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Abstract: A Nutrient Reduction Index (NRI) was developed to assist investigators who wish to 1 

explore the impacts of interventions, individual difference factors, and farm characteristics on 2 

nutrient-focused conservation practices. Comparing the effectiveness of different interventions or 3 

understanding the effects of different farm and farmer characteristics can be difficult in the 4 

absence of a single and standardized measure of conservation practices (Anderson 2020; Loken 5 

and Gelman 2017; Lilienfeld and Strother 2020). Across two data sets (N = 1,452), the 6 

continuous NRI was calculated by weighting several in-field practices (tillage, cover crops, small 7 

grains in rotation) by their actual impact on nutrient reduction (Iowa State University 2019; Ha et 8 

al. 2020). The NRI was shown to have a smoother distribution than individual conservation 9 

behaviors, and convergent validity was demonstrated with thmpsonconservation-related 10 

constructs like conservationist identity and use of filtering practices. The NRI also correlated 11 

with farm size, greater formal education, and lower farmer age, consistent with previous work 12 

regarding general conservation practices. This measure of nutrient reduction practices can help 13 

reduce error associated with dichotomization of practice adoption (MacCallum et al. 2002) and 14 

testing multiple measures (Banerjee et al. 2009; Anderson 2020), and its weighted nature better 15 

reflects the impact of practice adoption on actual nutrient reduction. 16 
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The field of farmer behavior endeavors to discover means by which conservation 1 

agriculture can be encouraged, as doing so is a crucial component of soil and water 2 

conservation goals. Excess nitrogen and phosphorus entering water systems contribute to 3 

harmful algal blooms (Hunt, Hill and Liebman 2019), which are further exacerbated by climate 4 

change (Paerl and Scott 2010). Because nutrient application is often necessary for crop 5 

production, best management practices aimed at greater precision and retention in nutrient 6 

applications are recommended, rather than ceasing the application of nutrients altogether (Hedley 7 

2015; FAO 2022). However, current outreach and incentive programs have not been sufficient to 8 

increase adoption of recommended practices to the level needed to meet nutrient reduction 9 

targets (Wilson et al. 2019; Martin et al. 2021). Because of this gap, best practices in behavioral 10 

science are being used to encourage changes in practices beyond those achieved by traditional 11 

conservation programs (Prokopy et al. 2019; McGuire et al. 2015; Reimer et al. 2012). As these 12 

applications grow, the effectiveness of these various interventions will need to be compared to 13 

discover the best options for increasing nutrient management practices on farms. To do so, 14 

comparable outcome measures will be needed to support direct comparisons. 15 

 The scientific literature surrounding the measurement of behavior has developed several 16 

overarching principles that guide quantitative measurement. Several of these principles are 17 

directly relevant to measuring conservation practices among farmers and testing the factors that 18 

influence practice adoption. These principles include: (1) minimizing familywise (or cumulative) 19 

Type I error, (2) validity, (3) appropriateness of the measure for statistical models, and (4) 20 

consistency between studies. Currently, the discipline of farmer behavior research has not 21 

developed a wide-used measure of nutrient reduction practices that addresses all these principles. 22 

The current investigation aimed to do so, focusing on nutrient management practices that are 23 
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relevant to the growth of row crops, which accounts for 56.5% of all United States crop acreage 1 

(USDA 2021). 2 

 3 

Minimizing Familywise Type I Error 4 

 First, the construct of “level of adoption of nutrient management practices” should be 5 

represented as a single measure whenever possible. This is because when a construct is measured 6 

as a series of separate behaviors, multiple statistical tests must be performed to examine the 7 

relationship between the predictor variables and behaviors. Because of the nature of null 8 

hypothesis significance testing, performing multiple tests in this way inflates Type I error 9 

(Anderson 2020), or the chance that a statistically significant finding is actually due to chance. 10 

Applying more stringent conventions of statistical significance is not always sufficient to 11 

accommodate this increased Type I error (Anderson 2020). Also, simply averaging multiple 12 

behaviors together would assume that each behavior is an equal representation of conservation, 13 

when in reality, some practices have a greater environmental benefit than others (Iowa State 14 

University 2019; Ha et al. 2020).  15 

 Accordingly, the proposed Nutrient Reduction Index (NRI) weighs three conservation 16 

practices – reduced tillage, diverse crop rotations, and cover crops - by their scale of on-farm 17 

implementation (proportion of acres or proportion of years in practice) and each practice’s 18 

relative potential for nutrient reduction, as determined by data from Iowa State University (2019) 19 

and nutrient reduction goals of the USDA (2022). Many published works review the benefits of 20 

these practices for reducing nutrient runoff, or improving soil health to reduce the need for 21 

nutrient application (e.g. Blanco-Canqui 2018; Hunt et al 2019; Koropeckyj-Cox et al. 2021; 22 

Nunes et al. 2020). Here, we used estimates of reductions in nutrient load from Iowa State 23 
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University (2019) as these estimates were drawn from a similar study area as the present data. 1 

The full method of calculation is listed in the Supplemental Materials. These practices were 2 

chosen for four primary reasons: (1) they are considered central parts of conservation agriculture 3 

(FAO 2022; USDA 2022); (2) they are commonly measured in-field practices across studies of 4 

farmer behavior (Schenpf and Cox 2006; Baumgart-Getz et al. 2012; Carlisle 2016; Prokopy et 5 

al. 2019; Luther et al. 2020, Lu et al. 2022); (3) are directly or indirectly relevant to the nutrient 6 

reduction and soil health goals of many incentive-based programs (Claassen et al. 2018; Reimer 7 

and Prokopy 2014; USDA 2022), (4) and are relevant to the production of row crops, which are 8 

grown in most states and make up about 56.5% of all cropland acres in the United States (USDA 9 

2021).  10 

Validity 11 

 Quantitative measures of a construct, in this case nutrient management practices, should 12 

demonstrate convergent validity with other constructs that ought to be related (Campbell and 13 

Fiske 1959). Previous work has demonstrated that in general, in-field conservation practices are 14 

related to other conservation-focused practices such as edge-of-field nutrient management 15 

(Prokopy et al. 2019). Further, a farmer’s conservationist identity, or the extent to which the 16 

farmer believes that a “good farmer”—or a best-practice farmer—engages in conservation 17 

practices, correlates with higher actual conservation practices (Morton et al. 2017). 18 

Next, a measure should also demonstrate divergent validity by showing that the measure 19 

is distinct from other variables that could be correlated with it, and therefore the measure adds a 20 

deeper understanding of the implementation of conservation practices. For example, larger farms 21 

tend to implement more conservation practices, as do younger farmers and those with higher 22 

formal educational attainment (Prokopy et al. 2019). This is most likely due to differences in 23 

resource availability, such as the per-acre cost of implementation decreasing with larger farm 24 
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size, persons further from retirement receiving more long-term benefits of conservation 1 

practices, and having more engagement with university extension offices. To establish divergent 2 

validity when testing the effect of past conservation practices on future practice implementation, 3 

these variables would need to be statistically controlled to establish a unique effect of past 4 

practices. The present investigation sought to investigate the validity of the NRI by replicating 5 

the above findings from previous work. 6 

Appropriateness for Statistical Models 7 

 To test whether a program significantly increased practice adoption beyond chance 8 

levels, statistical tests must be performed. This significance testing in behavioral science and 9 

program evaluation is often done using ordinary least squares (OLS) linear regression modeling 10 

(Long 2008). Other types of statistical approaches like analysis of variance are possible (Roberts 11 

and Russo 2014), but all OLS regression models require that there is no systematic error in 12 

estimating what the effect of an independent variable (such as enrollment in a program, farmer 13 

conservation identity, or farmer age) is on the dependent variable (such as practice adoption). 14 

This is called homogeneity of error variance. When a variable is highly skewed, there can 15 

sometimes be systematic error in the statistical model, as the mean is not an accurate measure of 16 

central tendency (Osborne and Waters 2002). Very often, levels of conservation practice 17 

adoption are highly skewed. For example, Figure 1 shows the distribution of the percent of acres 18 

that a farmer has in continuous no-till. This data was collected from farmers in the Great Lakes 19 

region and is described in the Supplemental Materials.  20 

  21 
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Figure 1 1 

Distribution of Percent of Land in Continuous No-Till among 1452 U.S. Great Lakes Region 2 

Farms 3 

 4 

Note: As is the case here, the distribution of amount of land in a reduced tillage system is often 5 

highly skewed. N = 1452 farmers in the U.S. Great Lakes Region. 6 

When skewed data causes the assumptions of statistical tests to be violated, one common 7 

strategy is to dichotomize the variable. For example, measuring no-till practices as either 8 

happening on some land (a value of “1”), or not (a value of “0”). However, doing so loses 9 

variability associated with different levels of practice implementation. This loss of variance can 10 

lead to spurious results in statistical models, as well as incorrectly concluding that an 11 

intervention was not effective (Dawson and Weiss 2012).  12 

The proposed Nutrient Reduction Index was developed to help accommodate this issue 13 

associated with quantitative measures of practice adoption by combining several practices. It was 14 
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reasoned that separately, each practice has low levels of adoption, but together, their distribution 1 

among farmers would be less skewed and smoother.  2 

Consistency Between Studies 3 

 Finally, in order to compare the effectiveness of various interventions or programs, or the 4 

effect of farm and farmer characteristics, on practice adoption, comparable measures are needed 5 

in order to draw robust conclusions across multiple studies. Currently, published studies exhibit 6 

variability in how conservation practice adoption is quantified (e.g. Prokopy et al. 2019, Lu et al. 7 

2022). For example, some studies quantify practices individually, often measuring adoption in a 8 

yes/no dichotomous fashion. Although these methods are individually sound, comparing the size 9 

of the effect of interventions across unequal measures is difficult, prohibiting conclusions about 10 

which effects are strongest, which method or intervention could be most effective at inducing 11 

change, or whether the same intervention is consistently and reliably effective (Prokopy et al. 12 

2019). The proposed Nutrient Reduction Index can be used in future works to facilitate 13 

comparability of effects across published studies by being calculated in addition to, or in place 14 

of, other measures. 15 

Study Overview 16 

 The present study aimed to develop a single and easily calculable index of nutrient 17 

reduction practices, using commonly-measured practices that are often the target of nutrient 18 

management programs, and on-farm conservation more broadly (Schenpf and Cox 2006; 19 

Baumgart-Getz et al. 2012; Carlisle 2016; Prokopy et al. 2019; Luther et al. 2020; Lu et al. 2022; 20 

USDA 2022). This was accomplished by examining survey data collected from farmers in the 21 

Great Lakes Region. These surveys measured practice adoption, farm characteristics, and 22 

individual difference factors like farmer conservation identity. The surveys were designed to 23 
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integrate predictors of heterogeneity in conservation practice adoption with simulation models of 1 

watershed quality. Therefore, the analyses presented here are secondary analyses. 2 

Materials and Methods 3 

Study Population. Survey data was collected from 1,517 farm operators in the Great 4 

Lakes Region across two survey projects. These paper-and-pencil surveys were collected 5 

contemporaneously via mail in 2019, without overlap in study populations (for full details on 6 

population selection and distribution methods, see Supplemental Materials). Respondents were 7 

free to skip any questions that they did not wish to answer. For the variables that comprise the 8 

Nutrient Reduction Index, complete data was collected from 1,452 participants. 9 

Measures. To replicate existing findings in the literature, the present study tested the 10 

relationship of the Nutrient Reduction Index with other (non-in-field) conservation practices, 11 

farmer conservation identity (Arbuckle 2013; McGuire et al. 2015), farm characteristics, and 12 

demographic factors. For full measurement details, descriptive statistics, and full survey 13 

instruments see the Supplemental Materials. 14 

Nutrient Reduction Index: The Nutrient Reduction Index was calculated from tillage 15 

practices (proportion of land in conventional tillage, conservation tillage, rotational no-till, 16 

continuous no-till), proportion of land in cover crops, and proportion of years having small 17 

grains in rotation. Each practice was then weighted by its relative impact on nutrient reduction, 18 

using metrics developed by Iowa State University (2019). Finally, the weighted values for each 19 

practice were added together, such that possible scores on the index range from 0 to 1.65. 20 

Analytic Strategy. After the Nutrient Reduction Index was calculated its distribution was 21 

examined. Next, correlations between the variables were examined using two-tailed pairwise 22 

correlations. To account for overlapping variance amongst these variables, significant corollaries 23 
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of interest were entered into a multiple linear regression model predicting NRI scores. Model 1 

assumptions of normality of residuals and homogeneity of error variance were also examined to 2 

test the appropriateness of the NRI for ordinary least squares statistical tests. 3 

Results and Discussion 4 

Nutrient Reduction Index. The NRI followed a multi-modal distribution (see Figure 2). 5 

Specifically, scores are clustered around values of 0.00, 0.47, and 0.93. Zero corresponds to a 6 

value of not having implemented any conservation practices on one’s farm, 0.47 corresponds to 7 

having fully implemented no-till practices but no small grains or cover crops, and 0.93 8 

corresponds to implementing continuous no-till on one’s farm, but no other practices. Unlike the 9 

distribution of the individual conservation practices (see Figure 1), the distribution of the NRI 10 

was smoother.  11 

 12 

  13 
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Figure 2 1 

Distribution of Nutrient Reduction Index Scores Across 1452 Farms in the U.S. Great Lakes 2 

Region 3 

 4 

 5 

Note: Distribution of the Nutrient Reduction Index, which has three modes and more closely 6 

approximates a normal distribution, compared to the distribution shown in Figure 1. N = 1452 7 

farmers in the U.S. Great Lakes region. 8 

 9 

Correlations. As expected, the NRI significantly correlated with greater conservationist 10 

identity and having more land in dedicated edge-of-field practices. This helps to establish the 11 

convergent validity of the NRI (see Table 2). Consistent with previous meta-analyses examining 12 
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correlates of conservation practices (Prokopy et al. 2008; 2019), the NRI also correlated with 1 

having a larger farm and livestock, as well as higher formal educational attainment and lower 2 

farmer age. Importantly, each of these correlations was small, indicating that none of these 3 

variables is sufficient to account for all variability in nutrient reduction practices. This helps to 4 

argue for the discriminant validity of the measure.  5 

Table 2 6 

Pairwise Correlations 7 

Variables (1) (2) (3) (4) (5) (6) (7) 

(1) nutrient reduction 

index 

1.000       

       

1452       

        

(2) conservationist 

identity 

0.242 1.000      

(0.000)       

1383 1389      

(3) percent of land in 

non-in-field 

conservation 

0.156 0.105 1.000     

(0.000) (0.000)      

1452 1389 1458     

        

(4) farm size 0.064 0.060 0.057 1.000    

(0.016) (0.025) (0.030)     

1445 1387 1451 1451    

        

(5) livestock on farm 0.092 0.023 0.011 0.095 1.000   

(0.001) (0.387) (0.685) (0.000)    

1427 1376 1433 1432 1433   

        

(6) farmer age -0.057 0.009 -0.050 -0.139 -0.148 1.000  

(0.033) (0.736) (0.060) (0.000) (0.000)   

1410 1372 1416 1413 1401 1416  

        

(7) farmer education 0.112 0.022 0.051 0.132 0.034 -0.157 1.000 

(0.000) (0.407) (0.053) (0.000) (0.196) (0.000)  

1452 1389 1458 1451 1433 1416 1458 

 

Note: Pairwise correlations between the nutrient reduction index and all variables of interest. 8 

Because participants were free to skip any question, N varies for each pairwise correlation. 9 
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Regression Analyses. Because the NRI was observed to have a multimodal distribution 1 

in the present sample, it was not appropriate to use statistical models that rely on mean values of 2 

the dependent variable to indicate centrality (i.e. OLS regression). Indeed, after fitting an OLS 3 

regression model and plotting the error residuals, they were not normally distributed. Further, 4 

residuals were not homogeneous across values of the NRI.  5 

As such, it was concluded that a heteroskedastic regression model would be estimated, 6 

which does not make assumptions about the distribution of residuals, but instead explicitly 7 

models heterogeneity of error variance, and is more robust to misspecification (Leslie et al. 8 

2007). Exploratorily, we also modeled the effect of the predictors on the NRI at each of the 9 

aforementioned modes in the distribution using simultaneously-estimated quantile regression, 10 

which does not assume normality of residuals nor homogeneity of error variance. Quantile 11 

regression allows for models to be estimated at specified quantiles of the dependent variable, 12 

with robust standard errors estimated using bootstrapping (Hao et al. 2007). A regression model 13 

was estimated for each quantile that corresponds to each mode.  14 

Heteroskedastic Regression Model. A heteroskedastic regression model was estimated 15 

that predicted the NRI from conservationist identity, farm size, the presence of livestock on one’s 16 

farm, farmer age, and farmer education. Conservation identity, farm size, and farmer age and 17 

education were standardized using z-scores. This sets each variable in the model to have a mean 18 

of zero and standard deviation of one. In this way, the model estimates meaningful zero values of 19 

the predictors, and creates more comparable coefficients. Results of the model showed that once 20 

overlapping variance between the predictors is accounted for, only conservation identity, the 21 

presence of livestock on the farm, and formal educational attainment correlated with the NRI 22 

(see Table 3). 23 
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Table 3 1 

Heteroskedastic Linear Regression Results 2 

 Parameter β 95% C.I. SE p 

   LL UL   

      

Intercept 0.449  0.431  0.467  0.009 < .001  

      

conservationist 

identity  
0.057  0.043  0.071  0.007  < .001 

farm size  0.005  - 0.007  0.018  0.007  .406  

livestock  0.060  0.028  0.091 0.016  < .001  

farmer age  - 0.007 0-.023  0.007  0.008  .302  

farmer education  0.024  0.008  0.039 0.008  .003  

          

Note: The regression model [χ2(5, 1353) = 98.12, p < .001] found that at average levels of the 3 

predictor variables, the average NRI score is 0.45, out of a possible highest score of 1.65. A one 4 

standard-deviation increase conservation identity predicted a 0.057-unit increase in the NRI. The 5 

presence of livestock predicted a 0.060-unit increase, compared to no livestock. Finally, 6 

compared to a person with average farmer education (some college) a person with an associate’s 7 

or bachelor’s degree is predicted to have higher NRI scores by 0.024 units. 8 

Quantile Regression Model. In the quantile regression analysis (see Table 4), at mean 9 

values of nutrient reduction practices, the NRI is predicted by conservationist identity and having 10 

livestock. At the lowest mode of no NRI-related practices, conservationist identity does not 11 

predict the NRI, but it is predicted by larger farm size and having livestock. Finally, at the 12 

highest mode, which corresponds to implementing no-till on all acres but no other practices, the 13 

NRI is only predicted by conservationist identity.  14 

  15 
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Table 4 1 

Quantile Regression Model Results 2 

Parameter 
β SE 

95% 

C.I. 
 p 

R2
pseud

o 

   LL UL   

       

.091 quantile (NRI = 0.00)      .047 

intercept 0.058 0.019 0.020 0.095 .003  

       

conservationist identity  0.021 0.013 -0.004 0.046 .100  

farm size  0.039 0.010 0.020 0.058 < .001  

livestock  0.122 0.033 0.058 0.187 < .001  

farmer age  -0.015 0.012 -0.037 0.007 .193  

farmer education  -0.001 0.008 -0.018 0.015 .870  

       

.630 quantile (NRI = 0.43)      .037 

intercept 0.475 0.012 0.452 0.498 < .001  

       

conservationist identity  0.058 0.011 0.037 0.080 < .001  

farm size  0.001 0.008 -0.016 0.017 .921  

livestock  0.076 0.023 0.030 0.122 .001  

farmer age  
-0.019 0.010 -0.037 < 

0.001 

.050  

farmer education  0.017 0.011 -0.004 0.039 .119  

       

.934 quantile (NRI = 0.93)      .035 

intercept 0.936 0.019 0.899 0.972 < .001  

       

conservationist identity  0.076 0.022 0.032 0.119 .001  

farm size  0.003 0.019 -0.033 0.040 .854  

livestock  0.022 0.040 -0.056 0.099 .583  

farmer age  0.026 0.019 -0.012 0.064 .178  

farmer education  0.034 0.022 -0.009 0.078 .124  

       

Note: Above are results of the simultaneous quantile regression model, with robust standard 3 

errors estimated using 10,000 bootstrapped replications. Coefficients are comparable across 4 

models by examining the confidence intervals. The first model corresponds to a starting point of 5 

not engaging in any of the conservation practices that are part of the NRI; the to sample mean 6 

NRI values; and the third engaging in all no-till but no other practices.  7 
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Discussion. The present study aimed to develop a single, combinative measure of 1 

nutrient reduction practices, using commonly-collected farming practice data weighted by 2 

evidence-based effects on nutrient reduction goals (Iowa State University 2019). This Nutrient 3 

Reduction Index exhibited correlations that were consistent with existing literature examining 4 

the relationship between general conservation practices and farmer conservationist identity, farm 5 

characteristics, and demographic factors. As expected, the in-field nutrient reduction practices 6 

that were part of the NRI also correlated with edge-of-field conservation practices. Importantly, 7 

none of these correlations were high, suggesting that the NRI remains a useful measure beyond 8 

existing constructs that relate to conservation practices. 9 

Another goal of the study was to evaluate the appropriateness of the Nutrient Reduction 10 

Index for common statistical techniques that use ordinary least squares estimation. Examining 11 

the distribution of the NRI revealed that there were multiple modalities. Specifically, there 12 

appeared to be normative trends in farmer behavior, such that there were some in the sample who 13 

engaged in none of the nutrient reduction practices measured (N= 132, or 9%), and others who 14 

had implemented continuous no-till on all of their acres but had no cover crops nor small grains 15 

(N = 83, or 6%). Other samples from different regions in the United States may not exhibit this 16 

trend, but the present sample illustrates the importance of choosing statistical tests that are 17 

appropriate for the nature of any measure of conservation practices.  18 

The analyses further suggested that there may be meaningful heterogeneity in what drives 19 

the adoption of additional practices across different starting points of current practices (tillage, 20 

cover crops, and small grains), although causal conclusions are not possible due to the 21 

correlational nature of the data. Specifically, results were consistent with the idea that when 22 

farmers have not implemented NRI-related practices, if more farm resources were available with 23 
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farm size—like income, labor, machinery, and lower costs per acre (Lu et al. 2022)—that might 1 

allow for greater adoption. Whereas when some conservation practices are already in place, 2 

conservationist identity predicted implementing more practices. 3 

Summary and Conclusions 4 

Limitations and Future Directions. The present study is limited in terms of accounting 5 

for all factors that might relate to the Nutrient Reduction Index. This is because the regression 6 

models could account for only about 5% of variability in the NRI. The strongest correlation 7 

observed was between the NRI, and conservationist identity. Future investigations could 8 

examine the relationship of the NRI to other individual difference factors that relate to pro-social 9 

or pro-environmental action, such as self-efficacy or perceived behavioral control (Perry and 10 

Davenport 2020; Gao and Arbuckle 2021) and perceived norms (Ranjan et al. 2019). 11 

 Second, it is important to point out that it is not the absolute values of the NRI that are 12 

meaningful, but rather relative scores. This is because after each practice (tillage, cover crops, 13 

and small grains) was weighted by their relative impact on actual nutrient reduction (as per Iowa 14 

State University 2019), they were added together. However, the actual impact of any 15 

combination of practices is not additive. Nevertheless, the NRI developed here does give credit 16 

to operators for not only the scale of practice implementation on their farm, but also that 17 

practice’s actual impact on nutrient reduction. The weighting of the practices contained within 18 

this index could be updated in accordance with new evidence regarding how these practices 19 

combine to reduce nutrient loss. Finally, although the conservation practices that comprise the 20 

index are relevant to any place where row crops are grown, the data used here include only farms 21 

in the Midwest. As in the present data, across farms in the united states, non-conventional tillage 22 

predominates (Zulauf & Brown, 2019a), use of cover crops is low (Zulauf & Brown, 2019b), and 23 
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in areas where corn is grown, rotations that include corn and soy are common (Wang et al. 1 

2020). Therefore, we would expect that the distribution and utility of the Nutrient Reduction 2 

Index would not be limited to the Midwest. Nevertheless, future work will be needed to examine 3 

the distribution of NRI scores in other areas where row crops are grown. 4 

 Finally, a strength of this index is that it is able to measured via self-report surveys, using 5 

just a few items that can be completed quickly and with minimal recall effort. Thus, these items 6 

are brief enough to be included on larger surveys that may have other purposes, thereby 7 

minimizing costs and participant burden. An exciting future direction would be to explore the 8 

utility of estimating the Nutrient Reduction Index using remotely-sensed data, which has shown 9 

some promise detecting crop type and rotation (Rahman et al. 2019; Lin et al. 2022) and 10 

conservation tillage (Zheng et al 2013; Beeson et al. 2020) 11 

Conclusion. The present study presents a suggested means by which conservation 12 

practices related to nutrient reduction can be assessed as a single, combinative measure. The 13 

Nutrient Reduction Index that was developed revealed nuanced correlates of farming practices; 14 

examining modalities in NRI scores suggested that when existing conservation practices are low, 15 

implementing further practices may be limited by a lack farm resources rather than a lack of pro-16 

environmental goals. It is hoped that by calculating and analyzing NRI scores, results of future 17 

studies can be directly compared. Doing so would allow for comparing the effectiveness of 18 

different conservation interventions and other factors at encouraging the adoption of nutrient 19 

reduction practices across contexts and time. 20 

 21 

  22 

  23 
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