random wavelet kernel function. SVM, the traditional method for 
nonlinear classification, has the lowest accuracy of 0.55 processing the large p small 
n dataset.

Table 5   Comparisons of the 
accuracy and standard deviation 
(SD) of three methods for the 
Duke breast cancer dataset

Methods Accuracy SD

WKM 0.957 0.063
FKM 0.934 0.072
SVM 0.550 0.137

Fig. 6   Boxplots of three clas-
sification methods for the Duke 
breast cancer dataset



5 � Conclusions

This article proposes the Bayesian approximate kernel method approximated by 
wavelet transform based on the framework of Bayesian approximate kernel regres-
sion (crawford et al. 2018). In particular, we combine wavelet analysis with random 
bases and use random wavelet bases to approximate the kernel function. The pro-
posed method can lower the dimension. It is an efficient approach to deal with the 
large p small n problem. The performance of the kernel approximated by wavelet 
transform is better than that of the kernel approximated by Fourier transform when 
the data have significant fluctuations. We apply the proposed method to both regres-
sion and classification problems and compare the performance with other classical 
methods.

Numerical studies demonstrate that the Bayesian approximate kernel method 
approximated by wavelet transform outperforms the Bayesian approximate kernel 
method approximated by Fourier transform. We have smaller mean square errors 
solving regression problems and higher accuracy solving classification problems 
when using random wavelet bases to approximate the kernel function. It shows 
that the random wavelet bases method is more stable since its standard deviation of 
duplicates is small.

In conclusion, the Bayesian approximate kernel method approximated by wavelet 
transform has a good performance in regression and classification problems.
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