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Abstract 

 
This paper investigates the use of system memory features 

as the characteristics of simpler embedded devices. The 

ICmetrics technology is based on the hardware and 

software features of the systems in order to generate the 

unique identifiers. Usually memory features are considered 

very volatile as they are considered very unstable usually. 

But, in this case the memory features are very crucial as 

they tell us more about the system function. Hence, these 

features were used for analysis and a multivariate gaussian 

model was created and validated by comparing testing 

sample against the training data with 98% accuracy 

amongst 6 devices. This confirms the usefulness of the 

system memory features in adding a layer of security to the 

devices. 

 

1 Introduction 
 

In the recent years, the world has seen an exponential 

growth in the IoT sector which means there has been a 

tremendous increase in the connected devices. As the 

products are getting cheaper, simpler and accessible, they 

are more prone to cyber/hacking attacks. Hence, the need 

to secure the IoT devices is of a grave concern. The 

ICMetrics technology is one of the novel techniques to 

generate an encryption key based on the hardware and 

software characteristics for the embedded devices [1]. The 

other encryption algorithms use the pre-stored encryption 

keys/identifiers which would be easily accessible if used on 

simpler embedded technologies. Hence, the ICMetrics 

(Integrated Circuit metrics) extracts the hardware/software 

information from the system. This technique captures the 

data from the system from its own environment, working 

in various states which ensures the detection of anything 

infecting the system via changes observed in the running 

system [2]. 

 

This technique is mainly used in complex, off-the shelf 

devices but this paper explores using this technique for 

rather simpler embedded systems to understand if these 

devices can be classified by the hardware information 

derived from it. ICMetric procedure is divided in two main 

sections [3]: 

1. Calibration Phase: 
a. This Phase occurs just once with each of 

the devices.  

b. Measure the features we need and make 

the feature distributions 

c. Generate normalization maps for 

collected features. 

2. Operation Phase: 
a. Capturing the features from the devices 

whose encryption key is needed. 

b. Generate the suitable values for creating 

unique identifiers by applying 

normalization maps. 

c. Apply the key generation method. 

 

In this paper we explore the possibility of identifying 

simpler embedded device like raspberry pi. The Raspberry 

pi is chosen as it supports close to limitless applications and 

is a simpler device than ones used before for ICMetrics. 

 

In this paper we investigate if the simpler devices like 

raspberry pi can be uniquely identified based on their 

hardware characteristics. By measuring these features, we 

evaluate if we are 1. Able to uniquely identify the device 

by designing a simple model and 2. If step 1 is successful, 

generate the unique key. Here, we are only exploring step 

1 as we are using raspberry pi’s memory usage features, as 

it would be a point of reference for all the devices and we 

would have same features for each one. As applications 

vary, if sensor data is used, the sensor data cannot be 

compared if we have different sensors for two devices. 

 

The following sections of the paper describes our 

hardware, software and the conditions the data was 

collected in. The analysis of the data collected, building a 

model and how the classifier works. Lastly, the conclusion 

section also suggests the direction of exploration for 

forthcoming work. 

 

2 Experimental Setup 
 

This section contains the entire setup of the data collection. 

A software application, code written to collect the features, 

storing the data locally and later extracting for more 

statistical analysis. 

 

2.1 Software Used 

 
The Raspberry Pi has a Linux based Operating System.  

• Data is collected from the pi via Node-Red 

software which does the logging. 

• Raspberry Pi 2 with 16GB SanDisk Memory card. 

• 6 devices used with updated Raspbian desktop 

version 

• Data saved in .txt form and exported to excel for 

statistical processing i.e. calculating covariance, 

mean, correlation 



 

 

• Python for data cleaning and excel for removing 

the characters from the  

 

The figure below shows the code/data logging flow which 

will then be utilized to extract the useful features and do 

the processing. For each device, this is the calibration phase 

which collects the data. 

 

 

Figure 1 Node-Red flow for data collection 

 

2.2 Feature Analysis 

 
The pre-analysis was done in the excel. In total, 37 memory 

features were extracted. Some of them were static i.e. very 

little use. Here we extract the system memory features as it 

gives us an insight on when the system is being overused 

or idle, as Pi constantly tries to free its unused space so 

makes the device efficient. Hence, identifying and 

evaluating the useful features from the data collected. The 

features selected must be uniform amongst all the devices.  

The correlation is of high significance while choosing the 

features as they provide higher level complexity than the 

singular features [4]. The embedded memory run-time 

usage data is investigated and is mapped to generate the 

normalization maps. We collected about 2000 samples 

from each device and will randomly divide the data into 

80:20 ratio for training and test set. 

 

Table 1-6 show the simple mean and correlation between 

the features for Device 1-6 respectively: 

 

Table 2. Correlation between features and their respective 

mean for Device-1.  

Feat

ures 

F1 F2 F3 F4 Mean  

F1 1    313098 

F2 0.799446 1   67288.4 

F3 -0.02049 0.204417 1  48859.4 

F4 -0.70584 -0.48270 0.08581 1 32089.4 

 

Table 2. Correlation between features and their respective 

mean for Device-2. 

Feat

ures 

F1 F2 F3 F4 Mean  

F1 1    501050 

F2 0.2595487 1   150545. 

F3 0.0443142 0.852108 1  49988.3 

F4 -0.404908 -0.82359 -0.54614 1 30490.0 

 

Table 3. Correlation between features and their respective 

mean for Device-3. 

Feat

ures 

F1 F2 F3 F4 Mean  

F1 1    713596 

F2 -0.027850 1   151854 

F3 -0.861135 0.501389 1  45067.4 

F4 -0.956858 0.174126 0.936759 1 26630.5 

 

Table 4. Correlation between features and their respective 

mean for Device-4. 
Feat

ures 

F1 F2 F3 F4 Mean  

F1 1    171088 

F2 0.884214 1   51039.3 

F3 0.763742 0.840440 1  32834.3 

F4 -0.80707 -0.89515 -0.84112 1 19580.9 

 

Table 5. Correlation between features and their respective 

mean for Device-5. 
Feat

ures 

F1 F2 F3 F4 Mean  

F1 1    352285 

F2 0.8361488 1   112156 

F3 0.435537 0.696946 1  35627 

F4 -0.885897 -0.89783 -0.48535 1 19187.7 

 

Table 6. Correlation between features and their respective 

mean for Device-6. 

Feat

ures 

F1 F2 F3 F4 Mean  

F1 1    346930 

F2 0.9091056 1   165940 

F3 0.9266794 0.945521 1  40081.5 

F4 -0.940902 -0.97379 -0.94095 1 19445.1 

 

Here the four features here are derived from the system 

memory hence, even though they are all raspberry Pi’s we 

have a variety of correlations between the features based 

on their operation. The ‘mean’ of the features F1, F3 and 

F4 are similar for a few devices so the data can be wrongly 

classified. Hence it is important to check the nature of the 

distribution. We also used the standard multivariate 

gaussian classifier, which assumes the distribution is 

unimodal and got between 50-60% accurately classified 

test data. Therefore, a necessity to check the nature of the 

distribution. 

 

3 Feature Mapping Technique 
 

This section provides the information on how to map the 

feature values to potentially identify the device based on its 

behavior. 

 

3.1 Feature normalization and distribution 

 
Initially we generate the normalization maps to detect an 

identifier for an ‘x’ named device. This will later be 

classified as one of the known/unknown device data. The 

main concept of creating a normalization map is to map the 



 

 

collected data onto a multidimensional space. In [5] 

generated normalization maps specific feature to a vector 

and concatenating them via linear mapping. As we know 

all the samples are inter-related, i.e. can be analyzed 

independently to gain information but cannot be used 

independently. The next step is to find the probability 

distribution of every feature individually for all the devices. 

 

To understand the distribution of the features, we create the 

probability density function graphs for each feature, which 

signifies the data is unimodal, bimodal or multimodal in 

nature [6]. These multimodal features can be interpreted as 

different operational phases of the circuit. Incorporating 

the highly multi-modal features are a vital part of 

employing an ICMetrics based system [7-9]. 

 

3.2 Addressing Multimodality 

 
Multi-modal features are normalized, so they can be treated 

as the gaussian distributions. In papers [5,10] the mapping 

was linear in nature. For the multi-dimensional space, we 

use peak – trough detection [11] to separate the modal 

clusters and converting the data into gaussian format. This 

will create multiple gaussians and each mode acts as a 

distribution of its own [12]. Considering multi-modal 

features that are derived from raspberry Pi’s hardware, will 

allow to create a generalized scenario and make the 

classification/identification more efficient. 

 

The table below shows the number of modes each feature 

of each device. This gives an insight of what the modal 

boundaries look like after the data has been applied to a 

peak - trough algorithm.  

 

The paper describes the data from 6 Raspberry Pi’s. Four 

features are selected from the recorded 37 features. Feature 

values for each circuit take a unique subset of values. Some 

of the features might overlap but have a different 

correlation with the other samples. Hence, we divide the 

dataset into training and testing samples to calibrate the 

system. 

 

3.3 Identifying modal Clusters  

 
Identifying modal clusters per distribution is the first step 

of classification. Each of the sample set are read and 

checked if they belong to one of the distributions. Every 

value from the set is read one by one from beginning and 

checked which distribution (device) it belongs to. If they 

do belong to that distribution, the value will be 

identified/belong to one of the modal clusters from that 

device. When a feature set from different device is 

encountered, we will not find the values being identified or 

belonged to device 1 so all the clusters are exhausted. So, 

moved on to comparing with the next device distribution 

and this will be done for all the test feature sets. Exhausting 

all the test sets, there will some left which are not allocated 

within the known sample set. Hence, most plausible device 

is allotted using probabilities calculated by each of the 

generated Gaussian distributions. Similarly, used in paper   

 

The necessary parameters like the Mean, Variance and 

Probability function for each discrete sample set. The 

equations are used to generate the Multivariate gaussian 

model in-order to get the probability against each training 

set to assign the device number to it. 
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The Figure 2 below presents the step by step approach to 

implement the classifier which takes care of n-modal data. 

 

 

Figure 3. Flowchart to implement Classifier. 

 



 

 

5 Conclusion 
 

This paper explores the system memory usage data as 

ICMetrics features. Memory features are usually volatile, 

but for smaller embedded devices, these features are very 

crucial as they are running only targeted applications when 

deployed. We also observed that it is important to 

understand the nature of distribution per feature, to identify 

and classify the data correctly. There is a need to properly 

deploy modal clusters as separate gaussians to effectively 

take in account the multi-modal nature of the data to 

uniquely identify the system. This data will be used to 

produce effective encryption keys soon to add a layer of 

security on the simpler embedded devices. 
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