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We consider a problem where agents have private positions on a line, and public approval preferences 
over two facilities, and their cost is the maximum distance from their approved facilities. The goal is to 
decide the facility locations to minimize the total and the max cost, while incentivizing the agents to be 
truthful. We design a strategyproof mechanism that is simultaneously 11- and 5-approximate for these 
two objective functions, thus improving the previously best-known bounds of 2n + 1 and 9.
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1. Introduction

We consider the following truthful heterogeneous facility loca-
tion problem with max-variant cost: There is a set N of n agents
with private positions on the line of real numbers (xi for agent i), 
and public approval preferences pi ∈ {0, 1}2 over two facilities F1
and F2 with pi1 + pi2 ≥ 1 (i.e., each agent approves at least one 
facility). Let N j be the set of agents that approve facility j ∈ [2]. 
Clearly, N1 and N2 need not be disjoint since there might be 
agents that approve both facilities; we denote by N1 \ N2 the set of 
agents that approve only F1, N2 \ N1 the set of agents that approve 
only F2, and N1 ∩ N2 the set of agents that approve both facilities.

There is also a finite set C of given candidate locations, where 
the facilities can be placed. For any agent i and point x of the 
line, let d(i, x) = |xi − x| denote the distance between the position 
of i and x. Given a feasible solution y = (y1, y2) consisting of the 
location y1, where F1 is placed, and the location y2 �= y1, where 
F2 is placed, the individual cost of an agent i is her distance to 
the farthest facility among the ones she approves (hence, the term 
max-variant cost in the title of the problem), that is,

costi(y) = max
j:pij=1

d(i, y j).

The social cost of a solution y = (y1, y2) is the total cost of all 
agents:
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SC(y) =
∑
i∈N

costi(y).

The max cost is the maximum cost over all agents:

MC(y) = max
i∈N

costi(y).

A mechanism takes as input the positions of the agents and, to-
gether with the public information about their preferences, de-
cides a feasible solution, which we will typically denote by w =
(w1, w2) in our analysis. For any f ∈ {SC, MC}, the approxima-
tion ratio of a mechanism in terms of f is the worst-case (over 
all possible instances) of the ratio f (w)

miny f (y)
. Our goal is to design 

mechanisms that achieve a low approximation ratio in terms of both 
the social cost and the max cost simultaneously, while at the same 
time being strategyproof, that is, do not provide incentive to the 
agents to misreport their private positions and decrease their indi-
vidual cost.

Zhao et al. [16] were the first to consider this constrained 
heterogeneous facility location problem with max-variant cost; a 
version of the problem where the facilities can be placed at the 
same locations was previously studied by Chen et al. [2] under 
different informational assumptions (known positions and private 
preferences). Zhao et al. [16] showed that there are strategyproof 
mechanisms which achieve approximation ratios of 2n + 1 and 9
for the social cost and max cost objectives, respectively. For both 
objectives, the mechanisms of Zhao et al. [16] switch between 
cases depending on whether there is at least one agent that ap-
proves both facilities or not. When there is such an agent, the 
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facilities are placed at the candidate locations that are closest to a 
designated agent (the median for the social cost and the leftmost 
for the max cost). When no agent approves both facilities, each fa-
cility is separately placed to the available candidate location that 
is closest to a designated agent among the ones that approve it 
(again, median for the social cost or leftmost for the max cost); for 
the social cost, the facility that is placed first is the one that the 
majority of agents approve.

Our contribution

In this work, we design a different strategyproof mechanism 
and show that it simultaneously achieves an approximation ratio 
of at most 11 for the social cost and at most 5 for the max-
imum cost, thus improving both bounds at the same time; for 
the social cost, the improvement is significant as the approxima-
tion decreases from linear to constant. Our mechanism works as 
follows. For simplicity, suppose that F1 is the facility that most 
agents approve. The mechanism switches between two cases de-
pending on whether the number of agents that approve F1 is at 
least the number of agents that approve both facilities. If this is 
indeed the case, F1 is placed at the candidate location closest to 
the median among the set of agents that approve only it, while F2
is placed at the available candidate location closest to the median 
agent among the ones that approve it (including the agents that 
approve both facilities). Otherwise, the two facilities are placed at 
the two candidate locations that are closest to the median agent 
among those that approve both facilities. Our analysis uses a com-
bination of simple tools (such as the triangle inequality and the 
fact that the median of a set of points minimizes their total dis-
tance to any point) and worst-case characterization which reveals 
the properties that worst-case instances (where the approximation 
ratio is maximized) have. These results are presented in Section 2.

In Section 3, we present an interesting connection between the 
max-variant truthful heterogeneous two-facility location problem 
(which is the main focus of this paper) and the sum-variant con-
sidered by Kanellopoulos et al. [10], in which the individual cost 
of an agent is the total distance from the facilities she approves. 
We show that any mechanism that is strategyproof in both vari-
ants and achieves an approximation ratio of at most ρ in terms of 
the social cost or the maximum cost in one of the variants, also 
achieves an approximation ratio of at most 2ρ in the other vari-
ant. This allows us to show that a constant approximation ratio (at 
most 22) can be achieved for the social cost in the sum-variant, 
which is the first constant bound for this version of the problem as 
well; Kanellopoulos et al. [10] previously claimed an upper bound 
of 3 but with a mechanism that turned out to not be strategyproof.

Other related work

The seminal paper of Procaccia and Tennenholtz [13] initiated 
the study of facility location problems under the prism of ap-
proximate mechanism design without money. Since their work, 
a plethora of different variants have been studied in the litera-
ture under various assumptions, always aiming to design strate-
gyproof mechanisms with an as low approximation ratio as possi-
ble in terms of some social objective. Indicatively, different variants 
have been considered depending on the number of facilities to lo-
cate [7,12], whether the facilities are desirable or obnoxious [3], 
whether the preferences of the agents are homogeneous or hetero-
geneous [2,4,5,9,11,14], and whether there are constraints about 
where the facilities can be placed [6,10,15] in combination with 
min or sum individual costs. For a detailed exposition of the truth-
ful facility location literature, we refer the interest reader to the 
survey of Chan et al. [1].
2

Some useful notation and observations

We will extensively use the triangle inequality stating that 
d(x, y) ≤ d(x, z) + d(z, y) for any three points x, y, z of the line. 
We will sometimes use directly the following version of the tri-
angle inequality (which can be shown by applying the classic one 
twice): d(i, x) ≤ d(i, y) + d( j, y) + d( j, x) for any two agents i, j
and locations x, y.

When the objective (either the social cost or the maximum 
cost) is clear from context, we will denote by o = (o1, o2) an op-
timal solution, that is, o is a feasible solution that minimizes the 
objective. In addition, for any agent i, we will denote by o(i) the 
location of the facility that determines the cost of i in o = (o1, o2). 
Observe that, for any j ∈ [2], if i ∈ N j , then d(i, o j) ≤ d(i, o(i)) =
costi(o); this follows by the fact that either o j = o(i) or o j is closer 
to i than o(i) = o3− j . Finally, we will denote by t(i) and s(i) the 
candidate locations that are closest and second-closest to the po-
sition of agent i. Observe that, by definition, d(i, t(i)) ≤ d(i, o(i)).

2. Results

We present and analyze the mechanism for the case where 
|N1| ≥ |N2|; for the case |N2| > |N1|, it suffices to swap 1 and 2
in the description below.

• (Case 1) If |N1 \ N2| ≥ |N1 ∩ N2|, then place F1 at the location 
t(m1) that is closest to the median agent m1 ∈ N1 \ N2, and 
place F2 at the location that is closest to the median agent 
m2 ∈ N2 from the set of available locations; so, either t(m2) if 
t(m2) �= t(m1), or s(m2) if t(m2) = t(m1).

• (Case 2) Otherwise, place F1 at t(m12) and F2 at s(m12), where 
m12 is the median agent of N1 ∩ N2.

We refer to this mechanism as Conditional-Median.

Theorem 2.1. Conditional-Median is strategyproof.

Proof. First observe that the two cases considered by the mech-
anism only depend on the preferences of the agents, which are 
publicly known. Hence, no agent can force the mechanism to go 
from (Case 1) to (Case 2) or vice versa by misreporting. We now 
discuss each case separately.

• (Case 1) Since F1 is placed at t(m1), the cost of m1 is mini-
mized. To change the location of F1, an agent i ∈ (N1 \ N2) \
{m1} would have to misreport a position such that the me-
dian of N1 \ N2 changes, which would either not change the 
location of F1 or move it farther away. Clearly, no agent of 
N2 can affect the location of F1, and, for the same reason, 
has no incentive to misreport. In particular, given the loca-
tion of F1, the cost of m2 is minimized, and any other agent 
i ∈ (N2 \ N1) \ {m2} would have to change the median of N2, 
which would either not change the location of F2 or move it 
farther away.

• (Case 2) No agent of (N1 \ N2) ∪ (N2 \ N1) can affect the out-
come of the mechanism in this case. The cost of m12 is clearly 
minimized, and no other agent i ∈ (N1 ∩ N2) \{m12} can misre-
port; similarly to (Case 1), i would have to change the median 
of N1 ∩ N2, which would either not change the location of the 
facilities or move them farther away.

Consequently, in any of the two cases, no agent has incentive to 
misreport, and thus the mechanism is strategyproof. �
Theorem 2.2. For the social cost, the approximation ratio of
Conditional-Median is at most 11.
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Proof. Let w = (w1, w2) be the solution computed by the mech-
anism, and o = (o1, o2) be an optimal solution. We consider each 
of the two cases of the mechanism separately. In each case, we 
combine known properties related to the median of a set of points 
on the line, the triangle inequality, and some with properties of 
worst-case instances (which achieve the largest possible approxi-
mation ratio).

(Case 1). We consider two subcases depending on whether m2 is 
closer to w2 than to o2. Observe that this is definitely true when 
t(m1) �= t(m2) and might be true when t(m1) = t(m2). If it is not 
true when t(m1) = t(m2), then, since w2 = s(m2), we have more 
information about the structure of the instance, in particular, we 
have that w1 = o2. For any j ∈ [2], let S j be the subset of N1 ∩ N2
that includes agents whose cost in w is determined by w j .

(Case 1.1): d(m2, w2) ≤ d(m2, o2). The social cost of w can be writ-
ten as follows:

SC(w) =
∑

i∈N1\N2

d(i, w1) +
∑
i∈S1

d(i, w1) +
∑

i∈(N2\N1)∪S2

d(i, w2)

≤
∑

i∈N1\N2

d(i, w1) +
∑
i∈S1

d(i, w1) +
∑
i∈N2

d(i, w2)

For the agents in N1 \ N2, using the triangle inequality, the fact 
that d(m1, w1) ≤ d(m1, o1), o1 = o(i) for every i ∈ N1 \ N2, and the 
property of m1 which minimizes the total distance of all agents in 
N1 \ N2 from any point on the line, including o1, we obtain

∑
i∈N1\N2

d(i, w1) ≤
∑

i∈N1\N2

(
d(i,m1) + d(m1, w1)

)

≤
∑

i∈N1\N2

(
d(i,m1) + d(m1,o(i))

)

≤
∑

i∈N1\N2

(
2 · d(i,m1) + d(i,o(i))

)

≤ 3 ·
∑

i∈N1\N2

d(i,o(i)). (1)

For the agents in S1, we have that |S1| ≤ |N1 ∩ N2| ≤ |N1 \ N2|. 
In addition, d(i, o1) ≤ d(i, o(i)) for every agent i ∈ S1, d(m1, w1) ≤
d(m1, o1), and o1 = o(i) for any agent i ∈ N1 \ N2. So, using the 
triangle inequality and the property of m1 which minimizes the 
total distance of all agents in N1 \ N2 from any point on the line, 
including o1, we obtain

∑
i∈S1

d(i, w1) ≤
∑
i∈S1

(
d(i,o1) + d(m1,o1) + d(m1, w1)

)

≤
∑
i∈S1

d(i,o(i)) +
∑

i∈N1\N2

2 · d(m1,o1)

≤
∑
i∈S1

d(i,o(i))

+
∑

i∈N1\N2

(
2 · d(i,m1) + 2 · d(i,o(i))

)

≤
∑
i∈S1

d(i,o(i)) + 4 ·
∑

i∈N1\N2

d(i,o(i)). (2)

For the agents in N2, using the triangle inequality, the fact that 
d(m2, w2) ≤ d(m2, o(i)) for every i ∈ N2, and the property of m2

which minimizes the total distance of all agents in N2 from any 
point on the line, including o2, we obtain
3

∑
i∈N2

d(i, w2) ≤
∑
i∈N2

(
d(i,m2) + d(m2, w2)

)

≤
∑
i∈N2

(
d(i,m2) + d(m2,o(i))

)

≤
∑
i∈N2

(
2 · d(i,m2) + d(i,o(i))

)

≤ 3 ·
∑
i∈N2

d(i,o(i)) (3)

Putting everything together, and using the facts that N = (N1 \
N2) ∪ N2 and (N1 \ N2) ∪ S1 ⊆ N1 ⊆ N , we have

SC(w) ≤ 7 ·
∑

i∈N1\N2

d(i,o(i)) +
∑
i∈S1

d(i,o(i)) + 3 ·
∑
i∈N2

d(i,o(i))

≤ 7 · SC(o),

that is, the approximation ratio is at most 7.

(Case 1.2): d(m2, w2) > d(m2, o2). First observe that if w1 =
t(m1) and w2 = t(m2), then it would have to be the case that 
d(m2, w2) ≤ d(m2, o2), which is already captured by (Case 1.1). So, 
it must be the case that w1 = t(m1) = t(m2) and w2 = s(m2), 
which, in combination with the fact that d(m2, w2) > d(m2, o2), 
implies that w1 = o2.

Since m1 is closer to w1 = o2 than to o1, the same must be 
true for at least half of the agents in N1 \ N2, which implies the 
following lower bound on the optimal social cost:

SC(o) ≥ |N1 \ N2|
2

· d(o1,o2)

2
= |N1 \ N2|

4
· d(o1,o2).

Now, Inequalities (1) and (2) are still true since w1 = t(m1). We 
will use (1) in this case as well to bound the contribution of the 
agents in N1 \ N2 to the social cost of w, but for the agents in S1

we will use a different bound obtained by applying the triangle 
inequality once, as follows:

∑
i∈S1

d(i, w1) ≤
∑
i∈S1

(
d(i,o1) + d(o1, w1)

)

=
∑
i∈S1

d(i,o1) + |S1| · d(o1,o2). (4)

We will now bound the contribution of the agents in (N2 \ N1) ∪ S2

by using the triangle inequality, the fact that d(m2, w2) ≤ d(m2, o1)

(which is true since t(m2) = w1 = o2 and s(m2) = w2), the fact 
that (N2 \ N1) ∪ S2 ⊆ N2, and the fact that m2 minimizes the total 
distance of all agents in N2 from any point of the line, including 
o2. We have

∑
i∈(N2\N1)∪S2

d(i, w2)

≤
∑

i∈(N2\N1)∪S2

(
d(i,m2) + d(m2, w2)

)

≤
∑

i∈(N2\N1)∪S2

(
d(i,m2) + d(m2,o1)

)

≤
∑

i∈(N2\N1)∪S2

(
d(i,m2) + d(m2,o2) + d(o1,o2)

)

≤ 2 ·
∑

d(i,m2)
i∈N2
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+
∑

i∈(N2\N1)∪S2

d(i,o2) +
(

|N2 \ N1| + |S2|
)

· d(o1,o2)

≤ 2 ·
∑
i∈N2

d(i,o(i))

+
∑

i∈(N2\N1)∪S2

d(i,o2) +
(

|N2 \ N1| + |S2|
)

· d(o1,o2). (5)

Combining Inequalities (1), (4) and (5), the fact that (N2 \ N1) ∪
S2 ∪ S1 = N2, the fact that |N2| ≤ 2 · |N1 \ N2| (which is true since 
|N1 \ N2| ≥ |N1 ∩ N2| and |N1 \ N2| ≥ |N2 \ N1|), and the lower 
bound on SC(o), we finally have:

SC(w) ≤ 3 · SC(o) + |N2| · d(o1,o2)

≤ 3 · SC(o) + 2 · |N1 \ N2| · d(o1,o2)

≤ 11 · SC(o),

that is, the approximation ratio is at most 11.

(Case 2) Here, we have that w1 = t(m12) and w2 = s(m12). Since 
the decision does not depend on the positions of the agents in 
(N1 \ N2) ∪(N2 \ N1), these agents can be moved anywhere without 
affecting the outcome of the mechanism. Hence, in a worst-case 
instance, to maximize the approximation ratio, all these agent can 
be positioned at exactly the optimal locations of the two facilities, 
namely, all agents of N1 \ N2 are positioned exactly at o1 and all 
agents of N2 \ N1 are positioned exactly at o2.

Since |N1 \ N2| ≤ |N1 ∩ N2|, in a worst-case instance, the con-
tribution of the agents of N1 \ N2 to the social cost of the solution 
w computed by the mechanism is∑
i∈N1\N2

d(i, w1) =
∑

i∈N1\N2

d(o1, w1) ≤
∑

i∈N1∩N2

d(o1, w1)

By the triangle inequality, we further have that

∑
i∈N1\N2

d(i, w1) ≤
∑

i∈N1∩N2

(
d(i,o1) + d(i, w1)

)

≤
∑

i∈N1∩N2

(
d(i,o(i)) + d(i, w(i))

)
, (6)

where w(i) is the location of the facility that determines the cost 
of agent i in w.

Since |N2| ≤ |N1|, we also have that |N2 \N1| ≤ |N1 \N2| ≤ |N1 ∩
N2|. Consequently, similarly to above, in a worst-case instance, the 
contribution of the agents of N2 \ N1 to the social cost of w can be 
upper-bounded as follows:

∑
i∈N2\N1

d(i, w2) ≤
∑

i∈N1∩N2

(
d(i,o(i)) + d(i, w(i))

)
(7)

The social cost of w in a worst-case instance can now be writ-
ten as follows:

SC(w) =
∑

i∈N1\N2

d(i, w1) +
∑

i∈N2\N1

d(i, w2)

+
∑

i∈N1∩N2

d(i, w(i))

≤ 2 ·
∑

i∈N1∩N2

d(i,o(i)) + 3 ·
∑

i∈N1∩N2

d(i, w(i)). (8)

For any agent i ∈ N1 ∩ N2, by the triangle inequality, the fact 
that d(m12, w1) ≤ d(m12, w2) ≤ d(m12, o(m12)), and the fact that 
d(i, o(m12)) ≤ d(i, o(i)), we have
4

d(i, w(i)) ≤ d(i,m12) + d(m12, w(i))

≤ d(i,m12) + d(m12,o(m12))

≤ 2d(i,m12) + d(i,o(m12))

≤ 2d(i,m12) + d(i,o(i))

Hence,

∑
i∈N1∩N2

d(i, w(i)) ≤ 2 ·
∑

i∈N1∩N2

d(i,m12) +
∑

i∈N1∩N2

d(i,o(i)).

Since m12 minimizes the total distance of the agents in N1 ∩ N2

from any point of the line, including o1, and the fact that d(i, o1) ≤
d(i, o(i)) for any agent i ∈ N1 ∩ N2, we have

∑
i∈N1∩N2

d(i, w(i)) ≤ 2 ·
∑

i∈N1∩N2

d(i,o1) +
∑

i∈N1∩N2

d(i,o(i))

≤ 3 ·
∑

i∈N1∩N2

d(i,o(i)). (9)

Replacing (9) to (8) and using the obvious fact that N1 ∩ N2 ⊆ N , 
we finally obtain that

SC(w) ≤ 11 ·
∑

i∈N1∩N2

d(i,o(i)) ≤ 11 · SC(o),

that is, the approximation ratio is at most 11 in this case, complet-
ing the proof. �

We also show that the bound of 11 on the approximation ra-
tio of the mechanism in terms of the social cost is tight with the 
following example.

Example 2.3. Let ε > 0 be an infinitesimal and consider an in-
stance with the following four candidate locations: {0, ε, 1, 1 + ε}. 
There are n/3 agents that approve F1 positioned at 0, n/3 agents 
that approve F2 positioned at 0, n/6 agents that approve both fa-
cilities positioned at 0, and another n/6 + 1 agents that approve 
both facilities all positioned 1/2 + 2ε. Clearly, this instance is cap-
tured by (Case 2), and thus the mechanism places the two facilities 
at the candidate locations closest to the median of N1 ∩ N2 who is 
positioned at 1. Hence, w1 = 1 and w2 = 1 + ε, for a social cost of 
approximately 2n/3 + n/6 + n/12 = 11n/12. However, the optimal 
solution is to place the two facilities at 0 and ε for a social cost of 
approximately n/12, leading to an approximation ratio of 11. �

We now turn our attention to the max cost objective.

Theorem 2.4. For the maximum cost, the approximation ratio of
Conditional-Median is at most 5.

Proof. Let i be the agent with the maximum individual cost over 
all agents for the solution w = (w1, w2) computed by the mech-
anism. Also, let o = (o1, o2) be an optimal solution. We consider 
the following two cases depending on which facility determines 
the individual cost of i.

Case (a): The individual cost of i in w is determined by F1.
Clearly, since the cost of i is determined by F1, i ∈ N1, and thus 
d(i, o1) ≤ d(i, o(i)). Let m be the agent that determines the location 
of F1; so, m is either m1 in (Case 1) or m12 in (Case 2). Observe 
that w1 is the candidate location closest to m, and thus d(m, w1) ≤
d(m, o(m)). Also, since m ∈ N1, d(m, o1) ≤ d(m, o(m)). Hence, by 
the triangle inequality, we have that
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MC(w) = d(i, w1) ≤ d(i,o1) + d(m,o1) + d(m, w1)

≤ d(i,o(i)) + 2 · d(m,o(m))

≤ 3 · MC(o).

Case (b): The individual cost of i in w is determined by F2.
If we are in (Case 1) and w2 = t(m2), then we can get an up-
per bound of 3 similarly to Case (a). We can also derive an up-
per bound of 3 if we are in (Case 2), where w2 = s(m12), since 
this implies that for some of o ∈ {o1, o2}, d(m12, w2) ≤ d(m, o) ≤
d(m, o(m)); using this and the fact that d(m, o2) ≤ d(m, o(m)), we 
can apply the triangle inequality as in Case (a) to get the bound of 
3.

So, let us now assume that we are in (Case 1) and w2 = s(m2), 
which implies that t(m2) = w1 = t(m1). Clearly, if m2 is (weakly) 
closer to w2 than to o2, then the same argument as in Case (a) 
can again lead to an upper bound of 3. So, we can further assume 
that t(m2) = w1 = t(m1) = o2. Due to this, m2 is (weakly) closer 
to w2 = s(m2) than to o1. Therefore, using repeatedly the triangle 
inequality and this relation between these points, we obtain

MC(w) = d(i, w2)

≤ d(i,o2) + d(m2,o2) + d(m2, w2)

≤ d(i,o(i)) + d(m2,o(m2)) + d(m2,o1)

≤ 2 · MC(o) + d(m2,o1)

≤ 2 · MC(o) + d(m2,o2) + d(m1,o2) + d(m1,o1)

≤ 2 · MC(o) + d(m2,o(m2)) + d(m1, t(m1)) + d(m1,o(m1))

≤ 5 · MC(o),

and the proof is complete. �
We also show that the bound of 5 shown in the above theorem 

is tight.

Example 2.5. Let ε > 0 be an infinitesimal and consider an in-
stance with the following three candidate locations: {0, 2, 6}. There 
are three agents that approve F1 all positioned at 1 + ε, one agent 
that approves F2 positioned at 1, and another two agents that ap-
prove F2 positioned at 3 + ε. This instance is captured by (Case 1), 
and thus the mechanism places F1 at w1 = t(m1) = 2, and since 
t(m2) = 2 as well, F2 is placed at w2 = s(m2) = 6. The max cost 
of this solution is 5, realized by the agent that approves F2 posi-
tioned at 1. However, the optimal solution is to place F1 at 0 and 
F2 at 2 for a max cost of approximately 1, leading to an approxi-
mation ratio of 5. �
3. A connection between the max- and the sum-variant

In this short section, we discuss an interesting connection be-
tween the max-variant heterogeneous two-facility location prob-
lem that is the focus of this paper and the sum-variant that has 
been studied by Kanellopoulos et al. [10]. In the sum-variant, the 
individual cost of an agent i for a feasible solution y is her distance 
to all the facilities she approves, in particular,

costsum
i (y) =

∑
j∈[2]

pij · d(i, y j).

In contrast, recall that, in the max-variant, the individual cost of 
an agent i is her distance to the farthest facility among the ones 
she approves, i.e.,
5

costmax
i (y) = max

j:pij=1
d(i, y j).

It is not hard to observe that 1
2 · costsum

i (y) ≤ costmax
i (y) ≤

costsum
i (y) ≤ 2 · costmax

i (y) for any agent i, which implies the fol-
lowing statement.

Theorem 3.1. Let M be any mechanism that is strategyproof for the max-
variant and the sum-variant. If the approximation ratio of M in terms of 
the social cost or the maximum cost is at most ρ ≥ 1 in one variant, then 
it is at most 2 · ρ in the other variant.

Proof. Let w be the solution computed by M . Also, let omax

and osum be the optimal solutions in terms of the objective f ∈
{SC, MC} for the max- and the sum-variant, respectively. For con-
venience, we write f max(y) and f sum(y) for the objective value 
of solution y in terms of f in the max- and the sum-variant, re-
spectively. Due to the relation between the individual costs of the 
agents in the two variants mentioned above and the fact that f
is either the sum of the costs or the cost of some agent, we have 
that f sum(w) ≤ 2 · f max(w) and f sum(osum) ≥ f max(osum). Com-
bined with the fact that f max(osum) ≥ f max(omax), we obtain

f sum(w)

f sum(osum)
≤ 2 · f max(w)

f max(osum)
≤ 2 · f max(w)

f max(omax)
≤ 2 · ρ.

Similarly, we have that f max(w) ≤ f sum(w) and f max(omax) ≥ 1
2 ·

f sum(omax). Combined with the fact that f sum(omax) ≥ f sum(osum), 
we obtain

f max(w)

f max(omax)
≤ f sum(w)

1
2 · f sum(omax)

≤ 2 · f sum(w)

f sum(osum)
≤ 2 · ρ,

as desired. �
It is not hard to observe that Conditional-Median is strate-

gyproof not only in the max-variant but also in the sum-variant 
(in particular, the arguments in the proof of Theorem 2.1 follow 
through for the sum-variant). Consequently, by Theorems 2.2, 2.4
and 3.1, Conditional-Median achieves constant approximation ra-
tio in terms of the social cost and the maximum cost in the sum-
variant. As already mentioned, this fixes a result of Kanellopoulos 
et al. [10] who claimed an upper bound of 3 for the social cost 
with a mechanism that turned out to not be strategyproof.

Corollary 3.2. In the sum-variant, the approximation ratio of
Conditional-Median is at most 22 in terms of the social cost and at 
most 10 in terms of the maximum cost.

4. Open problems

In this paper, we focused on the truthful constrained heteroge-
neous facility location problem with max-variant cost. We showed 
that constant bounds of 11 and 5 on the approximation ratio 
in terms of the social cost and maximum cost, respectively, can 
be achieved simultaneously by a rather simple and natural strate-
gyproof mechanism, thus improving upon the previous best-known 
bounds. The most direct open question is whether improved ap-
proximations can be simultaneously achieved in terms of these 
two objectives. Building on this idea (which has recently been con-
sidered by Han et al. [8] for non-strategic voting and single-facility 
location), one could also consider other objectives that interpolate 
between the social cost and the max cost, such as the sum of the 
k ∈ [n] max individual agent costs; observe that this objective co-
incides with the social cost for k = n and with the max cost for 
k = 1. Another direction would be to consider different assump-
tions, such as when both the positions and the preferences of the 
agents are private.
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