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A B S T R A C T   

Visualisation techniques are powerful tools to understand the behaviour of Artificial Intelligence (AI) systems. 
They can be used to identify important features contributing to the network decisions, investigate biases in 
datasets, and find weaknesses in the system’s structure (e.g., network architectures). Lawmakers and regulators 
may not allow the use of smart systems if these systems cannot explain the logic underlying a decision or action 
taken. These systems are required to offer a high level of ’transparency’ to be approved for deployment. Model 
transparency is vital for safety–critical applications such as autonomous navigation and operation systems (e.g., 
autonomous trains or cars), where prediction errors may have serious implications. Thus, being highly accurate 
without explaining the basis of their performance is not enough to satisfy regulatory requirements. The lack of 
system interpretability is a major obstacle to the wider adoption of AI in safety–critical applications. Explainable 
Artificial Intelligence (XAI) techniques applied to intelligent systems to justify their decisions offers a possible 
solution. In this review, we present state-of-the-art explanation techniques in detail. We focus our presentation 
and critical discussion on visualisation methods for the most adopted architecture in use, the Convolutional 
Neural Networks (CNNs), applied to the domain of image classification. Further, we discuss the evaluation 
techniques for different explanation methods, which shows that some of the most visually appealing methods are 
unreliable and can be considered a simple feature or edge detector. In contrast, robust methods can give insights 
into the model behaviour, which helps to enhance the model performance and boost the confidence in the 
model’s predictions. Besides, the applications of XAI techniques show their importance in many fields such as 
medicine and industry. We hope that this review proves a valuable contribution for researchers in the field of 
XAI.   

1. Introduction 

The significant success of Convolutional Neural Networks (CNNs) in 
image and video-based tasks such as image classification [1–3], object 
detection [4–6], and semantic segmentation [7–9] is bounded by their 
inherent inability of explaining their behaviours. Consequently, the 
adoption and deployment of CNN-based systems in safety–critical real- 
life applications, such as medical, automation and assistive robotics, is 
limited. These industries require reliable and explainable systems that 
integrate trust in the decision process with no or very low error toler
ance. Besides, when a system failure occurs, it should be possible to 
justify and interpret its source to avoid it in the future. Thus, it is 
challenging to trust a black box system without understanding the in
tuitions behind its predictions. 

The complex nature of CNNs makes the interpretation process 
challenging because it is difficult to identify the relations between the 
activities of individual neurons and the outcome of the neural network. 
That is why the explanations of CNNs predictions need to be considered 
in a wider frame of connections between several neurons or layers to 
attain a comprehensive understnading of the final result. CNN-based 
models can perform significantly better than conventional computer 
vision algorithms in terms of accuracy. However, the intractability of 
failures in CNN-based systems, when they occur, is a critical flaw. 

Model interpretation through visualisation, or any other means of 
analysis, is an overlooked step in many systems, even though it can 
greatly help in improving the systems’ robustness if appropriately uti
lised. It can provide insights into how the network operates at each time 
step. This can explain the effort to understand and verify powerful deep 
network methods, not only to improve reliability for real-life application 
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deployment but also to gain a general understanding of the model’s 
components and operation. Explainable AI is an active and quickly 
growing research area that needs more investigation and consensus 
[10]. 

The definition of model interpretability in the context of image 
analysis and understanding is not well-established [11]. Also, there is a 
discrepancy between researchers in defining the concept of explaining 
the motive of a prediction. Some studies define it as the ability of the 
model only to highlight the important regions or features that contribute 
to the output predictions. Others assess the model’s interpretability by 
its ability to highlight the entire object of interest in an input image. 
Consequently, Lipton [11] argued that model interpretability might 
have different definitions that reflect different ideas or applications. For 
example, semantic segmentation can be argued as a visualisation 
approach to explaining a model’s predictions because it assigns each 
pixel in an image to a specific class. Nevertheless, segmentation outputs 
focus on the whole object without revealing which parts of the image are 
relevant for the outcome. Consequently, the annotated output is not 
sufficient to justify the model’s decision. On the other hand, input 
perturbation methods highlight only the important features or regions 
used by a model to support its decision. This study presents and discusses 
methods that follow both definitions for operation and output 
understanding. 

We mainly focus on the visual explanation of pre-trained CNNs. 
Though, Cynthia [12] argued that some explanation methods do not 
provide enough evidence or details. It is also suggested that building 
inherently interpretable models is a better approach than explaining the 
model’s decisions [12]. It is argued that self-explaining models, such as 
Self-Explaining Neural Networks (SENN) [13], can construct a highly 
complex and interpretable model without limiting the performance. 
This makes inherently interpretable systems more immune to adversa
rial noise. On the other hand, many post-hoc explanation methods are 
unstable because they produce different explanations for the same input 
when noise is introduced [13]. It is a significant challenge to persuade 
policymakers to define metrics and procedures to ensure the safety of 
complex non-self-explaining deep network models because some mea
surements and evaluation methods can be easily misinterpreted and 

exploited [12]. However, self-explaining systems are beyond the scope 
of this review. 

Unlike Seifert et al. [14], Guidotti et al. [15], and Zhang et al. [16], 
whose surveys are extended to other analysis techniques such as 
confusion matrices, histograms, explanatory graphs [17], and decision 
trees for model analysis [18], this review is mainly focused on visual
isation methods, because CNN visualisation is the direct way to explore 
network decisions and representations [16]. Also, unlike other surveys 
[19–21], which present trends, statistics, and prospective applications of 
XAI, we conducted a technical-oriented review with in-depth compari
sons and evaluations. We present the methods which justify their pre
dictions visually and disregard the reasoning methods that describe the 
process of how a CNN makes its decision, such as image dissection 
techniques [22]. Model-agnostic methods such as Shapley values 
[23,24] and Anchors [25] are beyond the scope of this review because 
they are well-covered by Molnar [26] and Samek et al. [27]. Also, model 
approximation methods are beyond the scope of this review as we are 
interested in the direct explanation of pre-trained models. Mainly, we 
focus on visualising heatmaps (saliency maps), reconstructed images 
(synthesized images), and hidden layers’ features. The main task for the 
systems being visualised is image classifications using the architecture of 
CNNs. 

First, we want to draw the reader’s attention that terms like visual
isation, explanation, and attribution methods are used interchangeably. 
Relevance maps, attribution maps, saliency maps, sensitivity maps, and 
activation heatmaps are used in different contexts to refer to the visual 
contribution of each feature to the overall prediction. ‘Saliency’ can 
have two meanings depending on the context. It either signifies the 
gradient approach or the sensitivity map. 

Second, we organise the visualisation techniques into three main 
categories depending on which part of the CNN is being visualised 
(Fig. 1). We follow a different categorisation technique to the one pre
sented by Grun et al. [28], at which the authors proposed a taxonomy for 
feature visualisation methods consisting of three main classes: Input 
Modification, Deconvolutional, and Input Reconstruction methods. 
Input Modification methods, such as Occlusion [29,30], modify the 
input by occluding patches and measure the resulting changes in the 
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output score [28]. Deconvolution methods [28] measure the contribu
tion of a pixel in the input image by backpropagating its activation in the 
higher layer through the network until the input layer is reached. As the 
contribution of each pixel is measured, the group contribution can build 
up a visualisation map of features relevant to the object of interest [28]. 
Methods that goes under this class are DeconvNet [29], Back
propagation [31], Guided Backpropagation [32], Layer-wise Relevance 
Propagation (LRP) [33] and Class Activation Maps (CAM) [34]. Input 
Reconstruction methods [31,35,36] generate input images that can 
maximally activate a specific network’s unit of interest. 

Fig. 1 shows the proposed categorisation chart. Different visual
isation methods are split based on the architecture position where the 
features are being visualised (input layer, hidden layer, or output layer). 
First, visualising feature maps at the input layer (equivalent to Input 
Reconstruction class [28]) by mathematically synthesizing images 
either by using Activation Maximisation (AM) to maximally activates a 
particular neuron or by using representations inversion. Second, visu
alising features and patterns learned by hidden layers. Last, visualising 
features that activate a network to make a decision with respect to the 
output class of interest or so-called post-hoc activation visualisation 
(visualise network decision). This includes gradients-based sensitivity 
analysis, decomposition techniques, and occlusion methods. The fash
ioned heatmaps from this section can be overlaid with the input image to 
reflect the salient features. Although some methods use the same 
approach to visualise hidden and output layers, we prefer to separate 
them into two different categories as the visualised features are 
different. Thus, the application and utilisation of the visualised features 
differ. The proposed categorisation organises the investigation process 
and suggests a possible framework for discussion. 

Last, we present an in-depth analysis of state-of-the-art explanation 
methods, as many other techniques are built upon them. The paper’s 
contribution can be summarised as follows: a technical review of 
different attribution methods focusing on post-hoc visualisation is pre
sented in section 2. Applications and potential uses of visualisation 
techniques are highlighted in section 3. Different evaluation techniques 
(sanity checks) to assess the robustness of different explanation tech
niques are discussed in section 4. Finally, the review is concluded. Be
sides, the gaps and the future directions are highlighted in section 5. 

2. Visualisation methods 

In this section, the visualisation techniques of CNNs are explored. 
Subsection 2.1 (corresponding to activation visualisation at the input 
layer) presents AM, representation inversions, and combined 

approaches. Subsection 2.2 (corresponding to activation visualisation at 
the hidden layer) investigates features and patterns learned by hidden 
layers. Whereas perturbation, deconvolution, decomposition, and 
sensitivity analysis methods are discussed in subsection 2.3 (corre
sponding to activation visualisation at the output layer). For each pri
mary method in subsection 2.3, network architecture, training details, 
conceptional approach, information extracted, pros, and cons are dis
cussed. The generated heatmaps by these methods assign each pixel an 
importance value according to some function that depends on the output 
score. 

2.1. Input image synthesizing ‘Activation Maximisation’ 

Erhan et al. [37] constructed images that maximally activate a spe
cific neuron using gradient ascent optimisation in the input image space. 
The AM problem is simplified to an optimisation problem at which an 
optimal input that can maximally activate a specific neuron using 
gradient ascent is sought. Starting with an initial input, the activation’s 
gradients of the unit of interest is computed w.r.t the initialised input. 
Then gradient ascent is used to take steps in the input space to synthesize 
inputs that cause the highest activation for this unit (gradient ascent is 
also used by Nguyen et al. [38] for the same purpose). The process stops 
when an optimal input is obtained that can maximally stimulate this 
neuron. The optimal input can be displayed for interpretation and 
debugging purposes. Moreover, it helps to understand the nature of the 
functions learned by the network. However, as the produced input is 
mathematically synthesized, it looks artificial and far from natural im
ages with high-frequency patterns and extreme pixel values in a random 
arrangement. The output is mainly scattered image parts that may 
represent what activates a particular unit. 

The techniques of maximising the activation by modifying inputs can 
be applied to correctly classified images to manipulate them by some 
unrecognisable pixels’ changes, to push the model to output different 
predictions (i.e. to deceive the network from classifying an object as 
class A to class B) [39]. Another approach is to mathematically produce 
unrecognisable images for humans that do not show any specific object. 
However, state-of-the-art CNNs still produce a high confidence score to a 
recognisable class which means some non-robust network architectures 
‘discriminative models’ can be fooled [38]. The behaviour of discrimi
native models can be attributed to their linear nature and high- 
dimensional input space, while generative models are more robust to 
adversarial noise [40]. 

L2 regularisation can be used to numerically generate input images 
representing an output class of a model [31]. Generating such an image 
is similar to the backpropagation technique used to optimise layers’ 
weights. However, in the case of image synthesizing, the trained weights 
are kept fixed, and optimisation is performed in the input space. The 
process starts with a zero-initialised image. After that, the mean of the 
training dataset images is added to the result. The optimisation process 
will continue until the optimal image that can maximally activate a 
specific unit is reached. This approach helps to reduce the effect of 
extreme pixels domination. Mitigating the impact of these pixels is 
beneficial as they are not useful for visualisation. 

Gradient descent is used to optimise an objective function that in
verts deep representations using image priors [36]. Image priors, such as 
total-variation normalisation, help to recover the statistics of low-level 
images. This information is useful for visualisation. However, the rep
resentation may remove them due to their non-usefulness for high-level 
tasks. Also, the technique helps to visualise the representation learned at 
each layer of a CNN. Mahendran et al. [41] extended their previous work 
[36] by introducing a unified formulation to visually investigate image 
features and CNNs. Visualisation of different representation types such 
as AM, inversion, and caricaturization are merged into a common 
framework. Thus, the visualisation problem is formulated as a regu
larised energy minimisation problem. The main aim is to produce 
natural-looking images by restricting image reconstruction to a set of 

Fig. 1. Visualisation taxonomy.  
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natural images or so-called ‘natural pre-images’. The analysis of CNN 
visualisation shows some interesting results, such as lower layers that 
contain representations of simple structures, e.g., lines and edges (local 
invariance). At the same time, deeper layers capture object-specific in
formation and learn complex compositions. 

Unlike [36], the inversion method learns image priors implicitly 
[42]. The method trains a CNN that invert a given feature vector into an 
expected pre-image using deconvolution networks. The trained network 
reconstructs images from the feature representation of different layers. It 
has been noticed that reconstructing from convolutional layers of 
AlexNet [1] produce high-resolution images. However, the quality de
grades as representations of higher layers are being used, especially 
representations from Fully Connected layers (FC layers), which produce 
blurred images. Visualising representations from FC layers using the 
gradient descent approach [36] shows that they cannot preserve colours 
or locations. This contrasts with the trained network for inversion [42], 
which can retrieve some colour and location information from higher 
layers’ representations. The inversion method [42] can be applied to 
non-differentiable features such as Local Binary Patterns (LBP) [43] and 
is significantly faster, in contrast to the gradient-based method [36]. 

Yosinski et al. [44] introduced new regularisation techniques that 
help to visualise the learned features. The regularisation operator is 
introduced to map an input to a regularised version of itself. The process 
starts from an initial value while taking gradient steps in the direction 
specified by the operator until the version of input that maximally ac
tivates a specific neuron is reached. Four regularisation techniques are 
used. Combined, they produce more effective results compared to in
dividual utilisation. L2 and Gaussian blur regularisations are used to 
suppress high-frequency components and extreme pixel values, which 
are not useful for visualisation. At the same time, clipping pixels with 
small norms and small contributions to the output score helps to remove 
unnecessary values and only highlights the object of interest [44]. Many 
other image priors techniques are introduced to enhance the produced 
image quality, such as data-driven patches [45], jitter [41], initialisation 
from mean images [46], and centre-bias regularisation [46]. 

To produce more realistic visualisations, the DGN-AM technique 
[47] extended activation maximisation methods by introducing a deep 
generator network (DGN) that is trained as a prior to take a vector of 
scalars (feature representations) and produce a synthetic image. The 
synthetic image achieves two properties: it resembles real images from 
the ImageNet dataset [48], which means it is human interpretable 
(ImageNet is the same dataset used to train the CNN). Besides, it acti
vates the neuron of interest. Experiments show that the produced syn
thetic images by DGN-AM reflect the learned features by neurons 
independently from priors (i.e., it shows neurons’ prefers, not priors’ 
prefers). Image synthesizing techniques are important in deep learning 
applications. They can be used to visualise features evolving during the 
training process, which may help to understand and debug DCNNs. 

2.2. Hidden layers feature visualisation 

Zhang et al. [49] proposed a method to modify a CNN to be more 
interpretable by training high convolutional layer filters to be able to 
represent a specific part of an object without any additional object- 
specific data annotation. High-layer filters in traditional CNNs can 
describe a mixture of patterns that might negatively impact the network 
interpretability. On the other hand, the proposed interpretable CNN 
pushes high layer filters to be more component-specific. This may help 
to identify object parts responsible for a specific prediction. The pro
posed method can be achieved by adding a loss for each filter’s output to 
boost the filter towards a specific representation of an object part. The 
added loss helps to reduce the entropy of inter-category activations and 
spatial distributions of neural activations. 

Zhou et al. [50] introduced a framework for network dissection that 
interprets the network’s representations and quantifies their interpret
ability. The process involves three steps: identifying visual concepts in a 

dataset, measuring hidden units’ response to the visual concepts, and 
quantifying alignments of hidden unit activations with visual concepts. 
The study also examines the impact of using different datasets and 
regularisation techniques [51,52] on the interpretability of a model. The 
introduced framework has some limitations, such as the inability to 
identify the contribution of joint units’ that might represent one visual 
concept. 

A software tool [44] is introduced to enable the visualisation of the 
channel’s activations of convolutional layers in the same spatial layout 
as the input, where each filter is activated by a specific feature or pattern 
such as edges, faces, eyes, etc. Layers such as pooling and normalisation 
can be visualised using the proposed software, reflecting their impact on 
the model’s behaviour. Real-time visualisation of all filters of a specific 
layer on one screen is a very informative approach as it shows the 
propagating data through a CNN. 

Methods presented in [29,32,44,53] can be adapted to visualise the 
units of hidden layers. Filters in hidden layers are activated by patches 
or shapes captured by their receptive field. Krizhevsky et al. [1] directly 
visualised filters learned by the first layers to assess the learned features 
by a trained CNN. As multichannel layers are hard to visualise, Yu et al. 
[54] used dimension reduction (t-SNE) [55] to visualise patches in 
representation space constructed by filters of hidden layers. Besides, the 
DeconvNet approach [29] has been used to visualise the layer’s infor
mation by reconstructing activations layer-by-layer successively until 
input space is reached (DeconvNet approach is described in detail in 
subsection 2.3). Also, image patches that maximally activates a filter in a 
hidden layer have been used by non-parametric methods to visualise 
that filter [56,57]. 

2.3. Visualisation of output layer activations ‘post-hoc visualisation’ 

Explanation methods aim to define the contribution of each input 
feature to the output prediction. The output neuron associated with the 
correct prediction is the neuron of interest. The generated heatmap 
regarding the target object has red and blue regions corresponding to 
positive and negative evidence, respectively. 

2.3.1. DeconvNet [29] 
Conceptional Approach: Input patterns can cause a given activa

tion in the feature maps. Deconcoultional networks are used by Zeiler 
et al. [58] to map the activations back to the input pixel space. The 
process can be explained as follows: an input image is presented to the 
CNN, whereas the features are computed through the networks’ layers. 
To analyse a given activation, all other activations in that layer are set to 
zero. Then the feature maps are passed to the attached deconvolutional 
layer. Finally, the input pixel space is reached through successive un- 
pooling, rectifying, and filtering operations to reconstruct the layer’s 
activity. 

To examine a convolutional network, a deconvolutional network is 
attached to its layers to show the input pattern that causes a given 
activation in the feature maps. The used approach can help to observe 
the features’ progression during training and diagnose potential prob
lems with the model. A disadvantage of this approach is that it can only 
visualise a single activation and not the joint activity presented in a 
layer. 

Implementation details: Zeiler et.al [29] used a similar architec
ture to AlexNet [1] with some modifications. For instance, the sparse 
connections used in AlexNet layers 3, 4 and 5 are replaced by dense 
ones. For training, images are pre-processed by resizing and cropping. 
Furthermore, they are normalised by subtracting the per-pixel mean. 
Finally, ten different sub-crops of size 224 × 224 are used. Stochastic 
Gradient Descent (SGD) with 0.9 Momentum is used to update the 
model’s parameters. The training dataset is divided into mini-batches of 
128 images. The learning rate starts at 10− 2 and then decreased 
manually throughout the training process when the validation error 
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plateaus. All weights are initialised to 10− 2 and biases to zero. Data 
augmentation is used with different flips and crops. After 70 epochs, 
training is stopped. The system takes around 12 days to be trained on a 
single GTX580 GPU. The proposed architecture outperforms AlexNet 
results on ImageNet dataset [48]. 

Visualisation and localisation: The proposed system has proved its 
efficiency to visualise feature activations using a deconvolutional 
network. Visualising a trained model can help to select better architec
tures. For example, by visualising the first and second layers of AlexNet 
architecture [1], it is noticed that the filters of the first layer are a 
mixture of high and low-frequency information. At the same time, the 
second layer visualisation shows aliasing artefacts caused by a large 
stride (s = 4) that is used in the first convolutional layer. A new archi
tecture is proposed to overcome these problems by reducing the filter 
size in the first convolutional layer from 11 × 11 to 7 × 7 and reducing 
the stride to 2 instead of 4. Consequently, the new system retains more 
information in the first and second convolutional layers and achieves 
better accuracy. 

Occlusion sensitivity is introduced to make sure that the object itself 
is the element that activates the network and not the context or the 
background. It also shows the ability of the model to locate the object in 
an image. This can be attained by occluding different portions of the 
input image with a grey square in a sliding window manner and moni
toring the classifier’s output. The system clearly shows its ability to 
localise an object within an image as the correct class probability has 
dropped significantly when the object of interest is occluded. 

Discussion: The DeconvNet approach recalls the position of the 
max-pooling layers’ values during a forward pass by storing these values 
in switches. The activations are then copied into the positions indicated 
by these switches during the deconvolutional process, while other low 
layer activations are set to zero. Switches are introduced as the max- 
pooling operation is non-invertible. 

Unlike Regions with CNN features (R-CNN) [56], which can 
demonstrate visualisation by identifying patches within a dataset 
responsible for activations at the model’s high layers, the occlusion 
approach is a top-down projection that can reveal structures within each 
patch that stimulate a particular feature. Results show that as the 
network becomes deep, it can learn powerful features [29]. Generally, 
high layers produce more discriminative features. Visualisation can be 
used to identify models’ problems and obtain better results by selecting 
or modifying models’ layers. Also, it provides insights into the sensitivity 
of the classification model to local structures and not to contexts. 

A drawback of the DeconvNet method is that the image-specific in
formation comes from max-pooling layers (switches). The absence of 
pooling layers will result in non-image-specific explanations. Besides, 
negative pieces of evidence are discarded during the backpropagation 
process due to the ReLU units, resulting in less informative heatmaps 
[59]. 

Similar to the Occlusion approach, Zintgraf et al. [53] proposed a 
method to evaluate the impact of removing information from an image. 
The introduced approach is based on prediction difference analysis [60] 
with some improvements. In prediction difference analysis, each input 
feature is assigned a relevance value according to its importance to the 
output prediction. A large prediction difference indicates a high 
contribution of the corresponding features to the output prediction and 
vice versa. Two enhancements are introduced [53]: conditional sam
pling and multivariate analysis. Compared to marginal sampling, con
ditional sampling can improve feature approximation by suppressing 
redundant, easily predicted pixels. Whereas a robust model should not 
be significantly affected by the deletion of one feature at a time (uni
variate approach), removing patches with several features (multivariate 
approach) should produce more descriptive relevance. The proposed 
improvements have produced more refined heatmaps that concentrate 
on the object of interest. Methods based on input features perturbation 
by occluding, manipulation or masking are significantly slow [53]. It 

needs several forward propagations through the network to compute the 
output score after every input perturbation. Moreover, the results are 
biased by the number of occluded features at each iteration determined 
by the sliding window size [61]. 

2.3.2. Saliency map (Gradients) [31] 
Conceptional Approach: Gradients approach, also called back

propagation or saliency, visualise the derivatives calculated during the 
model’s training. Still, saliency maps are computed after network 
training and not during the training process (i.e., the networks’ weights 
are constant). Backpropagation is the process of increasing or decreasing 
the networks’ weights to minimise the loss function during the training 
process [62]. Saliency maps return the spatial locations of the discrim
inative pixels of a particular class in an image. Class weights can be used 
to visualise the discriminative regions of an image that activates the 
network to produce a specific prediction. This is valid for linear class 
score functions, but as the class score of CNNs is a non-linear function of 
the input image, an approximation of the class score function can be 
estimated using first-order Taylor expansion [31]. In this case, the 
magnitude of the class score derivatives w.r.t the input image can 
compute image-specific class saliency maps. The magnitude of the de
rivatives indicates the most discriminative pixels of an image. Changing 
these pixels can have a great impact on the predictions. Consequently, 
these pixels represent the location of the object of interest in the image. 

Saliency maps can be computed as follows: the class score derivatives 
are calculated w.r.t the input image through backpropagation. Then, the 
saliency map values are arranged in the same order as the input image 
pixels, i.e., m × n derivatives matrix will have the same indices as m × n 
input image pixels where m and n represent rows and columns of a grey- 
scale image, respectively. Suppose the input is a multi-channel image 
such as RGB images. In that case, the maximum derivative magnitude is 
selected across all the channels to produce a single class saliency value 
for each pixel. Finally, the derivatives matrix is plotted to produce the 
saliency map. 

Implementation details: The proposed system used a similar CNN 
architecture to AlexNet [1] but less wide with the following structure: 
five convolutional layers with 64, 256, 256, 256, 256 filters, respec
tively, followed by three FC layers with 4096, 4096, 1000 output neu
rons respectively. The network is trained on the ImageNet dataset with 
1.2 M training images for 1000 classes [48]. Image jittering and zeroing- 
out random parts of an image are employed as regularisation techniques. 

Visualisation and localisation: Saliency maps need one back
propagation pass to be produced. They can be considered a weakly- 
supervised approach for object localisation. It localises an object that 
mainly activates the network to make a prediction unless the network is 
cheating. No other types of annotations, such as bounding boxes or 
segmentation masks, guide the technique to localise an object. A pro
posed system based on saliency maps [63] has been used for the local
isation task of ImageNet 2013 [48] and achieved a 46.4% top-5 error on 
the test set. The system computes the object segmentation mask using an 
image and its corresponding saliency map. Object segmentation mask is 
computed using GraphCut colour segmentation [64]. Colour segmen
tation is selected since the saliency maps may highlight only the most 
discriminative region of an image representing a part of an object and 
not the whole object. The process sets the foreground and background to 
follow the Gaussian Mixture Models [65]. The foreground is estimated 
from the pixels with saliency higher than the 95% threshold of saliency 
distribution in the image. At the same time, the background is estimated 
from pixels with less than a 30% threshold. The estimated foreground 
and background are then used to set the object segmentation mask to the 
largest connected component of the foreground pixels. 

Discussion: Baehrens et al. [66] introduced the local gradients 
method to explain the predictions of machine learning classifiers. The 
proposed approach assigns a unique explanation to individual data 
points, unlike conventional feature extraction methods that extract the 
relevant global features for all data points. The gradients method [31], 
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on the other hand, is applied to CNNs. It highlights an object located in 
an image using the target object’s score derivative w.r.t the input image. 
The weakly-supervised approach for localisation, using the proposed 
Gradient method, beats the author’s previous submission to ImageNet 
2012 [48] using a fully supervised model [67] and Fisher vector feature 
encoding [68] by achieving a 50% localisation error. 

The backpropagation ‘saliency’ approach can be considered a 
generalisation of the DeconvNet approach [29] as it can be used to 
visualise any layers’ features and not only the convolutional ones. FC 
layer neurons are visualised in this paper [31] using the Gradient 
approach. DeconvNet is equivalent to the gradient approach through a 
CNN except for the backpropagation through the ReLU layers. 

Although Gradient heatmaps are computationally faster than Oc
clusion as it only needs one backward propagation through the network, 
they do not fully explain the output prediction. The calculated map 
measures pixels change that would make an image belong to a specific 
category. However, it does not explain the classifier decision as argued 
by [59] or the direct relation to the variation of the output [61,69]. 

2.3.3. Gradient related approaches 
Many approaches based on Gradients (eq. (1)) are proposed, such as 

element-wise products of gradients and input (GI) [70] (eq. (2)), Inte
grated Gradients (IG) [71] (eq. (3)), Smooth Gradients (SmoothGrad) 
[72] (eq. (4)), etc. Gradients of the output score are calculated w.r.t 
input and then multiplied with the input to enhance heatmap resolution 
[70]. Moreover, GI can be used to address the gradient saturation 
problem [70]. Although this technique can visually enhance the pro
duced maps, this may be attributed to the original image’s quality rather 
than the visualisation technique [73]. 

∂Yc(x)
∂x

(1)  

x ⊙
∂Yc(x)

∂x
(2)  

(x − x)
∫ 1

α=0

∂Yc(x + α(x − x) )
∂x

dα (3)  

1
n

∑n

1
Mc(x + G (0, σ2)) (4)  

x : Baseline  

x : Input  

Yc : Output prediction for class c  

n : Number of samples  

Mc : Class activation map for class c  

G
(
0, σ2) : Gaussian noise with standard deviation σ 

Full-Gradient (FullGrad) [74] approach expands the Gradient 
method [31] by aggregating the information obtained from GI [70] and 
the gradients of the intermediate layers of a CNN. Aggregating maps 
from many layers produces sharp heatmaps as neuron-wise maps can 
independently support each spatial location’s importance [74]. How
ever, FullGrad can only use the maps of convolutional layers as they can 
preserve the spatial locations. Similarly, CAMERAS [75] produces high- 
resolution saliency maps by accumulating and fusing multi-scale acti
vation maps and backpropagated gradients. 

The Integrated Gradients [71] approach accumulates gradients over 
scaled-up versions of the input that follow a baseline defined by the user, 
i.e. it integrates the gradients of all points that fall on the straight-line 
path from the baseline to the input. Based on IG, XRAI region-based 

attribution method [76] is introduced to enhance IG’s performance. 
Firstly, XRAI segments the input image using different sets of parameters 
to many overlapping regions. Then, using IG with black and white 
baselines, the importance of each region is tested. Finally, regions are 
combined into a large segment based on their relevance score. Using 
segmentation, XRAI can outperform gradient-based methods as it can 
identify relevant regions and discard others. Moreover, it can detect 
many instances of the same class in a given input image. Also, it can 
measure the smallest sufficient region that positively contributes to the 
output prediction. 

The Smooth Gradients [72] approach uses added noise to enhance 
heatmap sharpness by averaging the explanations of noisy copies of the 
input. As Gradient sensitivity maps tend to be noisy due to the noisy 
gradients, SmoothGrad reduces visual noise by sampling similar images 
with added noise and then averaging the resulting sensitivity maps. Two 
hyper-parameters can be adjusted for SmoothGrad: the noise level 
(determined by the standard deviation) and the number of samples 
(equation (4)). SmoothGrad shows better visual coherence (highlights 
object of interest) and discrimination (highlights which class in a multi- 
class image is responsible for the prediction) compared to vanilla 
Gradient, Integrated Gradients, and Guided Backpropagation [72]. 
Inspired by SmoothGrad, Bykov et al. [77] propose NoiseGrad and 
FusionGrad. Instead of adding noise in the input space like SmoothGrad, 
NoiseGrad introduces stochasticity in the weight parameter space, 
resulting in a perturbated decision boundary. In other words, Smooth
Grad produces a heatmap using multiple noisy versions of the input, 
whereas NoiseGrad uses multiple versions of the model. SmoothGrad 
and NoiseGrad are combined to produce FusionGrad [77] by incorpo
rating both stochasticity in the input and model spaces to gain the 
benefits of both techniques. 

2.3.4. Decomposition related approaches 
Layer-wise Relevance Propagation (LRP) [33,78] uses back

propagation to compute relevance. LRP can be seen as a biased gradient 
towards positive values [27]. It is a generalised approach to visualise the 
contributions of non-linear classifiers by a pixel-wise decomposition of 
each pixel’s output prediction. Starting from the output layer, the al
gorithm assigns a relevance (importance score) to the target neuron 
equal to the neuron’s output. At the same time, the relevances of all 
other neurons are set to zero. Recursively, the LRP technique re
distributes relevance over layers’ neurons according to some rules 
(∊-rule, for instance) until it reaches the input layer, where the attri
bution can be identified [33] (Fig. 2). An example of LRP maps is shown 
in Fig. 3. 

LRP can miss-attribute input regions to the relevance as it only 
considers the target class in the relevance calculations [79]. Conse
quently, Contrastive Layer-wise Relevance Propagation (CLRP) is 
introduced to enhance the discriminative ability of LRP by subtracting 
the relevance for non-target classes from the relevance propagation 
[79]. This boosts the contribution of the target class and suppresses the 
contribution of other classes. However, equally penalising non-target 
class may cause wrong attributions because of the equal weighting of 
non-target nodes. Softmax-Gradient Layer-wise Relevance Propagation 
(SGLRP) [80] is proposed to overcome this problem. SGLRP uses the 
gradients of the softmax layer w.r.t the intermediate value of each 
output node to subtract the relevance from the non-target classes. Using 
the softmax layer gradients as the initial relevance from the output layer 
while backpropagating creates an LRP model where the propagating 
values are the probabilities of all classes, and the highest is the target 
class [80]. A great advantage of the SGLRP [80] approach is that it 
removes relevance corresponding to non-target class with high proba
bility compared to the low probability non-target classes, unlike vanilla 
LRP [33], which ignore non-target classes, and CLRP [79], which 
penalise non-target classes equally. 

Deep LIFT [81] is an improved version of LRP [33]. Like LRP, it 
decomposes the output score while backpropagating through the model 
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until input space is reached. However, DeepLIFT defines a reference 
point in the input space. Then, relevance is assigned according to the 
relative change (difference) in activations at the original input 
compared to the reference point [81]. Deep Taylor Decomposition 
(DTD) extends LRP using first-order Taylor expansion around a root 
point to decompose a neuron’s activation in terms of contribution from 
its inputs [82]. Choosing the root point for DTD is challenging as many 
options are available. PatternAttribution extended DTD to solve this 
problem by learning the root point from the data (class ‘signal’ estimator 
is trained on the first half of the ImageNet training dataset) [69]. Pat
ternAttribution acts as a root point estimator for DTD. PatternAt
tribution can be visualised as the neuron contribution of the estimated 
class to the output score. Using baseline (reference point) in decompo
sition approaches helps to overcome zero and saturate gradient prob
lems in the gradient-based sensitivity analysis. However, decomposition 
techniques cannot satisfy the chain-rule property inherited in the 
gradient-based analysis [71]. Generally, sensitivity analysis measures 
local effects while decomposition measures global ones. 

SHapley Additive exPlanation (SHAP) is a unified framework for 
interpreting predictions [23]. The proposed framework attempts to 
relate different methods that are based on assigning each feature an 
importance value. In addition, it helps to pick the best explanation 
method for a specific application. 

2.3.5. Guided backpropagation (GBP) [32] 
Conceptional Approach: The DeconvNet method proposed by 

Zeiler et al. [29] is used to analyse the All-CNN and to visualise the most 
discriminative regions of an image that contributes to the network’s 
prediction. The DeconvNet approach is also used to investigate the 
impact of removing pooling layers. It is noticed that the DeconvNet 
approach fails to produce a reasonable explanation for the concepts 
learned by the networks’ high layers. This behaviour is attributed to the 
absence of pooling layers. The DeconvNet approach relies on switches 
(position of maximum values as the max-pooling operation is a non- 
invertible operation) computed during a forward pass. Switches are 
then passed to the deconvolutional layers to reconstruct the image with 
the most discriminative regions. Without pooling layers, therefore, 
without switches, the DeconvNet approach will not be able to recon
struct the image. 

All-CNN does not have any pooling layers. Consequently, the 
DeconvNet approach can be applied in the low layers without any need 
for switches. These layers learn general features such as Gabor filters. On 
the other hand, the DeconvNet method [29] fails to visualise high layers 
activations that learn more invariant representation. 

Sprinenberg et al. [32] proposed an alternative way for visualisation 
by computing the activations’ gradients w.r.t the input image through 
backpropagation. The main difference between DeconvNet and back
propagation approaches is how the backpropagation is handled through 
the ReLU units [31]. The backpropagation approach [31] is equivalent 

Fig. 2. LRP relevance redistribution technique (reproduced from [33]).  

Fig. 3. An example of LRP map.  
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to the DeconvNet one except for gradients through ReLUs, which are 
computed based only on the top gradient values, and the bottom input is 
ignored. DeconvNet approach [29], which zeros negative values of top 
gradients, and backpropagation [31], which zeros negative values from 
bottom inputs, are then combined to produce Guided Backpropagation 
[32] which zeros both negative values. The signal from high layers 
guides the backpropagation; hence the name is derived. It works as the 
switches in the DeconvNet approach [29]. Doing so prevents negative 
gradients from flowing back, which can undesirably impact the 
visualisation. 

Implementation details: Guided backpropagation uses only con
volutional layers in its architecture. The proposed architecture in
vestigates the simplest architecture based uniquely on convolutional 
layers. This architecture is intended to identify what specific compo
nents in a typical CNN is crucial to achieving state-of-the-art perfor
mance on deep learning tasks such as object recognition. 

To achieve this, pooling layers, in a typical CNN used for classifica
tion, are replaced by convolutional ones with a stride equal to two. 
Convolutional layers with small filters are used to reduce the number of 
parameters (for example, 3 × 3 filter size). Lastly, FC layers are replaced 
by 1 × 1 convolutional layers with fewer parameters than FC ones [83]. 

Convolutional layers can compensate for pooling ones by removing 
pooling layers and increasing the stride of the convolutional layer before 
it. Besides, the pooling layer itself will be replaced by a convolutional 
one with a stride larger than one [32]. Increasing the stride of the 
convolutional layers can reduce the overlap between filters, which can 
negatively impact the network’s accuracy. Also, replacing pooling layers 
with convolutional ones can increase network parameters. Conse
quently, the architecture is abstracted to only convolutional layers with 
subsampling, ReLU, Global Average Pooling (GAP), and softmax layers 
for output predictions. 

Three datasets are used to evaluate the performance of the proposed 
models: CIFAR-10, CIFAR-100 [84,85], and ImageNet [48]. However, 
the focus is on CIFAR-10, as the training time is shorter than other 
datasets. 

Detailed training parameters are as follows: SGD with 0.9 mo
mentum has been used as the optimisation algorithm. The learning rate 
is multiplied by 0.1 when training epochs reaches 200, 250, and 300. 
Proposed systems (Strided-CNN, ConvPool-CNN, and All-CNN) are 
trained for 350 epochs. Strided-CNN removed pooling layers and 
increased the stride of the preceding convolutional layer. ConvPool-CNN 
kept the pooling layer but added a convolutional layer before it. All-CNN 
replaced the pooling layer with a convolutional one. Dropout [51,86] 
has been used as a regularisation technique. It is applied to the input 
layer with a 20% dropout probability and the newly introduced layers 
with a 50% probability. Also, a weight decay of 0.001 is introduced for 
further regularisation. Besides, data augmentation techniques are 
applied such as image flipping and random translation. 

Visualisation: Guided Backpropagation provides high-resolution 
and clear activation maps compared to the DeconvNet approach on 
All-CNN. It can be used to visualise the intermediate and the output 
layers of the proposed network with or without switches. However, 
DeconvNet fails to produce clear activation maps on the All-CNN as it 
needs switches for deconvolution and un-pooling computations. 

Discussion: The proposed simple architecture (All-CNN) has ach
ieved state-of-the-art performance without complex design, normal
isation, or pooling. All-CNN stabilises the performance with some 
improvements compared to the base model (that has pooling and FC 
layers). It can be concluded that pooling layers are not vital for CNNs, as 
removing them does not hurt the performance [32]. 

Guided Backpropagation and Occlusion approaches produce high- 
resolution maps, but their localisation ability is very poor compared to 
CAM [34] and Grad-CAM [87]. Guided Backpropagation’s output is the 
fine-grained details of the features that activate a network to make a 
specific decision. In comparison, CAM and Grad-CAM are more region- 
based approaches. 

Similar to Guided Backpropagation, DeSaliNet [88] combines both 
advantages of DeconvNet, which can accurately reproduce image 
boundaries, and the saliency method, which can localise objects effi
ciently. It can be noticed that DeconvNet [29], Backpropagation [31], 
and Guided backpropagation [32] use almost the same steps to produce 
the visualisation maps, although they are described in different ways. 
The main difference is in how they handle the gradients through ReLU 
layers. DeconvNet allows only positive derivatives to backpropagate (i. 
e., applying ReLU operation to the gradients). Backpropagation passes 
only the positive elements corresponding to the preceding feature map 
(from the lower layer). Guided backpropagation combines both tech
niques. Fig. 4 depicts the difference [32]. A qualitative comparison be
tween the three gradient-based methods is shown in Fig. 5. 

Kindermans et al. [69] proved theoretically using a linear model 
which mimics the simplest CNN that DeconvNet, Guided Back
propagation, and LRP do not produce the correct explanation. The 
limitations of these methods on a linear model hold for non-linear 
models. PatternNet and PatternAttribution [69] are introduced to 
tackle this problem. They produce qualitatively improved signal visu
alisation and attributions. PatternNet, as a signal estimator, visualises 
the explanation using the original colour channels, while PatternAt
tribution is visualised as a heatmap of pixel-wise contributions. Signal 
(class) visualisation and attribution can be attained using a signal esti
mator learned from data that is optimised to remove most of the infor
mation in the residuals (input minus estimator signals) [69]. PatternNet 
projects the estimated signal back to the input space. A process similar to 
gradients computation while backpropagation, but the network weights 
are replaced by the guiding directions determined by the signal esti
mator. Kindermans et al. [69] argued that the implicit signal estimator 
of DeconvNet, Guided Backpropagation, LRP, and DTD could not cap
ture the true object (signal) in the input as the gradients do not provide 
an estimate for the signal in the data. In contrast, PatternNet can recover 
the signal effectively thanks to the optimised signal estimator [69]. 

Visually, Guided backpropagation seems to have an advantage over 
Backpropagation (Gradients) and DeconvNet approaches as it generates 
more human-interpretable visualisation (Fig. 5). Experimentally, this is 
not true. Guided Backpropagation is less class-sensitive than saliency 
maps (Gradients approach). In fact, Guided backpropagation acts as a 
simple edge detector. More details on visualisation techniques sanity 
checks are provided in section 4. 

2.3.6. Class activation map [34] 
Conceptional Approach: The term Class Activation Map (CAM) has 

been used to refer to the weighted activation maps generated for an 
image. GAP layer is introduced to generate accurate discriminative 
localisation. Though GAP is not a novel technique, its utilisation to 
produce heatmaps is a major contribution [34]. The intuition behind 
using GAP is that it helps the network to identify the whole area of the 
object [34], unlike global max pooling, where the localisation is limited 
to a point lying on the object’s boundary [89]. 

CAM technique displays a heatmap representation that highlights 
image pixels which trigger the CNN to categorise an image to a specific 
class. Primarily, the approach maps the predicted class score back to the 
previous convolutional layer. GAP layer outputs the spatial average of 
the feature map of each unit at the last convolutional layer. A weighted 
sum of these values is used to generate the final output. The process can 
be summarized as follows: after the last convolutional layer of a typical 
CNN, the GAP layer takes the convolutional layer channels as an input 
and return their average as an output. Each output per category is 
assigned a weight. Then, a heatmap is generated per class output, and 
the weighted sum is calculated for all the heatmaps. Finally, the CAM is 
up-sampled to the image input size. The generation process of the 
heatmaps using the CAM technique is depicted in Fig. 6. 

Implementation details: The proposed architecture resembles 
Network-in-Network [83] and GoogleNet [90] with mainly convolu
tional layers. GAP is performed on the convolutional feature maps 
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before the final output. Zhou et al. [34] evaluate the CAM technique on 
AlexNet, VGGNet, and GoogleNet. FC layers are replaced by GAP and 
softmax layers for class scoring. The number of learnable parameters 

significantly decreases by removing the FC layers with a side effect of a 
drop in the network’s accuracy. It is found that increasing the spatial 
resolution of the last convolutional layer before the GAP layer results in 

Fig. 4. Main differences between backpropagation, DeconvNet and Guided backpropagation approaches (reproduced from [32]).  

Fig. 5. Examples of gradient-based methods.  

Fig. 6. Class Activation Map (CAM) generation process (reproduced from [34]).  
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improvements in the localisation ability [34]. Layers after conv5, conv5- 
3, and inception4e are removed from AlexNet, VGGNet, and GoogleNet, 
respectively. This results in a high spatial resolution for the last 
convolution layers of 13 × 13, 14 × 14, and 14 × 14, respectively, which 
improves the network’s localisation ability [34]. Finally, a convolu
tional layer with 3 × 3 filter size, 1024 channels, one stride, and one 
padding followed by a GAP and a softmax layers are added to the 
mentioned architectures. Each proposed architecture is trained on the 
ImageNet dataset [48]. The details of the training options are not 
mentioned in the paper [34]. Similar results are obtained when these 
systems are trained from scratch or fine-tuning the newly added layers 
[34]. 

Visualisation and localisation: CAM can be seen as a weighted 
linear sum of specific visual patterns that activate some network units at 
different spatial locations. The proposed GAP-CNN network learned 
generic features similar to FC layers in AlexNet and VGGNet. Besides, it 
can identify discriminative image regions. Though, it has not been 
trained on a localisation task. In addition to heatmaps, CAM can be used 
to visualise class-specific units. Convolutional units act as visual concept 
detectors [30] that can identify low-level features such as edges and 
high-level features such as objects and compositions. A combination of 
individual class-specific units can guide the CNN to output predictions. 
Visualising this combination, besides heatmaps, gives insights into un
derstanding CNN’s behaviour and its approach to classifying an image. 
At the same time, it is challenging to track each unit contribution in FC 
layer networks, which can explain the intuition of using GAP. 

Discussion: Many architectures tend to avoid FC layers to minimise 
the number of trainable parameters while maintaining high perfor
mance, such as SqueezNet [91], GoogleNet [90], ResNet [3] and 
MobileNet [92]. GAP layer is introduced as a regularisation technique to 
avoid overfitting [83]. It is found that the GAP layers can also enable 
CNNs to have localisation capabilities [30,34]. The proposed system has 
proved its efficiency by achieving top-5 errors for object localisation on 
ImageNet [48]. 

Both Occlusion maps [29] and CAM [34] analyse only convolutional 
layers. They ignore FC ones if they exist, which means some of the 
intuition behind the predictions are missing. Modifying CNN architec
tures to have a GAP layer then retraining the model is a limitation of the 
CAM technique. Also, CAM is constrained to visualise the final layer’s 
heatmap and cannot be applied to visualise the middle layers. 

2.3.7. CAM-related approaches 
Many proposed studies for weakly-supervised object localisation are 

based on the success of CAM. Since CAM does not localise the entire 
object but rather a specific region that strongly contributes to the net
work’s prediction, the Adversarial Complementary Learning (ACoL) 
[93] approach is introduced. Using weakly-supervised end-to-end 
training, ACoL can discover and localise the entire object of interest in 
an image by using an additional classifier for complementary object 
regions. Motivated by adversarial erasing [94], two classifiers are used. 
The first one is used to identify the most discriminative regions, which 
are then erased from the feature map. The erased feature maps are fed to 
the other classifier to extract new complementary object-related regions. 

The strategy of the Hide-and-Seek [95] approach during training is to 
hide random patches in the training images. This prompts the network to 
search for other regions in an image that contributes to the network 
decision in the absence of the most discriminative regions. However, 
hiding patches randomly without any supervision might not help the 
network to discover new regions. 

Zhang et al. [95] proposed a learning process called Self-Produced 
Guidance (SPG) to separate the foreground, mainly the object of inter
est, from the background to generate better visualisation and precise 
localisation of objects. SPG uses a classification network to generate an 
attention map (feature activation map) where the highlighted pixels 
represent the foreground, the low confident score regions represent the 
background, and the medium confidence areas remain undefined. 

Intermediate features are used to assign these undefined pixels to either 
the foreground or the background regions during the iteration process, 
using the upper layer’s output as supervision for the lower layer to learn 
better object localisation. The foreground and background guidance 
masks are then used as supportive supervision to enable the network to 
learn better relations between pixels. Consequently, better visualisation 
maps can be attained. 

Common Component Activation Map (CCAM) [96] uses CAMs as 
components instead of class-specific maps to localise unseen or un
known objects. Localising common objects of the same class among a set 
of images ‘co-localising’ is different from weakly-supervised object 
localisation as it is not limited to the predefined object categories. In 
CCAM, the output of the last FC layer of a typical convolutional network 
is used as an input object component vector instead of a categorical 
probability output. The average component vector is computed for a 
group of images to find the group common vector. The largest compo
nents from the group common vector are selected. Lastly, a weighted 
sum of the feature maps of the last convolutional layer is computed for 
each image to get the common component activation map according to 
the top components. 

CLass-Enhanced Attentive Response (CLEAR) [97] is a multi-factor 
visualisation approach. It allows the visualisation of regions of interest 
that mainly contribute to the network’s decisions and the predominant 
classes associated with these regions. It alleviates the ambiguity pro
duced by binary-based heatmap approaches such as [33,82] by pro
ducing class-based heatmaps that are more readable and 
understandable. Binary-based heatmaps produce output that highlights 
positive and negative regions. Whereas CLEAR visualises the regions 
that contribute to the network predictions, besides to which classes are 
these regions belong. 

CLEAR approach and architecture are similar to CAM [34] and 
Guided Backpropagation [32]. The process of CLEAR is as follows: 
activation maps are computed for each class of the last convolutional 
layer of the network. Two different types of maps are extracted from 
these activation maps, the predominant class activation map, which 
shows the highly contributed class for the network’s prediction at each 
location, and the dominant response map, which shows the activation 
level for each location. Finally, they are combined to produce a CLEAR 
map. The architecture of CLEAR is built using only convolutional layers. 
The last convolutional layer of the network has a number of channels 
equal to the number of classes predicated by the network, which is then 
fed into a GAP layer then a softmax layer for output probabilities. 

As CLEAR uses different colours to distinguish between different 
classes in class-based heatmaps, it is unfeasible to use this approach for 
more than ten classes, as shown in their paper [97]. Using different 
colours for big datasets such as ImageNet, which has more than 1000 
classes, would be chaotic, making it difficult to visualise and interpret 
the decision outputs. This limits CLEAR applications for large datasets. 
Like CAM [34] and Guided Backpropagation [32], the proposed 
approach is applied only on fully convolutional networks. So, neural 
network modifications are applied to use VGG-16 [2], where the FC 
layers are replaced by convolutional ones that are fine-tuned on the 
training dataset. 

2.3.8. Gradient-weighted class activation map [87] 
Conceptional Approach: Unlike FC layers, convolutional layers can 

preserve spatial information. Although Grad-CAM is a general technique 
that can be applied to any layer of a CNN to examine its activations, this 
work [87] only focuses on explaining the output layer’s decisions as its 
neurons can identify parts specific to the target object. Grad-CAM uses 
the gradient information passed to the last convolutional layer of a CNN 
to assign importance weights to each neuron for a specific decision 
‘class’ of interest. The main difference between CAM [34] and Grad- 
CAM [87] is in the way of generating the weights for the feature 
maps. In CAM, heatmaps are generated by computing the weighted 
average sum of the activations of the last convolutional layer using the 
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FC layer’s weights. Whereas in Grad-CAM, the gradients of any layer are 
used to generate these weights. 

The Grad-CAM approach can be summarised as follows: first, gra
dients of the score for a specific class are computed w.r.t. feature map 
activations of a convolutional layer. Then, the computed gradients are 
averaged to obtain the weights for each feature map. Finally, the for
ward activation maps are weighted and combined, followed by a ReLU 
operation (Fig. 7 grey shaded). ReLU is used to highlight the contrib
uting features to the class of interest. Negative impact pixels usually 
belong to a different class. Consequently, they need to be suppressed 
using a ReLU function to obtain better localisation. The final result is a 
coarse heatmap of the same size as the final convolutional layer feature 
map. 

Implementation details: Grad-CAM can be applied to any CNN 
architecture. Unlike its ancestor (CAM) [34], there are no restrictions on 
using specific layers such as GAP, and there is no need to retrain the 
whole system to adapt to the Grad-CAM approach. This means it can be 
applied to off-the-shelf CNN based architectures. It can be applied to 
CNNs with FC layers, CNNs with multimodal inputs, and reinforcement 
learning without architecture modification as it uses the gradients of any 
target class. Grad-CAM does not trade off architecture complexity or 
accuracy with interpretability. Thus, it can be applied to very deep ar
chitecture, such as ResNet [3]. 

Visualisation and localisation: Grad-CAM is a localisation tech
nique that can produce a visual explanation for any CNN. To evaluate 
Grad-CAM localisation, pre-trained VGG-16 [2], AlexNet [1], and Goo
gleNet [90] have been used. Ramprasaath et al. [87] assume a model 
should achieve two factors to produce a high-quality visual explanation 
on a classification task. First, it should produce a class-discriminative 
output that localises a specific object in an image. Second, a high- 
resolution map can be attained with fine-grained details. 

For visualisation evaluations, human studies and experiments have 
been conducted to understand the trade-off between interpretability and 
fidelity of Grad-CAM to model predictions. The main purpose of these 
studies is to show that Grad-CAM produces better quantitative and 
qualitative results than previous approaches. Besides, an end-user can 
trust the visualised model. Guided Grad-CAM, a combination between 
Guided backpropagation [32] and Grad-CAM [87], shows that it can 
help to improve human performance to better identify the object of in
terest (more class-discriminative) compared to Guided backpropagation 
[32]. They (humans) can also identify which model provides better re
sults based on the produced visual explanations, which may help to 
build more trust in the model. Since VGG-16 [2] is better than AlexNet 

[1] in terms of accuracy on the PASCAL classification task [98], visu
alisation results show that humans can identify the more reliable model 
from prediction explanation, despite both models making the same 
predictions. 

Grad-CAM shows a reasonable explanation for failure modes. Also, it 
is robust to adversarial noise. Adversarial examples can be created by 
optimising the input to maximise the prediction error [39]. Moreover, 
Grad-CAM can be used to identify and reduce biases in datasets. 

Discussion: Grad-CAM technique shows that incorrect and unrea
sonable predictions can often have reasonable explanations. It can be 
used to identify dataset bias which can help to achieve model general
isation. Results show that it outperforms previous methods on weakly- 
supervised localisation tasks. It also helps users to distinguish between 
strong and weak deep neural networks, even if they produce the same 
predictions. Grad-CAM can be considered a generalisation of CAM, or 
CAM is a special case of Grad-CAM. Examples of CAM and Grad-CAM 
heatmaps are shown in Fig. 8. 

On the other hand, Grad-CAM cannot highlight fine-grained details. 
Pixel space gradient-based visualisation methods such as Guided back
propagation [32] produce high-resolution visualisations than Grad-CAM 
[87]. To counter this problem Guided Grad-CAM technique is intro
duced. Grad-CAM and Guided backpropagation techniques are com
bined by point-wise multiplication to produce high-resolution (fine- 
grained pixel class-specific) and class discriminative (the class region is 
highlighted) maps. Guided Grad-Cam approach can be seen in Fig. 7. 

The incapability of localising multiple occurrences of an object in an 
image can be considered a disadvantage of the Grad-CAM technique. 
Also, the partial derivatives hypothesis can cause inaccurate 
localisation. 

Grad-CAM is used in Guided Attention Inference Networks (GAIN) 
[99] to generate online attention maps for training a network for the 
task of interest. Attention maps can be used as priors in weakly- 
supervised localisation and segmentation tasks. Although Grad-CAM 
can highlight the most discriminative regions in an image that 
contribute to the network’s prediction, GAIN is introduced to supervise 
the attention maps while training a network to produce complete and 
accurate maps. The produced map can cover the complete object of 
interest and enhance the overall performance of the system. This can be 
achieved using the two streams network of GAIN: the classification 
stream, which finds the regions that help to recognise the object of in
terest and the attention mining stream, which includes all the regions 
that contribute to the prediction in the attention map. Both streams 
share the same network parameters. The approach helps the network to 

Fig. 7. Grad-CAM (grey-shaded) and Guided Grad-CAM approaches (reproduced from [87]).  
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extend its focus not only to the most discriminative regions of the input 
image but also to other contributing regions. The proposed approach 
boosted the system performance and achieved the best performance on 
the PASCAL VOC 2012 segmentation task [98]. 

2.3.9. Grad-CAM related approaches [87] 
Grad-CAM++ [100] is introduced to alleviate two problems in Grad- 

CAM: the inability to localise and visualise multiple occurrences of the 
same class in an image and the failure to localise the entire area of the 
object. This improvement has been achieved by rearranging the con
volutional neurons’ importance weights equation of Grad-CAM and 
introducing a weighted average for the gradients. 
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Grad-CAM [87] computes the gradients ∂Yc

∂Ak of the score Yc of class c 
with respect to feature activation maps Ak. To obtain the neuron 
importance weights wc

k of feature map k for a target class c as in (eq. (5)), 

these gradients are global average pooled over the dimensions of the 
image indexed by i, j (Z represent the number of pixels in the activation 
map). Finally, feature maps are weighted and combined, followed by a 
ReLU operation to produce the coarse heatmap visualisation Mc

Grad− CAM 
as in (eq. (6)). 

Grad-CAM++ [100] proposed a generalisation to Grad-CAM to 
overcome its limitations. First, it reformulates (eq. (5)) by moving the 
ReLU operation to the neuron importance weights equation (eq. (7)). 
Second and most importantly, it has introduced weighted average co
efficients of the pixel-wise gradients αkc

ij . The introduced term helps to 
highlight the existences of objects in all feature maps with equal 
importance. ReLU is used to highlight positive gradients (importance in 
feature maps) and to ignore negative ones similar to Grad-CAM [87]. 
Unlike Grad-CAM, Grad-CAM++ has a constraint for the class score. It 
assumes that a particular class’s score must be a smooth function, such 
as exponential or softmax functions. Discriminative localisation can be 
obtained using (eq. (8)). Grad-CAM++ produces heatmaps of all re
gions. This is beneficial with scattered and occluded objects, besides 
multiple instances of the same objects. 

Smooth Grad-CAM++ [101] is amid to enhance visual sharpness and 
object localisation of heatmaps by combining SmoothGrad [72] and 
Grad-CAM++ [100] approaches. The first three order partial derivatives 
of the score w.r.t the feature map are averaged to compute αkc

ij . The 
coefficient term αkc

ij reflects the importance of a specific pixel in the 
feature map. Thus, it is used to compute neuron importance weights wc

k 
(eq. (9)). Lastly, Smooth Grad-CAM++ [101] can be obtained using eq. 
(10). 

2.3.10. Other visualisation approaches 
Randomised Input Sampling for Explanation (RISE) [102] can be 

considered a general approach that does not require any prior knowl
edge of the network’s weights or any network adaptation. RISE can be 
considered as a genuine black box explanation approach. It only requires 
access to the input and output of the base model. The process to generate 
heatmaps using RISE is as follows: the input image is element-wise 
multiplied by randomly generated masks. Masked inputs are then fed 
to the black-box model to calculate the confidence scores. Finally, the 
weighted sum of the random masks, using each mask’s output score as 
its weight, is used to compute the final heatmap that explains the 
network decision (the contribution of each pixel to the network pre
diction). Small binary masks are sampled and then up-sampled to a 
larger resolution using bilinear interpolation to avoid adversarial effects 
while generating the input masks. This results in masks with values in 
the range of zero to one. In addition, it produces smooth heatmaps. RISE 
is a heavy computational approach that requires several forward prop
agations through the base model (it uses 4000 masks and 8000 masks for 
VGG-16 and ResNet50, respectively). On the other hand, it can detect 
many objects of the same class in an image. 

Score-CAM is introduced to tackle gradient issues such as gradient 
saturation and false confidence [103]. Unlike Grad-CAM [87] and Grad- 
CAM++ [100], Score CAM [103] is independent of gradients during the 

Fig. 8. Examples of CAM and Grad-CAM heatmaps.  
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calculation of the channel’s importance. However, the increase in score 
confidence is used by Score-CAM to quantify the channel’s importance. 
Also, unlike RISE [102], which generates random masks to be multiplied 
by the input image, Score-CAM uses the extracted activation maps from 
the last convolutional layer (theoretically, any convolutional layer can 
be used) as masks on the input image. The heatmap generation for Score- 
CAM can be summarized as follows [103]: first, activation maps are 
extracted. Then, the target class’s score is obtained by element-wise 
multiplication of the input image with the extracted feature map 
(feature maps act as a mask on the original image), then forward passing 
the product through the CNN. The process is repeated for all of the 
extracted activation maps. Lastly, score-based weights and activation 
maps are combined linearly to generate the heatmap. It is found that the 
concept of increased confidence scores is a better way to quantify acti
vation map importance as it avoids gradients drawbacks for weights’ 
importance calculations. 

Saliency can be defined as the smallest region of the image that alone 
produces a confident score or the so-called Smallest Sufficient Region 
(SSR) [104]. Another definition is the smallest region of the image that 
degrades the confident score when removed or the so-called Smallest 
Destroying Region (SDR) [104]. Dabkowski et al. [104] and Fong et al. 
[105] proposed mask-based model techniques to achieve both SSR and 
SDR. A resemble technique for semantic segmentation approaches (the 
model of [104] adapts the U-Net architecture [106], which is mainly 
used for semantic segmentation tasks) is used. This may explain the 
reason for producing better localisation (Table 1) compared to other 
saliency methods that attempt to detect only parts of interest to the 
model in an object (not the whole object) that is responsible for a specific 
prediction or so-called relevance heatmaps [59]. 

Adversarial evidence can negatively impact optimised-based visual 
explanation methods because the computations involved in both 
adversarial and optimised-based visual explanation methods are similar. 
Consequently, regularisation and constraint techniques are needed to 
counteract the faulty evidence in explanation methods [104,105]. Such 
techniques result in smooth and low-resolution heatmaps for which the 
fine-grained details are lost [107]. Moreover, they introduce hyper
parameters that need to be tuned. Fine-Grained Visual explanation 
(FGVis) [107] method extended the mask model technique [105] and 
proposed a defence approach that does not introduce hyperparameters. 
Additionally, neither smoothing nor regularisation is needed. The pro
posed technique filters gradients that may introduce adversarial evi
dence due to the adversarial noise during the optimisation process. The 
main concept is to allow the activation of only the CNN neurons (feature 
indicators) that are triggered by both the explanation and the original 
image. This enforces the explanation to contain subset features of the 
original image features (prevent the generation of new unwanted evi
dence) and exist at the same location as the original image [107]. As 
pixels are optimised individually, high-resolution explanations that 
preserve image characteristics can be obtained [107]. 

Feedback CNN [108] is a unified system that can classify and localise 
objects. The proposed network uses both forward and backward paths to 

visualise neuron activation. It introduces feedback layers that are 
stacked on top of the ReLU layers and only activate the gates responsible 
for target neurons depending on the sign of each neuron’s gradient. 
Feedback CNN achieved competitive performance for object localisation 
using weakly-supervised information compared to fully-supervised 
state-of-the-art systems. 

Local Interpretable Model-agnostic Explanations (LIME) [109] is a 
non-backpropagation based approach for CNNs interpretations. To 
explain an input, it uses a local linear model around that input to 
approximate the CNN’s behaviour. The process can be summarised as 
follows: images are segmented into features. These features are used to 
generate synthetic data. The CNN is then used to classify the generated 
synthetic data. For each synthetic image, a regression model is fit to 
indicate the presence or absence of such features. This means the new 
simpler model approximates the behaviour of the complex CNN in the 
region of observation. Finally, the importance of each input feature can 
be estimated from the coefficients of the linear model. The important 
features can be visualised as a map to indicate regions of the image that 
directly influence the model prediction. As LIME method requires many 
passes through the CNN, it is considered a computationally expensive 
approach compared to other explanation methods. Another disadvan
tage of LIME method lies in the approximation technique used, as it is 
challenging to approximate complex non-linear models such as DCNN. 
An example of the main contributing features generated by LIME tech
nique is shown in Fig. 9. 

Inspired by ensemble models, Rieger et al. [110] applied the same 
idea to the explanation methods to reduce variance and bias in machine 
learning tasks. Aggregating the explanation methods approach has 
proven its efficiency compared to single explanation methods to identify 
important features more accurately, reduce variance and bias, and resist 
adversarial attacks. Two aggregate explanation methods are introduced: 
AGG-Mean and AGG-Var. AGG-Mean can be calculated by taking the 
average over all the explanation methods. This will result in fewer errors 
than the typical error of an individual explanation method, conse
quently, low variance. Error in this context refers to the mean square 
error (MSE) between the aggregated explanation and the hypothesised 
true explanation. For AGG-Var, the AGG-Mean is divided by its standard 
deviation. This will include the difference between methods uncertainty 
in the calculation, which can be utilised to assign less relevance to re
gions with a high conflict between methods. Both AGG-Mean and AGG- 
Var have shown significant improvement quantitively and qualitatively 
over individual methods. 

Moreover, using various explanation methods for aggregating 
explanation has a smoothing effect like Smooth-Grad [111] but with 
fewer computations, explaining the resilience of aggregating methods to 
adversarial attacks. Replacing ReLU units with Softplus [112] can pro
duce more robust explanations. However, architecture modification is 
an undesirable approach to visualise network predictions [111]. 

It is clearly shown that none of the introduced approaches is perfect. 
Some need special design adaptions; others need a combination of two 
or more techniques to achieve significant visualisation results. Fig. 10 
attempts to gather the post-hoc visualisation techniques, spinoffs, and 
enhancements in one figure. In the end, the best approach is limited by 
the application and network architecture. 

3. Applications and use-cases of explanation methods 

Visual inspection using explanation techniques can add a further 
dimension to the evaluation process of the robustness of neural network 
models. It can be used to debug models and identify biases. Standard 
evaluation procedures of CNNs by testing the system performance on the 
validation part of a dataset can be less informative because the valida
tion dataset can be limited or biased. Consequently, applying the 
explanation techniques to ensure the reliability and trustworthiness of 
systems is vital and beneficial in many applications, particularly critical 
applications that cannot tolerate errors. For instance, Zhang et al. [113] 

Table 1 
Localisation error for different saliency methods on the ImageNet validation 
dataset.  

Approach Localisation error (%) 

Gradients [31]  41.7 
Guided Backpropagation [32]  42.0 
LRP [33]  57.8 
CAM [34]  48.1 
Grad-CAM [87]  47.5 
Feedback [108]  38.8 
Mask [105]  43.1 
Mask [104]  36.9 
Excitation backprop [122]  39.0 
Occlusion [29]  48.6  
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presented the application of XAI in diagnosis and surgery, a promising 
research area for medical applications. Ahmed et al. [114] explored XAI 
usage in the fourth industrial revolution (Industry 4.0). Stakeholders in 
XAI are discussed from an engineering perspective in [115] with a case 
study on autonomous cars. 

One of the most important uses of visualisation techniques is the 
selection and modification of CNN architectures. Visualising the learned 
features by the first and second layers of the AlexNet architecture reveals 
that the first layer filters retain a mix of high and low-frequency infor
mation. On the other hand, the second layer filters retain aliasing arte
facts caused by the large stride of the first layer. Zeiler et al. [29] 
proposed a new architecture that can enhance the model performance 
by reducing the stride of the first layer. Besides, the filter size of the first 
convolution layer is reduced to 7 × 7 instead of 11 × 11. The modified 
version of AlexNet achieved high accuracy. Most importantly, the first 
and second layers can now preserve better representations. 

Zhu et al. [116] visualise the first four convolutional layers trained to 
classify galaxy morphology. Filter visualisation can give insights into 
what the model has learned during the training process. The filters of the 

first convolutional layer can detect galaxy edges and corners, which are 
used by the second layer filters to detect simple shapes. The filters learn 
to detect more complex shapes and patterns as the CNN goes deep. 
Visualising CNN filters helps to debug the model and enhance the ar
chitecture by adding or removing layers, controlling filters sizes, and 
modifying the filter’s stride. 

Score-CAM [103] is used to debug different systems, identify dataset 
bias, and explain wrong predications. Even with poor classification 
confidence, Score-CAM can achieve adequate localisation. Nevertheless, 
the quality of saliency maps increases as the model performance in
creases. Thus, better quality maps indicate model convergence. 

In the document classification domain [117], LRP [33] is used to 
interpret the predictions of two different models. Although the two 
models have achieved the same test accuracy, their approaches to 
classifying the documents differ. LRP explanation techniques show that 
the Support Vector Machine (SVM) model based its decision on the word 
count. In comparison, the CNN model assigns more relevance to the 
keywords. The case study shows that explanation techniques can be used 
to understand models’ behaviours. 

Fig. 9. Examples of LIME maps.  

Fig. 10. A chart of post-hoc visualisation techniques.  
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In the image classification domain [118], LRP is used to compare the 
predictions of a Fisher vector classifier [68] trained on the PASCAL 
dataset and a CNN trained on the ImageNet dataset. Both systems pro
duce different relevance maps, though they have achieved similar 
classification accuracy on the horse category. The heatmaps of the Fisher 
vector model assign high relevance to the copyright tags that are usually 
presented in horse images. However, the relevance maps of the CNN 
model show that the model bases its decision on the horse features using 
the edges and contours. 

Using visualisation techniques can help to mitigate the system’s 
weaknesses by identifying biases, such as the case of the Fisher vector 
model in the classification of horse images. Retraining the Fisher vector 
model on untagged horse images can help to mitigate the bias issue. 

In the biometric domain, LRP has been used to identify the pixels 
responsible for age and gender characteristics in face images [119]. 
Also, GBP [32] is used to highlight features corresponding to shadow 
pixels in 2D ultrasound images [120]. This technique can help to 
generate shadow-focused confidence maps that can be used in biometric 
measurements. In the medical domain, LRP explanation techniques have 
been used to visualise EEG heatmaps to understand which part of the 
brain is responsible for a particular decision [121]. 

The choice of the appropriate explanation method is mainly depen
dent on the application. Also, the method’s reliability can significantly 
influence that choice because some methods are merely edge detectors 
(evaluating explanation methods is presented in section 4). Generally, 
applications that require high-resolution heatmaps may find gradient- 
based methods helpful. These methods can be used for masking fore
ground objects from the background with sharp edges and fine-grained 
details. For example, it can be used for medical applications to detect 
cancer cells. However, discriminative region methods can be used for 
weakly-supervised tasks where the annotated data for object localisation 
(bounding boxes) are unavailable. These methods are suitable for semi- 
supervised tasks. In conclusion, there is no perfect method, but re
searchers have to trade-off between different methods to achieve the 
required objective. 

4. Evaluating different explanation methods 

Localisation error is argued to be a descriptive metric for assessing 
saliency methods. Table 1 shows the performance of different saliency 
methods on the ImageNet validation dataset for localisation. 

Results in Table 1 are reported in [104,105,108,122], following the 
same evaluation protocol as [108] and using the same CNN (GoogleNet). 
The evaluation process on the localisation task is as follows: given an 
image, the class of interest, and the corresponding saliency map, the 
object segmentation mask is computed by thresholding the foreground 
area to cover 95% energy out of the produced saliency map. Then, the 
tightest bounding box containing the whole object in the saliency map is 
calculated as the localisation bounding box. This localisation box is only 
considered valid if the Intersection over Union (IoU) with the ground 
truth bounding box is greater than 0.5. Different thresholds for local
isation error may explain the differences in the originally reported re
sults. However, the results reported in Table 1 use the same threshold 
value for consistency. 

It is not only important to understand how different visualisation 
techniques work but also if they are valid or not. What are the intuitions 
behind the performance of these techniques? Are these techniques 
reliable enough to put our trust in their visualisations? How can we 
evaluate these methods? Are these methods dependable on model pa
rameters, architecture, and training data? Visualisation methods are key 
tools to get intuitions into models’ predictions. Consequently, under
standing their failure is necessary for their usage in critical applications 
like medicine and security, where mistakes may cause tragic 
consequences. 

Some studies tried to answer these questions [73,123]. Besides, an 
XAI toolkit called Quantus [124] is introduced to quantitatively evaluate 

the explanations of neural networks comprehensively and speedily. 
Quantus is built to ensure the transparency and reproducibility of the 
evaluation process. However, this field is starving for more research and 
investigation. Table 2 groups different evaluation studies according to 
the manipulated parameter and the used technique. These techniques 
are investigated in the following subsections. 

4.1. Weights manipulation 

The learned weights during the training process should influence the 
visualisation techniques used to get insights into the model’s prediction, 
whether these predictions are right or wrong. Manipulating models’ 
weights should affect the resulting heatmap, which means the heatmap 
is dependable on the weights learned by the model [73]. In contrast, a 
visualisation technique is undependable on the weights if randomising 
the models’ weights does not affect the resulting activation map. Hence 
the first introduced test is model parameter randomisation [73], at 
which all the weights of the model are randomised at once, then the 
resulting heatmap is tested. Another version of the test is to randomise 
one layer’s parameters at a time from top to bottom successively and 
monitor the influence on the output heatmap. Moreover, randomise a 
single layer while keeping other learned layers fixed. The resulting 
heatmaps from the randomly initialised untrained network are 
compared with the trained model ones (original weights). A visual
isation technique that is dependable on the learned models’ parameters 
should produce two different heatmaps for each network. In contrast, 
insensitive visualisation approaches to the learned models’ parameters 
will have similar maps. Shortly, randomising models’ weights should 
break ‘disturb’ the output saliency map for a visualisation technique to 
pass this test. Failing this test means a particular visualisation technique 
cannot be used to debug a model. 

To provide a quantitative comparison besides the qualitative one, 
similarities between both maps are calculated using several metrics such 
as Spearman rank correlation [130], Structural Similarity Index (SSIM) 
[131], and histogram of gradients (HOGs) [132]. A low correlation be
tween the produced saliency maps is observed for Gradients and Grad- 
CAM methods. In contrast, high correlation maps for Guided Back
propagation and Guided Grad-CAM are obtained (Table 3). 

Nie et al. [125] showed through theoretical and practical analysis 
that visualisation methods such as Guided Backpropagation [32] and 
DeconvNet [29] are class insensitive. Gradients [31], Guided Back
propagation, and DeconvNet are assessed using a simple three-layer 
CNN with random Gaussian initialised weights. As these explanation 
methods should visualise weights, perturbed weights should result in 
random noise maps. However, it is found that Guided Backpropagation 
under some conditions, in this case, a sufficiently large number of filters, 
can be approximated as the input image regardless of the class label. On 
the other hand, DeconvNet and Gradients, under the same condition, 
can be approximated as Gaussian random variables. The behaviour of 
the Gradients method is understandable because it visualises the output 
class derivatives w.r.t input image. An operation that is mainly weights 
dependent. However, DeconvNet has conducted a similar attitude to 
Guided Backpropagation when used in a CNN with max-pooling layers. 
The Max-pooling layer is believed to be responsible for image-specific 
information in DeconvNet [59,133]. 

Table 2 
Evaluation methods to assess different explanation techniques.  

Evaluation method Study 

Weights manipulation [73,125,126] 
Data randomisation [73] 
Architecture manipulation [126,88] 
Input perturbation [123,127] 
Evaluation metrics [61,104,128,102] 
Behavioural assessment [129,78]  
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Adversarial attacks by manipulating class labels and ReLU states are 
conducted on state-of-the-art CNNs such as VGG [2] to test the class 
sensitivity of the visualisation models. Unlike the Gradients approach, it 
is shown that Guided backpropagation and DeconvNet are input 
invariant. Their performance is proven to be an analogy for recovering 
input images, which is asserted by their insensitivity to class labels. 
Thus, providing high-quality heatmaps is attributed to the usage of the 
backward ReLU and the local connections in CNNs but is not related to 
CNN’s weights or inputs [125]. 

Viering et al. [126] considered an adversary technique that manip
ulates the model’s weights and architecture to generate any desired 
explanation with a minimum impact on the model’s accuracy. Four 
techniques are introduced to manipulate Grad-CAM’s explanations: 
constant flat and constant image explanations manipulate the model’s 
weights to produce a constant explanation regardless of the input. On 
the other hand, an input pattern triggers Semi-random and malicious 
explanations to modify the model’s architecture to produce random 
explanations dependent on the input. The first two techniques are easily 
detected by inspection as they are independent of the input, while the 
second two techniques are hard to detect as they are randomly depen
dent on the input. In all cases, the prediction accuracy does not change 
significantly. The manipulations are produced using almost the same 
process: an extra filter is added to the last convolutional layer containing 
the desired target explanation. Besides, the architecture or weights of 
the fully connected layers are changed. Results show that the Grad-CAM 
explanation is not robust to the adversary and follows the desired target 
explanations. 

We want to expand on the malicious explanation triggered by the 
input pattern technique because hackers might exploit it as a backdoor 
to abuse systems. The idea is to inject some patterns into the input 
image. A CNN, which is highly activated by these patterns, will force the 
explanation to refer to the malicious pattarns. If the malicious patterns 
do not exist, the output of this CNN will be zero. Consequently, the 
explanation of the original network can be returned. The introduced 
techniques [126] can be extended to other gradient-based methods. 
However, architectural changes are necessary, which might not be a real 
case scenario, because when a model is deployed, its weights and ar
chitecture are kept constant. Thus, we can conclude that Grad-CAM is 
efficient for a normally trained model but vulnerable to adversarial 
manipulated models. Generally, heatmaps quality depends on the vis
ualisation techniques, which are intuitively dependent on the model and 
the training data. A poor performance model will not provide high- 

quality maps. 

4.2. Data randomisation 

Data randomisation is the second introduced test by Adebayo et al. 
[73], in which the training labels for a classification task are permuted. 
The relation between the data examples and their labels is broken to test 
the sensitivity of different explanation methods. A CNN is then trained to 
fit the randomised training data with 95% accuracy. State-of-the-art 
CNN can be taught to memorise random labels by overfitting the 
model [134]. As the data is inconsistent, the test accuracy is significantly 
low. Visualisation techniques are used to produce heatmaps for the test 
set examples. The produced heatmaps for a model trained on consistent 
data should look different from heatmaps that have been trained on 
shuffled data, which means the explanation approach is sensitive to 
data. On the other hand, a visualisation technique that produces the 
same heatmaps for both networks will fail this test. Consequently, this 
technique is insensitive to labels randomisation, and it cannot explain 
the connection between an example and its label. 

To provide a quantitative assessment besides the qualitative one, the 
correlation between the heatmaps of different visualisation techniques 
trained on both labels (models trained on the true label and random 
labels) is calculated. A low correlation means no relation, which is 
considered a reliable technique and vice versa for high correlation [73]. 

The presented evaluation approaches have shown alarming results 
regarding some of the widely used explanation methods. Table 3 shows 
the testing result of different saliency methods. Some of the tested 
techniques have no relation to the model or the training data. These 
visualisation methods are merely a simple edge detection algorithm that 
does not depend on the model or the training data [73]. This claim is 
investigated using a simple case study of a one-layer CNN model. As 
edges’ regions in an image have different activations from surrounding 
pixels, they may visually emerge, which is one of the basic functions of 
CNN filters. These models, which failed the proposed tests, are unsuit
able for investigating data or modelling dependable tasks. They cannot 
be used to find the relation between inputs and outputs, model debug
ging or data outliers because these kinds of tasks are model- and data- 
dependent [73]. 

4.3. Architecture manipulation 

The DeconvNet approach is meant to visualise neurons’ responses 
activated by objects or visual patterns. Mahendran et al. [88] argued 
that the response at different image depths relies on the network ar
chitecture, not the learned weights or data [88]. Through investigation 
of different neurons with different parameters, it is concluded that the 
visualisation of DeconvNet is mainly dependent on the information 
gained during a forward pass or so-called bottleneck information 
(pooling switches and ReLU masks) [88]. Consequently, DeconvNet 
visualisation is independent of the selected neuron activation, which 
means it is not neuron discriminative. 

Network architecture may have a significant impact on the models’ 
predictions. Many studies illustrate the influence of randomly initialised 
weights, which greatly impact the network classification capabilities 
[135,136]. Besides, it makes the network more immune to noise and 
produces high-resolution output without more training data [137]. 
These kinds of networks may produce saliency maps that are inde
pendable of the model parameters or the input data but rather on the 
model architecture. In this case, using explanation methods is possible 
when the network architecture is believed to be sufficient for reasonable 
predictions. 

4.4. Input perturbation 

Implementation invariance is another quantitative method to assess 
different saliency maps [71]. Models with different architectures that 

Table 3 
Test results of different saliency methods.   

Test 

Approach Model Parameter 
Randomisation Test 

Data 
Randomisation 
Test 

Input 
invariance 

Gradients Pass Pass Pass 
Gradients ʘ Input Fail Fail Fail 
Smooth-Grad Pass Pass Saliency 

method 
dependant 

Integrated 
Gradients 

Fail Fail Reference 
point 
dependant 

Guided 
Backpropagation 

Fail Fail Pass 

Grad-CAM Pass Pass * 
Grad-CAM ++ Pass Pass * 
Score-CAM Pass Pass * 
Guided Grad-CAM Fail Fail * 
PatternNet * * Pass 
Deep Taylor 

Decomposition 
* * Reference 

point 
dependant 

* Not reported. 
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produce the same predictions for all inputs should always generate 
similar heatmaps to satisfy reliability. Kindermans et al. [123] proposed 
an additional invariance test called input invariance that adds a constant 
shift to the input to assess the model’s sensitivity to input trans
formations. If an explanation method fulfils input invariance, it can be 
considered a reliable interpretation method. 

Input transformation, which is used in some cases as a pre-processing 
technique, can be used to manipulate attributions. However, it does not 
affect models’ predictions or weights. Disturbingly, some widely used 
methods fail this test (Table 3). However, data normalisation techniques 
may minimise this failure. Two networks are used to test the sensitivity 
of saliency methods to input transformation. Both have the same 
weights and produce the same output for all input instances. The only 
difference is the addition of the mean shift to the bias of the first layer 
activation, which cancels out the shift transformation. An explanation 
method to pass the input invariance test should produce identical 
heatmaps for both networks where network 1 accepts the input and 
network 2 accepts a shifted version of that input. 

Table 3 shows that Gradients, Guided Backpropagation and Pat
ternNet [69] pass the test because both networks have identical weights. 
Kindermans et al. [123] assumed that these methods would fail if models 
with different weights/architecture but the same output predictions for 
inputs were used. Gradient times input [70] fails to pass the input 
invariance test as the input shift is propagated to the saliency heatmap. 
Moreover, multiplying by the input limits visual explanations [72]. 

The sensitivity to the input invariance test of Integrated Gradients 
[71] and Deep Taylor Decomposition [82] depends on the reference 
point’s choice, which is a hyper-parameter that can be tuned. Using a 
black image as a reference point for image classification tasks is a normal 
choice reference point [71]. At the same time, zero vector would be a 
suitable reference point for text-based networks [71]. 

SmoothGrad [72] technique uses duplicated versions of the input 
with added noise to produce heatmaps using any visualisation method. 
The resulted maps are then averaged to produce the final saliency map. 
Consequently, SmoothGrad depends on the underlying method used to 
produce these maps. If the Gradients method is used, then SmoothGrad 
is input invariant. On the other hand, if GI is used to produce the 
heatmaps, it will fail the input invariance test. 

Ghorbani et al. [127] introduced three input perturbation techniques 
to manipulate inputs to produce different interpretations without 
changing the output predictions. The first perturbation is a random sign 
perturbation at which each pixel value is randomly changed with some 
constraint norm. The second perturbation technique is iterative attacks 
against the explanation methods at which three alterations are intro
duced to maximise the difference between the original and perturbed 
interpretation. The third perturbation technique is a gradient sign attack 
against influence functions at which the equation for the influence 
functions is linearised around the values of the current inputs and 
parameters. 

Three explanation methods are tested: Gradients [31], Integrated 
Gradients [71] and DeepLIFT [81]. The tested saliency methods give 
different heatmaps from the original ones when subjected to input 
perturbations. Although input manipulation does not change the 
network prediction or significantly change the confidence score, it is 
imaginable that changing an input can produce different saliency maps 
as visualisation methods are sensitive to input changes. However, hav
ing the same output prediction should at least produce analogous sa
liency maps. The cause of this fragility is attributed not only to the 
explanation methods but also to the network itself that is being 
vulnerable to such perturbations. Ghorbani et al. [127] blamed the high- 
dimensionality and non-linearity of CNNs for producing fragile expla
nations vulnerable to adversarial attacks. It is suggested to Constrain the 
non-linearity of CNNs while training [138] to overcome this weakness. 
Though, Goodfellow et al. [40] attributed the vulnerability of models to 
adversarial perturbation to the models’ linear nature. One can argue that 
they used easily optimised CNNs, which are intrinsically flawed, as 

easily optimised models can be easily perturbed. 

4.5. Evaluation metrics 

Deletion and Insertion metrics [102] are introduced to measure the 
changes in classification output score as important pixels are gradually 
removed or added from/to an image. A good explanation should show a 
sharp drop in confidence score for the deletion metric as important 
pixels, determined by saliency methods, are removed from an image, 
consequently a low Area Under Curve (AUC). In contrast, a high AUC 
indicates better explanations as important pixels are being added to an 
image in the case of the insertion metric. Using these metrics, the RISE 
[102] approach outperforms Grad-CAM [87] and LIME [109]. 

Ancona et al. [61] noticed that the Occlusion approach [29] could 
highlight the impact of individual features distinctively. However, In
tegrated Gradient [71] can better explain jointly features. An attribution 
metric called ‘sensitivity-n’ is introduced to understand the impact of 
each feature compared to the impact of a group or several ones upon 
deletion. For an explanation method to satisfy the sensitivity-n metric, 
the sum of attributions of any subset of features of a cardinality ‘n’ 
should correlate to the variation of the output caused by removing these 
features. Pearson Correlation Coefficient (PCC) is used to quantify the 
correlation between the decrease in output for a subset of the removed 
features and the sum of their relevance for each n. Authors [61] argued 
that explanation methods such as Occlusion, Gradients times input, In
tegrated Gradient, LRP and DeepLIFT can satisfy sensitivity-n metric if 
they are applied to linear or linearly behaved models. 

Based on SSR, Dabkowski et al. [104] proposed a saliency metric to 
assess different saliency methods. First, it finds the smallest rectangular 
crop that contains the entire salient region. This rectangular region is 
then fed to the classifier to verify whether it can predict the correct class. 
Cropping is used to avoid adversarial artefacts that might be introduced 
by masking. Manipulating the image by masking SSR or SDR regions 
using pixels blurring or added noise may introduce adversarial artefacts. 
Although it is usually tiny changes, it can lead to evidence of wrong 
classes; that is why it needs to be avoided. A low value of saliency metric, 
which quantifies the amount of relevant information captured by the 
rectangular region, means the explanation approach can reduce the 
rectangular cropped size while maintaining the classification score, 
which is a good attribution for that explanation method [104]. The 
proposed masking model [104] achieved a lower saliency metric 
compared to Gradients [31] and excitation backprop [122]. 

More recently, Bansal et al. [128] proposed an evaluation metric that 
evaluates the sensitivity of attribution methods to the change in their 
hyperparameters. Explanation methods hyperparameters such as 
random seeds for LIME [109] or sample size and Gaussian standard 
deviation for Smooth-Grad [72], which are randomly set, can be used to 
assess the robustness of an explanation method. A robust explanation 
method should be independent of the arbitrary hyperparameters 
choices, i.e., it should reproduce the same heatmaps for different 
hyperparameters. For gradient-based methods, robust classifiers (clas
sifiers trained to limit adversarial pixel noise) produce heatmaps that 
demonstrate smooth object structure, unlike regular classifiers, which 
produce uninterpretable maps. This is also valid for hyperparameters 
changes as gradients-based explanations are insensitive to the added 
random noise to the input image. For example, Smooth-Grad explana
tion maps for robust classifiers under different sample sizes produce 
almost the same results for a different number of samples. In contrast, 
regular models produce enhanced quality maps as the number of sam
ples increases. On the other hand, non-gradient based methods, such as 
Occlusion [29], are sensitive to their hyperparameter (the patch size in 
the case of the Occlusion method), whether a robust or non-robust 
classifier is used [128]. 
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4.6. Behavioural assessment 

Yeh et al. [129] introduced infidelity and sensitivity checks to assess 
explanation methods quantitatively and qualitatively. Sensitivity mea
sures the impact of insignificant perturbations on an explanation 
method. In comparison, infidelity measures the difference between the 
output perturbation and the dot product of input perturbation with the 
explanation. Infidelity is used to test the relevance of the important 
features in an explanation to a subset of predefined features. A combined 
map of Smooth-Grad and Integration Gradients has shown an optimal 
ability to minimise infidelity. Using Smooth-Grad with base explanation 
methods has shown a high ability to reduce sensitivity and infidelity. 
Methods that can optimise fidelity can pass sanity checks [73]. 

Montavon et al. [78] presented systematic and objective assessments 
for the quality of explanation methods using a simple task where the 
same inputs, predictions, and network architectures are used. Appro
priate parameters are transferred from a known domain-related task, 
such as the classification of digits [139], to a target domain, in this case, 
handwritten characters [140]. Simple tasks do not require an expert to 
evaluate different explanations compared to field-specific tasks such as 
tumour identification. Two behavioural properties of explanation 
methods are investigated: explanation continuity and explanation 
selectivity. The produced explanation function should be continuous for 
a continuous output function. This means that the produced explanation 
for any two input equivalent data points should be equivalent [78] 
which can be quantified by the strong variation in the activation maps. 

Three explanation methods are investigated: simple Taylor decom
position [141], sensitivity analysis (backpropagation method) [31], and 
LRP [33]. To investigate the explanation continuity property of a 
method, an MNIST digit [139] is translated from left to right while 
tracking the output and relevance scores. The relevance method scores 
the importance of image pixels according to their impact on the output 
prediction [33]. Only LRP produced a smooth continuous transition. 
Gradient-based methods such as sensitivity analysis and simple Taylor 
decomposition tend to be discontinuous because they are more liable to 
gradient noise [142] and shattered gradients [143,144] that occur due 
to ReLU units in CNNs. 

Explanation selectivity is quantified by measuring the response of the 
output score’s degradation when patches corresponding to important 
features are removed. A process known as ‘region perturbation’ [54], a 
generalisation of ‘pixel-flipping’ [28] in image domain tasks, illustrates 
how an explanation method redistributes relevance to pixels that in
fluence the networks’ predictions. The same technique is used in the text 
data domain by setting word embedding to zero for selected words 
[117]. In explanation selectivity, features are sorted in descending order 
according to their relevance scores. Sequentially, features are removed 
(by setting corresponding pixels to black or by randomly sampling 
values from a uniform distribution). Then, output scores are calculated. 
Finally, the area under the curve is calculated for the plot of output 
scores against the number of removed patches [78]. The low AUC rep
resents a low output score, meaning the most influence features are 
correctly detected. LRP and Guided Backpropagation have achieved 
high explanation selectivity compared to simple Taylor decomposition, 
sensitivity analysis, and DeconvNet. LRP outperforms other methods 
due to its ability to detect negative evidence [59]. In addition, it pro
duces less noisy heatmaps because of the normalisation property [59]. 

Other experiments are conducted to understand the reason for the 
failure of explanation methods that visualise the element-wise product 
of the gradients and inputs [70] or explanation methods that can be 
approximated to gradients times inputs. The element-wise product of a 
fixed input with two random vectors is calculated. The two results are 
then compared. It is observed that the input dominates the product, 
especially for sparse inputs, even with a significant change in the 
random vectors [73]. Explanation methods such as Integrated Gradients 
[71], LRP [33] and DeepLIFT [81] can be reduced to gradients times 
input under certain conditions [23,61,145,70]. For these methods, the 

experiments have concluded that as the gradients tend to be visually 
noisy, they will return mostly the input [73,69]. 

5. Conclusion 

This paper presents an extensive review of different visualisation 
techniques as explanation methods for the operation of convolutional 
neural networks. State-of-the-art techniques are discussed and 
compared. Besides, the merits and drawbacks of the visualisation 
methods are highlighted. 

Although explainable AI techniques are essential in understanding 
the behaviour of CNNs, they can be easily misinterpreted, especially in 
the case of visualisation methods. For example, a saliency method can 
highlight the edges of an object as its activation pixels. Although this 
may be a simple edge detection in the image processing sense, it could be 
misinterpreted by unrobust visualisation methods as revealing a relation 
between the trained model’s weights and the output labels. Thus, visual 
inspection in these cases is insufficient because explanation methods of 
unrobust systems may suffer from user subjectivity and unreliable 
explanations. 

The presented analysis and discussion offer guidance on how and in 
which cases these methods can be fruitfully utilised. Understanding the 
strengths and weaknesses of visualisation approaches is the key to 
explaining the systems’ behaviour. Consequently, explanation methods 
can facilitate the deployment of deep learning-based systems in real-life 
applications. Important application domains such as natural language 
processing or multi-object detection systems for autonomous navigation 
and driving (e.g., robotic assistants for the elderly or autonomous cars) 
suffer delays in wider adaption and mass deployment because explain
ing the systems’ decisions is overlooked. 

Furthermore, there is a significant debate among researchers to 
define the qualitative characteristics of a model’s transparency and how 
the properties of related explanation methods can be assessed. One side 
addresses the issue as an object recognition task in a weakly-supervised 
manner, where the whole object should be identified by the explanation 
method in order to be reliable. The other side argues that a good 
explanation method should highlight only the most discriminative parts 
of an object which make it belongs to a particular class. 

We believe this review is a significant contribution that enables the 
researchers in the field to better understand the structure and properties 
of different visualisation techniques and facilitate the choices of the 
appropriate method for a specific application. 
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