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ABSTRACT Electrical Powered Wheelchair (EPW) users may find navigation through indoor and
outdoor environments a significant challenge due to their disabilities. Moreover, they may suffer from
near-sightedness or cognitive problems that limit their driving experience. Developing a system that can
help EPW users to navigate safely by providing visual feedback and further assistance when needed can
have a significant impact on the user’s wellbeing. This paper presents computer vision systems based on
deep learning, with an architecture based on residual blocks that can semantically segment high-resolution
images. The systems are modified versions of DeepLab version 3 plus that can process high-resolution input
images. Besides, they can simultaneously process images from indoor and outdoor environments, which
is challenging due to the difference in data distribution and context. The proposed systems replace the
base network with a smaller one and modify the encoder-decoder architecture. Nevertheless, they produce
high-quality outputs with fast inference speed compared to the systems with deeper base networks. Two
datasets are used to train the semantic segmentation systems: an indoor application-based dataset that has
been collected and annotated manually and an outdoor dataset to cover both environments. The user can
toggle between the two individual systems depending on the situation. Moreover, we proposed shared
systems that automatically use a specific semantic segmentation system depending on the pixels’ confidence
scores. The annotated output scene is presented to the EPW user, which can aid with the user’s independent
navigation. State-of-the-art semantic segmentation techniques are discussed and compared. Results show the
ability of the proposed systems to detect objects with sharp edges and high accuracy for indoor and outdoor
environments. The developed systems are deployed on a GPU based board and then integrated on an EPW
for practical usage and evaluation. The used indoor dataset is made publicly available online.

INDEX TERMS CNN architecture, disabled people, deep learning, object localization, object detection,
pixels classification, semantic segmentation, visually impaired users.

I. INTRODUCTION
Driving an EPW can be challenging, especially for users who
suffer from cognitive problems. In addition to their physical
issues, they may suffer from near-sightedness or limited neck
and head movement. These can affect their driving experi-
ence, especially in complex environments, as they cannot
fully recognize their routes or the dimensions of their EPWs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Felix Albu .

Many accidents and injuries have been reported for users
injuring themselves or falling from EPW as they could not
distinguish between pavement edges and car routes or walls
and doors [1]–[3]. Besides, some users cannot be prescribed
an EPW because of their disability [4].

In the ADAPT (Assistive Devices for empowering dis-
Abled People through robotic Technologies) project [5],
developing assistive devices that can facilitate the driving
experience of users with cognitive and physical problems is
the primary objective. A computer vision system that can
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help users to distinguish between different components of
a complex environment will significantly impact the user’s
experience, specifically if a visual feedback can be presented.

EPWs’ users who do not accept fully autonomous or
semi-autonomous navigation (shared control) or who want
to be in full control of the EPW might benefit from such a
system that can provide environmental cues to guide them.
Autonomous systems can be frustrating to some users when
they try to approach an object or a door, but the collision
avoidance system prevents them from doing so. One of the
main requirements for an EPW system is not to act as a
caregiver but instead as an assistant, and the user can override
the system control at any point [6]. Visually and cognitively
impaired users can benefit from such a system that guides
them while giving them full control over the EPW. However,
the proposed system can be combined with autonomous ones
or used as a standalone system, depending on the user’s
condition.

In this paper, two individual systems based on deep learn-
ing for pixel classification are presented. A manually col-
lected dataset for indoor environments and an outdoor dataset
(Cambridge-driving Labeled Video Database (CamVid) [7])
are used to train the two systems. The systems’ architec-
tures are based on DeepLab3 plus [8] (hereafter DLV3+ for
simplicity) for semantic segmentation and ResNet-18 is used
as the feature extraction backbone network [9]. ResNet-18
is an adequate choice as it has a smaller footprint and a
lesser number of layers when compared to its elder sisters
(ResNet50 and ResNet101).

We also introduce three novel shared systems that can
semantically segment images from both indoor and outdoor
environments simultaneously. The novelty of the proposed
three shared systems is not only in the architecture but also
in the elegance of reusing the learned information/weights
by the individual systems without the need to retrain the
shared systems. Most importantly, the shared systems can
process two different environments with almost the same
accuracy as the individual systems, which is challenging as
the data (images) being processed comes from two different
distributions (indoor and outdoor).

The paper’s main contributions can be summarised as fol-
lows: a) development of computer vision scene understanding
systems for disabled people, b) an extensive dataset for indoor
objects of interest has been presented, c) a modified architec-
ture based on residual blocks that can process high-resolution
images has been employed, d) different systems’ architec-
tures that can simultaneously process both indoor and outdoor
images have been proposed, and finally, e) the developed
systems have been deployed on a GPU based board and
then integrated on an EPW for practical usage and evalua-
tion. Though, the proposed computer vision systems can be
deployed on any robotic platform for navigation and scene
understanding.

The paper is organized as follows: Section II section cov-
ers the related assistive technologies for EPWs and seman-
tic segmentation literature. Section III section discusses

the datasets, challenges, systems’ architectures and training
setup. Systems performances and outcomes are explored in
the Section IV section. Section V section outlines the con-
straints and the future scope of the study. Lastly, Section VI
and future work are highlighted.

II. RELATED WORK
Scene understanding approaches are widely used in the
autonomous driving industry. Adopting these technologies
to help EPW users to drive safely in indoor and outdoor
environments is a novel research topic. Related work can
be divided into assistive devices for EPW users and seman-
tic segmentation for scene understanding. For the assistive
devices subsection, we will focus on the need for such a
system that can help users with visual impairments to use an
EPW as some of these users are not prescribed a powered
wheelchair due to their disabilities [4]. In the semantic seg-
mentation subsection, the focus is on state-of-the-art systems
for pixels classification.

A. ASSISTIVE DEVICES AND MOTIVATIONS
There are many motivations for disabled people to utilize
EPWs. Apart from the main reason, which is mobility, other
factors such as productivity, leisure and independence are
involved [10]. That is why assistive devices should enable
users to master their objectives independently and enhance
their quality of life. At the same time, poor design and faulty
assistive devices have a negative influence on the user’s expe-
rience [10].

Clinicians report that they saw almost the same number
of patients who cannot use a powered wheelchair as who
can [4]. Patients find it extremely difficult to manoeuvre an
EPW indoors, especially in small areas and while negotiating
doorways. Clinicians also report that 40% of their powered
wheelchair users find steering tasks difficult. At the same
time, five to nine percent find them impossible. On the other
hand, the percentage of those who cannot use a powered
wheelchair due to visual impairment, cognitive disorder or
motor skills is 85%. An automated navigation system is
believed to half this percentage [4].

Navigation systems based on computer vision, such as
driving a wheelchair using face tracking [11] or eye and
iris movement [12], [13], offer semi-autonomous and fully-
autonomous driving capabilities for EPWs’ users. More-
over, technologies such as collision detection and avoidance
can be used to assist the driver in negotiating obsta-
cles [14]. Viswanathan et al. [15] introduce a 3D stereo-
vision navigation-based system that can detect potential
object collisions by stopping the movement towards that
object, plan paths towards a specific goal using visual odom-
etry, and prompt to assist the user in navigation based on the
user’s level of awareness. A comprehensive review of smart
wheelchairs is presented in [16]. Although these systems
provide great help, they can be unsatisfactory or faulty. For
example, consider the case when a user wants to approach
an object that has been detected by the system as an obstacle.
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In this case, the autonomous systemwants to avoid the object,
while the user needs to reach that object. The only possible
solution is to disable the system. In contrast, our proposed
systems act as a guide for the user. They do not interfere
in the navigation process. They are non-intrusive systems,
which classify the environment into different classes to lead
and smooth the user’s navigation process.

One of the closely related systems to ours is presented
in [17]. A wheelchair system to guide people with severe
disabilities is used to track manually taught paths (reference
paths stored on a memory) using optical encoders mounted
on the wheelchairs’ wheels and visual beacons (passive cues)
placed throughout the wheelchair surrounding environment
(on walls, stationary objects, etc.). Relying only on the optical
encoders to estimate the wheelchair’s position may introduce
errors because of the inaccurate initial conditions, wheel
slippage, etc. Environmental cues that are captured by the
two cameras installed on the powered wheelchair are used to
correct and update the wheelchair’s position and orientation
using Kalman filter algorithm. The system uses the difference
between the reference path and the estimated position to drive
the wheelchair automatically. However, the system does not
override the control from the user to follow a path until the
user request so.

The main disadvantages of such a system are as follows:
it needs the deployment of visual cues in the wheelchair
environment. It needs a manually taught reference path.
Most importantly, the system needs a different setup for
different environments. This means that if the environment
changes, new reference paths are needed to teach the system.
Although we do not use our systems for path tracking, our
proposed systems detect visual cues automatically. There is
not any need to add physical visual cues to the environ-
ment. The proposed systems can detect the distance to a spe-
cific object using the IntelrRealSense depth camera (video).
Besides, our systems provide all the information to the user
on a screen from which the user can take full control of
the EPW (video).
In contrast to the fully autonomous EPWs systems that

take the control away from the users, which are sometimes
undesirable, our methods provide environmental cues to help
and guide them. It keeps the users in full control. EPWs
systems that provide collision avoidance support such as [18],
[19] may not be suitable for drivers who are unable to
determine their location and cannot navigate to a specific
location. Our systems allow the users to understand their
surroundings and provide them with the distance to an object
when needed. Consequently, the proposed systems can be
seen as in-between systems that can provide environmental
cues (scene understanding). At the same time, the systems
do not override the user’s ability to fully control the EPW,
which tackle both disadvantages of non-autonomous and
fully autonomous systems. Though the proposed systems can
be integrated with autonomous ones, and the users can decide
the level of assistance.

B. SEMANTIC SEGMENTATION
Fully Convolutional Network (FCN) [20] represents the fun-
damental of many state-of-the-art deep learning techniques
for semantic segmentation. Besides, it represents the base
of full scene understanding using deep learning. Semantic
segmentation techniques can be divided into two main cate-
gories: series architecture and encoder-decoder architectures.
Though, the latter architectures stem from the series ones.

FCN is considered the first work to train a network end-
to-end for pixel-wise prediction using supervised pre-trained
networks. It adapts state-of-the-art classification networks
such as AlexNet [21], VGG [22] and GoogleNet [23] to make
use of the learned features by these networks on classifica-
tion tasks and transfer them to semantic segmentation tasks
through transfer learning [24] and architecture modifications.
Architecture modifications include replacing all the fully
connected layers with convolutional ones and in-network up-
sampling to the original input image size. FCN does not
make use of pre/post-processing complications such as super-
pixels, region proposals or post-hoc refinement by random
field or local classifiers [25], [26].

Although FCN architecture has achieved a high score on
standard metrics (mean pixel Intersection over Union), the
produced semantic segmentation output is unrefined. Spatial
details are not accurate, and object boundaries are not well-
defined. It does not comprise useful global context informa-
tion, instance awareness is not presented, and performance is
far from real-time execution. Also, it is not entirely suited for
unstructured data such as 3D point cloud [27], [28].

The main challenge facing semantic segmentation is the
tension between semantics and locations (global and local
information). Many solutions have been proposed to inte-
grate context knowledge, such as Conditional Random Fields
(CRFs), dilated convolutions and multi-scale predictions.
DeepLab [29], [30]makes use of CRFs to refine segmentation
results and object boundaries as a separate post-processing
stage. Dilated convolution, also known as atrous convolution,
is used in DeepLab [8], [29]–[31] to boost output resolu-
tion. Also, multi-scale context aggregation [32] makes use of
dilated convolution. Dilated convolutions support expanding
receptive fields without trading-off the resolution. They allow
efficient dense feature extraction on any arbitrary resolution.
Besides, multi-scale sub-networks with different resolution
output are proposed to refine the coarse prediction progres-
sively [33].

Skip architecture is introduced in FCN [20] to overcome
the global/local information dilemma. Skip design combines
‘fuses’ semantic information from deep, coarse layers with
appearance ‘context’ information from shallow fine layers
to produce detailed segmentation. By doing so, the model
becomes capable of making local predictions in the sense
of the global structure. Skip connections convert the series
architecture of the FCN into a DAG one (Directed Acyclic
Graph). Skip architecture is learned end-to-end to refine the
semantics and spatial accuracy of the output [20].
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On the other hand, there is the encoder-decoder network
architecture. Many state-of-the-art semantic segmentation
architectures follow this design such as U-Net [34], Seg-
Net [35] and DLV3+ [8]. U-Net [34] is built upon FCN [20]
with some modifications to yield precise segmentation with
few training images. The main architecture modification is
the addition of the decoder part (up-sampling), where a large
number of feature channels allow the network to propagate
context information to higher resolution layers.

U-Net is trained end-to-end and outperforms the sliding
window based convolutional network [36], [37] in terms of
accuracy and inference speed. The system has achieved high
performance on biomedical image segmentation applications
using a few annotated images thanks to the data augmentation
and elastic deformation techniques. It is also promised to pro-
vide high-quality results on other segmentation applications.

Both DeconvNet [38] and SegNet [35] use VGG-16 [22]
as their feature extraction (backbone) encoder part. Unlike
DeconvNet, SegNet discards the fully connected layers of
the VGG-16 architecture. The decoder part of the DeconvNet
consists of deconvolution and un-pooling layers [38]. How-
ever, the SegNet decoder part recalls max-pooling indices
from the corresponding encoder layer during the up-sampling
process, unlike U-Net [34] which transfers the entire feature
maps from the encoder to the decoder. This makes SegNet
fast in both training and testing with a small model size and
memory footprint.

DLV3+ [8] follows the encoder-decoder structure with
DeepLabv3 (DLV3) [31] as the encoder attached to it a simple
yet effective decoder module. DLV3 and DLV3+ avoid using
CRF as it is a post-processing stage that obstructs the network
models from end-to-end training, unlike their ancestor sys-
tems DeepLabV1 (DLV1) [29] and DeepLabV2 (DLV2) [30]
which can be considered as two cascade modules systems
(Deep Convolution Neural Network (DCNN) then CRFs).
DLV3+ introduces atrous separable convolution, which is
composed of a depthwise convolution (spatial convolution
for each input channel) followed by a pointwise convolution
(1 × 1 convolution to combine the output from depthwise
convolution). This leads to a significant reduction in compu-
tation complexity. Atrous separable convolution is applied to
both Atrous Spatial Pyramid Pooling (ASPP) and the decoder
modules. ASPP is introduced in DLV2 inspired by the spatial
pyramid pooling method [39] to capture objects and context
at multiple scales.

The decoder part of DLV3+ is simpler than that of
U-Net [34] and SegNet [35]. Encoder features are first bilin-
early up-sampled by a factor of 4 and then concatenated
with corresponding low-level features. A 1 × 1 convolu-
tion reduces the number of channels of the low-level fea-
tures before concatenation. After concatenation, a few 3 × 3
convolutions are applied to refine the features, followed by
another bilinear up-sampling by a factor of 4. This strategy
is better than directly up-sampling the features by a factor
of 16 as it reduces the required computations (the number of
trainable parameters). Besides, it allows multi-scale features

to propagate through multiple layers of the decoder part.
Consequently, better information can be extracted from the
images.

In this paper, DLV3+ (the encoder-decoder structure) is
adaptedwith somemodifications (detailed in the next section)
and applied to a real-life application.

III. METHODOLOGY
A. DATASETS
Available standard datasets [40]–[44] contain general objects
of indoor environment but lack objects related to the proposed
application. Thus, collecting and annotating a task-specific
dataset is a non-avoidable requirement. For example, the
door handle class in the aforementioned datasets is generic.
Whereas the proposed indoor dataset contains different kinds
of door handles for better perception and human-system inter-
action. An Intelr RealSense depth camera is installed on the
Roma Reno II EPW for data collection and inference (Fig. 1).
Objects of interest are doors, floors, walls, fire extinguishers,
key slots, switches, and different kinds of door handles such
as moveable, pull, and push door handles.

These objects are not only important for EPWs users but
also for any robotic platform. Any robotic platform which
uses particular actuators to open a door would require infor-
mation about the type of the door handle in order to engage
a suitable strategy for opening the door. For example, pull
door handles require different actuation than moveable door
handles. The ADAPT project chooses these classes as they
represent the main objects an EPW user may need to interact
with or utilize on a daily life basis. Other classes of interest
can be added later depending on the user’s ability and the
surrounding environment.

The proposed indoor dataset can be augmented using some
classes from the ADE20K [40], [41], NYU depth [42], [43]
and SceneNN [44] datasets which have objects instances of
indoor environment. However, specific classes, such as door
handle types, do not exist in these datasets. These classes,
besides key slot and switch classes, are infrequent. Never-
theless, they are important for our application. To keep a
balanced distribution of class pixels, abundant classes such
as door, floor, and wall are not included from the standard
datasets. However, more objects from standard datasets may
be included to create a customized implementation of the
system upon the user’s need and the adequate distribution
of important task-oriented labels. This may require systems
retrain to tune their weights on the extended tasks.

While driving the EPW through the indoor environ-
ment, a one-minute video is recorded and annotated. Images
extracted from the video are shuffled and split randomly
into 70% for training (1084 images), 15% for validation
(232 images), and 15% for testing (233 images). Examples of
the collected data with ground truth annotations are shown in
Fig. 2. Pixels that do not fit into any of the eight predefined
classes were assigned to an extra class called ‘Background
Wall’ class. At the same time, small areas between two
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FIGURE 1. Camera installation. Camera is installed beneath the EPW’s joy stick so that there is no
interference with the users’ legs which can obstruct vision.

different classes, such as door frames or cupboards, are kept
unannotated (void pixels). These pixels cannot fit in one
class, such as the ‘Background Wall’ class, as they belong
to different categories of objects.

Unlike the well-known datasets [45], [46], which usually
have one big object per image, the proposed dataset has many
objects per image; some of them can be categorised as small
objects such as door handles and switches. In addition, these
small objects are not available in the aforementioned datasets.
This needs novel approaches that can produce better accuracy
and sharp edges. Using high resolution and large size images
may help to tackle this problem asmany pixels will be utilized
and contribute to the object classification. This may need high
computation than smaller and fewer resolution images. That
is why we used the elegant architecture of residual blocks and
a smaller but powerful base network such as ResNet-18 com-
pared to ResNet-50, ResNet-101 [9] or Xception [47] that are
used in the original implementation of DLV3+ [8]. Thus, the
system footprint can be reduced, which may help to deploy
the system on a GPU-based hardware for inference. Besides,
a semantically segmented environment can be displayed to
the users in real-time or near real-time without sacrificing the
system’s accuracy.

The only common thing between the proposed indoor
dataset and the one presented in [48] is that both are recorded
in the same environment. However, they are different in
the following: the system setup and the devices used for
recording are different because the dataset presented in [48]
is recorded by a handheld standard camera. Whereas the pro-
posed dataset is collected using an IntelrRealSense camera
installed on a Roma Reno II EPW to gain the same per-
spective and orientation as an EPW user. Larger images with
better resolution, consequently more pixels, are collected to

overcome the problem of small objects presented in the same
study [48] and to utilize more pixels to enhance the overall
system accuracy for small objects. The proposed dataset is
annotated on the pixel level (for semantic segmentation).
In contrast, the previous version is annotated on the bounding
boxes level (for object detection). Finally, unlike the previous
version, the proposed dataset is made publicly available for
other researchers using this link.

The proposed dataset images might look homogeneous
as it has been collected from one trajectory. Many factors
can affect the perspective of the captured dataset, such as
camera installation, which is limited by the available space
on the EPW. However, we were able to capture different
angles, directions, and orientations of small and rare objects
of interest under different illuminations. Fig. 3 shows the
front, side, and partial moveable door handles captured during
the data collection. Besides, data augmentation is employed
during training, giving another dimension for the dataset
and increasing the model’s robustness and ability to gener-
alize to other environments. Furthermore, the dataset will be
extended along with the study and future work.

EPWs have limited positions where a vision camera can
be integrated or placed. The size of the EPW constrains these
positions. Also, placing a camera on an EPW should not be
obscured by the driver’s body, legs, or hands. We proposed
two locations that can be used for this purpose. The first
option is a camera installed below the joystick controller,
as shown in Fig. 1b. The second choice is a camera installed
on a stick/holder that can be extended above the driver’s
head. There might be other places depending on the EPW
type and design. For each case, a video has been collected.
Each of them is recorded in two different environments to
capture different perspectives and trajectories. We annotated
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FIGURE 2. Indoor ground truth data. Examples from the collected indoor dataset with the first row
represents the original images and the second one represents the annotated ones.

FIGURE 3. Moveable door handles. Although dataset objects might look similar, we were able to collect different angles and orientations of rare
classes under different light conditions.

and used the first video in this study. The second one is under
processing and will be added to the public dataset and used
in our future work.

For the outdoor environment, we used the CamVid
dataset [7] to train a second semantic segmentation system.
CamVid dataset [7] has 701 images annotated on the pixel
level for 32 classes. Images are captured outdoors from the
perspective of a driving car. We categorised the 32 classes of
the CamVid dataset into 11 classes for simplicity: Building,
Pole, Road, Pavement, Tree. Sign/Symbol, Car, Pedestrian,
Bicyclist, Sky, and Fence.

Similarly, the outdoor dataset is split randomly into 70%
for training (491), 15% for validation (105 images) and 15%

for testing (105 images). Examples of the CamVid [7] ground
truth data are shown in Fig. 4.

B. CHALLENGES
Many of the objects of interest in the proposed indoor dataset
can be classified as small size objects. Small size objects do
not possess enough pixels to be utilized for feature extrac-
tion. Also, distinguishing between different door handles
represents a great challenge because of their common colour
and location in the dataset’s images. Consequently, con-
ventional object detection and semantic segmentation tech-
nique traditionally employed to detect objects occupying a
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FIGURE 4. CamVid ground truth data. The first row represents the original images and the second one
represents the annotated ones.

large portion of images cannot be used [48]. In particular,
object boundaries and intersections between objects are very
poorly detected or segmented using conventional deep learn-
ing methods [20].

A semantic segmentation system that can incorporate two
different contexts (indoor and outdoor images) is another
major challenge, not only because the images of the datasets
are limited but also because images’ types are different.
A system that is trained to semantically segment indoor
images can not perform well on outdoor scenarios and vice
versa. This is because datasets’ images have different dis-
tributions and modalities. We introduce shared systems that
incorporate both scenarios. However, the achieved results are
not as competent as the achieved results by the individual
systems.

There will always be a trade-off between the system’s
speed and accuracy. As the proposed systems are meant to be
deployed on an EPW for environment parsing, we propose
using a relatively small backbone network (ResNet-18) that
can achieve better Frame Per Second (FPS) compared to
ResNet-50 and Xception without sacrificing accuracy thanks
to the residual block architecture. Table 1 shows the number
of layers and trainable parameters of the tested systems with
different base networks.

C. SYSTEM ARCHITECTURE
The proposed systems are based on DLV3+ architec-
ture for semantic segmentation [8] with some modifica-
tions. The architecture’s base network uses residual blocks,
which help the system to process high-resolution images
(960 × 540 × 3 pixels) using a deep network (many layers)

TABLE 1. The number of layers and trainable parameters of the tested
systems with different base networks.

without losing information because of the vanishing gradi-
ents problem. In the original implementation of DLV3+,
ResNet-50, ResNet-101 [9], and Xception [47] networks are
used as the system’s feature extraction network. In this paper,
various feature extraction networks have been experimented
as the backbone of the systems, besides those used in the
original implementation. However, ResNet-18 is the choice
due to its small size and fewer parameters compared to its
elder sisters (ResNet-50 and ResNet-101). Also, it can pro-
duce better FPS and comparable accuracy, as shown in the
Section IV section.
Very deep networks suffer from vanishing/exploding gra-

dients [49], [50]. Residual blocks help to mitigate this prob-
lem by reusing the activations from previous layers until the
adjacent layer learns its weights [9]. This allows the network
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FIGURE 5. Residual block. The main building block for ResNet-18,
ResNet-50, and ResNet-101.

to learn more low-level features without being worried about
performance degradation as it goes deep. The architecture
elegance is attributed to the short-cut connections that do not
add either extra parameters or computational complexity [9].
A residual block structure can be seen in Fig. 5.

Unlike FCN [20], DLV3+ uses the encoder-decoder struc-
ture [8]. The encoder part uses the same design of DLV3 [31],
which uses dilated convolution ‘atrous’ to increase the recep-
tive field of the layers. Atrous convolution is used to control
the resolution by enlarging the field of view to incorporate a
large context without increasing the number of parameters or
computation. At the same time, a simple but effective design
is used as a decoder network. Combined, they represent the
DLV3+ network. The encoder-decoder approach has proved
its efficiency to refine object edges, resulting in better accu-
racy and Intersection over Union (IoU).

This study adopts DLV3+ design but using ResNet-18
as a backbone feature extraction network (Fig. 6). Besides,
the input layer is modified to accept large size image inputs
with 960 × 540 × 3 pixels. The indoor, outdoor and shared
proposed systems are used to semantically segment images
of both indoor application-based and outdoor datasets.

Creating a system that can semantically segment indoor
and outdoor environments simultaneously is challenging as
data distribution and context differ. Also, the size of the
datasets in both cases is limited. Consequently, it is chal-
lenging for any model to fit both scenarios. Thus, we intro-
duce a novel approach by merging both the indoor and the
outdoor systems after the training process of each system
individually (Fig. 7). The intuition is to make use of the
learned information and weights by both individual systems
(indoor and outdoor) without retraining a new system on a
new combined dataset. The proposed techniques can help
to combine systems from different domains, save training
time and resources, and achieve adequate results on different
scenarios simultaneously.

Our first trial is depicted in Fig. 7a, which resulted in
the proposed shared system 1. The system is constructed as

follows: after training both systems (an indoor system on the
indoor dataset and an outdoor system on the outdoor dataset),
we extracted the feature extraction network (encoder) from
one of the systems. Then, we connect this encoder to both
decoders of the indoor and the outdoor systems. After that,
we concatenate both outputs of both decoders. Lastly, the
concatenated output is propagated through a softmax and
pixel classification score layers that output the annotated
image with the highest confidence score among all of the
indoor and the outdoor classes.

The proposed shared system 1 is an end-to-end system
that does not need any further post-processing for the output.
However, the system performance is highly impacted by the
encoder part. This means that if we use the encoder part
of the indoor system, the overall shared system performance
on the indoor dataset will be better than that on the outdoor
dataset and vice versa. Consequently, this system is biased
by its encoder part. This leads to the second and third trials
which are depicted in Fig. 7b and Fig. 7c, respectively.

In the second trial (Fig. 7b), the encoders and the decoders
of the trained indoor and outdoor semantic segmentation
systems are included. After up-sampling to the original image
size, we concatenate both images using the depth concate-
nation layer. Then, we add the softmax and the pixel clas-
sification score layers. Lastly, the displayed output is the
segmented image with the highest pixels’ confidence scores
across all of the 20 classes (9 indoor and 11 outdoor classes).

Shared system 2 performs well on both the indoor and the
outdoor datasets. It is an end-to-end system that does not need
any post-processing. However, scoring the pixels with respect
to the 20 indoor and outdoor classes of the shared system 2
is more challenging than scoring 9 or 11 classes of the indi-
vidual indoor and outdoor systems, respectively. It is a highly
competitive scoring process between the 20 classes where the
uncertainty increases, especially between dominant classes
such as ‘Sky’ and ‘Background Wall’ from the indoor and
the outdoor datasets, respectively. Consequently, the system’s
performance is adequate but not as good as the individual
systems.

The main intuition behind the shared system 3 (Fig. 7c)
is to make use of the individual systems’ high performances.
We use both of the individual indoor and outdoor semantic
segmentation systems to parse the same image. Then, we dis-
play the highest pixels’ confidence scores annotated output
to the user. Shared system 3 detailed process is as follows:
the encoders of both the indoor and the outdoor systems are
included. Similarly, the decoder parts of both systems are
included. Using the proposed shared system 3, we obtain two
outputs from the two parallel systems. We then apply one
post-processing step to determine which output from the two
individual systems should be displayed. The mean of each
row of the output pixels confidence scores is calculated for
both individual systems, resulting in two vectors of means
with the same height as the input image. Then, the maximum
values of each vector are compared. If the indoor system
achieves a maximum value that is higher than that of the
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FIGURE 6. System architecture. The encoder part with ASPP and the decoder part with simple bilinear
upsampling.

outdoor system, then the input image is assumed to be an
indoor image and vice versa. Accordingly, we display the
system’s output that achieves the highest maximum value.

Different comparison techniques of the pixels’ confidence
scores are tried, for example, comparing pixel by pixel and
displaying the system’s output that has the highest number of
pixels with the highest pixels’ confidence scores. However,
the ‘max(mean(score)’ approach has achieved the highest
performance.

The proposed shared system 3 needs a post-processing
step for the pixels comparison of the two individual systems.
As the encoders and decoders of both systems are included,
the system inference speed has slowed, which negatively
impacts the system’s real-time operation. On the bright side,
the system can produce better results in both indoor and
outdoor environments. One of the study’s future work is to
explore different system architectures that can enhance the
system’s inference speed while achieving high performance
on two or more scenarios.

D. TRAINING
The indoor and the outdoor systems are trained end-to-end
with the following parameters: Stochastic Gradient Descent
with Momentum (SGDM) is used as the training optimiser
with 0.9 momentum. The Learning rate starts at 0.001 and
then drops by a factor of 0.3 every ten epochs. The afore-

mentioned training parameters are chosen after several exper-
iments with different parameters to achieve the best per-
formance. To avoid overfitting, L2 regularisation is used.
Training examples are shuffled every epoch to limit sequence
memorising and avoid computing the gradients for the same
batch of images. Image normalisation is employed to rescale
all the pixels’ values in the range of zero to one. Lastly,
data augmentation with X and Y translations is employed to
enhance model generalisation, which can increase the overall
system accuracy. To avoid bias in favour of dominant classes,
inverse frequency weighting is used to balance the classes
weightings. This method increases class weights for under-
represented classes. Additionally, different hyper-parameters
and optimisation algorithms are tried to achieve the high-
est performance. Moreover, for reproducibility, systems are
trained several times under the same configurations.

The introduced systems are trained on a personal computer
with a NVIDIA GeForce RTX 2080. Training time varies as
the training process can be stopped early when the loss of the
validation dataset plateaus or when it reaches the maximum
epochs of the training process (30 epochs). For the indoor
dataset, the model’s loss is validate every 200 iterations.
However, the model’s loss is validated every 50 iterations
for the outdoor dataset. The difference in the two cases is
attributed to the mini-batch size, the sizes of the datasets,
and the model’s size. The largest mini-batch size that can
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FIGURE 7. Shared network architectures. Shared system 1 uses either the trained feature extraction network (encoder) of the indoor or the
outdoor semantic segmentation systems. Shared system 2 uses both feature extraction networks of the indoor and the outdoor systems.
Shared system 3 uses the indoor and the outdoor semantic segmentation system simultaneously with an added post-processing step to
display the annotated output that has the highest pixels’ confidence scores.

accommodate the available memory is sought. The largest
mini-batch sizes are 8 and 4 in the case of the outdoor and the
indoor datasets, respectively. The mini-batch size is reduced
if the available memory can not accommodate the model size
with a large mini-batch size. Consequently, the number of
iterations per epoch varies. Table 2 shows the training time
of each model, the used mini-batch size, the stopping epoch
and the trained model size.

Systems are trained end-to-end using high-resolution and
large-size training images of 960 × 540 × 3 pixels from the
indoor and the outdoor datasets, unlike the original imple-
mentation of DLV3+, which crops patches of 513× 513 size
from the PASCAL VOC dataset [45] images during training
and testing. The proposed training approach enhances the
system’s ability to semantically segment small size objects
alongside medium and larger size ones. Also, this boosts the
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TABLE 2. Training details.

effectiveness of large rate atrous convolutions as its weight
can be applied to actual pixels and not to zero paddings.

IV. RESULTS AND DISCUSSION
Average pixels intersection over union (mIoU) is the method
employed to evaluate the system’s performance. Table 3
shows the detailed results of state-of-the-art systems. The
proposed DLV3+ with ResNet-18 based systems have
achieved mIoU of 0.572/0.696 and mean BF scores of
0.673/0.772, for the indoor and the outdoor datasets, respec-
tively. BF score measures the alignment of the predicted
object boundaries with the true ones.

Both systems have achieved high global and mean accu-
racy (0.970/0.915 and 0.791/0.874 for the indoor and the
outdoor datasets, respectively). Global accuracy is the ratio
between correctly classified pixels, regardless of the class,
to the total number of pixels. In comparison, mean accuracy
represents the correctly classified pixels for each class aver-
aged over all classes.

To ensure the reproducibility of our results, we trained both
the indoor and the outdoor systems three times. Images are
shuffled and randomly split to guarantee that different images
are used for training and testing at each time. Table 4 shows
the mean and the standard deviation of both systems’ metrics.
It can be seen that the proposed systems are robust and can
reproduce the results under different conditions.

The detailed results for each class of the indoor dataset
are shown in Table 5. It can be observed that objects with
bigger sizes and larger numbers of pixels have achieved the
highest IoU and BF scores, such as doors and background
walls, while smaller objects have achieved the lowest IoU,
such as pull and push door handles. This is understandable
due to the few instances and pixels per object for small
size objects in the proposed indoor dataset. Besides, it is
challenging for any tested systems to align the predicted
segments with the ground truth ones, reflected by the IoU
metric, as these objects are tiny (for example, DLV3+ with
ResNet-50 has achieved 0.102 IoU for the push door han-
dle class. Detailed results for different models are shown in
the appendix (Supplementary tables and figures)). However,

small size objects have achieved satisfactory accuracy and
BF score. An adequate BF score is vital to our application
as it reflects the system’s ability to define object boundaries
effectively. This is very important for visually impaired users
(Fig. 13).
The outdoor system has achieved similar results (Table 6)

to the indoor one as small-sized objects such as pole has
achieved the lowest IoU. Whereas medium and big size
objects have achieved better IoU and BF scores.

The three-stream model (FCN-8s), which adds two skip
connections at layers pool3 and pool4, has achieved better
overall results compared to FCN-16s, which add one skip
connection at pool4 layer, and the series version of FCN
(FCN-32s). In contrast, the deeper version of SegNet (Seg-
Net with VGG-19) is not as accurate as the smaller version
(SegNet with VGG-16), similar to DLV3+ with ResNet-18
that can achieve better performance compared to its deeper
version (DLV3+ with ResNet-50). It can be concluded that
deeper versions of semantic segmentation models do not
ensure better performance. U-Net performance is the lowest
among the tested systems.

The achieved FPS for DLV3+ with ResNet-18 is better
than that of DLV3+ with ResNet-50 and with Xception
base networks (Table 7). The accuracy and speed can be
enhanced further by increasing the number of small object
instances in the proposed dataset and using a newer version
of a GPU based board such as the Jetson AGX Xavier board.
Also, the proposed shared systems have achieved adequate
speed. The most accurate shared system (shared system 3)
has achieved the lowest speed among the proposed ones.
However, the lowest accurate shared system (shared system
1) has achieved the highest speed amongst the introduced
shared systems. Interestingly, the proposed shared systems
have achieved higher FPS than state-of-the-art systems such
as FCN, SegNet and U-Net. Although the proposed shared
systems have more layers, they have less trainable parameters
and smaller footprints. Besides, they utilise residual blocks,
which can explain their fast inference speed.

Similar observations can be extracted from the indoor con-
fusion matrix shown in Fig. 8. It can be seen that the indoor
model is slightly confused to distinguish between pixels of
different door handles and key slot. The analogous silver
colour and orientation of the door handles can represent a
reason for that problem. This can be alleviated by increasing
these object instances in the proposed dataset. For the outdoor
confusion matrix, there is a slight confusion between the sign
symbol and the pole classes, which can be attributed to the
similarity of their structure.

Fig. 9 and Fig. 10 show some examples of the indoor
and the outdoor systems in action where it can segment
the scenery with good accuracy and sharp edges. Three
rows of images are shown where the first row represents
the ground truth data, the second one shows the model’s
prediction, and the third one demonstrates the difference
between the prediction and the ground truth data. The intense
green and magenta colours that are shown in the third row
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TABLE 3. Results of running the trained individual models on the test set of the indoor and the outdoor datasets.

TABLE 4. Mean and standard deviation of three trained models on the indoor and the outdoor datasets.

FIGURE 8. Confusion matrices for the indoor and the outdoor systems.

indicate these differences. These pixels are unannotated or
misclassified. The green colour shows the unannotated pixels
which do not belong to objects of interest. Whereas the
magenta one shows the misclassification of some parts of
an object.

It can be seen from Fig. 9 that the unannotated pixels
in-between two annotated objects which do not belong to
either object can represent a challenge to the proposed net-
work. For instance, the indoor system struggles to classify
door frame pixels as they do not belong to the door or the

wall. Besides, they are not annotated in the proposed dataset.
This represents a challenge during inference.

One solution is to annotate door frames as a separate class.
Training a semantic segmentation system on a dataset that has
some unannotated pixels increases the system’s uncertainty.
However, annotating every pixel, even if it does not belong to
any class of interest, reduces the system’s uncertainty because
they act as a false positive for the objects of interest. This
can be done by annotating all the pixels in an image. This
will increase the overall system accuracy and enhance the
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FIGURE 9. Results visualization using the proposed indoor system on the test set. The first row represents the ground truth data, the second row
represents the system’s output and the third row represents the difference between the ground truth and the prediction.

TABLE 5. Per-class metrics of the indoor system using DLV3+ with
ResNet-18 on the test set.

detection of the objects boundaries. However, the process of
annotating every pixel is extremely labouring intense.

Fig. 12 shows the qualitative segmentation comparison
between the proposed and state-of-the-art systems. FCN-32s
is the series version of FCN with an up-sampling stride of 32
and no skip connections. It is demonstrated that DLV3+
can define object boundaries better than FCN. At the same
time, FCN segmentations can be seen as patches with fuzzy
boundaries. For example, it is challenging to distinguish the
moveable door handle grip from the body in FCN-32s seg-
mentation. Similarly, U-Net could not predict all the pix-

TABLE 6. Per-class metrics of the outdoor system using DLV3+ with
ResNet-18 on the test set.

els correctly, especially small objects such as door handles.
Although SegNet defines object boundaries well, the uncer-
tainty pixels around the correctly predicted pixels are high.

On the other hand, the grip in the DLV3+ segmentation
is well defined, which facilitates its manipulation using a
robotic arm. Table 3 emphasizes the qualitative assessment.
Compared to state-of-the-art systems, the proposed DLV3+
models have achieved better mIoU and mean BF scores (con-
tour matching score).
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FIGURE 10. Results visualization using the proposed outdoor system on the test set. The first row represents the ground truth data, the second row
represents the system’s output and the third row represents the difference between the ground truth and the prediction.

TABLE 7. The average speed of the tested models in FPS when deployed
on a Jeston TX2 GPU based board.

Shared systems 1, 2, and 3 have achieved adequate perfor-
mance but are not as good as the individual ones (Table 8).
For shared system 1 (Fig. 7a), when the encoder of the
indoor semantic segmentation system is used, the system has
achieved a mean accuracy of 0.676 and 0.456 on the indoor
and outdoor datasets, respectively. Also, it has achieved
mIoU of 0.591 and 0.300 on the indoor and the outdoor
datasets, respectively. Whereas when the encoder of the out-

door semantic segmentation system is used, the system has
achieved a mean accuracy of 0.185 and 0.852 on the indoor
and the outdoor datasets, respectively. Also, it has achieved
mIoU of 0.182 and 0.689 on the indoor and the outdoor
datasets, respectively.

Results show that the used encoder has a direct impact
on the overall system performance. The encoder of shared
system 1, which has been trained on the indoor dataset, can
produce better results on the indoor images compared to the
outdoor ones and vice versa. This indicates the bias of shared
system 1 to the used encoder.

Shared system 2 (Fig. 7b) has achieved mean accuracy and
mIoU of 0.594 and 0.555 on the indoor dataset. Whereas it
has achieved mean accuracy and mIoU of 0.830 and 0.657 on
the outdoor dataset. The performance of the shared system is
acceptable. However, the individual systems produce better
results. Detailed results of the shared systems are shown in
Table 8, where both shared systems 1 and 2 have achieved
acceptable Mean BF scores.

As shared system 3 (Fig. 7c) propagates the images through
both the individual indoor and outdoor semantic segmenta-
tion systems, the shared system’s metrics are similar to the
individual ones, which are the best-achieved metrics in terms
of accuracy, IoU and BF score. However, as shared system 3
compares the pixels’ scores of the individual systems (post-
processing step), the displayed annotated image is dependant
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TABLE 8. Shared systems 1 and 2 detailed metrics.

TABLE 9. Classification capabilities of shared system 3 using different techniques for scores comparison.

TABLE 10. Per-class metrics of the indoor system using FCN-8s on the
test set.

on that comparison. Table 9 shows the ability of the system to
classify the input images as indoor or outdoor ones depending
on the pixels’ confidence scores using different comparison
techniques.

To test the ability of the system to correctly classify the
input images as indoor or outdoor ones, we propagate the
indoor and the outdoor test sets images through the system.
Shared system 3 is able to classify all of the images correctly
using Max(Mean(score)) comparison technique described in
the system architecture subsection. To obtain more robust
results, we shuffled the indoor and the outdoor datasets. Then,
the mixed dataset is split randomly into 70% training set,
15% validation set, and 15% testing set. This results in a
mix (In+Out) test set with 337 images (232 indoor images
and 105 outdoor images). Shared system 3 miss-classified 11
images form the (In+Out) test set as outdoor ones using the
Max(Mean(score)) comparison technique (Table 9).

The system’s inference speed is dependant on many factors
such as the number of trainable parameters, the system’s
footprint and whether any post-processing techniques are
applied. Table 7 shows the speed of the proposed shared
systems. Shared system 1 has fewer layers and footprint
(Table 1) compared to Shared systems 2 and 3. Consequently,

TABLE 11. Per-class metrics of the indoor system using FCN-16s on the
test set.

TABLE 12. Per-class metrics of the indoor system using FCN-32s on the
test set.

it has achieved the fastest inference speed among the pro-
posed shared systems with 1.49 FPS. Shared system 3 is
the slowest with 1.16 FPS. It has the largest footprint and a
post-processing step. However, the proposed shared systems’
inference speeds are higher than FCN, SegNet and U-Net
systems.

Choosing the right system for the right application is a
trade-off process between accuracy, inference speed, and the
application domain. The deployment of the proposed indoor
system can be seen in Fig. 11. The user is controlling the EPW
while the information is being displayed on the screen.
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FIGURE 11. System deployment. The proposed systems are deployed on an EPW with a display, a Nvidia Jetson
TX2 board, and a depth camera.

TABLE 13. Per-class metrics of the indoor system using SegNet with
VGG-16 on the test set.

TABLE 14. Per-class metrics of the indoor system using SegNet with
VGG-19 on the test set.

TABLE 15. Per-class metrics of the indoor system using U-Net on the test
set.

V. LIMITATIONS OF THE STUDY
In this section, the limitations of the study and means of
mitigation are discussed. Model choice is dependant on the
application. The system’s speed and accuracy are the main
concerns of this application. More precisely, the ability of the

TABLE 16. Per-class metrics of the indoor system using DLV3+ with
ResNet-50 on the test set.

TABLE 17. Per-class metrics of the indoor system using DLV3+ with
Xception on the test set.

system to clearly define objects boundaries. It is challenging
to develop a model that can achieve significant accuracy
with high inference speed. Tolerating high inference rates is
acceptable as disabled users do not drive fast due to the speed
limitation of the EPW. Consequently, the performance of the
proposed system is adequate for the application.

One of the major problems facing semantic segmentation
tasks is the ability of the systems to process data from two
different distributions. The proposed shared systems offer
solutions for this problem by merging the learned features
of the two models (the indoor and the outdoor systems).
However, solving the multi-model data processing issue has
negatively impacted the system’s speed and accuracy. Thus,
the application should determine its needs and compromises
to achieve the best model for a given application.
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FIGURE 12. Qualitative comparison between the proposed indoor system based on DLV3+ and state-of-the-art systems.

Unannotated pixels of the ground truth data represent a
challenge for the proposed semantic segmentation systems.
As the systems need to assign each pixel in an image to
one of the predefined classes, unannotated pixels, which
belong to classes of non-interest, will be assigned to one
of the predefined classes. Comparing predicted pixels with
the unannotated ones of the ground truth data can result
in inaccurate metrics. Usually, these predicted pixels have
low confidence scores. We propose to assign the predicted

pixels below a specific threshold to a ‘Reject’ class [51].
Consequently, they can not be included in the evaluation
process, resulting in quantitatively and qualitatively accurate
predictions.

The future work of our studywill concentrate on expanding
the proposed dataset, especially small size objects, which
can have a positive impact on the overall system’s accuracy.
Besides, investigating different shared system architectures
that can process multi-modal data at high inference speed.
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FIGURE 13. Visually impaired users. Illustrated by the clouded areas, short-sightedness users cannot see far object (a), while
semi-neglect users cannot see half of the scene (b).

VI. CONCLUSION
In this paper, semantic segmentation systems for indoor and
outdoor environments are presented. The proposed pixel clas-
sification systems have demonstrated high efficiency with
adequate accuracy and BF scores. These systems are intended
to help visually impaired EPWs’ users to navigate safely
and to interact with the environment. Results show the pro-
posed systems’ abilities to precisely localize and process
images compared to state-of-the-art semantic segmentation
techniques. The proposed indoor system has achieved better
mean BF scores with 9% and 5% higher than FCN-32s and
DLV3+ with ResNet-50, respectively. Whereas the outdoor
system has achieved a 15% better mean BF score than the
FCN-32s system. The indoor and the outdoor systems have
also achieved a processing speed of 2.65 FPS compared
to 1.57 FPS and 2 FPS that DLV3+ with ResNet-50 and
Xception have achieved, respectively.

The proposed shared systems that can process indoor and
outdoor images simultaneously have achieved adequate per-
formance on both tasks. Though, the inference speed and
the overall performance is lower than that of the individual
systems. Trading-off accuracy and speed with multi-modal
data processing is desirable in many applications. Besides,
the introduced shared systems do not require any retraining,
which is another advantage that makes them flexible and
adaptable in many domains. Being able to segment images
from two different data distributions simultaneously is chal-
lenging. Nevertheless, it is significantly important in many
applications that we believe our shared systems can han-
dle. The proposed systems are deployed on a GPU based
board and integrated on an EPW for practical usage. Besides
expanding the proposed indoor dataset, increasing the accu-
racy and speed of the systems are the project’s future steps.

APPENDIX
SUPPLEMENTARY TABLES AND FIGURES
See Tables 10–17, and see Figs. 12 and 13.

REFERENCES
[1] A. Carlsson and J. Lundälv, ‘‘Acute injuries resulting from accidents

in, volume ving powered mobility devices (PMDs)—Development
and outcomes of PMD-related accidents in Sweden,’’ Traffic
Injury Prevention, vol. 20, no. 5, pp. 484–491, Jul. 2019, doi:
10.1080/15389588.2019.1606910.

[2] R. P. Gaal, N. Rebholtz, R. D. Hotchkiss, and P. F. Pfaelzer, ‘‘Wheelchair
rider injuries: Causes and consequences for wheelchair design and selec-
tion,’’ J. Rehabil. Res. Develop., vol. 34, no. 1, pp. 58–71, 1997.

[3] W.-Y. Chen, Y. Jang, J.-D. Wang, W.-N. Huang, C.-C. Chang, H.-F. Mao,
and Y.-H. Wang, ‘‘Wheelchair-related accidents: Relationship with
wheelchair-using behavior in active community wheelchair users,’’ Arch.
Phys. Med. Rehabil., vol. 92, no. 6, pp. 892–898, Jun. 2011.

[4] L. Fehr, W. E. Langbein, and S. B. Skaar, ‘‘Adequacy of power wheelchair
control interfaces for perSons with severe disabilities: A clinical survey,’’
J. Rehabil. Res. Develop., vol. 37, no. 3, pp. 353–360, 2000.

[5] (2020). Office Website ADAPT Project. Accessed: Oct. 29, 2020. [Online].
Available: http://adapt-project.com/index-en.php

[6] P. Nelson, G. Verburg, D. Gibney, and L. Korba, ‘‘The smart wheelchair.
A discussion of the promises and pitfalls,’’ inProc. 13rd Annu. Conf., 1990,
pp. 307–308.

[7] G. J. Brostow, J. Fauqueur, and R. Cipolla, ‘‘Semantic object classes in
video: A high-definition ground truth database,’’ Pattern Recognit. Lett.,
vol. 30, no. 2, pp. 88–97, 2009.

[8] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, ‘‘Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 801–818.

[9] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[10] L. Jensen, ‘‘User perspectives on assistive technology: A qualitative anal-
ysis of 55 letters from citizens applying for assistive technology,’’ World
Fed. Occupational Therapists Bull., vol. 69, no. 1, pp. 42–45, May 2014.

[11] Y. Matsumotot, T. Ino, and T. Ogsawara, ‘‘Development of intelligent
wheelchair system with face and gaze based interface,’’ in Proc. 10th IEEE
Int. Workshop Robot. Hum. Interact. Commun., Dec. 2001, pp. 262–267.

[12] G. C. Rascanu and R. Solea, ‘‘Electric wheelchair control for people with
locomotor disabilities using eye movements,’’ in Proc. 15th Int. Conf. Syst.
Theory, Control Comput., 2011, pp. 1–5.

[13] P. Arora, A. Sharma, A. S. Soni, and A. Garg, ‘‘Control of wheelchair
dummy for differently abled patients via iris movement using image
processing in MATLAB,’’ in Proc. Annu. IEEE India Conf. (INDICON),
Dec. 2015, pp. 1–4.

[14] M. Henderson, S. Kelly, R. Horne, M. Gillham, M. Pepper, and
J.-M. Capron, ‘‘Powered wheelchair platform for assistive technology
development,’’ in Proc. 5th Int. Conf. Emerg. Secur. Technol., 2014,
pp. 52–56.

[15] P. Viswanathan, J. Little, A. Mackworth, and A. Mihailidis, ‘‘Adaptive
navigation assistance for visually-impaired wheelchair users,’’ in Proc.
Workshop New Emerg. Technol. Assistive Robot., 2011, pp. 1–2.

[16] J. Leaman and H. M. La, ‘‘A comprehensive review of smart wheelchairs:
Past, present, and future,’’ IIEEE Trans. Human-Mach. Syst., vol. 47, no. 4,
pp. 486–499, Aug. 2017.

[17] J.-D. Yoder, E. T. Baumgartner, and S. B. Skaar, ‘‘Initial results in the
development of a guidance system for a powered wheelchair,’’ IEEE Trans.
Rehabil. Eng., vol. 4, no. 3, pp. 143–151, Sep. 1996.

[18] P. Viswanathan, J. Boger, J. Hoey, and A. Mihailidis, ‘‘A comparison
of stereovision and infrared as sensors for an anti-collision powered
wheelchair for older adults with cognitive impairments,’’ in Proc. 2nd Int.
Conf. Technol. Aging, Toronto, ON, Canada, 2007, pp. 1–8.

VOLUME 9, 2021 147931

http://dx.doi.org/10.1080/15389588.2019.1606910


E. Mohamed et al.: Indoor/Outdoor Semantic Segmentation Using Deep Learning for Visually Impaired Wheelchair Users

[19] S. Chatzidimitriadis, P. Oprea, M. Gillham, and K. Sirlantzis, ‘‘Evaluation
of 3D obstacle avoidance algorithm for smart powered wheelchairs,’’ in
Proc. 7th Int. Conf. Emerg. Secur. Technol. (EST), Sep. 2017, pp. 157–162.

[20] E. Shelhamer, J. Long, and T. Darrell, ‘‘Fully con, vol.utional networks for
semantic segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640–651, Apr. 2017.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[22] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[24] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, ‘‘DeCAF: A deep convolutional activation feature for generic
visual recognition,’’ in Proc. Int. Conf. Mach. Learn., 2014, pp. 647–655.

[25] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, ‘‘Learning hierarchical
features for scene labeling,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1915–1929, Aug. 2013.

[26] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, ‘‘Simultaneous
detection and segmentation,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2014, pp. 297–312.

[27] Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew, ‘‘A review of semantic
segmentation using deep neural networks,’’ Int. J. Multimedia Inf. Retr.,
vol. 7, no. 2, pp. 87–93, Jun. 2018.

[28] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and
J. Garcia-Rodriguez, ‘‘A review on deep learning techniques applied to
semantic segmentation,’’ 2017, arXiv:1704.06857.

[29] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘Semantic image segmentation with deep convolutional nets and fully
connected CRFs,’’ 2014, arXiv:1412.7062.

[30] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2017.

[31] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, ‘‘Rethinking atrous
convolution for semantic image segmentation,’’ 2017, arXiv:1706.05587.

[32] F. Yu and V. Koltun, ‘‘Multi-scale context aggregation by dilated convolu-
tions,’’ 2015, arXiv:1511.07122.

[33] D. Eigen and R. Fergus, ‘‘Predicting depth, surface normals and semantic
labels with a common multi-scale con, vol.utional architecture,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 2650–2658.

[34] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[35] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep convolu-
tional encoder-decoder architecture for image segmentation,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.

[36] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, ‘‘Deep
neural networks segment neuronal membranes in electron microscopy
images,’’ in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 2843–2851.

[37] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. pattern Recognit., Jun. 2014, pp. 580–587.

[38] H. Noh, S. Hong, and B. Han, ‘‘Learning decon, vol.ution network for
semantic segmentation,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1520–1528.

[39] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in deep
convolutional networks for visual recognition,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[40] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, ‘‘Scene
parsing through ADE20K dataset,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 633–641.

[41] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba,
‘‘Semantic understanding of scenes through the ADE20K dataset,’’ 2016,
arXiv:1608.05442.

[42] N. Silberman andR. Fergus, ‘‘Indoor scene segmentation using a structured
light sensor,’’ in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCV),
Nov. 2011, pp. 601–608.

[43] P. K. Nathan Silberman, D. Hoiem, and R. Fergus, ‘‘Indoor segmenta-
tion and support inference from rgbd images,’’ in Proc. ECCV, 2012,
pp. 746–760.

[44] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and
S.-K. Yeung, ‘‘SceneNN: A scene meshes dataset with aNNotations,’’ in
Proc. 4th Int. Conf. 3D Vis. (3DV), Oct. 2016, pp. 92–101.

[45] M. Everingham, L. VanGool, C. K. I.Williams, J.Winn, andA. Zisserman,
‘‘The Pascal visual object classes (VOC) cHallenge,’’ Int. J. Comput. Vis.,
vol. 88, no. 2, pp. 303–338, Sep. 2009.

[46] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.
Dollár, and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’
in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2014,
pp. 740–755.

[47] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutional,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251–1258.

[48] E. Mohamed, K. Sirlantzis, and G. Howells, ‘‘Application of transfer
learning for object detection on manually collected data,’’ in Proc. SAI
Intell. Syst. Conf. Cham, Switzerland: Springer, 2019, pp. 919–931.

[49] Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,’’ IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994.

[50] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ J. Mach. Learn. Res., vol. 9, pp. 249–256,
May 2010.

[51] E. Mohamed, K. Sirlantzis, and G. Howells, ‘‘Incorporation of rejection
Criterion–A novel technique for evaluating semantic segmentation sys-
tems,’’ in Proc. 14th Int. Conf. Hum. Syst. Interact. (HSI), Jul. 2021,
pp. 1–7.

ELHASSAN MOHAMED received the B.Sc.
degree in electronics and communications from
Mansoura University, Mansoura, Egypt, in 2011,
and theM.Sc. degree (Hons.) in embedded systems
and instrumentations form the University of Kent,
Canterbury, U.K., in 2016, where he is currently
pursuing the Ph.D. degree with the School of Engi-
neering and Digital Arts. He is also a part of the
ADAPT Team that is working on developing smart
assistive devices for disabled people. His research

interests include computer vision, embedded systems, artificial intelligence,
and robotics.

KONSTANTINOS SIRLANTZIS is currently an
Associate Professor of Intelligent Systems, the
Head of the Intelligent Interaction Research
Group, and the Academic Lead of the Kent Assis-
tive RObotics Laboratory (KAROL), School of
Engineering and Digital Arts, University of Kent.
He has published more than 120 peer-reviewed
papers and organized international conferences
(EST 2019) and thematic sessions (AAATE 2019)
on topics of robotic assistive systems. His main

research interests include pattern recognition, artificial intelligence, robotics,
computer vision, and their application to assistive technology (AT) systems
and their security. He successfully gained over 3M in research awards from
public and private funders in the U.K. and internationally.

GARETH HOWELLS (Senior Member, IEEE) is
currently a Professor of secure electronic systems
with the University of Kent, U.K., and the Founder,
Director, and Chief Technology Officer of Metrarc
Ltd., a university spin-out company. He has been
involved in research relating to pattern recognition
and image processing for over 30 years and has
published over 200 articles in the technical liter-
ature, co-editing two books, and contributing to
several other edited publications. His core research

interests include applying soft computing and pattern recognition techniques
to the domains of device authentication, biometrics, secure communications,
and identity management.

147932 VOLUME 9, 2021


