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Abstract

Reviewer 2: Comment 3

Accurate orientation and position estimation are critical elements in optimiz-
ing real-time object tracking performance when leveraging smartphone sensors
such as accelerometers and gyroscopes. The primary challenges encountered in
smartphone-based object tracking are attributed to the GPS signal, canyon effect,
and orientation errors, accumulation error in sensor. To address these limitations,
a novel approach is proposed wherein a smartphone application is developed
based on IMU Multi -sensor fusion using Kalman filter and Rotation vector. The
proposed approach integrates Kalman filtering to fuse sensor data and lever-
ages the rotation vector for precise orientation estimation. Additionally, geohash
filtering is employed to efficiently proficiency in quantifying intricate spatial inter-
dependencies and display track paths on maps within the application. A detailed
mathematical analysis and thorough comparison with existing algorithms in the
field proves the dexterity of the proposed object tracking scheme. The comprehen-
sive evaluation showcases the algorithm’s capability and advancement compared
to state-of-the-art approaches. .

Keywords: Kalman Filter, Rotation Vector, Geohash Filter, Linear Acceleration
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1 Introduction

Object tracking has emerged as an interesting application which involves real time
data classification and interface for highly accurate inference [1]. Practical implemen-
tation of tracking algorithms, often involves the use of smartphone sensors such as
GPS and Gyroscope. However, challenges imposed due to accumulated sensors error,
environmental components, location error in smartphone devices, result in steep degra-
dation in the overall accuracy and performance of the existing methods.The pressing
challenges in object tracking applications may be summarised as follows.

1. Accuracy: Object tracking accuracy depends on the accuracy of the accelerometer’s
calibration. However, signal noise and biases reduce the calibration accuracy and
algorithm reliability.

2. Object Localization: IMU can be used for object tracking in outdoor localization.
However various factors such as external electromagnetic noise or sensor drifts
impact the accuracy of the IMU based localization system.

Existing methods of object tracking employ several mechanisms for addressing
these issues.For instance the authors in [2] used the multivariate data fusion (MVDF)
technique for connected ITS vehicles.In the realm of intelligent transportation systems
(ITS),

Reviewer 2: Comment 4

The prediction of urban traffic crowd flows holds significant importance. However,
effectively capturing the intricate spatial connections between different regions and
dynamic temporal relationships across various time periods presents a challenge. To
address this obstacle, a novel solution called DHSTNet is introduced. DHSTNet is a
dynamic deep hybrid spatio-temporal neural network specifically designed for achiev-
ing highly accurate predictions of citywide traffic crowd flows. It incorporates four
key properties, namely closeness volume, daily volume, trend volume, and an exter-
nal branch, enabling precise traffic flow predictions in every region of a city [3],[4].
The authors utilized regression-based computation and filtration process to reduce
the errors in the fusion process.While, Network simulator experiments were used to
measure model performance. Object tracking in dynamic environments is a big chal-
lenge for researchers as it involves information about object monitoring which involve
various parameters [5].

Reviewer 2: Comment 4

Wearable sensors offer a another promising approach for object tracking by
leveraging the capabilities of these sensors. In this approach a feature fusion tech-
nique is applied, utilizing covariance matrices to extract correlation information from
accelerometer-based inertial sensor fusion. The findings demonstrate that the Affine-
Invariant kernel achieves the highest accuracy when used with both RBF and sigmoid
activation functions [6].The author in [7] proposed a real time tracking application
based on camera and IMU sensors data which the utilized visual-inertial odometry
(VIO) to integrate visual and IMU data. IMUs are portable devices that are used for
capturing human movement. IMUs are also used for tracking objects in various posi-
tions [8]. However, the orientation of IMUs is the biggest challenge faced during object
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tracking. Some studies have used the Extended Kalman Filter (EKF) to overcome this
problem. The main utility of the EKF algorithm is to find the position of the mov-
ing object in a dynamic environment. Similarly, Error-State Kalman Filter (ESKF)
was used for estimate the Inertial measurement units (IMU) orientation. Based on
the experimental results, the author showed that ESKF provides higher accuracy
than coordinated measure machine (CMM). Precise localization is vital for accurate
smartphone-based navigation in the real world. To enhance localization accuracy, a
fingerprint-based approach is proposed, drawing inspiration from microbat echoloca-
tion. This method incorporates a Bayesian-rule based objective function for improved
smartphone-based navigation systems[9] Kalman Filter can also be used with a net-
work of LIDAR sensor to track vehicles in real-time under parking like conditions. The
authors in [12] used RANSAC algorithm, for achieving a mean lateral error of 6.3 cm
and a longitudinal error of 8.5 cm. Some authors have used Android Studio and GPS to
create location tracking application.GPS systems are used for real-time tracking and
incident alert system in commercial city buses [13]. Similarly, the GPS can be used for
creating a specific application for location tracking and route identification. However,
Canyon effect and limitation of satellite visibility in dense urban environments impact
the positioning estimation and GPS tracking. As such, GPS is used for acquire loca-
tion, Open Street Map for layout, and Android studio for development [14]. Many IoT
cloud systems for traffic monitoring and accident prevention use Mobile sensors such
as GPS/GPRS to collect Geo-location and speed data. These cloud-based systems use
various other tools such as OpenStreetMap for visualization and MongoDB for data
management and provide real-time traffic movement data [15] resulting in improved
detection accuracy and computational efficiency. The main focus of this research is to
develop a cost-effective object tracking solution that utilizes phone sensors, specifically
without relying on audio and video data. The objective is to improve the accuracy of
the tracking process by leveraging the capabilities of phone sensors while keeping the
solution affordable and accessible. Mobile sensors such as Gyroscope, Accelerometer,
and GPS are used for input data collection in real-time tracking of vehicles, including
positioning and manoeuvring of vehicles. Filters such as Exponential Moving Average
Filter, Low pass filter and Kalman filter were used for fusion and smoothing of data
[10].IMU integrates with GPS and a known map along with driving lanes and road
markers detected[16]

Reviewer 1: Comment 1 Reviewer2 : Comment 1

The proposed work is therefore aimed at achieving improved accuracy and reduced
localization error by making use of sensor fusion of smartphone sensors. Kalman filter
along with Geohash filter is used to develop an algorithm which requires minimum
external hardware (only smartphone and laptop), thereby enhancing its affordability,
efficiency, portability and maintainability. Additionally, the use of Kalman and Geo
hash filter is aimed at improving the overall accuracy of the proposed method.

The contributions of the proposed work are summarised as follows:-

1. A real time object tracking algorithm is proposed to address the issues imposed due
to sensor drifts, GPS signal lost and accelerometer’s calibration, orientation error.
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2. A detailed mathematical analysis to prove the relation between the rotation matrix
and axis-angle for orientation parametrization.

3. An extensive comparative analysis of the results obtained for the accuracy of the
proposed method is also presented,

Rest of paper is organized as follows. Section 2 discusses the problem description
related to real-time object tracking. Section 3 presents the network parameter and
framework. Section 4 describes the system model of the application while section 5
discusses the proposed architecture. Section 6 presents the analytical analysis of the
proposed method.In section 7, the simulation setup is discussed and finally, the paper
is concluded in Section 8 and the future work is discussed in section 9.

2 Problem Description

Existing methods of object tracking through motion transformation ,work on the gen-
eral straightforward idea of transforming the motion information i.e orientation, from a
smartphone to that of the object i.e vehicle.The general process of object’s orientation
to position is shown in figure 1. The acceleration data from the phone is transformed
to vehicle’s acceleration in several steps .These steps include obtaining the gravity
direction with the help of mobile orientation, followed by deduction of acceleration on
a horizontal plane. Finally the transformation matrix is obtained by a set of math-
ematical computations. The matrix,thus obtained, converts the phone’s acceleration
data to that of the vehicle. However, a careful observation of the facts, reveal that the
accuracy in such approaches suffer significantly because of the following reasons:

Fig. 1 Object’s Orientation to Position

1. Vehicle on slope :- In case where the vehicle is on slope, the direction of the
gravity is considered to be Z axis of the vehicle , which is not necessarily true.

2. Noise :-The readings of accelerometer are noisy because of the frequently varying
terrain and driving conditions. This negates the general assumptions of maximum
horizontal acceleration to be always on Y axis.

3. Reliability:- The reliability of the direction of maximum horizontal acceleration is
significantly affected with the continuously changing phone position due to rough
terrain, driving dynamics etc.
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3 Network Parameters and framework

3.1 Linear Acceleration

Linear acceleration is used for estimation of position and speed of the device, and is
given by:

AL = A−G (1)

While G is obtained using the orientation of a device.

V elocity =

∫ t

0

Adt (2)

Position =

∫ t

0

∫ t

0

Adt (3)

3.2 Rotation Vector

A rotation vector is a synthetic sensor that provides the device’s orientation with the
help of an accelerometer, magnetometer,and Gyroscope (optional). The orientation of
the device can be represented using quaternion, Euler angles, and rotation matrix.
The rotation vector gives the orientation of the device in the form of a quaternion.
A quaternion is a four-element vector that also shows the amount of rotation. Euler
angle represents 3D orientation in the form of roll angle, pitch angle, and yaw angle
with respect to X, Y Z direction.It is important to note that quaternions are difficult
to visualize, while the Euler angle suffers from the singularity at transitions of quad-
rants,leading to gimbal lock. Thus, a rotation vector is more suitable to represent the
orientation. The Figure 2 illustrates the coordinate system used by the rotation vector
sensor and
Reviewer 3: Comment 1

the table 1 shows the symbols along with their descriptions as used throughout
this work.

Fig. 2 Rotation Vector Sensor with Respect to Earth
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4 System Model

The physical motion and measurement model of an object is given by :

X[t] = f(x[t− 1], u[t], w[t]) (4)

z[t] = g(x[t], v[t]) (5)

The equations f and g represent the abstract models derived from the underlying
physical dynamics and inherent properties of the sensing devices. These models encap-
sulate the relationship between the state and measurement variables. Generally, object
is tracked through one or more IMU sensors such as GPS, accelerometer, rotation
vector.Each sensor obtains its own estimate which is integrated through the fusion
process.

4.1 System State Model

An object can be tracked in 2-Dimensional using X and Y coordinates. The system
state transfer function is given by:

Xt = TXt−1 +BUt +Wt (6)

T =


1.0 0.0 dt 0.0
0.0 1.0 0.0 dt
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

X =


X
Y

XV elocity
Y V elocity



B =


dt2 0.0
0.0 dt2

dt 0.0
0.0 dt

U =

[
XAcceleration
YAcceleration

]
W =


Wxi

W′xi

Wyi

W′yi


4.2 Measurement Model

At a given time ”t” the measurement zt of the state estimate xt is calculated by
following equation

Zt = Ht.xt + vt (7)

Where, Ht maps the true state space into measured space.

5 Proposed Architecture

A detailed structure of object tracking using IMU sensors and Kalman filter is shown
in figure 3.The proposed architecture is divided into two main stages:

1. Stage 1:-
Sensor fusion with GPS and accelerometer
Position and speed of an object is determined by sensor fusion between GPS

and accelerometer.
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Fig. 3 Proposed Architecture

2. Stage 2:-
Tracking fusion using Kalman filter and Geo hash filter
This is used to determines the location of the object.

Reviewer 1: Comment 2

5.1 Sensor fusion with GPS and accelerometer

Sensor fusion between GPS and accelerometer is utilized to measure speed and
position of any object. As shown in figure 3, input values from GPS and accelerometer
sensor goes through the Kalman filter for sensor fusion.

Reviewer 2: Comment 2

The Kalman filter relies on accurate error estimation of measurements, which poses
a challenge when utilizing sources like smartphones or GPS updates that lack inherent
error estimates for speeds [17]. Therefore, a method was developed to estimate the
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error in GPS speed updates. While GPS speed updates maintain accuracy during
constant vehicle speed, they introduce deviations once acceleration is applied. Before
fusion, acceleration deviation is calculated for the Covariance process error matrix (Qt)
and Covarience observtaion noise matrix (R). This matrix is used in the Kalman filter
fusion during predict and update stages. Acceleration deviation which is represented
by σ,is calculated based on the following formula.

α =

√√√√[

∞∑
n=1

(x− x)2

N
) (8)

The mean value of measurement calibrations used in the formula is calculated by
the acceleration value. Kalman filter is an iterative process or data fusion algorithm
that works in two stages namely: Prediction and updation that provides estimates of
unknown variables given the measurements observed over time. Updated values from
the sensor are compared with the predicted value and based on that information,
object’s speed and position is updated in the system through following steps:-

STEP 1 Prediction. Prediction is a first step in Kalman filter.The predict states
updates the last estimation using the propagation model and updates the co-variance
accordingly. X- direction acceleration and Y- direction acceleration input values from
accelerometer sensor act as predict values. Following equation represents the prediction
stage:

Xt|t−1 = FXt−1|t−1 +BUt (9)

xt is the state vector containing the terms of interest for the system (e.g., position,
velocity, heading) at time tut is the vector containing any control inputs (steering
angle, throttle setting, braking force) Ftis the state transition matrix which applies
the effect of each system state parameter at time t-1 on the system state at time t
(e.g., the position and velocity at time t-1 both affect the position at time t) Bt is
the control input matrix which applies the effect of each control input parameter in
the vector ut on the state vector (e.g., applies the effect of the throttle setting on the
system velocity and position) utis the vector containing the process noise terms for
each parameter in the state vector. The process noise is assumed to be drawn from a
zero mean multivariate normal distribution with covariance given by the covariance
matrix Qt. Sensors provide the input values to track the position and velocity of the
object. After receiving the input values from the sensor, Kalman filter estimates the
values.
1. Firstly, GPS provides the measurements to the sensor fusion method for position

and speed of an object. The measurements are passed through predict step of
Kalman filter to determine the state estimates of an object at time t.

2. Previously determined acceleration deviation acts as σ value in the co-variance
matrix for the fusion algorithm. Based on the σ, the process noise of the co-variance
matrix Qt is calculated.

9



F =


1.0 0.0 dt 0.0
0.0 1.0 0.0 dt
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

X =


X
Y

XV elocity
Y V elocity



B =


dt2 0.0
0.0 dt2

dt 0.0
0.0 dt

U =

[
XAcceleration
YAcceleration

]

Pt|t−1 = FPt−1|t−1F
T +Qt (10)

Covariance of Process Noise

Qt =


σ2posx 0.0 σ.posx σ.velx 0.0
0.0 σ2posy 0.0 σ.posy σ.vely
0.0 0.0 σ2velx 0.0
0.0 0.0 0.0 σ2vely


STEP 2. Updation.

1. This stage updates the object position based on the prediction and sensor reading
(measurements). GPS input values: X- direction coordinates, Y- direction coordi-
nates, X- direction velocity and Y- direction velocity act as update values. Updation
stage starts with the calculation of Kalman gain.

The Kalman gain represents the weighting assigned to both the measurements
and the current-state estimate, offering the ability to fine-tune performance accord-
ing to specific objectives. A higher gain emphasizes recent measurements, leading
to a more responsive adaptation to them. Conversely, a lower gain prioritizes adher-
ence to model predictions. When the gain is close to one, the estimated trajectory
becomes more erratic, whereas a gain close to zero minimizes noise but reduces
responsiveness, resulting in a smoother trajectory. Kalman gain Kt factor can be
calculated using the following equation:

Kt = Pt|t−1H
T (HPt|t−1H

T +R)−1 (11)

H =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Ro =


σ2.pos 0.0 0.0 0.0
0.0 σ2.pos 0.0 0.0
0.0 0.0 σ2.vel 0.0
0.0 0.0 0.0 σ2vel


2. After calculation of Kalman gain, updated state estimate Xt is calculated using the

following equation.

Xt|t−1 = Xt|t−1 +Kt(Zt −HXt|t−1) (12)
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Where,

Z =


X
Y

XV el
Y V el


STEP 3. Error Estimation. Next step involves estimation of error co-variance using
the following equation.

Pt|t = (I −Kt.H)Pt|t−1 (13)

Reviewer 1: Comment 2

5.2 Tracking fusion using Kalman filter and Geo hash filter:

Fig. 4 Tracking Fusion

Output obtained in the previous fusion (Position and Velocity in x and y direction)
is again fused with kalman filter for object’s location.After that Geo hash filter used
object’s location for converting the longitude and latitude coordinates into string or
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code that gives speed to search spatial information [18].During tracking-fusion, geo-
hash filter gives more precise value for location on the map. In the context of tracking
fusion, the north and east accelerations serve as predictive components, contributing
to the overall prediction stage. Determining the values of north and east accelera-
tion entails the computation of absolute acceleration, which is obtained through the
consideration of device orientation. Following steps are followed in this process:

Calculation of absolute acceleration value based on the device’s
orientaion.

1. Absolute acceleration is calculated based on the orientation of device with the
help of rotation vector. The analytical analysis section 6 of this paper presents the
demonstrated working model of rotation vector. Main work of the rotation vector is
to reduce some of the complexity, which is created due to combination of multiple
sensors used together. Thus, it is often preferable to use the rotation matrix instead
of the accelerometer and magnetometer to determine object orientation.

2. After finding the object orientation, based on the above steps, absolute acceleration
is determined towards east and north direction.

3. North acceleration refers to the absolute acceleration in north direction excluding
gravity, while East acceleration refers to the absolute acceleration in east direction
excluding gravity.

Reviewer 1: Comment 2

4. As depicted in Figure 4, the presented methodology involves the utilization of north
and east accelerations, along with timestamp information, as predictive states. The
GPS longitude and latitude coordinates are considered as measurement values. The
data is processed using the Kalman fusion algorithm, following previous stages. By
applying the equations of the Kalman filter, the desired outcome of object locations
is obtained.

5. The main purpose of tracking fusion is filtering the GPS location data and add
more parameters such as acceleration deviation, GPS min time, GPS min distance,
geohash precision default sensor frequency, position factor, and velocity factor to
get more precision and accuracy in localization.

6. Addition of more parameters and application of geohash filter on the values
obtained through Kalman filter, provides more precise and accurate results.

Initially, the value of various parameters such as acceleration deviation, GPS min
time, GPS min distance, sensors frequency, Geohash precision and Geohash min-point
are pre defined. Later, in each iteration, the measurement values, as obtained through
GPS, are considered. The information thus obtained, i.e. the measurement value of
GPS, provides the measurement of object’s own state. Finally the predication and
update state procedure are conducted to estimate the state of the tracked object.
Based on the output in this step, speed, bearing, altitude, longitude and latitude,
position error and velocity error are calculated. Based on the location co-ordinates, the
distance between two points can be calculated using the formula as given in equation

12



Algorithm 1 :Proposed Algorithm

Algorithm
Initialize:Acceleration deviation, GPS min time, GPS min distance, GeoHash preci-
sion, GeoHash min point
For t = 1 : T do
Receive : The Measurement value from GPS as Z Matrix and predication value from
accelerometer sensor

Filtering:
Prediction Step :

Xt|t−1 = FXt−1|t−1 +BUt

Pt|t−1 = FPt−1|t−1F
T +Qt

Kalman Gain

Kt = Pt|t−1H
T (HPt|t−1H

T +R)−1

Update Step
Xt|t−1 = Xt|t−1 +Kt(Zt −HXt|t−1)

Pt|t = (I −Kt.H)Pt|t−1

End For

14. This work uses mapbox for the visualization of location and path.

∆σ = 2arc sin

√
(sin(

∆ϕ

2
) + cosϕs cosϕf sin(

∆λ

2
) (14)

6 ANALYTICAL ANALYSIS

Orientation of an object plays an important role in object tracking. Fields such
as spacecraft, vehicle tracking use various sensors such as gyrosocpe, accelerometer
magnetometer for estimation orientation. There are many approaches for orientation
parametrization which includes use of quaternion, Euler angles, and rotation matrix.
However, different estimation methods and parametrization of the orientation limit
the applicability.

6.1 Parametrizing Orientation

When a vector is rotated in R3, It only changes its direction while length remain
constant and group of rotaion in R3 is known as Special Orthogonal group. SO(3).

6.1.1 Rotation Matrix

Rotation of a vector in different R3 Rotation Matrix represents by the following
equation:

R.RK = RK .R = I3, detR = 1 (15)

13



Fig. 5 Rotation of Vectors to Different Coordinate Frames

Let us considers two co-ordinate frame denoted by i and k as shown in figure 5. a
vector x in the i-frame rotated to the k-frame as

xk = Rik.xi (16)

A rotation matrix is one of the Parametrizing orientation of an object it contains 9
components which depend on each other as defined in equation 15.

6.1.2 Rotation Vector

According to the Euler rotation theorem, a single rotation around a fixed point is
equivalent to a single rotation through the axis which runs through the fixed point. An
angle α and unit vectors n can be utilized to express the rotation between two frames.
In figure 6, a vector x rotated an angle β around the unit vector n. Let us suppose
that vector xi is rotated in i coordinate frame is express as x. Vector x decomposed
into a parallel to the axis n and its express as x∥ and orthogonal to denoted by x! as.

xi = xi
∥ + xi

⊥ (17)

Using the geometric reasoning we can infer that

xi
∥ = (xi.ni)ni, (18)

Where ”.” shows the inner product.

xi. = (xi.∥) + (xi.⊥) (19)

14



Fig. 6 Rotation of Vector x by an Angle α and Around Unit Vector n

where,
(xi.)∥ = xi ∥ . (20)

(xi.)⊥ = xi
⊥ cosβ + (xi × ni) sinβ. (21)

Hence, xi. can be expressed in terms of xkas

xi. = (xi.ni)ni + (xi − (xi.ni).ni) cosβ + (xi × nk) sinβ

xi. = xi cosβ + (xi.ni).ni)(1− cosβ)− (xi × ni) sinβ (22)

Using the equivalence between xi. and xi, this implies that

xk. = xi cosβ + .ni(xi.ni)(1− cosβ)− (xi × ni) sinβ (23)

This equation is known as Euler formula or rotation formula. To express the equiv-
alence between equation (23)and rotation matrix parametrization. Here, to show the
fact that a cross product written as matrix vector product.

k × i = [k×]i = −[i×]k, [k×] =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 (24)

In addition, given vectors k, i and multiple cross product can be shown in terms of
the inner product as

k × (i× w) = i(w × k)− w(ki) (25)

using equation (23) can be rewritten as

xk = xi cosβ + .ni(xi.ni)(1− cosβ)− (xi × ni) sinβ

xk = xi cosβ + (ni × xi) + xi(1− cosβ)− (ni × xi) sinβ

15



xk = (I3 − sinβ[ni×] + (1− cosβ)[ni×]2)xi (26)

Differentiated between equation (16) and (26) it clearly shows that a rotation martix
can be parametrized in terms of β and n as

Rki(ni, β) = (I3 − sinβ[ni×] + (1− cosβ)[ni×]2 (27)

Rki(ni, β) = exp(−β[ni×]) (28)

exp(−β[ni×]) =

∞∑
t=0

1

t!
(−β[ni×])t

= (I3 − [ni×] +
1

2!
(β2[ni×])2 +

1

3!
(β3[ni×])− 1

4!
(β4[ni×])2 − ....

= (I3 − (β − 1

3!
β3 + ....)[ni×] + (

1

2!
β2 − 1

4!
β4 + ....)[ni×]2

= (I3 − sinβ[ni×] + (1− cosβ)[ni×]2 (29)

As shown equation (27) and (28). the rotation matrix can be directly expressed in
terms of axis-angle representation.

7 Simulation Setup

Fig. 7 User Interface During Turning and Stable Condition of Object

16



A Samsung M-21 mobile phone was used to run the proposed object tracking
application. The details of the processing unit and related software’s is shown in table
2. The application was used for tracking a four-wheeler on a 6 KM route with three
different GPS frequencies, specifically at 0.4 Hz, 0.2 Hz and 0.033 Hz. The route had
quiet common characteristics such as long straights, sharp turns, long smooth turns,
short straights etc, which are suited for testing the performance of the application. A
model scenario of the tracking area is shown in figure 8. Along with the user interface
(UI) of the proposed application is shown in figure 7.

Fig. 8 Model View of Tracking

Table 2 System Components

Components Description

Software Android Studio 4.0
Processor Windows 10
Mobile Device Samsung M-21
Vehicle 4-wheeler

17
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7.1 Performance Analysis

The performance of the proposed method is tested under three different scenarios
by obtaining the error measurements for each scenario:
1. Scenario 1: GPS frequency - 0.4 HZ
2. Scenario 2: GPS frequency - 0.2 Hz
3. Scenario 3: GPS frequency - 0.033 Hz

The corresponding results for the GPS error and the proposed approach, are presented
below:

7.1.1 Scenario 1: GPS frequency - 0.4 HZ

The figure 9 shows the path testing route for the proposed approach with GPS fre-
quency 0.4 Hz. The corresponding error measurements, obtained with mobile GPS and
that with the proposed approach for varying time duration, is presented in figure 10.
As evident from the reported observations, the proposed approach is able to achieve
significantly better results as compared to the mobile GPS owing to the improved
tracking due to double filtration and optimized rotation vector calculations. The rota-
tion matrix, obtained with the proposed approach, allows reduction in the signal noise
and improved prediction of gravity, in cases where the vehicle is on slope. A steep peak
is reported at around 03 seconds and 3.6 seconds of the test, which may be because
of sudden change in the driving dynamics in real world scenario.

Fig. 9 Path Testing Fig. 10 Evaluation with .4HZ
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7.1.2 Scenario 2: GPS frequency - 0.2 HZ

The observations for 0.2 Hz GPS frequency are reported in figure 11 and figure 12,
where the proposed method outperforms the GPS based tracking by a significant
margin. The proposed approach reports higher error between 06 seconds and 08 sec-
onds, however, it quickly recovers and improved results are reported at 10 seconds and
onwards. A prominent reason for the sudden increase in the error values and recovery
thereafter, may be accounted for as the observations are reported for an average of 50

Fig. 11 Path Testing Fig. 12 Evaluation with .2HZ

rounds of data collection on the same route due to the changes in the traffic dynamics,
driving conditions etc. are hardly reported.

7.1.3 Scenario 3: GPS frequency - 0.033 Hz

The object testing route and error values with corresponding timestamps at 0.033 HZ
GPS frequency, are reported in the figure 13 and figure 14 respectively. As shown in
the results, the proposed scheme has a slight edge over the GPS tracking method over
the course of the experiment.

A careful observation of the reported results, show that the error values for the
proposed scheme are higher at 0.033 Hz as compared to the other higher frequency
values. A simple explanation for the reported error is the significantly low operating
frequency.The proposed scheme, however, is able to outperform the GPS based method
in most of the cases and achieves a reliable performance.

Reviewer 2: Comment 3
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Fig. 13 Path Testing Fig. 14 Evaluation with .033HZ

7.2 Comparative Analysis:

A comprehensive comparative analysis of the proposed scheme is presented on two
parameters, namely: Error Percentage and Root Mean Square Error (RMSE). The
results of the proposed approach are compared with the scheme proposed in [10] and
[11] for Error Percentage and RMSE, respectively.

Reviewer 2: Comment 7

7.2.1 Error Percentage

The table 3 clearly shows that the proposed scheme is able to outperform the
approach proposed in [10] by a significant margin at almost all the GPS frequencies.
As evident from the table 3 and figure 15, except at extremely low frequency of 0.033
Hz, the proposed scheme achieves an improvement of about 27% at 0.4 Hz. However,
at extremely low frequency of 0.033 Hz, the reported error percentage of the proposed
scheme is higher than that of the scheme proposed in [10] because the proposed scheme
achieves the vehicle orientation and filtered vehicle speed, using the rotation vector
based method.

Table 3 Comparison Between Proposed Method and [10] At
Different Sampling Frequency

Frequency Proposed Method % Algorithm in[10] Change %

.4HZ 40.56 55.09 27.04

.2HZ 44.43 69.03 35.64
0.033HZ 377.39 384.50 1.85
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Fig. 15 Comparison Between Proposed Algorithm and [10] Based on Error Percentages

Reviewer 2: Comment 7

7.2.2 RMSE

The RMSE is calculated using the following formula:

RMSE =

√√√√ 1

N
[

N∑
n=j

(xj − xa)2 + (yj − ya)2 (30)

The Table 4 and figure 16 shows a comparison of RMSE performance between proposed
algorithm and [11], using two parameters: GPS Error and algorithm based error, for
two paths (track 1 and track 2). The figure 12 reveals that proposed method achieves
higher accuracy as compared to the approach in [11] because the algorithm in [11]
provides vehicle speed and orientation using quaternion-based method but in case of
the proposed method, rotation vector is used for orientation and double filtration for
position estimation.

7.3 Run-time

The table 5 presents the run-time analysis of the proposed approach. As per the
reported observations, approximately, 0.9 seconds is required by the proposed approach
to complete the execution while the map box takes approximately 0.10 seconds,
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Fig. 16 Comparison Between Proposed Method and [11] Based on RMSE Performance.

Table 4 The RMSE Performance(meter) Between the
Proposed Method and [11]

Track Algorithm in [11] Proposed Method

GPS [11] Method GPS Proposed Method
1 56.34 28.86 9.017 6.82
2 37.06 34.73 7.41 6.14

thereby, making the overall time of the proposed approach to approximately 1 seconds
to show the final output on the map. The data shows that the overall performance
of the proposed method is acceptable in case of higher as well as for lower frequency
sampling of GPS for object tracking.

8 Conclusion

A real-time application for object tracking based on multi sensor fusion is presented
in this work. Combination of Kalman filter with Geo hash is used for determining the
speed and position of the vehicle, while rotation vector used for orientation parametri-
sation which provides greater level of accuracy in orientation estimation. Extensive
analysis of the proposed method,in different scenarios, proves the efficiency of the
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Table 5 Time Response and
Measurement Cycle

Task Multi-Sensor fusion

Measurement Cycles 22 cycles per km
Average time .5 sec

approach.The proposed method is able to outperform the existing approaches by a
significant margin and achieves better accuracy in almost all the test cases.

Reviewer 4: Comment 3

9 Future Work

The obtained results show promise, although there are areas of improvement for future
work. One aspect that could be enhanced is the geohash filtering technique, which
primarily serves spatial indexing and efficient retrieval of geographic data based on
proximity. To further enhance the system, a more advanced map matching technique
could be introduced. This could involve considering previous locations or implementing
a hidden Markov chain approach, which has the potential to yield improved outcomes.

Data Availability Statement

The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.

Conflict of Interest (COI) Statement

The authors have no competing interests to declare that are relevant to the content
of this article.

References

[1] P. Yang, D. Duan, C. Chen, X. Cheng, and L. Yang, “Multi-Sensor Multi-Vehicle
(MSMV) Localization and Mobility Tracking for Autonomous Driving,” IEEE
Trans. Veh. Technol., pp. 1–1, 2020, doi: 10.1109/TVT.2020.3031900.

[2] G. Manogaran et al., “Multi-Variate Data Fusion Technique for Reducing Sensor
Errors in Intelligent Transportation Systems,” IEEE Sens. J., pp. 1–1, 2020, doi:
10.1109/JSEN.2020.3017384.

[3] A. Ali, Y. Zhu, and M. Zakarya, “A data aggregation based approach to exploit
dynamic spatio-temporal correlations for citywide crowd flows prediction in fog

23



computing,” Multimed Tools Appl, vol. 80, no. 20, pp. 31401–31433, Aug. 2021,
doi: 10.1007/s11042-020-10486-4.

[4] A. Ali, Y. Zhu, and M. Zakarya, “Exploiting dynamic spatio-temporal correlations
for citywide traffic flow prediction using attention based neural networks,” Infor-
mation Sciences, vol. 577, pp. 852–870, Oct. 2021, doi: 10.1016/j.ins.2021.08.042.

[5] M. Kok, J. D. Hol, and T. B. Schön, “Using Inertial Sensors for Position and
Orientation Estimation,” Found. Trends® Signal Process., vol. 11, no. 1–2, pp.
1–153, 2017, doi: 10.1561/2000000094.

[6] J. Permatasari, T. Connie, and T. S. Ong, “Inertial sensor fusion for gait recogni-
tion with symmetric positive definite Gaussian kernels analysis,” Multimed Tools
Appl, vol. 79, no. 43–44, pp. 32665–32692, Nov. 2020, doi: 10.1007/s11042-020-
09438-9.

[7] C. Li, L. Yu, and S. Fei, “Real-Time 3D Motion Tracking and Reconstruction Sys-
tem Using Camera and IMU Sensors,” IEEE Sens. J., vol. 19, no. 15, pp. 6460–6466,
Aug. 2019, doi: 10.1109/JSEN.2019.2907716.

[8] R. V. Vitali, R. S. McGinnis, and N. C. Perkins, “Robust Error-State Kalman
Filter for Estimating IMU Orientation,” IEEE Sens. J., pp. 1–1, 2020, doi:
10.1109/JSEN.2020.3026895.

[9] R. Gobi, “Smartphone based indoor localization and tracking model using bat algo-
rithm and Kalman filter,” Multimed Tools Appl, vol. 80, no. 10, pp. 15377–15390,
Apr. 2021, doi: 10.1007/s11042-020-10438-y.

[10] S. Plangi, A. Hadachi, A. Lind, and A. Bensrhair, “Real-Time Vehicles Track-
ing Based on Mobile Multi-Sensor Fusion,” IEEE Sens. J., vol. 18, no. 24, pp.
10077–10084, Dec. 2018, doi: 10.1109/JSEN.2018.2873050.

[11] E. Choi and S. Chang, “A consumer tracking estimator for vehicles in GPS-free
environments,” IEEE Trans. Consumer Electron., vol. 63, no. 4, pp. 450–458, Nov.
2017, doi: 10.1109/TCE.2017.015064.

[12] A. Ibisch et al., “Towards autonomous driving in a parking garage: Vehicle local-
ization and tracking using environment-embedded LIDAR sensors,” in 2013 IEEE
Intelligent Vehicles Symposium (IV), Gold Coast City, Australia, Jun. 2013, pp.
829–834, doi: 10.1109/IVS.2013.6629569.

[13] P. B. Fleischer, A. Y. Nelson, R.A. Sowah, and A. Bremang, “Design and devel-
opment of GPS/GSM based vehicle tracking and alert system for commercial
inter-city buses,” in 2012 IEEE 4th International Conference on Adaptive Science
Technology (ICAST), 2012, pp. 1–6.

24



[14] D. C. Obediencia, J. Kristoffer Pedrero, C. Villablanca, and M. A. Reyes,
“eMap: Mobile App: Map Directory of EVSU Main Campus with Web-Based
Management Panel,” in 2019 IEEE 11th International Conference on Humanoid,
Nanotechnology, Information Technology, Communication and Control, Environ-
ment, and Management ( HNICEM ), Laoag, Philippines, Nov. 2019, pp. 1–7, doi:
10.1109/HNICEM48295.2019.9073452.

[15] A. Celesti, A. Galletta, L. Carnevale, M. Fazio, A. Ĺay-Ekuakille, and M. Villari,
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