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1 Introduction

Wheeled mobile robot, particularly Two-wheeled
Inverted Pendulum (TWIP), has received great attention
to the researchers in recent decades (Kim & Kwon
(2017), Yue et al. (2018), Lam & Fujimoto (2019),
Sun et al. (2020), Tian et al. (2020), Liu et al. (2020)
and Elyoussef et al. (2020)). TWIP is an inherently
nonlinear, coupled underactuated system in the sense
that the numbers of actuators are less than the degrees of
freedom (DOF) to be controlled, which is mentioned in
Chan et al. (2013). Conventionally, a TWIP is composed
of a body of inverted pendulum and two independently
driven wheels attached on the same axle in parallel.
The control objective is to maintain the motion of the
TWIP whilst balancing the attitude of the pendulum to
its equilibrium point at all time.

Many controllers have been proposed for wheeled
inverted pendulum in the past, which is summarised
by Romlay et al. (2019). Lin & Tsai (2009) applied
traditional PID controllers to a human transportation
vehicle for teaching purposes. Huang & Yeh (2020)
proposed four linear full-state feedback controllers
with linear matrix inequalities (LMI) to balance the
wheeled mobile vehicles even under the changes of
traction environment. However, only the unmatched
uncertainties are considered in the system. Pathak et al.
(2005) derived partial feedback linearisation equations
for designing double two-level velocity balancing and
position controllers of a TWIP. Nevertheless, the
system dynamics does not consider matched and
unmatched uncertainties which might affect the system
performance due to the lack of handling uncertainties
in controller design. Huang et al. (2018) presented three
integrating interval type-2 fuzzy logic controllers to
balance and regulate the position and direction of the
TWIP. However, the control law does not deal with
uncertainties either because of the absence of uncertainty
considerations in their system dynamics. Moreover, the
use of fuzzy logic method requires sophisticated fuzzy
rules to design corresponding controllers, which might
not be readily to obtain and the fuzzy logic rule tables
also increase the complexity of implementations.

Practical systems often inevitably suffer from
uncertainties and disturbances which may affect the
system performance tremendously. In Yan et al. (2017),
sliding mode control (SMC) has been widely recognised
as one of the most popular nonlinear control strategies
because of its strong robustness against uncertainty
and insensitivity to the parameter variations during
the sliding motion. Although matched uncertainties
are completely nullified when sliding mode occurs, the
reaching phase can still be affected by the matched
and unmatched uncertainties which might not be
readily reduced or rejected by the control and such
uncertainties could affect system performance or even
devastate system stability. Numerous SMC techniques
have been developed to make classes of linear and
nonlinear systems robust enough against disturbances

and uncertainties. Edwards & Spurgeon (1998) proposed
a regular form based unit vector state feedback algorithm
to improve the robustness of the control with the
consideration of linear bounds on the matched and
unmatched uncertainties. However, the uncertainties
and disturbances exerted on practical systems may
have nonlinear bounds, which might not be applicable
with the method in Edwards & Spurgeon (1998).
Yan et al. (2007) proposed an output feedback robust
control scheme in the presence of nonlinear disturbances,
which mainly focused on unmatched uncertainties with
nonlinear bounds. In Yan et al. (2009), a static output
feedback control is developed for a class of linear systems
to deal with both matched and unmatched uncertainties
with unknown structure and nonlinear bounds.

For the applications of TWIP, some of the
researchers, nowadays, tend to lump all the disturbances
and/or uncertainties together and use disturbance
observers to handle them. Huang et al. (2020) proposed
a high-order disturbance-observer-based SMC for a
practical TWIP. Nevertheless, it is required that the
bounds on the lumped uncertainties are linear due to the
limitation of the utilisation of LMI technique. In Chen
(2017), a nonlinear disturbance observer based SMC is
developed with linear bounds on disturbances as well.
It should be mentioned that to augment a disturbance
observer through the controller design will increase
the dimension of the system, which leads to complex
implementations. In this paper, the nonlinear system
of the TWIP is described based on the Lagrangian
dynamics with the consideration of both matched and
unmatched uncertainties with nonlinear bounds. Then
the system is further linearised and transformed into
a regular form. Next, a sliding surface is designed and
a SMC strategy is proposed based on the linearised
model and the sliding function. The validity and
robustness of the control are verified under simulation
and experiment on a practical TWIP. Lastly, both
results demonstrate that the control scheme is able
to balance the TWIP effectively and the system is
uniformly ultimately bounded. The main contribution is
summarised as follows:

• The bounds on both the matched and the
unmatched uncertainties are considered to be
known functions, which are employed in the SMC
design to reject the uncertainties and enhance the
robustness.

• The developed results allow the bounds on the
uncertainties to have more general nonlinear form.
Thus the results obtained in this paper are able to
tolerate a wider class of uncertainties.

• The proposed control is verified on a practical
TWIP platform and the experimental results are
consistent with the simulation ones.

The remainder of this paper is organised as follows.
The system description and control objective of the

Copyright © 202X Inderscience Enterprises Ltd.
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TWIP are described in Section 2. The SMC control
scheme is designed and the reachability of sliding
manifolds along with the stability of the reduced-
order sliding motion are analysed in Section 3. Section
4 presents the simulation and experimental results
to demonstrate the validity and performance of the
proposed control law. Lastly, some conclusions are drawn
in Section 5.

2 Problem Formulation

2.1 System Description

This paper only considers the longitudinal motion
analysis of the TWIP, which is illustrated in Figure. 1.

Figure 1: A two-wheeled inverted pendulum

The dynamics of the system is described as follows
[See Pathak et al. (2005)].{

n1θ̈p + n2cosθpΨ̈W − n3sinθp = −u− τB
n4Ψ̈W + n2cosθpθ̈p − n2sinθpθ̇

2
p = u+ τB − τW

(1)

where ni for i = 1, 2, 3, 4 are constants and defined by{
n1 = MBL

2 + Jθp , n2 = 2MBLR, n3 = MBgL
n4 = 4(MB +MW )R2 + Jw

(2)

θp is the attitude pitch angle of the TWIP body, L is the
length between the wheel axis and the centre of gravity
(CoG) of the body, R is the radius of the wheel, ΨW is
the angular displacement of the wheel, MB , MW are the
masses of the TWIP body and wheel respectively, Jθp is
the moment of inertia of the body w.r.t y-axis, and Jw
is the moment of inertia of the wheel. Moreover, τB , τW
are the friction torque forces related to the TWIP body
and the ground, u represents the total torque (control
input) applied to the wheels.

The nonlinear system (1) can be further rewritten as

ẋ(t) = F(x(t)) + G(x(t))(u(t) + fm(t, x)) + fu1
(t, x)

(3)

where

F(x) =


x2

− n2n3cosx3sinx3

n1n4−n2
2cos

2(x3)
+ n1n2sinx3

n1n4−n2
2cos

2(x3)
x2

4

x4

n3n4sinx3

n1n4−n2
2cos

2(x3)
− n2

2sinx3cosx3

n1n4−n2
2cos

2(x3)
x2

4



G(x) =


0

n1+n2cosx3

n1n4−n2
2cos

2(x3)

0
− n2cosx3+n4

n1n4−n2
2cos

2(x3)

 , fm = τB

fu1
=


0

− n1

n1n4−n2
2cos

2(x3)

0
n2cosx3

n1n4−n2
2cos

2(x3)

 τW

(4)

x(t) = [x1, x2, x3, x4]T = [ΨW , Ψ̇W , θp, θ̇p]
T is defined as

the state vector, fm represents the internal joint friction
which can be treated as the input channel of the
control signal and categorised to the unknown matched
uncertainty. fu1

is the unknown unmatched uncertainty
which is the correlation between the ground and the
wheels, such as the lateral slippage of the robot.

2.2 Preliminaries

For given desired signals xd(t) = [x1d , x2d , x3d , x4d ]T .
The problem considered in this paper is to design a SMC
controller such that the system (3) is able to track the
desired signals, that is

lim
t→∞

∣∣xi(t)− xid(t)
∣∣ = 0 for i = 1, 2, 3, 4 (5)

For simplification purpose, system (3) can be
linearised around the desired signals xd(t) as

ẋ(t) = Ax(t) + B(u(t) + fm(t, x)) + fu2
(t, x) (6)

where A and B are constant matrices defined by

A =
∂F(x)

∂x

∣∣∣∣
x=xd

=


0 1 0 0
0 0 −n2n3

n1n4−n2
2

0

0 0 0 1
0 0 n3n4

n1n4−n2
2

0



B =
∂G(x)

∂u

∣∣∣∣
x=xd

=


0

n1+n2

n1n4−n2
2

0
− n2+n4

n1n4−n2
2


(7)

fm is defined in (4) and fu2 is given by

fu2 =


0

− n1

n1n4−n2
2

0
n2

n1n4−n2
2

 τW (8)
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Further, the following assumptions are imposed on
system (6).

Assumption 1: The matrix pair (A,B) is
controllable.

Assumption 2: There exist known continuous
nonlinear functions β(t, x) and γ(t, x) such that
the unknown matched and unmatched uncertainties
fm(t, x), fu2(t, x) are bounded and satisfy [See Yan
et al. (2007)] ∥∥fm(t, x)

∥∥ ≤ β(t, x)∥∥fu2(t, x)
∥∥ ≤ γ(t, x)

(9)

Remark 1: In this paper, the upper bounds of∥∥fm(t, x)
∥∥ and

∥∥fu2
(t, x)

∥∥ in Assumption 2 are required
to be known functions, which will be employed in
the control design to reduce or reject the system
uncertainties.

According to the objective from (5), define the
error states to be e = [e1, e2, e3, e4]T = [x1 − x1d , x2 −
x2d , x3 − x3d , x4 − x4d ]T and error dynamics of the
longitudinal system based on (6) can be described as

ė(t) = Ae(t) + B(u(t) + fm(t, e+ xd)) + fu3(t, e+ xd)
(10)

where fm,A, B are defined in (4) and (7), the unmatched
uncertainty fu3

(t, e+ xd) = fu2
(t, e+ xd) +Axd − ẋd.

From Assumption 2, fm(t, e+ xd) and fu3
(t, e+ xd)

satisfy∥∥fm(t, e+ xd)
∥∥ ≤ β(t, e+ xd)∥∥fu3(t, e+ xd)
∥∥ ≤ γ(t, e+ xd

)
+
∥∥A∥∥∥∥xd∥∥+

∥∥ẋd∥∥
(11)

3 Sliding Mode Analysis and Control
Design

Since the error dynamics (10) is not constructed in a
well-known regular form, which is not readily apparent
for stability analysis of SMC, introduce a new coordinate
transformation.

ω(t) = [ω1, ω2, ω3, ω4]T = Tre(t) (12)

Tr =


1 0 0 0
0 1 0 Θ
0 0 1 0
0 0 0 1

 (13)

where Θ = n1+n2

n2+n4
, and it is clear that Tr is non-singular.

Hence, system (10) can be described in regular form
in terms of the new coordinates ω(t) as

ω̇(t) = Āω(t) + B̄
(
u(t) + fm(t, ω)

)
+ fu4

(t, ω) (14)

where

Ā =


0 1 0 −Θ
0 0 n3

n2+n4
0

0 0 0 1
0 0 n3n4

n1n4−n2
2

0



B̄ =

[
0
B2

]
=


0
0
0

− n2+n4

n1n4−n2
2


(15)

fm(t, ω) and fu4
(t, ω) are the matched and unmatched

uncertainties in ω-system.
The following assumption is imposed on system (14).

Assumption 3: The term B2 is non-zero.

Based on Assumption 2 and (11), (12),∥∥fm(t, ω)
∥∥ ≤ β(t, T−1

r ω + xd)∥∥fu4(t, ω)
∥∥ ≤ γ(t, T−1

r ω + xd) +
∥∥A∥∥∥∥xd∥∥+

∥∥ẋd∥∥ (16)

For further analysis, partition fu4(t, ω) into

fu4
(t, ω) =


0

fu41(t, ω)
0

fu42(t, ω)

 (17)

Consider the switching function

σ(t) = δ1ω1(t) + δ2ω2(t) + δ3ω3(t) + ω4(t) (18)

where δ1, δ2, δ3 are design parameters.
Then, the sliding surface is described by

σ(t) = δ1ω1(t) + δ2ω2(t) + δ3ω3(t) + ω4(t) = 0 (19)

Hence, when sliding motion occurs, ω4(t) can be
expressed in terms of ω1(t), ω2(t), and ω3(t) as

ω4(t) = −δ1ω1(t)− δ2ω2(t)− δ3ω3(t) (20)

3.1 Stability Analysis of Sliding Motion

From (14), (15), and (20), it is straightforward to see that
the reduced-order sliding mode system when confined to
the sliding surface σ(t) = 0 can be derived as

ω̇s(t) =

Θδ1 Θδ2 + 1 Θδ3
0 0 n3

n2+n4

−δ1 −δ2 −δ3


︸ ︷︷ ︸

Ãs11

ωs(t) +

 0
fu41

0


︸ ︷︷ ︸
f̃u41

(21)

where ωs(t) = [ω1(t), ω2(t), ω3(t)]T .
The following assumption is imposed on system (21).

Assumption 4: n3

n2+n4
is a non-zero constant.
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Lemma 1: Consider the reduced-order sliding mode
dynamics (21), and suppose Assumptions 1,2 and 4

are satisfied, Ãs11 is Hurwitz stable if the following
inequalities hold for δ1, δ2 and δ3.

δ1 > 0, δ2 >
δ1

δ3 −Θδ1
, δ3 > Θδ1 (22)

Proof. The characteristic equation of Ãs11 can be
described by

z3 +
(
δ3 −Θδ1

)
z2 +

n3

n2 + n4
δ2z +

n3

n2 + n4
δ1 = 0 (23)

The corresponding coefficients of the first column of
the Routh-hurwitz array are determined as

a0 = 1, a1 = δ3 −Θδ1

b1 =
n3δ2
n2+n4

(
δ3 −Θδ1

)
− n3

n2+n4
δ1

δ3 −Θδ1

c1 =
n3

n2 + n4
δ1

(24)

By direct calculation, it follows that a0, a1, b1 and c1
in (24) are positive if the inequalities in (22) hold. Then
under Assumption 4 and based on the Routh-Hurwitz
stability criterion, the matrix Ãs11 is stable. �

From Lemma 1, if δ1, δ2 and δ3 satisfy (22),

Ãs11 is stable, which implies that for any symmetric
positive definite matrix Q ∈ IR3×3, there exists a unique
symmetric positive definite matrix P ∈ IR3×3 satisfying
the Lyapunov equation

Ãs
T

11P + P Ãs11 = −Q (25)

Theorem 1: Under the conditions of Lemma 1, the
state ωs(t) of the sliding mode dynamics (21) is
uniformly ultimately bounded.

Proof. For system (21), consider the candidate
Lyapunov function

V (ωs) = ωTs Pωs

Then, the time derivative of V along the trajectories
of sliding mode dynamics (21) is given by

V̇ = −ωTs Qωs + 2ωTs P f̃u41(t, ω)

≤ −ωTs Qωs + 2
∥∥Pωs∥∥∥∥f̃u41(t, ω)

∥∥
≤ −λmin(Q)

∥∥ωs∥∥2
+ 2λmax(P )

∥∥ωs∥∥∥∥f̃u41
(t, ω)

∥∥
≤ −λmax(P )

∥∥ωs∥∥(λmin(Q)

λmax(P )

∥∥ωs∥∥− 2
(
γ(t, T−1

r ω + xd)

+
∥∥A∥∥∥∥xd∥∥+

∥∥ẋd∥∥))
(26)

where the condition (16) is used above. In addition,
λmin(·), λmax(·) denote the minimum and maximum
eigenvalues of the corresponding matrices respectively.

Consequently, V̇ ≤ 0 if

∥∥ωs∥∥ ≥ 2
(
γ(t, T−1

r ω + xd) +
∥∥A∥∥∥∥xd∥∥+

∥∥ẋd∥∥)
λmin(Q)/λmax(P )

Hence, the conclusion follows. �

Remark 2: It is obvious to notice from (21) that
the sliding motion is only affected by the unmatched
uncertainty f̃u41(t, ω), which is consistent with the
conclusion [See Yan et al. (2017)] that the reduced sliding
mode dynamics is insensitive to matched uncertainty.

3.2 Sliding Mode Control Design

The objective of this section is to design a controller such
that the reachability condition [see Yan et al. (2017)]

σT (t)σ̇(t) ≤ −ρ
∥∥σ(t)

∥∥ (27)

is satisfied for some positive constant ρ, where σ(t) is the
switching function defined in (18).

The following SMC law is proposed

u(t) = −B−1
2

{
δ1ω2 +

(
n3n4

n1n4 − n2
2

+
n3

n2 + n4
δ2

)
ω3

+ (δ3 −Θδ1)ω4 +

[∣∣B2

∣∣β(t, T−1
r ω + xd)

+
(∣∣δ2∣∣+ 1

)(
γ(t, T−1

r ω + xd) +
∥∥A∥∥∥∥xd∥∥+

∥∥ẋd∥∥)
+ ρ

]
σ(t)∥∥σ(t)

∥∥
}

(28)

where β(·) and γ(·) are given in (16).

Theorem 2: Consider the system in (14), the control
(28) is able to drive system (14) to the sliding surface
(19) in finite time and maintain a sliding motion on it
thereafter.

Proof. From the definition of σ(t) in (18), it follows that

σ̇(t) = δ1ω2 +

(
n3n4

n1n4 − n2
2

+
n3

n2 + n4
δ2

)
ω3

+ (δ3 −Θδ1)ω4 + B2

(
u(t) + fm(t, ω)

)
+ δ2fu41

(t, ω) + fu42
(t, ω)

(29)

Substituting the designed control law (28) into (29)
yields

σ̇(t) = −

[∣∣B2

∣∣β(t, T−1
r ω + xd) +

(∣∣δ2∣∣+ 1
)

×
(
γ(t, T−1

r ω + xd) +
∥∥A∥∥∥∥xd∥∥+

∥∥ẋd∥∥)+ ρ

]

× σ(t)∥∥σ(t)
∥∥ + B2fm(t, ω) + δ2fu41(t, ω) + fu42(t, ω)

(30)
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Therefore,

σT (t)σ̇(t) ≤ −
∥∥σ∥∥{[∣∣B2

∣∣β(t, T−1
r ω + xd) +

(∣∣δ2∣∣+ 1
)

×
(
γ(t, T−1

r ω + xd) +
∥∥A∥∥∥∥xd∥∥+

∥∥ẋd∥∥)+ ρ

]
−
∣∣B2

∣∣∥∥fm(t, ω)
∥∥− ∣∣δ2∣∣∥∥fu41

(t, ω)
∥∥

−
∥∥fu42

(t, ω)
∥∥}

≤ −
∥∥σ∥∥{[∣∣B2

∣∣β(t, T−1
r ω + xd) +

(∣∣δ2∣∣+ 1
)

×
(
γ(t, T−1

r ω + xd) +
∥∥A∥∥∥∥xd∥∥+

∥∥ẋd∥∥)+ ρ

]
−
∣∣B2

∣∣β(t, T−1
r ω + xd)−

∣∣δ2∣∣(γ(t, T−1
r ω + xd)

+
∥∥A∥∥∥∥xd∥∥+

∥∥ẋd∥∥)− (γ(t, T−1
r ω + xd)

+
∥∥A∥∥∥∥xd∥∥+

∥∥ẋd∥∥)}
≤ −ρ

∥∥σ(t)
∥∥

(31)

where ρ is defined in (27). Inequality (31) shows that
the reaching condition (27) is satisfied. Hence the result
follows. �

Remark 3: Based on SMC theory, Theorem 1 and 2
together show that the closed-loop system formed by
applying the control (28) to the system (14) is uniformly
ultimately bounded. From (12), it follows that

e(t) = T−1
r ω(t) (32)

where Tr is defined in (13).
Therefore, the tracking error e(t) is also uniformly
ultimately bounded.

4 Simulation and Experiment Research

The verification of the proposed control law is conducted
under both simulation and experiment, which will be
elaborated in this section.

4.1 Numerical Simulation

The simulation is tested under the scenario with which
the TWIP is driven on a flat surface. The control aim
is to balance the TWIP to the desired equilibrium
xd = [0, 0, 0, 0]T . By using the data from Table 1, the

Table 1 Model parameters for the TWIP

Symbols with
units

Definitions Values

MB [kg] Mass of body 1.008
MW [kg] Mass of wheel 0.179
R [m] Radius of wheel 0.06
L [m] Length to CoG 0.09

JW [kg.m2] Inertial of wheel 0.00032
JPθ [kg.m2] y-axis inertial of

body
0.0027

corresponding system can be described based on (6), (7)
and (8) as

ẋ(t) =


0 1 0 0
0 0 −137.0893 0
0 0 0 1
0 0 219.2744 0


︸ ︷︷ ︸

A

x(t)

+


0

307.7729
0

−400.4251


︸ ︷︷ ︸

B

(u(t) + fm(t, x)) +


0

−153.7336
0

154.0393

 τW
︸ ︷︷ ︸

fu2 (t,x)

(33)

It can be verified that the matrix pair (A,B) is
controllable. Therefore, Assumption 1 is satisfied.

Based on Assumption 2 and system (33), the
unknown signals fm(t, x) and fu2

(t, x), defined in (4) and
(8), satisfy

∥∥fm(t, x)
∥∥ =

∥∥τB∥∥ ≤ 1

40

∣∣x4

∣∣+
7

200
sin2(x4)︸ ︷︷ ︸

β(t,x)

∥∥fu2(t, x)
∥∥ =

∥∥∥∥∥∥∥∥


0
−153.7336

0
154.0393


∥∥∥∥∥∥∥∥
∥∥τW∥∥

≤ 217.6284

(
11

200

∣∣x2

∣∣+
6

125
sin2(x2)

)
+ 5.0︸ ︷︷ ︸

γ(t,x)

(34)

Choose δ1 = 6.9, δ2 = 2.2 and δ3 = 13.7 satisfying
the conditions (22) of Lemma 1. The corresponding
switching function is determined as

σ(t) = 6.9ω1(t) + 2.2ω2(t) + 13.7ω3(t) + ω4(t) (35)
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Further, based on the system in (14), it follows that
the regular form of (33) can be described by

ω̇(t) =


5.3034 2.6910 10.53 0

0 0 31.4484 0
−6.9 −2.2 −13.7 0

0 0 219.2744 0


︸ ︷︷ ︸

Ā

ω(t)

+


0
0
0

−400.4251


︸ ︷︷ ︸

B̄

(
u(t) + fm(t, ω)

)
+


0

fu41
(t, ω)
0

fu42
(t, ω)


︸ ︷︷ ︸

fu4 (t,ω)

(36)

It is noticeable from (36) that B2 = −400.4251 6= 0.
Hence, Assumption 3 is held.

According to the coordinate transformation (12) and
the conditions of (11), (16), (34), it follows that fm(t, ω)
and fu4

(t, ω) in (36) satisfy

∥∥fm(t, ω)
∥∥ ≤ 1

40

∣∣ω4(t) + x4d(t)
∣∣+

7

200
sin2(ω4(t) + x4d(t))︸ ︷︷ ︸

β(t,T−1
r ω+xd)

∥∥fu4
(t, ω)

∥∥ ≤ 217.6284

(
11

200

∣∣ω2 − 0.7686ω4 + x2d

∣∣
+

6

125
sin2(ω2 − 0.7686ω4 + x2d)

)
+ 5.0︸ ︷︷ ︸

γ(t,T−1
r ω+xd)

(37)

From the system matrix Ā in (36) and the matrix

Ãs11 defined in (21), it follows that

Ãs11 =

5.3034 2.6910 10.53
0 0 31.4484
−6.9 −2.2 −13.7

 (38)

It is straightforward to check that n3

n2+n4
= 31.4484 6=

0. Hence, Assumption 4 is satisfied, and Ãs11 is Hurwitz
stable.

Therefore, for Q = I3, the solution of Lyapunov
equation (25) is

P =

2.9859 0.4012 2.3675
0.4012 0.2210 0.7180
2.3675 0.7180 3.5043

 (39)

The designed SMC control law is

u(t) = 0.0025

{
6.9ω2 + 288.4607ω3 + 8.3966ω4

+

[
400.4251

(
1

40

∣∣ω4(t) + x4d(t)
∣∣+

7

200
sin2

(
ω4(t)

+ x4d(t)
))

+ 3.2

(
217.6284

( 11

200

∣∣ω2(t) + x2d(t)

− 0.7686ω4(t)
∣∣+

6

125
sin2

(
ω2(t)− 0.7686ω4(t)

+ x2d(t)
))

+ 5.0

)
+ ρ

]
σ(t)∥∥σ(t)

∥∥
}

(40)

For simulation purpose, the initial condition is chosen
as x0 = [0.02, 0, 0.4363, 0]T , which implies that the
initial position is 0.02 metre and the initial attitude
angle is 0.4363 in radian. Moreover, the control design
parameter ρ = 5.0. The time responses of the system
states and errors are shown in Figure. 2 and Figure.
3 respectively, and the control signal, described in
pulse width modulation (PWM) under 12V, is shown
in Figure. 4. The results demonstrate the effectiveness
and robustness of the controller, which are uniformly
ultimately bounded as proved in Theorem 1.
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Figure 2: The responses of the system states under
simulation

4.2 Experimental Study

In this section, the detailed experiment results will be
presented. A prototype TWIP has been fabricated in the
laboratory as illustrated in Figure. 5. The dimension of
this TWIP is 0.29m width x 0.153m depth x 0.192m
height and it weighs for 1.366 kg in total including
the body and two wheels. The detailed parameters of
the TWIP are given in Table 1. The attitude data are
collected using a 9-axis inertia measurement unit (IMU),
which are filtered by the Mahony algorithm [See Mahony
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Figure 3: The responses of the error system under
simulation
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Figure 4: The response of the control under simulation

et al. (2008)] to retrieve the Euler angles. Moreover,
two 12V DC motors with 1920 counts per revolution
quadrature encoders are attached on the TWIP to
control the motion as well as the balance of the TWIP,
which are driven by PWM signals generated from an
ARM-based STM32F407 microcontroller board.

The experimentation shows that the obtained
experiment results are in consistence with the
corresponding simulation results. The TWIP is placed
stationary on a flat surface and tilted with initial
attitude angle x3 = 0.4363 rad and the initial position
at x1 = 0.02 metre. Figures. 6 and 7 show the time
responses of the system states and errors. Figure. 8
illustrates the control signal to balance the TWIP to the
equilibrium status.

Figure 5: The photograph of the TWIP platform
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Figure 6: The responses of the system states on a
practical TWIP platform
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Figure 7: The responses of the error system on a
practical TWIP platform
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Figure 8: The response of the control on a practical
TWIP platform

5 Conclusion

In this paper, a SMC strategy has been proposed for
a TWIP system which is experienced matched and
unmatched uncertainties. The pre-defined non-linear
bounds on the uncertainties are considered and involved
in the control design process. The developed results have
lower conservatism due to the fact that the utilisation
of reduced-order sliding mode dynamics as well as the
bounds on uncertainties. It is demonstrated that the
system states are uniformly ultimately bounded from
both simulation and practical experiment. Finally, the
effectiveness and robustness of the control law are not
only verified in MATLAB simulation but also on a
physical TWIP platform. The future research will focus
on the TWIP system driving on an inclined surface, and
a novel SMC is to be designed to directly control the
nonlinear TWIP system.
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