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Abstract: For processing large-scale medical imaging data, adopting high-performance computing
and cloud-based resources are getting attention rapidly. Due to its low–cost and non-invasive nature,
microwave technology is being investigated for breast and brain imaging. Microwave imaging via
space-time algorithm and its extended versions are commonly used, as it provides high-quality
images. However, due to intensive computation and sequential execution, these algorithms are
not capable of producing images in an acceptable time. In this paper, a parallel microwave image
reconstruction algorithm based on Apache Spark on high-performance computing and Google Cloud
Platform is proposed. The input data is first converted to a resilient distributed data set and then
distributed to multiple nodes on a cluster. The subset of pixel data is calculated in parallel on
these nodes, and the results are retrieved to a master node for image reconstruction. Using Apache
Spark, the performance of the parallel microwave image reconstruction algorithm is evaluated on
high-performance computing and Google Cloud Platform, which shows an average speed increase of
28.56 times on four homogeneous computing nodes. Experimental results revealed that the proposed
parallel microwave image reconstruction algorithm fully inherits the parallelism, resulting in fast
reconstruction of images from radio frequency sensor’s data. This paper also illustrates that the
proposed algorithm is generalized and can be deployed on any master-slave architecture.

Keywords: Apache Spark; big data applications in imaging; cloud computing; medical image
reconstruction; parallel algorithm

1. Introduction

Due to the availability of new data sources, there is a need to rethink existing architectures that
enable big data analytics, especially in healthcare. Some sources include mobile phones (sensors),
genomics, sensor networks, social media, internet of things, and medical imaging modalities that
determine medical diagnostic and medical records. All these sources produce data at a rapid pace,
which needs to be stored and processed somewhere in an efficient way [1]. Storing and analyzing such
a huge amount of data is a challenge, especially when it does not conform to the traditional notion
of data structures. Big data characteristics include huge volume, wide variety, high velocity, veracity,
and value. The processing of these data requires new architecture, new tools, and new analytical
methods [2]. Distributed and parallel computing architectures are preferred approaches to process
such large scale unstructured and semi-structured data. Using technologies, such as Hadoop and
Spark, to perform natural language processing on these data can significantly improve performance
and create valuable information.
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The image data processing is an important aspect of clinical diagnosis; for example, the correct
analysis and interpretation of images are vital for the early detection of diseases [3]. The use of
state-of-the-art devices for medical imaging, such as X-ray, magnetic resonance imaging (MRI),
computerized tomography (CT), and positron emission tomography (PET), has greatly improved data
acquisition process. These imaging modalities are being used for spatial representation of different
biological tissues for different diagnosis. CT combines multiple x-ray scans to reconstruct the image
representing a slice/volume of the imaged object. The advantages of CT imaging include its excellent
resolution and contrast, along with being relatively faster than MRI. However, it requires larger
dose of ionizing radiation, as well as being slower and more complex, compared to planar X-ray.
X-ray and CT expose patients to ionizing radiation that increases the risk of cell mutation. Moreover,
the equipment is costly and therefore not available at all hospitals [4]. Conversely, ultrasound is a
low-cost solution, due to its cost-effectiveness and portable ability. The disadvantages of ultrasound is
that it requires a good physical contact with the imaged tissue for a high wave impedance contrast
to reconstruct high resolution image [5]. Photoacoustic imaging (PAI) is an emerging modality for
imaging human tissues based on thermoelastic effect. This imaging modality used short laser pulse to
reconstruct the optical absorption map of the human tissue. The main advantages of PAI is combining
the high spatial resolution of ultrasound and high contrast of optical imaging. PAI is a multiscale
imaging modality used in different preclinical and clinical applications, such as tumor detection [6]
and functional imaging [7]. The downside of PAI are inherent artifacts in the reconstructed images
caused by imperfect reconstruction algorithms [8].

The most common and one of the newest imaging modality is MRI. It is a tomographic technique
based on the phenomenon of nuclear magnetic resonance. It produces high-quality images having
excellent spatial resolution in the order of millimeters and is more suited for imaging soft tissues
(e.g., distinguishing white and grey matter in the human brain) due to higher concentration of the
hydrogen molecules. The disadvantages of MRI are its high cost of equipment and maintenance,
system complexity and time needed for data acquisition [9]. A single scan of MRI takes about 5 min.
Furthermore, MRI is not suitable in different situations, such as for patients with a heart pacemaker,
as magnetic fields can upset the operations of pacemakers. In addition, heating can occur in some
metallic implants [10].

Microwave imaging is an alternative imaging modality being investigated for different biomedical
applications, such as breast cancer and brain imaging [11]. It is non-ionizing with emission power
less than cellular devices radiation and less system complexity similar to ultrasound technology.
Furthermore, it offers safe, low-cost, and portable method for medical imaging applications [12].
The downside of microwave imaging is it does not create images of high resolutions as compared to
CT and MRI. However, due to its advantages, many research groups are exploiting improved antenna
design, imaging setup optimization, tissue scattering modeling, development and optimization
of image reconstruction algorithms, and in vitro and in vivo validation of these imaging systems.
They have successfully designed and developed prototypes, as well as conducted trials on volunteers
and/or patients, mainly targeting breast [13,14] and brain imaging [15–17].

Large-scale image processing applications, especially those involving multistage analysis,
often indicate substantial inconsistency in processing times ranging from a few seconds to several
hours [18]. Microwave techniques in medical imaging and remote sensing applications reconstruct the
image of dielectric regions to retrieve the location, shape, and size of the targeted object. For many
years, new optimization algorithms have been studied to address the compute-intensive inverse
scattering problem associated with these techniques [19].

Field programmable gates arrays (FPGAs) and graphics processing unit (GPU)-based parallel
approaches are commonly used to solve problems of image processing, especially in multi-modality
image diagnoses, that require huge processing time [20,21]. Although, these approaches improve
processing speed significantly, they are limited by non-scalability and higher cost. The use of parallel
or cloud computing technology for image-guided diagnostics is a recent trend and has caught the
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attention of many researchers in the field [22]. Some of the potential reasons to use cloud computing
for medical image analysis are huge data storage, remote availability, faster processing demands, and
scalability. In order to enhance the efficacy and accuracy of imaging modalities, medical imaging
societies need to consider and embrace parallel approaches using high-performance computing (HPC)
or cloud computing technologies as accelerators and use them as powerful tools for multi-modality
imaging data analysis. Big data frameworks, such as Hadoop and Spark, are getting attention as it
makes possible the scalable utilization of these parallel systems [23]. However, parallel implementation
of algorithms on these frameworks faces several technical challenges depending on the level of their
complexity. An inexpensive solution is to place the required data on the computational nodes to avoid
network saturation. Hadoop and Map-reduce provide tools to address this issue; however, they are
still not widely being integrated into medical image processing, despite having shown great success in
online commerce, social media, and video streaming [24].

Data acquisition from sensors and its image reconstruction process using different algorithms and
machine learning (ML) techniques is a recent trend and is gaining a lot of interest [25]. Consequently,
to make it more efficient and scalable, healthcare entities are adopting big data frameworks, for instance,
Apache Hadoop and Spark [26]. These are the most common big data processing frameworks being
used for the implementation of the algorithm over distributed systems. The main goal is to process a
huge amount of data on a cluster of hundreds or thousands of machines in parallel, which helps in the
real-time decision-making process.

This paper aimed to contribute to this growing area of research by exploring the use of Apache
Spark on HPC and Google Cloud Platform (GCP) for microwave imaging of head diagnostics.
This work has made use of Eddie [27] provided by Edinburgh Compute and Data Facility. Eddie is
the third generation HPC cluster running a Linux operating system. It consists of some 7000 Intel R©

Xeon R© cores, with up to 3 TB of memory available per compute node. The cluster can be used to
run jobs in parallel, taking advantage of its multiple compute core. It uses Open Multi-Processing
(OpenMP) to run memory-intensive jobs and shared memory programs. The work provides two
different implementations of the microwave-based image reconstruction algorithm. The sequential
implementation is based on the general Python using NumPy array, while the parallel implementation
is based on PySpark. The goal is to assess the effectiveness of using big data technologies for medical
image reconstruction that involves multiple iterations on a massive amount of data points. The main
contributions of this paper are as follows:

• The parallelism of the microwave image reconstruction (MIR) algorithm is first identified. Then,
the computational model of Apache Spark is studied, and the parallel version of the algorithm
is presented.

• A novel distributed approach, which adopts both data and algorithm in parallel, for efficient
image reconstruction of head imaging is proposed. The imaging algorithm is optimized using
PySpark on HPC clusters to improve the processing speed and make it real-time. The imaging
system retrieves input data generated through radio frequency (RF) sensors and store in Eddie.
An integrated imaging algorithm optimized through PySpark creates and saves images back to
Eddie Storage.

The proposed parallel microwave image reconstruction (PMIR) algorithm is implemented on the
PySpark version of Apache Spark. Experimental results indicate that the proposed PMIR algorithm
fully inherits the parallelism of the MIR algorithm, resulting in the fast reconstruction of images from
RF sensor’s data. The proposed parallel algorithm performs an average of 28.56 times faster than
sequential Python implementation.

The remaining part of the paper proceeds as follows: In Section 2, related literature on image
processing on cloud and/or HPC is presented. Section 3 briefly describes image reconstruction,
the microwave imaging reconstruction algorithm, Hadoop, and Spark, along with the Map-reduce
programming model. In Section 4, data acquisition through RF sensors and the implementation of
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the PMIR algorithm are presented in detail. Section 5 describes the experimental results. Finally,
conclusions and future work are presented in Section 6.

2. Related Work

A considerable amount of work had been published on the use of HPC or cloud computing for
healthcare big data processing in health. Most of the research focuses on images/data analysis acquired
through traditional imaging modalities. This section highlights the most recent work on the use of
HPC, cloud computing, and big data frameworks for medical image/data processing. An overview of
the recent tools and techniques proposed for large scale image data processing using cloud and big
data frameworks can be found in Table 1.

A cloud-based system to process and analyze MRI Scans was proposed in Reference [28]. The tool
was integrated with a threshold-based brain segmentation method to analyze regions of interest.
It enabled users to upload their data on a simplified web page. The proposed tool has several benefits,
such as better speed due to scalability and automatic up-gradation of the system without bothering
the end-users. Experimental data was used to test the performances and functionality of the system.
However, no parallel computing techniques were taken into consideration. A smart cloud system is
proposed to address the problems related to big data storage by providing infrastructure support to
small hospitals with limited resources [29]. The confidence connected segmentation method was used
to detect the tumor object. It allowed users to upload MRI or CT scan images for detecting the tumor
in real-time.

Table 1. Techniques for large scale image data processing using high-performance computing
(HPC)/Cloud.

Proposed Technique Advantages Limitations Ref.

ASL-magnetic resonance
imaging (MRI) Cloud

Cloud-based tool to process MRI data,
image segmentation, better performance
due to scalability

No parallel techniques
implemented

[28]

Smart Cloud System Cloud-based system for processing
Neuroimaging data, image compression

No parallel techniques
implemented, network
congestion

[29]

cone-beam computerized
tomography (CT)
reconstruction

Faster reconstruction of image using
Hadoop

No in-memory computation,
no evaluation on computing
cluster

[30]

Parallel Fuzzy c-Means
Segmentation Algorithm

12.54 time speed improvement, in-memory
computation

No generality evaluation [31]

Muscle image
segmentation algorithm

10 time speed improvement, in-memory
computation, both data and model
parallelism

No generality evaluation [32]

Parallel computing
approach to accelerate
microscopy data

High throughput Does not considered big data
frameworks

[33]

A special issue on the use of cloud and parallel computing have been published in the Journal of
X-Ray Science and Technology to highlight the state-of-the-art advances in image-guided diagnosis
and therapy [22]. For instance, the use of parallel computing is investigated for modeling blood
flow using computational fluid dynamics and smooth particle hydrodynamics in Reference [34].
An imaging application for neurological diseases and neuroimaging is presented in Reference [35].
An approach called “cloud-based medical image processing- as-a-service”, utilizing the Apache
Hadoop framework and HBase is proposed for efficient processing and retrieval of medical images [36].
Similarly, a cloud-based medical imaging system was designed and developed to reconstruct images
for cancer patients using Proton Computing Tomography [37]. The proposed service uses Amazon
Web Service (AWS) to process multi-client requests simultaneously.
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A generalized flow for medical image classification was proposed based on Azure cloud by
Roychowdhury et al. [38]. Similarly, Serrano et al. [39] stated that big data paradigms fit very well for
the workflow needed for image reconstruction. The paper focuses on improving the image quality of
CT scan through the iterative reconstruction algorithm. The work also evaluated the costs associated
with different execution policies on a single node and distributed configurations. A processing pipeline
for processing functional magnetic resonance imaging (fMRI) based upon PySpark was proposed
in [30]. The proposed pipeline was evaluated on a single node, and the results revealed an improvement
of fourfold. However, the efficiency was not evaluated on a computing cluster.

An ultra-fast, scalable, and reliable reconstruction method for four-dimensional cone-beam CT
was developed using Map-reduce [40]. The work revealed the potential use of Map-reduce to solve
large-scale imaging problems using cloud computing. A tool called “Java Image Science Toolkit (JIST)”
was developed and integrated with AWS [41]. Similarly, a Spark-based image segmentation algorithm
was proposed to accelerate the processing of agriculture image big data [31].The input images are
converted into pixel data and then distributed to the computing platform. In order to improve the
efficiency of iterative computing, membership degrees of a pixel are calculated and updated in parallel.
The experimental results indicated that the proposed Spark-based fuzzy C-means algorithm can
perform 12.54 times faster on ten computing nodes.

A distributed computing approach was implemented for the segmentation of skeletal muscle
cell images using Apache Spark [32]. The authors aim to balance the load on available Spark cluster
resources. A parallelized region selection algorithm based on the hierarchical tree was proposed,
for the efficient segmentation of muscle cells. In the same vein, an architecture for medical image
analysis based upon Hadoop and Spark was proposed in Reference [42]. Image classification was
performed as a case study. The proposed architecture contains two parts of medical image big
data processing relies on traditional imaging modalities, such as CT, MRI, and X-ray. Moreover,
they reviewed existing algorithms used for image classification, compression, and prediction and
proposed a theoretical framework based on traditional computing. A parallel computing approach to
accelerate single-molecule localization microscopy data processing using ThunderSTORM on the HPC
cluster was proposed in Reference [33]. The performance was compared to a desktop workstation,
which indicated that data processing speed can be improved by accessing more HPC resources.

The aforementioned cloud or parallel computing-based services mainly focus on hosting the
application on the cloud for experiencing the benefit of large storage or to ease image retrieval of
X-ray, CT scan, or PET scan images. Moreover, the use of big data frameworks were also considered
for image segmentation, including agriculture and medical images. However, they do not aim to
deal with novel modalities for image reconstruction, such as microwave imaging for breast and head
diagnostics. Moreover, none of them consider the performance improvement of image reconstructions
using Apache Spark for head imaging, using radio frequency data.

3. Image Reconstruction and the MIR Algorithm

The microwave imaging system is getting attention of researchers in recent years for breast cancer
and brain tumor/stroke detection. The microwave imaging system has low-cost components and is
lightweight and non-ionizing as compared to other imaging modalities, such as X-ray, CT, and PET
scans. Microwave imaging via space-time (MIST) algorithm and its extended/modified versions are
most used for the purpose. The MIST beamforming was originally proposed for the detection of
breast cancer in 2003 [43]. It had attracted many research groups throughout the world working on
breast, brain or lung cancer/tumor detection. Many relevant papers have been published using this
algorithm [44,45] and are evaluated on clinical practices for breast cancer detection [46]. The main
advantage includes its understandability and high-resolution image. Moreover, it can detect small
tumors up to 2 mm. Although MIST has all these advantages associated with its use, the time it takes
to process input data and produce the output images does not lie in an acceptable range due to plenty
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of iterative operations and accumulations of signal data. Therefore, it needs to be optimized before it is
used for real-time imaging in clinical diagnosis.

3.1. Principle of MIR Algorithm

The main principle of these algorithms is to calculate the difference in the dielectric constant also
called relative permittivity of the targeted human tissue. An array of antennas is set around the target
tissue (breast or brain). The tissue is penetrated with signals and the backscattered signal are stored.
In order to create the energy map of the targeted tissue, the energy value for each pixel in the imaging
area is calculated and saved. Due to the distance between antennas and points, points correspond
to signal shifts creating a signal delay in time. Therefore, delay values are calculated first to align
the signals and get the energy for each pixel. The input signals are then processed to find out the
location and size of malignant tissue. The position of maligned tissue is located by analyzing the
energy level for all pixels based on the difference in dielectric properties of healthy and malignant
tissue. Figure 1 illustrates the basic principle of the MIST beam-forming for a single focal point in the
imaged object. The backscattered signals received on each antenna for a single focal point are time
aligned and summed together to get the energy. The process is repeated for total number of points to
create an image.

Figure 1. Microwave imaging via space-time (MIST) beam-forming process for a focal point. S1, S2,
and S3 are backscattered signal. These signals are first time shifted and then summed together to find
the energy for the specified focal point.

To produce the energy map, the amplitude of backscattered signals is calculated for all pixels.
In order to make sure that all the signals summed properly, delay shift values for all pixels are
calculated. Since delay shift values are proportional to the distance between antennas and imaging
points, the distance between antenna and pixel therefore needs to be calculated first. This depends on
the total number of antennas and stored input points. The distance is calculated using the equation
below [47].

τn(
−→r ) =

√
(x− xo)2 + (y− yo)

2 ∗ N

d
, (1)

where x and y are the x, y coordinates of antennas, xo and yo are the position of pixel in the imaged
tissue in Cartesian coordinates, τn is the propagation time of signal n, −→r is the focal point in the
imaging object, d is the diameter, and N represents the total number of input points. Then, the intensity
values are calculated as:

I [n] =

∣∣∣∣∣ N

∑
i=1

An
(
τn
(−→r ))∣∣∣∣∣

2

, (2)

where An represents the signal of antenna A at location n. Algorithm 1 gives the pseudo-code for
sequential Python-based implementation of the MIR algorithm. The algorithm first read sensors data
and antenna’s location in order to compute delay and pixel values. Two loops are used to get delay
shift values for each signal based on all antennas. The loop is repeated to compute the matrix of pixels.
The body of the loop is based on Equation (1). The number of delay shift samples is calculated by
multiplying the total number of samples. Finally, delay shift values are stored and used to calculate
the final values of energy.
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Algorithm 1 MIR Algorithm
Input: Radio Frequency Sensors Data
Output: Brain Images

1: for An ← 1 to At do
2: for x, y← 1 to Np do
3: Compute τn

(−→r ) using Equation (1)
4: end for
5: end for
6: for u, v← 1 to Np do
7: Enxn = 0
8: for ∀ S←Ss do
9: Eni = 0

10: for doAn ← 1 to At
11: if Ss in range then
12: Eni = Eni + An + τn

(−→r ) as described in Equation (2)
13: end if
14: end for
15: Enxn = Enxn + (Eni * Eni)
16: end for
17: end for

Inxn= round (Enxn)

In order to calculate the matrix of pixel values, delay matrix and input signals are used as inputs.
The two for loops are used to calculate the matrix of pixels. To calculate the energy for the next pixel,
the value of the current pixel is set to zero. The second and third for loop is used to traverse all signal
samples to make sure the signal range is valid. Backscattered signals from all antennas are first aligned
and then summed in the loop body based on Equation (2). The ‘Eni’ represents the energy for all
samples from all antennas separately. Consequently, it is set to zero after finishing all the antennas.
Since the energy level is proportional to signal amplitude, irrespective of positive or negative, energy
is therefore accumulated by taking the square of ‘Eni’. Next, to store the results, “round” function
is used to get rounded values, which improve the efficiency of the algorithm without affecting the
quality of resulting images. Finally, the energy is stored in a two- dimensional matrix.

To optimize the algorithm, the intensive operation needs to be parallelized. The proposed
parallelized version of the algorithm can be found in Section 4.

3.2. Apache Spark Framework

Recently, there has been renewed interest in using big data frameworks, such as Apache Hadoop
and Spark, for large scale data/image processing. Apache Hadoop based on the Map-reduce
programming model provides a relatively structured and easy approach to process big-data on
commodity clusters. However, for computations intensive applications, Apache Spark shows
better performance due to its in-memory processing. Apache Spark is an open-source framework
originally developed by Berkeley’s AMP Lab based on the Map-reduce programming paradigm [19].
The Map-reduce is a programming paradigm that allows users to break larger tasks into smaller
tasks, run it in parallel, and integrate the output of each task into the final output. The Hadoop
Distributed File System (HDFS) provides this capability. It is a distributed file system designed to run
on commodity hardware. HDFS let users distribute data to multiple nodes across a cluster and take
advantage of the parallel processing of Map-reduce.

A typical Map-reduce program contains three classes as shown in Figure 2. The driver class
initializes a Spark Context (SC) object, which coordinates the independent set of processes running on
a cluster. The SC can be connected to many kinds of cluster managers, such as standalone, YARN [48],
or Mesos [49]. The purpose of these cluster managers is to allocate resources to multiple applications.
Once created, it gets executors on different nodes, which are processes that run computations and
store data for the application. Finally, it sends the application code (Python files in this work) to the
executors. Spark programs can be run on Hadoop YARN, Kubernetes, Apache Mesos, and standalone



Appl. Sci. 2020, 10, 3382 8 of 19

cluster mode, as well as in the cloud. It can access data from various sources including HDFS, Apache
Cassandra, HBase, and many others.

Figure 2. Overview of Spark framework. The master node contains driver program, which drives
the application by creating Spark context object. Spark context object works with cluster manager to
manage different jobs. Worker nodes job is to execute the tasks and return the results to Master node.

Apache Spark is different than Hadoop, as it has a distributed memory model and allows to
store intermediate results in cashed memory in order to improve the performance. Zaharia and his
team’s paper [50] states that, while Spark was still currently a working prototype, the performance
results were very encouraging. Even at that time, Spark could outperform ML workloads by a factor
of 10. They crash a node to demonstrate that Spark could continue to function with fewer nodes and
compared results with the Hadoop implementation. With Hadoop, each iteration would take over
2 min. In the case of Spark, the first iteration took almost 3 min because the data was cached for further
iterations, but only took six seconds to complete each of the remaining iterations.

PySpark is a Python library that give access to Spark using Python programming language.
It used Py4J library to handle communications with Spark. Advantages include easy integration with
other languages, such as Java, Scala, and R. It uses the resilient distributed data set (RDD) to speed up
the executions by performing in-memory computations. The RDD is the architectural foundation of
Spark, which are read-only sets of data, spread over a cluster of different machines, being operated
in parallel. Records are split into logical partitions and distributed to all machines in the cluster,
allowing RDD to provide high-level programming interface by hiding the data partitions. These logical
Partitions are the primary units of parallelism. Spark supports two types of operations to work on
these partitions: transformations, such as “map”, which creates new RDDs; and actions, such as
“reduce”, which returns a value to the driver program after performing an operation on the data set.
The transformation operation creates new RDDs and, consequently, creates dependency between the
old and the new RDDs.

In short, Apache Spark is an efficient and general-purpose engine for big data processing.
It was initially developed specifically for data science but has evolved to support yet more use
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cases, including real-time processing. The four core reasons to use Spark include its speed, usability,
generality, and platform agnostic. Compared to Apache Mahout, which runs on disk instead of
memory, benchmark tests show about 9-fold improvement. Furthermore, Spark is being used for both
batch and stream processing [51].

4. Data Acquisition and Parallel Design and Implementation of MIR Algorithm

For this work, the input data is obtained by using an array of six antennas in a hat-like structure
around the head. The signals are obtained using the mono-static radar mode operation; where the
same antenna is used to transmit and receive signals. The antennas were arranged around the inner
side of the absorber with an equal distance of 9 mm. The signals are generated by the Vector Network
Analyzer (VNA) having a frequency range of 1 to 3 GHz. This operation is performed using HP
8753 VNA, with a dynamic range of up to 100 dB. Cylindrical scanning is performed to get the
back-scattering signal s11, using six antennas on different locations covering the whole head. The data
is stored in text format, showing S11 parameters along with a frequency range of 1–3 GHz. Six sets
of data, one for each antenna, making 1206 points in total are then used as input to the algorithm
for image reconstruction. Detailed information on the experimental setup, VNA used, and wearable
device can be found in our previous work [52].

4.1. Identifying the Parallelism of MIR Algorithm

To identify the parallelism in the MIR algorithm, the sequential implementation is analyzed to
find the time-intensive part, as well as the dependency among processes. The most compute-intensive
part is the number of iterations required to construct a matrix of pixel values for an image, due to
multiple iterations and massive input data. In the process, each iteration contains many parallel
processes, creating an opportunity for parallel design and implementation. The number of iterations
required for the reconstruction of one image is explained as follows:

Suppose P1, P2 ... Pn are the patients, and D1, D2...Dn denotes the number of times each patient is
diagnosed and the data is stored. So, we have

Cr =
n

∑
p=1

n

∑
d=1

PiDi AnNip, (3)

where Nip denote input points stored, and Pi and Di denote patients and diagnostics, respectively.
For instance, if the number of input points (data) for each antenna is 200 (minimum required data

points for image reconstructions reported in Reference [53,54]) and 06 antennas: 200 × 6 × 100 × 100
= 12,000,000 iterations is required to reconstruct an image of 100 × 100 pixels.

The most time-consuming part of the algorithm is delay calculations and pixel value calculations.
To make each of these calculations more efficient, there is a need to implement a parallel algorithm
that executes these data on multiple nodes in the cluster using big-data frameworks, such as Spark or
Hadoop Ecosystem. The signal samples and location of antennas are uploaded to the Eddie distributed
file system, and stored in distributed manner, which is input to the MIR algorithm.

According to the MIR algorithm, explained in Section 3, in order to calculate pixel points from
input data, delay values need to be calculated first. Since it needs to be calculated once only, its parallel
implementation therefore does not have any substantial effect on the efficiency of the algorithm.
The most intensive part is the pixels value calculation, which needs to be parallelized. During this
process, pixel values in different subsets are independent of each other; hence, the calculation of each
pixel value in different subsets on different machines in the cluster is a good fit for parallelism.

4.2. Design and Implementation of PMIR Algorithm

The proposed parallelized version of the MIR algorithm is designed and implemented using
PySpark. A detailed flowchart is shown in Figure 3. The sensor data is stored on Eddie distributed
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file system. The master node reads the input data and distributes it to all workers in the cluster with
shared memory. This also includes broadcasting locations of antennas in antenna array to each worker
node. To make each of the calculation more efficient, resilient distributed data sets (RDDs) are used.
The input data received through RF sensors is first converted to an RDD and stored in the distributed
memory. An empty matrix is created and broadcasted, which is shared by different worker nodes.

The map operation from map-reduce programming model is then used to calculate subset of
values in parallel using Spark context object. The “map” operation computes the pixel value on each
worker node in the cluster, and update the empty matrix, in parallel. Finally, reduce operation sums up
the different subsets from different computing nodes in the cluster and returns it to the master node,
until signal samples are in range. The master node is used to reconstruct the images using simple
Python functions. The resultant images are stored back to the Eddie distributed file system.

Figure 3. The parallelism of the microwave image reconstruction (MIR) algorithm. RF = radio frequency.

The parallel version of the MIR algorithm is implemented using Python programming language.
The pseudo-code of the proposed parallelized MIR algorithm is shown in Algorithm 2.

The above process is repeated for all cases and the number of diagnostics performed.
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Algorithm 2 PMIR algorithm
Input: Radio Frequency Sensors Data
Output: Brain Images

1: Read data from Eddie distributed file system
2: Copy the RDD for delay and Antennas location to each worker node
3: Set the variables z, distance, and energy to zero
4: While Nip < range do
5: Calculate the subset of pixel points on each worker node in parallel based on Equation (2) using

Map operation
6: Update the master node concurrently with a subset of pixel values using Reduce operation
7: End While
8: Reconstruct the image from the matrix of pixel values on master node
9: Save the image to the Distributed file system on Eddie

5. Experimental Evaluation

Using the PySpark based Map-reduce programming model, the parallel MIR algorithm for head
imaging big data is implemented on Eddie. Eddie (see www.ecdf.ed.ac.uk) is the University of
Edinburgh’s research computing cluster. It has 7000 CPU cores. Each server (compute node) has up to
3 TB of RAM. It runs Open Grid schedule and Scientific Linux 7.x. An overview of Eddie architecture
is shown in Figure 4.

Figure 4. Overview of Eddie architecture. Login nodes lets users start an interactive session or submit
batch jobs. The submitted jobs run on worker nodes connected through 10 Gbps Ethernet network
depicted by double lines.

The login node has limited memory and lets users submit job scripts or start an interactive
session. All these nodes are connected with a 10 Gbps Ethernet network. The Open Grid Scheduler is
responsible for scheduling the jobs. All nodes have access to shared memory called Eddie distribute
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file system. The user either submits batch jobs from login nodes to the cluster or starts an interactive
session by specifying the number of cores required and memory per core.

After setting up the environment for PySpark and Python, PySpark was launched with a
configuration of having one master and three workers node. Each node has the same configuration as
shown in Table 2.

Table 2. Experimental setup (each node).

Item Value

CPU Intel R© Xeon R© Processor E5-2630 v3 (2.4 GHz)
Memory 16 G

Operating system Scientific Linux 7
PySpark version 2.4.1

JDK version 1.8.0
Hadoop version 3.1.1
Python version 3.4.3

In order to run the job on the localhost, Spark magic is used. Spark magic is a set of tools used to
connect to remote Spark clusters through Livy, a Spark REST server, in Jupyter notebooks, as shown in
Figure 5.

Figure 5. Spark magic provides tools for managing Spark sessions on an external cluster through
Livy. Using Spark magic with Jupyter notebook, users can use Spark from their own Jupyter notebook,
running on localhost.

The input data contains 06 antenna and 201 points each making 1206 input points in total for a
single output image. The efficiency of the MIR and PMIR algorithm is evaluated based on single-image
reconstruction in a homogeneous environment.

Performance Analysis of MIR and PMIR

The efficiency is evaluated using a serial approach and a parallelized approach based on the
PySpark Map-reduce programming model. Both approaches are tested on Eddie and GCP. For the
performance evaluation on Eddie, an interactive session was started with 04 nodes, each having 04
cores and 16 gigabytes of memory. The cluster was configured based on master-slave architecture,
where one node acts as a master and others as workers. The master node reads the input data and
location of antennas stored on the Eddie distributed file system and creates RDDs. These RDDs
are broadcasted to the worker nodes. The worker nodes calculate subsets of pixel values based on
the algorithm discussed previously and return the results to the master node using the Map-reduce
programming model. The master node converts the matrix values into an image using simple Python
functions and saves the results back to Eddie storage. An example image is shown in Figure 6.



Appl. Sci. 2020, 10, 3382 13 of 19

Figure 6. An example of the output image reconstructed from 1206 backscattered points collected using
six antennas.

The serial MIR algorithm implemented in Python programming language was first run three
times on the cluster and the average wall time was noted. Then the parallelized version of the same
algorithm (keeping the input data and antenna location same) was run with the same configurations
and the average wall time was noted. The result is shown in Figure 7 and Table 3. It can be noted that
the average wall time decreased from 8.14 s to 285 ms, which means that using PySpark is 28.56 times
faster than sequential Python implementation.

Figure 7. Execution time of MIR and parallel microwave image reconstruction (PMIR) algorithm on
Eddie and Google Cloud Platform (GCP).
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Table 3. Processing time (in seconds) of MIR and PMIR on stand-alone, Eddie, and GCP.

Algorithm Stand-Alone Eddie GCP

MIR 14.91 8.14 13.3
PMIR 8.04 0.285 7.6

For validation purpose, the obtained results are compared with Reference [30]. We chose this paper
because they use PySpark for the implementation of functional magnetic resonance imaging (FMRi)
pipeline for brain extraction application (BEA). There are other relevant literature, as described in the
Related Work section, however they used Hadoop and Spark instead of PySpark. The method was tested
on standalone system using PySpark and standard Python. In terms of processing time, the proposed
pipeline is four times faster than the one developed in Python. Although the testing was performed on
a single node, it was reported that the performance will increase by a factor of 10 to 20 times using a
cluster. As shown in Figure 8, PySpark improves the performance in terms of processing time for both
MIR and BEA. The aim of this comparison is to determine the effectiveness of using PySpark for parallel
implementation of imaging algorithm, rather than comparing the performance of MIR and BEA.

Figure 8. Execution time of MIR and brain extraction application (BEA) [30] on stand-alone system.

In order to check if the algorithm can be generalized, it is deployed on GCP using the Google
storage bucket to store data and final output images. Three virtual machine instances were created
with a master and two worker nodes, as shown in Figure 9. The master node reads input data and the
antennas’ location forms the Google storage bucket and runs the algorithm similar to Eddie. The results
take slightly more time due to network saturation, the number of cores, and memory. The algorithm
faces high latencies due to data transfers between the parallel file system and computation nodes.
However, the PMIR algorithm outperforms the MIR algorithm on both Eddie and GCP. The experiment
design on GCP does not aim to compare the performance with Eddie, rather evaluate the generality
of the PMIR algorithm. The goal is to verify the behavior of the PMIR algorithm that maximizes the
localization of data retrieval, processing, and storage for a job.
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Figure 9. PMIR on Google Cloud Platform (GCP). The data is first send to cloud storage bucket.
The master node reads the data, distributes to worker nodes for computation, and saves the output
image back to storage bucket.

From the analysis on Eddie and GCP, it can be noticed that serializations overhead and network
congestion are negligible for large medical image data. However, Spark provides very flexible solutions
for large, fast image processing tasks. Although the use of big data technologies for large-scale image
processing has become crucial for both research and clinical practice, very few modern big data
approaches are considered in clinical practices. Hence, creating robust algorithms for large-scale image
data processing becomes an enormous effort, particularly in the context of HPC and cloud platforms.

6. Conclusions and Future Work

This paper presented a parallel image reconstruction algorithm using PySpark on HPC and
GCP platforms. The proposed system achieves high-throughput and effective image reconstruction.
With master-worker parallelism, the computation required for image reconstruction is distributed onto
multiple worker nodes using the Spark framework. On each worker node, delay and antenna location
values are broadcasted first to assist faster computation. The subsets of pixel values are calculated
on different worker nodes in parallel and retrieved to a master node where it is used to generate
2D and 3D images of the brain. We tested the performance of the proposed image reconstruction
system on Eddie and Eddie distributed file system for storing the images. The aim of this work was to
examine the use of big data technologies for large-scale image data processing. The study indicated
that the proposed parallel imaging algorithm achieves more than 128% times speed improvement
on the construction of multiple images in parallel and distributed manners. Although the algorithm
is tested on Eddie and GCP, it can be generalized to any cluster having master-slave architecture.
This study adds to the growing body of research that considers the use of different accelerators for
medical image processing.

Although the Map-reduce programming model is commonly used to compute intensive jobs,
it is not considered an all-purpose big data tool due to data constraints. One of the downside of the
proposed algorithm is retrieving the data to memory on every cycle for image reconstruction, resulting
in substantial disk input/output. The cloud implementation will require data retrieving on every
iteration and can cause network congestion. A potential solution is to place data and algorithm on the
computational nodes to avoid network congestion. The proposed algorithm is tested on homogeneous
nodes. Further experimental investigations are needed to consider more data inputs and deploy the
algorithm on both homogeneous and heterogeneous architecture.
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