

URSI GASS 2021, Rome, Italy, 28 August - 4 September 2021

Using Dynamic Operational features to Identify Embedded Devices

Pooja R. Khanna* (1) and Gareth Howells (1)

(1) University of Kent, UK, CT2 7NT, pk327@kent.ac.uk

Abstract

This paper investigates the use of system memory features

as the characteristics of simpler embedded devices. The

ICmetrics technology is based on the hardware and

software features of the systems in order to generate the

unique identifiers. Usually memory features are considered

very volatile as they are considered very unstable usually.

But, in this case the memory features are very crucial as

they tell us more about the system function. Hence, these

features were used for analysis and a multivariate gaussian

model was created and validated by comparing testing

sample against the training data with 98% accuracy

amongst 6 devices. This confirms the usefulness of the

system memory features in adding a layer of security to the

devices.

1 Introduction

In the recent years, the world has seen an exponential

growth in the IoT sector which means there has been a

tremendous increase in the connected devices. As the

products are getting cheaper, simpler and accessible, they

are more prone to cyber/hacking attacks. Hence, the need

to secure the IoT devices is of a grave concern. The

ICMetrics technology is one of the novel techniques to

generate an encryption key based on the hardware and

software characteristics for the embedded devices [1]. The

other encryption algorithms use the pre-stored encryption

keys/identifiers which would be easily accessible if used on

simpler embedded technologies. Hence, the ICMetrics

(Integrated Circuit metrics) extracts the hardware/software

information from the system. This technique captures the

data from the system from its own environment, working

in various states which ensures the detection of anything

infecting the system via changes observed in the running

system [2].

This technique is mainly used in complex, off-the shelf

devices but this paper explores using this technique for

rather simpler embedded systems to understand if these

devices can be classified by the hardware information

derived from it. ICMetric procedure is divided in two main

sections [3]:

1. Calibration Phase:
a. This Phase occurs just once with each of

the devices.

b. Measure the features we need and make

the feature distributions

c. Generate normalization maps for

collected features.

2. Operation Phase:
a. Capturing the features from the devices

whose encryption key is needed.

b. Generate the suitable values for creating

unique identifiers by applying

normalization maps.

c. Apply the key generation method.

In this paper we explore the possibility of identifying

simpler embedded device like raspberry pi. The Raspberry

pi is chosen as it supports close to limitless applications and

is a simpler device than ones used before for ICMetrics.

In this paper we investigate if the simpler devices like

raspberry pi can be uniquely identified based on their

hardware characteristics. By measuring these features, we

evaluate if we are 1. Able to uniquely identify the device

by designing a simple model and 2. If step 1 is successful,

generate the unique key. Here, we are only exploring step

1 as we are using raspberry pi’s memory usage features, as

it would be a point of reference for all the devices and we

would have same features for each one. As applications

vary, if sensor data is used, the sensor data cannot be

compared if we have different sensors for two devices.

The following sections of the paper describes our

hardware, software and the conditions the data was

collected in. The analysis of the data collected, building a

model and how the classifier works. Lastly, the conclusion

section also suggests the direction of exploration for

forthcoming work.

2 Experimental Setup

This section contains the entire setup of the data collection.

A software application, code written to collect the features,

storing the data locally and later extracting for more

statistical analysis.

2.1 Software Used

The Raspberry Pi has a Linux based Operating System.

• Data is collected from the pi via Node-Red

software which does the logging.

• Raspberry Pi 2 with 16GB SanDisk Memory card.

• 6 devices used with updated Raspbian desktop

version

• Data saved in .txt form and exported to excel for

statistical processing i.e. calculating covariance,

mean, correlation

• Python for data cleaning and excel for removing

the characters from the

The figure below shows the code/data logging flow which

will then be utilized to extract the useful features and do

the processing. For each device, this is the calibration phase

which collects the data.

Figure 1 Node-Red flow for data collection

2.2 Feature Analysis

The pre-analysis was done in the excel. In total, 37 memory

features were extracted. Some of them were static i.e. very

little use. Here we extract the system memory features as it

gives us an insight on when the system is being overused

or idle, as Pi constantly tries to free its unused space so

makes the device efficient. Hence, identifying and

evaluating the useful features from the data collected. The

features selected must be uniform amongst all the devices.

The correlation is of high significance while choosing the

features as they provide higher level complexity than the

singular features [4]. The embedded memory run-time

usage data is investigated and is mapped to generate the

normalization maps. We collected about 2000 samples

from each device and will randomly divide the data into

80:20 ratio for training and test set.

Table 1-6 show the simple mean and correlation between

the features for Device 1-6 respectively:

Table 2. Correlation between features and their respective

mean for Device-1.

Feat

ures

F1 F2 F3 F4 Mean

F1 1 313098

F2 0.799446 1 67288.4

F3 -0.02049 0.204417 1 48859.4

F4 -0.70584 -0.48270 0.08581 1 32089.4

Table 2. Correlation between features and their respective

mean for Device-2.

Feat

ures

F1 F2 F3 F4 Mean

F1 1 501050

F2 0.2595487 1 150545.

F3 0.0443142 0.852108 1 49988.3

F4 -0.404908 -0.82359 -0.54614 1 30490.0

Table 3. Correlation between features and their respective

mean for Device-3.

Feat

ures

F1 F2 F3 F4 Mean

F1 1 713596

F2 -0.027850 1 151854

F3 -0.861135 0.501389 1 45067.4

F4 -0.956858 0.174126 0.936759 1 26630.5

Table 4. Correlation between features and their respective

mean for Device-4.
Feat

ures

F1 F2 F3 F4 Mean

F1 1 171088

F2 0.884214 1 51039.3

F3 0.763742 0.840440 1 32834.3

F4 -0.80707 -0.89515 -0.84112 1 19580.9

Table 5. Correlation between features and their respective

mean for Device-5.
Feat

ures

F1 F2 F3 F4 Mean

F1 1 352285

F2 0.8361488 1 112156

F3 0.435537 0.696946 1 35627

F4 -0.885897 -0.89783 -0.48535 1 19187.7

Table 6. Correlation between features and their respective

mean for Device-6.

Feat

ures

F1 F2 F3 F4 Mean

F1 1 346930

F2 0.9091056 1 165940

F3 0.9266794 0.945521 1 40081.5

F4 -0.940902 -0.97379 -0.94095 1 19445.1

Here the four features here are derived from the system

memory hence, even though they are all raspberry Pi’s we

have a variety of correlations between the features based

on their operation. The ‘mean’ of the features F1, F3 and

F4 are similar for a few devices so the data can be wrongly

classified. Hence it is important to check the nature of the

distribution. We also used the standard multivariate

gaussian classifier, which assumes the distribution is

unimodal and got between 50-60% accurately classified

test data. Therefore, a necessity to check the nature of the

distribution.

3 Feature Mapping Technique

This section provides the information on how to map the

feature values to potentially identify the device based on its

behavior.

3.1 Feature normalization and distribution

Initially we generate the normalization maps to detect an

identifier for an ‘x’ named device. This will later be

classified as one of the known/unknown device data. The

main concept of creating a normalization map is to map the

collected data onto a multidimensional space. In [5]

generated normalization maps specific feature to a vector

and concatenating them via linear mapping. As we know

all the samples are inter-related, i.e. can be analyzed

independently to gain information but cannot be used

independently. The next step is to find the probability

distribution of every feature individually for all the devices.

To understand the distribution of the features, we create the

probability density function graphs for each feature, which

signifies the data is unimodal, bimodal or multimodal in

nature [6]. These multimodal features can be interpreted as

different operational phases of the circuit. Incorporating

the highly multi-modal features are a vital part of

employing an ICMetrics based system [7-9].

3.2 Addressing Multimodality

Multi-modal features are normalized, so they can be treated

as the gaussian distributions. In papers [5,10] the mapping

was linear in nature. For the multi-dimensional space, we

use peak – trough detection [11] to separate the modal

clusters and converting the data into gaussian format. This

will create multiple gaussians and each mode acts as a

distribution of its own [12]. Considering multi-modal

features that are derived from raspberry Pi’s hardware, will

allow to create a generalized scenario and make the

classification/identification more efficient.

The table below shows the number of modes each feature

of each device. This gives an insight of what the modal

boundaries look like after the data has been applied to a

peak - trough algorithm.

The paper describes the data from 6 Raspberry Pi’s. Four

features are selected from the recorded 37 features. Feature

values for each circuit take a unique subset of values. Some

of the features might overlap but have a different

correlation with the other samples. Hence, we divide the

dataset into training and testing samples to calibrate the

system.

3.3 Identifying modal Clusters

Identifying modal clusters per distribution is the first step

of classification. Each of the sample set are read and

checked if they belong to one of the distributions. Every

value from the set is read one by one from beginning and

checked which distribution (device) it belongs to. If they

do belong to that distribution, the value will be

identified/belong to one of the modal clusters from that

device. When a feature set from different device is

encountered, we will not find the values being identified or

belonged to device 1 so all the clusters are exhausted. So,

moved on to comparing with the next device distribution

and this will be done for all the test feature sets. Exhausting

all the test sets, there will some left which are not allocated

within the known sample set. Hence, most plausible device

is allotted using probabilities calculated by each of the

generated Gaussian distributions. Similarly, used in paper

The necessary parameters like the Mean, Variance and

Probability function for each discrete sample set. The

equations are used to generate the Multivariate gaussian

model in-order to get the probability against each training

set to assign the device number to it.

 � � 1
� � ��

	

�
�
 �1

 �� � � ����
��� � �
� �2

�

�
�

 ���
 � 1
�√�2�
 �

�����
�
����
 �3

The Figure 2 below presents the step by step approach to

implement the classifier which takes care of n-modal data.

Figure 3. Flowchart to implement Classifier.

5 Conclusion

This paper explores the system memory usage data as

ICMetrics features. Memory features are usually volatile,

but for smaller embedded devices, these features are very

crucial as they are running only targeted applications when

deployed. We also observed that it is important to

understand the nature of distribution per feature, to identify

and classify the data correctly. There is a need to properly

deploy modal clusters as separate gaussians to effectively

take in account the multi-modal nature of the data to

uniquely identify the system. This data will be used to

produce effective encryption keys soon to add a layer of

security on the simpler embedded devices.

6 References

1. Y. Kovalchuk and K. McDonald-Maier and G. Howells,

'Overview of ICmetrics Technology – Security

Infrastructure for Autonomous and Intelligent Healthcare

System.' International Journal of u- and e- Service, Science

and Technology, 4. 49 - 60. ISSN 2005-4246, 2011.

2. R. Tahir and K. McDonald-Maier, “Improving

Resilience against Node Capture Attacks in Wireless

Sensor Networks using ICMetrics,” in Emerging Security

Technologies (EST), 2012 Third International Conference

on, 2012, pp. 127–130.

3. R. Tahir, H. Hu, D. Gu, K. McDonald-Maier, and G.

Howells“Resilience against brute force and rainbow table

attacks using strong ICMetrics session key pairs,” in

Communications, Signal Processing, and their

Applications (ICCSPA), 2013 1st International Conference

on,2013, pp. 1–6.

4. S. Yadav and G. Howells, "Analysis of ICMetrics

features/technology for wearable devices IOT sensors,"

2017 Seventh International Conference on Emerging

Security Technologies (EST), Canterbury, 2017, pp. 175-

178, doi: 10.1109/EST.2017.8090419.

5. G. Howells, E. Papoutsis, A. Hopkins and K. McDonald-

Maier, "Normalizing Discrete Circuit Features with

Statistically Independent values for incorporation within a

highly Secure Encryption System," Second NASA/ESA

Conference on Adaptive Hardware and Systems (AHS

2007), Edinburgh, 2007, pp. 97-102, doi:

10.1109/AHS.2007.78.

6. S. D. Baba, S. Yadav and G. Howells, "SortAlgo-

Metrics: Identification of Cloud-Based Server Via a Simple

Algorithmic Analysis," 2019 Eighth International

Conference on Emerging Security Technologies (EST),

Colchester, United Kingdom, 2019, pp. 1-6, doi:

10.1109/EST.2019.8806214.

7. S.W. Baik, R. Baik: Adaptive image classification for

aerial photo image – Article – Computer Science, Artificial

Intelligence – AI 2004: Advances in Artificial Intelligence,

Proceedings Lecture Notes In Artificial Intelligence 3339:

132 – 139 2004.

8. T. Kubota: Massively parallel networks for edge

localization and contour integration – adaptable relaxation

approach – Article – Computer Science, Artificial

Intelligence – Neural Networks 17 (3): 411 – 425 APR

2004.

9. C. Schmid: Weakly supervised learning of visual models

and its application to content-based retrieval – Article –

Computer Science, Artificial Intelligence – International

Journal Of Computer Vision 56 (1-2): 7 – 16 Sp. Iss. SI,

JAN-MAR 2004.

10. E. Papoutsis, W. G. J. Howells, A. B. T. Hopkins, and

K. D. McDonald-Maier, “Integrating Feature Values for

Key Generation in an ICmetric System”, IEEE NASA/ESA

Conference on Adaptive Hardware and Systems (AHS-

2009), 2009, p. 5.

11. K. Harmer, G. Howells, W. Sheng, M. C. Fairhurst, and

F. Deravi, “A Peak-Trough Detection Algorithm Based on

Momentum”, International Congress on Image and Signal

Processing (CISP2008). Sanya, Hainan, China, May 2008

12. S. Yadav and G. Howells, "Secure Device

Identification Using Multidimensional Mapping," 2019

Eighth International Conference on Emerging Security

Technologies (EST), Colchester, United Kingdom, 2019,

pp. 1-5, doi: 10.1109/EST.2019.8806218.

13. E. Papoutsis, G. Howells, A. Hopkins and K.

McDonald-Maier, "Integrating Multi-Modal Circuit

Features within an Efficient Encryption System," Third

International Symposium on Information Assurance and

Security, Manchester, 2007, pp. 83-88, doi:

10.1109/IAS.2007.27.

