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Abstract

Multimodal sarcasm detection aims to identify whether the literal expression is

contrary to the authentic attitude within multimodal data. Sarcasm incongruity method

has been successfully applied to multimodal sarcasm detection, due to its ability to

flexibly capture the intrinsic differences between modalities. However, previous in-

congruity methods primarily focused on the semantic level, often overlooking more

specific forms of sarcasm incongruity. Sarcasm incongruity, in particular, encompasses

fact incongruity, sentiment incongruity, and combination incongruity. Therefore, we

propose a fact-sentiment incongruity combination network from a novel perspective,

which draws the multimodal sarcastic relations by exploring the multimodal factual

disparities, sentiment incongruity, and combination fusion. Specifically, we design a dy-

namic connecting component calculating dynamic routing probability weights via graph

attention and mask routing matrices, which selects the most suitable image-text pairs to

capture fact incongruity between images and text. Then, we retrieve sentiment relations

between text tokens and image objects using external sentiment knowledge to recon-

struct edge weights in the cross-modal graph matrix to capture sentiment incongruity.

Furthermore, we introduce a combination incongruity fusion layer and cross-modal

contrastive loss to fuse fact incongruity and sentiment incongruity for further enhancing

the incongruity representations. Extensive experiments and further analyses on publicly
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available datasets demonstrate the superiority of our proposed model.

Keywords: Multimodal sarcasm detection, Sarcasm incongruity, Dynamic connecting

component, Cross-modal graph, Combination incongruity fusion

1. Introduction

Sarcasm is a distinct form of sentiment expression characterized by a contrast

between the literal and implied meanings, typically conveying a scornful attitude that

contradicts the user’s true feelings [13, 16, 17]. As multimedia technologies evolve and

online platforms grow, users increasingly express opinions using both text and image.5

This has amplified the importance of detecting sarcasm in multimodal datasets.

Multimodal sarcasm detection (MSD) is an emerging yet challenging task in natural

language processing, and it aims to identify whether the literal expression is contrary

to the authentic attitude by combing textual, visual, and other modalities [15, 23, 34].

Earlier studies used the principle of semantic incongruity for multimodal sarcasm detec-10

tion. Some employed attention mechanisms and fusion strategies [5, 60], while others

leveraged pre-trained models for such modeling [4, 9, 47]. Additionally, some studies

introduce the graph neural networks and external knowledge [28, 29, 67]. However,

these incongruity methods mainly address the semantic level, frequently missing more

nuanced forms of sarcasm incongruity [32, 58]. Specifically, Liu et al. [32] consider15

that most existing studies only modeled the atomic-level inconsistencies between the

text input and its accompanying image, ignoring more complex compositions for both

modalities which have been proved to be effective in other related tasks, such as cross-

modal retrieval [26] and image-sentence matching [31, 61]. In addition, Wen et al. [58]

focus on the inter-modal and dual incongruities. They discover that sarcasm incongruity20

not only involves semantic level but also includes attitude as a crucial factor [51].

In fact, sarcasm incongruity appears in more fine-grained forms, including fact,

sentiment, and combination incongruities, as illustrated in Fig. 1. The textual description

of Fig. 1(a) represents children go to school with wet roads and wind, while the actual

situation in the image shows the children inside a school bus. The contrast between the25

words “wet roads” and “wind” with the image object ”school bus” represents a complete
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(a) Can't believe they made the kids go to 

school with wet roads and wind !
(c) Gotta love the warm and dry conditions !(b) Yay ! snow !

Figure 1: Examples of Twitter data with multimodal sarcasm.

contradiction between the text description and reality, illustrating factual incongruity. In

Fig. 1(b), the word “yay” expresses joy for the snow, but the actual situation in the image

is that the snow covers the entire windshield, making it impossible to drive the car. The

wording contrasts with the actual sentiment attitude, representing sentiment incongruity.30

In Fig. 1(c), the text description of “warm” and “dry” strongly contrasts with the image

object ”snow,” and the word ”love” further intensifies the level of sarcasm through a

false sentiment attitude, which combines factual incongruity and sentiment incongruity.

In this paper, we introduce the Fact-Sentiment Incongruity Combination Network

(FSICN) from a new angle, capturing multimodal sarcasm by examining fact, sentiment,35

and combination incongruities. Specifically, we design a fact incongruity module con-

taining dynamic connecting component, which calculates dynamic routing probability

weights via graph attention mechanism and mask routing matrices to select the most

suitable image-text pairs to capture fact incongruity. Then, we construct a sentiment

incongruity module by retrieving sentiment relations between text tokens and image40

objects, and introduce the external sentiment knowledge into the cross-modal graph

matrix to capture sentiment incongruity. Furthermore, we utilize a combination incon-

gruity fusion to fuse fact incongruity and sentiment incongruity to capture composite

incongruity, and introduce a cross-modal contrastive loss to further enhance the mul-

timodal incongruity representations. Experiments on the publicly-available dataset45

show our proposed FSICN outperforms the baselines that rely solely on text or image

by achieving a 22.7% and 6.7% improvement in accuracy, respectively. In addition,
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FSICN outperforms advanced multimodal baselines, achieving improvements of 0.96%

in accuracy, 2.55% in binary-average F1-score, and 1.17% in macro-average F1-score.

The main contributions of our paper can be summarized as follows:50

• We propose a fact-sentiment incongruity combination network from a novel

perspective to capture the fine-gained sarcasm incongruity.

• We design a dynamic connecting component that calculates dynamic routing

probability weights to adaptively select the most suitable image-text pairs to

capture fact incongruity.55

• We reconstruct a cross-modal graph by retrieving sentiment relations between

text tokens and image objects using external sentiment knowledge to capture

sentiment incongruity.

• Experimental results on the publicly-available datasets MSD illustrate that our

proposed model outperforms advanced baseline methods and demonstrate the60

superiority of our model.

The rest of this paper is organized as follows. After introducing related works in

Section 2, we propose a fact-sentiment incongruity fusion network in Section 3. Then

we report the experimental details and conduct a detailed experimental analysis in

Section 4. Finally, we summarize our work and provide a direction of future work in65

Section 5.

2. Related work

Previous studies mostly focused on using textual information for sarcasm detection

[2, 3, 21]. With the development of multimedia technology and the popularity of multi-

modal information, multimodal sarcasm detection has attracted considerable attention70

in recent years [29, 47, 58]. Unlike textual sarcasm detection, multimodal sarcasm

detection seeks to determine if the literal expression contradicts the genuine attitudes

across various modalities. In this section, we will discuss related work in two parts:

multimodal sarcasm detection and multimodal sentiment analysis.
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2.1. Multimodal sarcasm detection75

Early studies merged text and image data to detect multimodal sarcasm. Schifanella

et al. [48] applied two methods for multimodal sarcasm detection: one combined visual

semantics with text features from an external dataset, while the other used pre-trained

visual neural networks from ImageNet [11]. Caiet et al. [5] adopted a hierarchical fusion

approach from a hierarchical fusion perspective. They used bidirectional long-short80

memory network(LSTM) [66] to extract text features, combining them with image and

image attribute features to reconstruct representation vectors and weighted averages to

detect sarcasm.

However, previous fusion methods fail to capture the multimodal interaction and

implicit sarcasm relations. Consequently, recent studies attempt to model multimodal85

sarcasm by exploring the implicit incongruities among different modalities. Xu et

al. [60] modeled the semantic associations in cross-modal contexts by decomposing

the network to represent the commonalities and differences between images and text.

Drawing inspiration from the self-attention mechanisms, Pan et al. [43] designed a

cross-modal attention mechanism based on BERT [12] to capture intra-modal and inter-90

modal incongruities in multimodal sarcasm detection, and they also applied a shared

attention mechanism to model contradictions within the text. Due to the incongruity is

a crucial clue in determining sarcasm, Liang et al. [28] designed an interactive Graph

Convolutional Network to establish sarcasm incongruity by creating heterogeneous

intra-modal and cross-modal graphs for each multimodal input. Previous approaches95

overlooked the wealth of information contained in external knowledge. Therefore, Liu

et al. [32] proposed a hierarchical framework based on a multi-head cross-attention

mechanism and graph neural networks, which integrates various knowledge resources

for detecting sarcasm incongruity. Yue et al. [67] identified prior knowledge and cross-

modal semantic contrast as essential factors in sarcasm detection, and introduced a novel100

model that incorporated prior knowledge from the ConceptNet knowledge base and

incorporated contrastive learning to enhance the spatial distribution of samples.

A few incongruity methods has been successfully applied to multimodal sarcasm

detection, due to its ability to flexibly capture the intrinsic differences between modal-

ities [46, 57, 65]. However, these methods primarily focused on the semantic level,105
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often overlooking more specific forms of sarcasm incongruity. Sarcasm incongruity, in

particular, encompasses fact incongruity, sentiment incongruity, and combination incon-

gruity. Therefore, from a unique perspective, we introduce a fact-sentiment incongruity

combination network (FSICN). This network depicts multimodal sarcastic relations by

probing into the multimodal factual discrepancies, sentiment incongruities, and their110

integrated fusion.

2.2. Multimodal sentiment analysis

Recent years have seen growing interest in multimodal sentiment analysis [27,

30, 39, 40], which is closely tied to sarcasm detection. Sarcasm, a unique sentiment

expression, subtly conveys dissatisfaction in a positive way. Given this relationship,115

detecting sentiment in multimodal data is vital for accurate sarcasm detection.

Earlier research typically used deep neural networks like convolutional neural net-

works (CNNs) [1], long-short term memory networks (LSTMs) [36], Memory networks

[50], pre-trained models (PTMs) [19], and graph convolutional networks (GCNs) [41]

for multimodal sentiment prediction. CNN-based methods demonstrate proficiency in120

capturing local features. Poria et al. [44] introduced a multi-kernel learning method that

utilized CNN to extract textual and visual features for multimodal sentiment analysis.

Because CNNs have limitations in capturing global multimodal features, Chen et al.

[10] constructed a time attention mechanism on top of LSTM to achieve finer modal

fusion for multimodal sentiment analysis. However, this approach neglected the seman-125

tic sentiment information conveyed by words, Zhu et al. [69] proposed an sentiment

knowledge enhanced attention fusion network that incorporated additional sentiment

knowledge representations from external knowledge bases.

Due to the ability to extract extra knowledge from large-scale datasets, pre-trained

models have demonstrated outstanding performance in constructing multimodal rep-130

resentations. Ye et al. [64] designed a cross-modal contrastive learning method based

on pre-trained models and introduced a sentiment-aware pre-training objective for mul-

timodal sentiment analysis. Existing studies relies on cascade operations for feature

fusion, overlooking the deep interactions between different modalities. To address this

issue, Liu et al. [35] proposed a modality translation module to construct missing joint135
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features. Under the supervision of pre-trained models, it generated joint features for the

uncertain missing modality to facilitate multimodal sentiment prediction. GCNs enable

the learning of feature representations in graph data, automatically capturing relations

between data and effectively integrating heterogeneous data. Huang et al. [20] proposed

a temporal graph convolutional network that leveraged modality-specific graph learning140

to embed nodes with underlying sequential semantics of discourse for multimodal senti-

ment prediction. Due to the neglect of fine-grained multimodal information in existing

methods, Wang et al. [56] employed text-image pairs and graph structures to explore

both global and local fine-grained sentiment details for multimodal sentiment analysis.

Though previous methods use diverse techniques for multimodal sentiment analysis,145

they miss capturing cross-modal graph dependencies and thus can’t precisely identify

sentiment cues. Hence, we introduced a cross-modal graph convolutional network to

address this and enhance multimodal sarcasm detection.

3. Methodology

In this section, the proposed Fact-sentiment incongruity combination network150

(FSICN) is described in detail. As demonstrated in Fig. 2, the architecture of FSICN

contains five components: (1) Text and image encoding module. (2) cross-modal

interactive module (CIM). (3) Fact incongruity module (FIM). (4) Sentiment incon-

gruity module (SIM). (5) Combination fusion module (CFM). First, the text and image

encoding module is applied to capture the general features via BERT [12] and ViT155

[14] pre-trained models. Then, cross-modal interactive module is designed to build

cross-modal interactive relations between image and text. Next, fact incongruity module

calculates dynamic routing probability weights using the masked matrix to obtain the

most suitable image-text pairs adaptively, and sentiment incongruity module constructs

the cross-modal graph by integrating sentiment clues and calculating the semantic simi-160

larity between text words and image patches. Finally, the obtained fact incongruity and

sentiment incongruity embeddings are fused into combination fusion layer via activation

function to predict multimodal sarcasm.
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Figure 2: The architecture of proposed FSICN contains five components: TIE for great features extraction.

CMI is cross-modal interactive module used to capture interactive relations between text and image. FIM and

SIM are fact incongruity and sentiment incongruity modules to extract the fact and sentiment incongruity

embeddings. CFM is combination incongruity fusion to fuse fact and sentiment incongruity embeddings to

predict sarcasm.

3.1. Task and notation definition

The task of MSD can be formulated as follows: given a image-text pair which165

the text contains m words and the image is split into n patches. The image-text pair

is denoted as Text = {eti | 1 ≤ i ≤ m} and Image = {evj | 1 ≤ j ≤ n}, where eti

denotes the i − th word of given sentence, and evj denotes the j − th patch of the

corresponding image. The goal of MSD is to learn a classifier to predict the sarcasm

label y ∈ {sarcasm, non− sarcasm} for each image-text pair.170

3.2. Text and image encoding

To obtain the general text features for model training, we use the pre-trained BERT

[12] which has acquired knowledge from the large-scale datasets as the text encoder.
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Similarly, the image features are extracted via pre-trained Vision Transformer (ViT)

in lines with other baselines [14], which has achieved excellent performance in image

encoding. The text and image embeddings extraction can be formulated as:

T = [t1, t2, ..., tm] = BERT (Text)

V = [v1, v2, ..., vn] = V iT (Image)
(1)

where T ∈ Rm×dt , V ∈ Rn×dv represents the text and image embeddings. ti ∈ Rdt

is the text embedding of the i− th word, and vi ∈ Rdv is the image embedding of the

j − th patch in the image. dt, dv denote the dimension of text and image embedding.

3.3. Cross-modal interactive module175

The interactive relation between text and image in multimodal sarcasm is crucial

for recognizing sarcastic content. Text provides the linguistic aspect of irony or exag-

geration, while image offers visual elements such as expressions, actions, or scenes

that can further emphasize or explain the meaning of the text, aiding in understanding

the sentiment and contextual aspects of sarcasm. Therefore, we first map the text and

image features into the joint multimodal space, and calculate the similarity relation with

L2-normalization to build the interaction between sarcastic images and text.

Lt = LN(T ·Wt)

Lv = LN(V ·Wv)

E = (Lt · (Lv)T ) ∗ et

(2)

where Lt ∈ Rm×de , Lv ∈ Rn×de represents the joint multimodal embeddings. Wt ∈

Rdt×de ,Wv ∈ Rdv×de are learnable weight. E ∈ Rm×n denotes the interactive matrix,

and et is the learned temperature parameter. After that, we integrate the interactive

matrix with text and image features to fully leverage the complementary information

from different modalities.

T c = [tc1, t
c
2, ..., t

c
m] =

exp(Et)∑m
i=1 exp(Ei)

∗ T

V c = [vc1, v
c
2, ..., v

c
n] =

exp(Et)∑n
j=1 exp(Ej)

∗ V
(3)
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where T c ∈ Rm×dt , V c ∈ Rn×dv represent the cross interactive representations

which text towards image and image towards text. exp() is the exponential function, and

Et ∈ Rm×n represents the interactive value of the t-th token in text and image. Thus far,

we have achieved semantic interaction and information complementarity between text

and images via the cross-modal interaction module, providing the enhanced cross-modal180

embeddings for the subsequent fact incongruity module and sentiment incongruity

module.

3.4. Fact incongruity module

Fact describes the existence of objects or entities, and is perceived through semantic

information. Multimodal fact incongruity refers to the discrepancies between informa-185

tion or facts in multimodal data. These discrepancies are manifested as objects described

in text that either do not exist in real images or do not match them. The meanings of

words or phrases in the text may contrast with the objects depicted in the visual data. By

modeling fact incongruity in multimodal sarcasm data, this enables us better distinguish

false and fact information from both global and local perspectives.190

Inspired by previous studies [53, 68], we have developed a dynamic connecting

(DC) component. This component is designed to dynamically capture fact incongruity

between images and text by selecting the most suitable module based on different

image-text pairs. The DC component comprises several key elements, including graph

attention network (GAT) [54], multi-head dynamic routing layer (DynRT) [53], multi-

head self-attention (MHA) and feed-forward network (FNN). The DC component can

be calculated as follows:

Fk = LN(FNN(F ak−1) + F ak−1)

F ak−1 = LN(MHA(F dk−1) + F dk−1)
(4)

Where Fk ∈ Rm×df is the output of k-th DC layer which represent the fact incongruity

embeddings. F ak−1 ∈ Rm×dt refers to the MHA embeddings, and F dk−1 ∈ Rm×dt

denotes the (k − 1)-th DynRT embeddings, among dt = dv = df .

The MHA mechanism receives input from the DynRT layer, and utilize the DynRT

to calculates dynamic routing probability weights using the masked matrix, enabling the
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adaptive selection of the most suitable image-text pairs. The DynRT layer is as follows:

F dk−1 =Concat(head1, head2, ..., headh)WO (5)

Where F dk−1 ∈ Rm×dt denotes the (k − 1)-th DynRT embeddings. Concat is the

concatenation operation. WO ∈ Rdt×dt is the parameter matrix. headi ∈ Rm×dr is

calculated by routing function for each image-text pair, and hidden dimension dt = h∗dr.

The headi can be calculated as follows:

headi =softmax(
QTKV

T

√
dk

⊗
k∑
i=1

αiAi)VV (6)

Where QT = T gWQ ∈ Rm×dr , KV = V gWK ∈ Rn×dr , VV = V gWV ∈ Rn×dr

represent query, key and value via linear transformation, and WQ ∈ Rdt×dr ,WK ∈

Rdv×dr ,WV ∈ Rdv×dr are parameter matrices. Ai ∈ Rm×n denotes masked matrixh

to calculate the coupling coefficents between each image-pair pair. If the image patch

within the attention span of the text target, the value of dynamic mask matrix is set to

1, otherwise set to 0. αi = softmax(MLP (AttentionPool(Vg))) ∈ Rk refers to the

routing probability weight. AttentionPool() is the adaptive average pooling method,

and MLP () is the multi-layer perception. T g ∈ Rm×dt , V g ∈ Rm×dt represent the

graph attention embeddings towards text and image to establish text semantic and graph

edge relations, and can be calculated as follows:

T g =
exp(σ(at[tci ·WT ||tcj ·WT ]))∑m
i=1 exp(σ(a

t[tci ·WT ||tck ·WT ]))
∗ T c

V g =
exp(σ(av[vci ·WV ||vcj ·WV ]))∑n
i=1 exp(σ(a

v[vci ·WV ||vck ·WV ]))
∗ V c

(7)

Where σ denotes the LeakyReLU activation function. at ∈ R2dt , av ∈ R2dv and

WT ∈ Rdt×dt ,WV ∈ Rdv×dv are the learnable parameter.195

3.5. Sentiment incongruity module

Sarcasm often involves implicitly expressing dissatisfaction in a positive manner

while conveying sentiments or attitudes. For example, in the sentence “what a wonderful

weather!” which corresponds to with an image of a rainy day. The word “wonderful” in

the text conveys a highly positive sentiment, creating a strong sentiment inconsistency200
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with the negative sentiment implied by the rainy weather in the image. Hence, sarcasm

implies sentiment, making the sentiment detection in multimodal data a crucial factor in

accurately predicting sarcasm.

To extract sentiment information from multimodal sarcasm, we approach the ex-

traction of sentiment incongruity as a multimodal sentiment analysis task. Giving the205

intricate associations and dependencies in multimodal sentiment, we utilize graph convo-

lutional networks (GCNs) to integrate features from various modalities by propagating

information across the graph, which allows model to capture cross-modal sentiment

relations. We first construct the textual graph based on dependency tree1.

DT
i,j =

1, if i = j or {tci , tcj}in ∈ T

0, otherwise
(8)

Where DT
i,j ∈ Rm×m is the adjacency matrix of textual modality, and tci , t

c
j denote the

words of sentence. In the adjacency matrix, each node is set to be adjacent to itself, and

the value of diagonal is all set to one. Next, we build the visual graph as follow.

DV
i,j =

1, if i = j or {tci , tcj} ∈ R

0, otherwise
(9)

Where DV
i,j ∈ Rn×n is the adjacency matrix of visual modality, and vci , v

c
j denote the

image patches. After obtaining the textual and visual graph, we feed graphs and cross

interactive representations into GCN layers to generate the graph representation.

gti = ReLU(

m∑
j=1

DT WL g
t−1
j + bL)

gvi = ReLU(

n∑
j=1

DV WP g
v−1
j + bP )

(10)

Ht =

m∑
k=1

ηtkt
c
i , η

t
k =

exp(βtk)∑m
i=1 exp(β

t
i )
, βtk =

m∑
i=1

gtit
c
k

Hv =

n∑
k=1

ηvkv
c
i , η

v
k =

exp(βvk)∑n
i=1 exp(β

v
i )
, βvk =

n∑
i=1

gvi v
c
k

(11)

1We use spaCy toolkit to construct the dependency tree: https://spacy.io/
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Where gti ∈ Rdt , gvi ∈ Rdv represent the graph hidden representations, and gt−1
j ∈210

Rdt , gv−1
j ∈ Rdv denote the representation evolved from the preceding GCN layer.

WL ∈ Rdt×dt ,WP ∈ Rdv×dv and bL ∈ Rdt , bP ∈ Rdv are the weight parameters.

ReLU() is a non-linear activation function. Ht ∈ Rm×dt , Hv ∈ Rn×dv is the final

graph embeddings.

Then, since the weights of the edges are important in graph information aggregation215

[29, 37, 62], we construct a cross-modal graph by integrating sentiment clues and

calculating the semantic similarity between text words and image patches.

Dcross
i,j =

1 + sim(tci , v
c
i )e

−δ(tci )δ(a
c
j), if i < m, j ≥ n

0, otherwise
(12)

Where Dcross
i,j ∈ R(m+n)×(m+n) is the corss-modal graph representation. sim refer

to the similarity calculation. tci , a
c
j denote the word of sentence and attribute of image

patch. δ(tci ) ∈ [−1, 1] is the sentiment weight of word tci in SenticNet [6]. Words found220

in SenticNet are assigned their corresponding values, while others are set to 0.

Finally, we create the cross-modal sentiment embeddings at the top of graph repre-

sentations Ht and Hv via graph convolution operation.

gci = ReLU(

m+n∑
j=1

DcrossWC g
c−1
j + bC) (13)

Hc =

m+n∑
t=1

ηcth
c
t , η

c
t =

exp(βct )∑m+n
i=1 exp(βci )

, βct =

m+n∑
i=1

gcih
c
t (14)

Where Hc ∈ Rdf is the finally sentiment incongruity embeddings. gc0 = [Ht, Hv] =

{hc1, hc2, ..., hcn+m} = {ht1, ht2, ..., htm, hv1, hv2, ..., hvn}.225

3.6. Combination incongruity fusion

Utilizing the fact incongruity module and sentiment incongruity module, we input

embeddings F a and Hc into combination incongruity module to generate combination

embeddings to predict sarcasm.

F =Mean(F a)

S =Mean(Hc)
(15)
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yc = softmax(Wy(LN(F · S)) + by) (16)

Where Mean() is the average function. F, S ∈ Rdf represent global embeddings of

fact incongruity and sentiment incongruity. yc is the predicted probability of all the

possible labels, and Wy ∈ Rd×d and by ∈ Rd are trainable parameters.

3.7. Optimization objectives230

For our FSICN model, the overall learning of the model is to optimize all the

parameters, and minimize the loss function as far as possible. The overall loss is as

follows:

L = Lce + Lmse + Lcl (17)

Where Lce is the cross-entropy loss, Lmse is the Mean Square Error loss. To further

enhance the image sentiment representations, we introduce the graph contrastive learning

strategy Lcl. Specifically, we use graph convolution operation to extract the text and

image graph representations Ht and Hv . For image-text pairs, a substantial difference

in sentiment polarity implies that text and image embeddings should be correspondingly

pushed apart. Otherwise, they should be pulled closer together. Therefore, we utilize

the Kullback-Leible (KL) divergence to calculate the graph contrastive learning.

Lce = −
1

N

N∑
i

yci log (ŷ
c
i )

Lmse =
1

N

N∑
i=1

||ysi − ŷsi ||2

Lcl =
1

2
DKL(H

t‖Hv) +
1

2
DKL(H

v‖Ht)

(18)

Where ysi is the predicted probability of sentiment incongruity embeddings hc via

softmax function.

4. Experiments

In this section, we initially describe the experimental datasets in Section 4.1, fol-

lowed by the implementation details and baseline models in Sections 4.2 and 4.3. To235
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evaluate the performance of proposed model, we compare it with advanced baselines on

MSD, and utilize the Accuracy (shorten as Acc), Binary F1-score, and Macro F1-score

as the evaluation metrics in Section 4.4. Next, in Section 4.5, we conduct an ablation

study to analyze the contribution of CMI, FIM, SIM and CFM module. We also explore

the influence of the number of DC layers and cross-modal GCN layers to model perfor-240

mance in Sections 4.6. Finally, we visualize the dynamic connection layer in FIM and

the cross-modal graph matrix in EIM to gain a deeper understanding of the principles

underlying FIM and SIM in Section 4.7.

4.1. Experimental datasets

We conduct experiments on publicly available benchmark sarcasm datasets in245

line with the most of state-of-the-art works in this area: Multimodal Sarcasm De-

tection (MSD) Dataset [5]. This dataset collects image-text pairs containing some

specific hashtag (e.g., #sarcasm, etc.) as sarcastic examples from Twitter2, and col-

lects image-text pairs without such hashtags as non-sarcastic examples, as shown in

Tabel 1. To improve the quality of the dataset, Cai et al. [5] discards tweets con-250

taining sarcasm, sarcastic, irony, ironic as regular words and discards URLs, and

randomly divides dataset into the training set, validation set, and testing set with the

ratio of 80%, 10%, and 10%. Consistent with previous studies, we evaluate our model

using standard metrics, including accuracy, precision, recall, binary-average, and macro-

average results.255

For a more comprehensive validation, we conduct experiments on a multimodal

datasets that contain the sentiment, emotion and sarcasm labels, called Memotion

dataset originates from SemEvel 2020 Task 8 [49]. Memotion contains 6992 samples

which consists of 5449 sarcastic samples and 1543 non-sarcastic samples. Each memo

data point has been labeled with semantic dimensions, e.g., sentiment and type of260

emotion, e.g., sarcasm, humor, etc. The speaker identifiers of all the utterances are

also recorded. Consistent with previous studies, we evaluate our model using standard

metrics, including accuracy, precision, recall, binary-average.

2https://twitter.com/home
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Table 1: Statistics of the MSD data.

Training Validation Testing
Sarcastic 8642 959 959
Non-Sarcastic 11174 1451 1450
All 19816 2410 2409

In addition, we also conduct experiments on another multimodal meme dataset,

called MultiBully annotated with bully, sentiment, emotion and sarcasm labels [42]. The265

MultiBully dataset comprises 5854 samples, divided into 2233 sarcastic samples and

3641 non-sarcastic samples, collected from open-source Twitter and Reddit platforms.

The dataset also consists of two modalities, text and image. Consistent with previous

studies, we evaluate our model using standard metrics, including accuracy, precision,

recall, binary-average.270

4.2. Implementation details

For a fair comparison, we follow [5] to process the MSD dataset. In our experiments,

we adopt the pre-trained uncased BERT [12] with 768 dimension to initialize the text

embedding, and the image embedding is obtained by the pre-trained ViT [14] with 768

dimension. The image is split into 49 (7*7) patches and the resolution of visual region275

patch is set to 32. We set the number of DC layers to 4 and the number of GCN layers to

2. The hidden state dimension is configured as 512, and the output hidden state is set to

768. For optimization, we employ the Adam optimizer with a learning rate of 0.00002

across all models. To optimize the model training, we average the experimental results

of 20 runs with random initialization, and use early-stopping with patience value of 5.280

4.3. Baseline models

To assess the performance of FSICN, we compare with a series of state-of-the-

art baselines, summarized as image-modality methods, text-modality methods and

multimodal methods.

Image-modality methods. These baselines use visual information for sarcasm285

detection are as follows:
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• Image [5] utilizes the visual representation via ResNet for sarcasm detection.

• ViT [14] uses the [CLS] token representation as the input of pre-trained visual

model to detect the sarcasm.

Text-modality methods. These baselines use textual information for sarcasm290

detection are as follows:

• Bi-LSTM [18] uses a bidirectional long-short memory network for text classifi-

cation.

• TextCNN [22] utilizes a convolutional neural network for text classification.

• SIARN [52] proposes an attention-based neural model to explicitly model contrast295

and incongruity for sarcasm.

• SMSD [59] designs a self-matching network to capture sarcasm incongruity

information by exploring interactions between different words.

• BERT [12] is a pre-trained uncased model which takes [CLS] text [SEP] as input

for text classification.300

• ALBERT [24] presents two parameter-reduction techniques to lower memory

consumption and increase the training speed of BERT.

• XLNet [63] enables learning bidirectional contexts by maximizing the expected

likelihood over all permutations of the factorization order, and overcomes the

limitations of BERT thanks to its autoregressive formulation.305

• RoBERTa [33] presents a replication study of BERT pretraining that carefully

measures the impact of many key hyperparameters and training data size.

Multimodal methods. These baselines take both textual and visual information as

input to detect sarcasm are as follows:

• HFM [5] proposes a multimodal hierarchical fusion model to detect sarcasm.310
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• D&R Net [60] designs a decomposition and relation network by modeling cross-

modality contrast and semantic association for sarcasm detection.

• Res-BERT [43] uses the BERT to encode text and combine text and image

features for sarcasm prediction.

• Att-BERT [43] constructs the attention mechanism to construct the inter-modality315

attention to capture inter-modality incongruity.

• UPB-MTL [55] uses ALBERT to represent the textual utterance and uses VGG-

16 to represent the accompanying image.

• FAT-MTL [7] designs a genetic program tree to predict the inter-task covariance

matrix.320

• A-MTL [8] proposes Ie-Attention and Ia-Attention to learn the relation between

different segments and the relation within the same segment.

• RCNN-RoBERTa [45] utilizes pretrained RoBERTa vectors to represent the

utterance and uses an RCNN to obtain its contextual representation.

• InCrossMGs [28] designs the heterogeneous in-modal and cross-modal graphs325

via graph convolutional network to detect sarcasm.

• CMGCN [29] constructs a cross-modal graph convolutional network to draw the

sarcasm reltions for sarcasm prediction.

• HKEmodel [32] combines the atomic-level congruity and atomic-level congruity

based on graph convolutional network to detect sarcasm.330

• MILNet [47] designs the local semantic-guided and global incongruity learning

modules for sarcasm detection.

• DIP [58] proposes a dual Incongruity perceiving network which used the leverage

gaussian distribution and contrastive learning for sarcasm detection.

• DynRT [53] uses the hierarchical co-attention to construct the dynamic path for335

detecting thg cross-modal sarcasm incongruity.
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• KnowleNet [67] incorporates prior knowledge via the ConceptNet knowledge

and captured the cross-modal semantic similarity for sarcasm prediction.

• VisualBERT [25] is a simple and flexible framework for modeling a broad range

of vision-and-language tasks.340

• ViLBERT [38] is a model for learning task-agnostic joint representations of

image content and natural language.

4.4. Results and analysis

To evaluate the performance of proposed model, we utilize Acc, Binary-Average

F1-score, and Macro-Average F1-score on MSD dataset, as shown in Table 2. The345

results demonstrate that FSICN outperforms all the state-of-the-art baselines.

Firstly, our proposed FSICN, which combines both text and image modalities,

outperforms the baselines that rely solely on text or image by achieving a 22.7%

and 6.7% improvement in accuracy, respectively. This highlights the importance of

leveraging both modalities for more accurate sarcasm detection. Additionally, we350

observed that the text-only baseline significantly outperforms the image-only baseline,

indicating that textual semantics play a more crucial role in sarcasm detection compared

to images.

Secondly, FSICN outperforms advanced multimodal baselines, achieving improve-

ments of 0.96% in accuracy, 2.55% in binary-average F1-score, and 1.17% in macro-355

average F1-score. We attribute the improvement to the analysis of baseline structures,

and the primary reasons are as follows: On one hand, the HFM and D&R Net models

are among the earliest researches in multimodal sarcasm detection, which utilize the

ResNet+LSTM to extract features from both image and text modalities. Since sarcasm

clues in the text are more crucial, the performance of HFM and D&R Net is not sat-360

isfactory when compared to the baseline using the BERT model. On the other hand,

models such as Res-BERT, IncrossMGs, CMGCN, HKE, MILNet, DIP, and KnowleNet

capture the implicit incongruity between text and images from various perspectives to

detect sarcasm. However, these models lack fine-grained analysis of incongruity and the

ability to dynamically capture semantic correlations between text and images as well365
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Table 2: Performance of FSICN compared to state-of-the-art baselines on MSD with the evaluation metrics

acc, binary-average F1-score and macro-average F1-score.

Modality Model Acc
Binary-Average Macro-Average

P↑ R↑ F1↑ P↑ R ↑ F1↑

Image
Image 64.76 54.41 70.80 61.53 60.12 73.08 65.97

ViT 67.83 57.93 70.07 63.43 65.68 71.35 68.40

Text

Bi-LSTM 81.90 76.66 78.42 77.53 80.97 80.13 80.55

TextCNN 80.03 74.29 76.39 75.32 78.03 78.28 78.15

SIARN 80.57 75.55 75.70 75.63 80.34 78.81 79.57

SMSD 80.90 76.46 75.18 75.82 80.87 78.20 79.51

BERT 83.85 78.72 82.27 80.22 81.31 80.87 81.09

Image

+

Text

HFM 86.63 83.84 84.18 84.01 86.24 86.28 86.26

D&R Net 84.02 77.97 83.42 80.60 - - -

Res-BERT 84.80 77.80 84.15 80.85 78.87 84.46 81.57

Att-BERT 86.05 78.63 83.31 80.90 80.87 85.08 82.92

InCrossMGs 86.10 81.38 84,36 82.84 85.39 85.80 85.60

CMGCN 87.55 83.63 84.69 84.16 87.02 86.97 87.00

HKEmodel 87.36 81.84 86.48 84.09 - - -

MILNet 89.50 85.16 89.16 87.11 88.88 89.44 89.12

DIP 89.59 87.76 86.58 87.17 88.46 89.13 89.01

KnowleNet 88.87 88.59 84.18 86.33 88.83 88.21 88.51

ours FSICN 90.55 89.93 89.51 89.72 90.16 90.42 90.29

as cross-modal sentiment interactions. The proposed FSICN takes a more fine-grained

approach by analyzing incongruity in multimodal sarcasm from the perspectives of

factual incongruity, sentiment incongruity, and combination incongruity. FSICN utilizes

dynamic connections, cross-modal sentiment graph convolution, and combination fusion

to establish dynamic semantic correlations, cross-modal sentiment interactions, and370

consistent representations, enhancing the accuracy of multimodal sarcasm detection.

Recently, Transformer-based pre-trained models have demonstrated powerful per-

formance. Therefore, building upon the BERT pre-trained model, we test multimodal
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Table 3: Performance of FSICN compared to other transformer-based baselines on MSD with the evaluation

metrics Acc, Binary-average F1-score.

Modality Model Acc
Binary-Average

P↑ R↑ F1↑

Text
BERT 83.85 78.72 82.27 80.22

RoBERTa 88.28 86.32 85.48 85.89

Image

+

Text

VisualBERT 83.51 76.66 82.94 79.68

ViLBERT 84.68 77.52 86.37 81.71

KnowleNet + BERT 88.87 88.59 84.18 86.33

KnowleNet + ALBERT 92.69 91.57 90.85 91.21

DynRT-Net + BERT 89.77 - - 87.36

DynRT-Net + RoBERTa 93.49 - - 93.21

Ours

FSICN + BERT (110M) 90.55 89.93 89.51 89.72

FSICN + XLNet (110M) 92.53 92.12 90.96 91.54

FSICN + ALBERT (125M) 93.17 92.83 91.64 92.23

FSICN + RoBERTa (125M) 94.71 93.62 93.28 93.45

models based on both unimodal and multimodal Transformers on the MSD dataset, as

shown in Table 3. Firstly, compared to the BERT baseline model, RoBERTa has achieved375

an increase of 4.43% in accuracy and 5.67% in F1-score. Secondly, in the multimodal

scenario, we replaced the BERT baseline in the KnowleNet and DynRT models with

ALBERT and RoBERTa. We observe that the performance of the substituted models

far surpassed the BERT baseline. Finally, building upon our proposed FSICN model,

we replace the BERT baseline with XLNet, ALBERT, and RoBERTa, respectively. We380

observe that the performances of XLNet, ALBERT, and RoBERTa outperform the BERT

baseline, with RoBERTa exhibiting the best performance. Specifically, using RoBERTa

resulted in a performance improvement of 4.16% in accuracy and 3.73% in F1-score

compared to using BERT. We consider this phenomenon to the following reasons: XL-

Net uses the same 110M parameter size as BERT and incorporates architecture of BERT385
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into the Transformer-XL model, overcoming the shortcomings of the BERT model

and thus achieving performance improvement. ALBERT and RoBERTa use larger

125M parameter sizes. ALBERT addresses issues such as memory limitations, longer

training times, and unexpected model degration, and it aims to lightweight the model.

RoBERTa uses a more dynamic masking strategy and uses Byte-Pair Encoding, and it390

demonstrates the best performance. Therefore, compared to the pre-trained baselines,

including state-of-the-art models like KnowleNet and DynRT-Net, the proposed model

demonstrates superior performance over other models.

Most of existing studies have conducted extensive experiments and comparisons

on the MSD dataset. For a more comprehensive validation, we also test our proposed395

model on two additional publicly available dataset Memotion and MultiBully. For the

fair comparison, we use the same evaluation metrics as other baselines. As shown in

Table 4 and 5, our proposed FSICN shows the best performance on Memotion and

MultiBully. Compared to the state-of-the-art baseline, FSICN achieves an increase of

1.13% in F1-score on Memotion dataset, and achieves an increase of 2.57% in accuracy400

and 1.91% in F1-score on MultiBully dataset.

Table 4: Performance of FSICN compared to the baselines on Memotion dataset with the Precision, Recall

and Binary-average F1-score.

Modality Model P R F1

Image + Text

RCNN-RoBERTa 50.44 50.77 50.52

UPB-MTL 51.38 51.71 51.59

FAT-MTL 43.54 44.21 43.89

A-MTL 60.23 59.74 59.85

HFM 44.43 44.68 44.59

CMGCN 61.39 61.95 61.67

HKEmodel 61.32 61.47 61.41

MILNET 62.21 61.77 61.99

DIP 62.43 61.76 62.09

Ours FSICN 63.57 62.88 63.22
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Table 5: Performance of FSICN compared to the baselines on MultiBully dataset with the evaluation metrics

Acc, Precision, Recall and Binary-average F1-score.

Modality Model Acc P R F1

Text
BERT-GRU 59.72 - - 59.12

RoBERTa 61.82 62.03 60.31 61.16

Image ResNet 59.39 - - 57.79

Image + Text

HFM 62.08 61.37 61.46 61.41

CMGCN 62.51 61.88 62.14 62.01

HKEmodel 62.75 62.43 62.61 62.52

MILNET 63.44 62.58 62.19 62.38

DIP 64.29 63.54 62.41 62.97

CLIP 62.20 - - 61.47

KnowleNet 64.35 63.72 62.08 62.89

Ours FSICN 66.92 65.47 64.31 64.88

4.5. Ablation study

We conduct an ablation study to analyze the contribution of CMI, FIM, SIM and

CFM modules of our proposed FSICN, as shown in Table 6. Firstly, we use only BERT

and ViT as our baseline model (i.e., (a)) and fusion strategy is set to concatenation, the405

performance reaches its lowest point. When we introduce the CMI module on top of the

baseline (i.e., (b)), performances achieve improvements of 1.19% in accuracy, 0.92%

in binary-average F1-score, and 1.92% in macro-average F1-score. Compared to the

concatenation structure that directly concatenates text and image vectors, CMI may

inadvertently truncate the complete information contained within the text and images410

individually. However, we use the pre-trained BERT and ViT model, where the [CLS]

token is utilized to represent the entire sequence information, somewhat reducing infor-

mation loss. Under this premise, cross-modal interaction way enables better recognition

of the inherent relationship between text and image. This suggests that the cross-modal

interaction between text and images facilitates information complementarity, leading to415
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Table 6: Ablation study of FSICN model on different components. Base: conducts multimodal sarcasm

detection using only the backbone models (i.e., BERT and ViT). CMI, FIM, SIM, CFM: refer to the

cross-modal interactive module, fact incongruity module, sentiment incongruity module and combination

incongruity fusion module.

Setting
Components MSD

Base CMI FIM SIM CFM Acc↑ Binary-F1↑ Macro-F1↑

(a) ! 85.23 83.47 84.16

(b) ! ! 86.42 (↑1.19) 84.39 (↑0.92) 86.08 (↑1.92)

(c) ! ! ! 88.61 (↑3.38) 87.14 (↑3.67) 87.86 (↑3.70)

(d) ! ! ! 87.33 (↑2.10) 86.55 (↑3.08) 86.92 (↑2.76)

(e) ! ! ! ! 89.66 (↑4.43) 88.35 (↑4.88) 89.42 (↑5.26)

(f) ! ! ! 86.88 (↑1.65) 85.48 (↑2.01) 86.58 (↑2.42)

(g) ! ! ! ! ! 90.55 (↑5.32) 89.72 (↑6.25) 90.29 (↑6.13)

an improvement in sarcasm detection.

Then, concerning the fine-grained modules, we observe a further enhancement in

the performance of all three metrics when adding the FIM (i.e., (c)) and SIM (i.e., (d))

modules, respectively. Upon the addition of both the FIM and SIM modules (i.e., (e)),

the performances reach their peak, emphasizing the critical role of factual differences420

and sentiment clues within the FIM and SIM modules in recognizing sarcasm. Notably,

using only the FIM module outperforms using the SIM model alone. Due to the subtlety

of sarcasm, sentiment clues may be implicitly conveyed, making the FIM module more

conducive to sarcasm detection. In addition, comparing (b) and (f) to (e) and (g) reveals

that fusion strategy based on element-wise product outperform concatenation strategy.425

This highlights the superior effectiveness of non-linear fusion in enhancing modal

representations. Finally, when we use all components, our proposed FSICN outperforms

the baseline model by an increase of 5.32% in accuracy, 6.25% in binary-F1, and 6.13%

in macro-F1. This effectiveness of our proposed model in multimodal sarcasm detection.
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4.6. Influence of the number of DC and GCN layers430

In this section, we examine how the number of DC layers in the fact incongruity

module and the number of GCN layers in the sentiment incongruity module affect model

performance, as illustrated in Fig. 3 and Fig. 4.

Initially, we observe a steady improvement as the number of dynamic connection

layers increases from 1 to 3, reaching its peak at the 3rd layer. However, with further435

increases in the number of layers, performance gradually diminishes. We attribute

this phenomenon to the model’s gradual enhancement in learning capacity from 1 to 3

layers, allowing it to adaptively capture the most appropriate image-text pairs through

multi-head dynamic routing layers. Nevertheless, as the number of layers continues

to increase, the graph attention and masking mechanisms may introduce cross-modal440

relationships that are unrelated to the current image-text pair into the nodes, resulting in

a performance decline.

Secondly, within the sentiment incongruity module, the model achieves its peak

performance when the number of GCN layers is set to 2. Nevertheless, as the number

of layers increases beyond this point, the model’s performance gradually declined. We445

believe that this phenomenon is due to the occurrence of over-smoothing, which makes
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Figure 3: Influence of the numbers of DC layers with the evaluation metrics.
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Figure 4: Influence of the numbers of GCN layers with the evaluation metrics.

the features of all nodes increasingly similar. Hence, we set the number of DC layers to

3 and GCN layers to 2 for optimal performance.

4.7. Case study

To gain a deeper understanding of the principles underlying FIM and SIM in FSICN,450

we visualize the dynamic connection layer in FIM and the cross-modal graph matrix in

EIM, as shown in Fig. 5 and Fig. 6. Firstly, from Fig. 5, we observe that tokens in the

text fail to correspond well with the corresponding image patch in the first and second

dynamic connection layers. This phenomenon indicates that the dynamic routing layers

fail to learn the graph attention weights to make reasonable selections of image-text455

pairs. As the number of layers increases to 3, the multi-head dynamic routing layer

calculates dynamic routing probability weights using the masked matrix to obtain the

most suitable image-text pairs adaptively. Therefore, tokens can accurately focus on

their corresponding image regions. For instance, when the dynamic connection layer is

set to 3, “gorgeous” can concentrate well on the areas representing rain and windbell,460

while “day” focuses on the overcast region. This demonstrates that the designed FIM

effectively discriminate the factual relationships between textual descriptions and image

objects.
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Layer 1 what a gorgeous day

Layer 2 what a gorgeous day

Layer 3 what a gorgeous day

Figure 5: Visualization of the dynamic connection layer

Secondly, Fig. 6 shows that the “gorgeous” exhibits higher weights in image regions

¬ representing overcast weather, image region ­ representing rainfall, and image region465
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Figure 6: Visualization of the cross-modal graph weight matrix
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® representing windbell. Among them, the weight is most pronounced in image region

­. The highly positive sentiment expressed by the word “gorgeous” conflicts with

the gloomy colors associated with rainy weather, and the regions with larger weights

represent highly correlated sentiment incongruity sarcasm clues across modalities. This

validates the effectiveness of the proposed sentiment incongruity module in multi-modal470

sarcasm detection.

5. Conclusion

In this paper, we aim to explore multimodal sarcasm detection from a new per-

spective, introducing a fact-sentiment incongruity combination network to capture the

fine-grained incongruities. First, we designed a fact incongruity module that contains475

dynamic connection layer to select the most suitable image-text pair to capture fact

incongruity. Then, we generate the cross-modal graph by reconstructing edge weights

to retrieve sentiment relations between text tokens and image objects to extract the

sentiment incongruity. Furthermore, we construct a combination incongruity fusion

layer to fuse the fact and sentiment incongruity, and introduce a cross-modal contrastive480

loss to further enhance the incongruity representations. Experiments and further analy-

ses on the publicly available datasets demonstrate the improvements of our proposed

model. Future works will focus on taken external large-scale language knowledge bases

and large language modeling into account, which may result in its limited ability to

effectively recognize metaphors. In addition, we would like to utilize Large Language485

Models to explore the affective relations of multimodal sarcasm detection in the future

work.
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