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Abstract 21 

Exploiting the potential benefits of plant-associated microbes represents a sustainable approach 22 

to enhancing crop productivity. Plant-beneficial bacteria (PBB) provide multiple benefits to plants. 23 

However, the biogeography and community structure remain largely unknown. Here, we 24 

constructed a PBB database to couple microbial taxonomy with their plant-beneficial traits and 25 

analyzed the global atlas of potential PBB from 4,245 soil samples. We show that the diversity of 26 

PBB peaks in low-latitude regions, following a strong latitudinal diversity gradient. The distribution 27 

of potential PBB was primarily governed by environmental filtering, which was mainly determined 28 

by local climate. Our projections showed that fossil-fuel-dependent future scenarios would lead to 29 

a significant decline of potential PBB by 2100, especially biocontrol agents (-1.03%) and stress 30 

resistance bacteria (-0.61%), which may potentially threaten global food production and 31 

(agro)ecosystem services. 32 
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Introduction 33 

To meet the increasing food demand, chemical fertilizers and pesticides have long been overused 34 

in agriculture. This occurs often more pronounced in developing regions, which has resulted in 35 

enormous damage to the environment and human health1, 2. Thus, meeting the growing demand 36 

for food, while reducing environmental impacts, and reversing trends in chemical overuse are 37 

predominant global challenges of the 21st century3. In this scenario, there has been a sustainable 38 

relationship between plant species and beneficial bacteria (i.e., biocontrol, plant growth-promoting 39 

and stress resistance bacteria) that have co-evolved over the last ~480M years4-6. The nature of this 40 

relationship provides valuable avenues for enhancing plant productivity in different 41 

agroecosystems around the world. 42 

The plant-beneficial bacteria (PBB) in soils provide multiple benefits to plants and these can 43 

be didactically divided into three major categories according to their plant-beneficial traits7: (i) 44 

biocontrol capacity - the ability to reduce impacts from plant pathogens that would otherwise limit 45 

plant development8, 9; (ii) plant growth-promoting (PGP) - the ability to fix nitrogen, solubilize 46 

phosphorus and potassium, or produce siderophores and phytohormones10, 11; (iii) stress resistance 47 

provision - the ability to ameliorate plant water stress (e.g. from floods, drought or increased 48 

salinity)12, 13. Considering the ecological and environmental sustainability of PBB, relative to 49 

traditional chemical fertilizers, the application of PBB represents a promising strategy to realize the 50 

One Health concept14. Thus, developing strategies for the effective use of PBB requires a detailed 51 

understanding of the ecological drivers regulating their global distribution. 52 

In recent decades, a growing body of research has explored biogeography of different 53 

microbial groups (bacteria and archaea15-17, fungi18, 19, and protists20), as well as distribution of 54 
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different functional groups such as phytopathogens21 and nitrogen-cycling microbes22. However, 55 

despite their ecological, economical, and agricultural importance, large-scale distribution patterns 56 

of PBB as taken separately have never been examined. This imposes a limitation on our 57 

understanding about the role of environmental predictors shaping their diversity and response to 58 

global change drivers.  59 

Given the tightly coupled relationship between temperature and biological processes, climate 60 

change is ubiquitously altering global biodiversity23. For example, climate change is expected to 61 

greatly influence the distribution of belowground microorganisms by accelerating species turnover 62 

and promoting a higher proportion of soil-borne pathogens21, leading to increased incidences and 63 

severity of the diseases they cause24. However, the responses of PBB communities to climate change 64 

remain poorly understood, restricting future efforts to meet global food demand by exploiting the 65 

plant-beneficial microbiome. 66 

Despite the widespread appreciation for the multiple functions performed by PBB, the vast 67 

array of microbial taxa and functions that benefit plant growth and/or promote plant protection 68 

remain largely uncharacterized or unidentified. To address this knowledge gap, we conducted a 69 

global survey aiming at understanding the biogeography of PBB and the ecological drivers 70 

regulating their global distribution, by linking microbial taxonomy to plant-beneficial traits in a 71 

comprehensive way. We first constructed a PBB database based on the species identified in 72 

documented literature mainly at the genus level, because most functions are conversed at genus 73 

level25-27 (Fig. 1). Based on our PBB database and the microbiome data generated by the Earth 74 

Microbiome Project (EMP)16, we determined the plant-beneficial traits of microbes in 4,245 soils 75 

distributed across 7 continents and 9 land cover types (Supplementary Fig. 1). Through a series of 76 
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theoretical and modeling approaches, we (i) identified the taxonomic composition of potential PBB, 77 

(ii) mapped the distribution of potential PBB and revealed their underlying regulating factors, and 78 

(iii) predicted changes in their relative abundances under future climate change scenarios. 79 

Results and Discussion 80 

Global taxonomy of PBB in soils 81 

We constructed a PBB database that links taxa identity to plant-beneficial traits (Fig. 1a, 82 

Supplementary Data 1). For this approach, we considered plant-beneficial traits to include 83 

measured positive impacts through one of the three mechanisms: biocontrol capacity, plant 84 

growth-promoting (PGP), or stress resistance. The PBB database uses the taxonomy information 85 

from the Silva database (Silva v.138)28, which provides the broad taxonomic coverage required. Our 86 

main principles for PBB database construction were as follows. First, similar to other taxonomy-87 

based function-annotation databases (e.g., FAPROTAX25, FUNGuild29, and FungalTraits30), our PBB 88 

database operates mainly at the genus level. Second, each taxon must have at least one plant-89 

beneficial trait. Third, the plant-beneficial trait should have been experimentally tested, either in 90 

situ or ex vivo. Fourth, as some PBB may be potentially phytopathogenic, PBB taxa also identified 91 

as pathogens were removed. For this purpose, we generated a comprehensive list of 92 

phytopathogenic bacteria (Supplementary Data 2), which covers almost all known phytopathogens 93 

recorded by 2022.  94 

Our PBB database comprised 396 bacterial genera from 17 phyla, 27 classes, 76 orders, and 95 

135 families (Fig. 1b). Of these, 92 have a potential biocontrol capacity, 368 have PGP functions, 96 

and 51 support plant stress resistance. Genera belonging to the phyla Proteobacteria, 97 
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Actinobacteria, Firmicutes, and Bacteroidetes account for most PBB in our database (Fig. 2b). In the 98 

EMP dataset, after excluding phytopathogens, Massilia (1.83%), Bacillus (1.49%), Sphingomonas 99 

(1.43%), Pseudomonas (1.26%), Bryobacter (1.25%), Bradyrhizobium (0.83%), Flavobacterium 100 

(0.74%), Arthrobacter (0.68%), Sphingobium (0.65%), Gemmatimonas (0.48%) and Flavisolibacter 101 

(0.44%) were the most abundant PBB genera in soils globally (Fig. 1b). Our PBB database is freely 102 

available, and we also provide an R script to use with this database (Supplementary Data 3). 103 

We conducted multiple field experiments to assess the applicability of the PBB database in 104 

explaining crop production. The results showed consistently positive correlations between the 105 

relative abundance of potential PBB and yield/biomass of maize (Pearson r = 0.845, P < 0.001), rice 106 

(Pearson r = 0.534, P = 0.009), and peanut (Pearson r = 0.747, P = 0.005; Supplementary Fig. 2), 107 

validating the assumption of potential PBB in effectively promoting the production of various crops. 108 

Global biogeography and diversity of PBB 109 

After excluding the 1327 phytopathogenic bacterial OTUs, our database recognized 13,979 110 

potential plant-beneficial OTUs in the Earth Microbiome Project (EMP) soil samples. Globally, PBB 111 

represented 2.35% to 99.85% (mean = 21.54%) of all bacterial 16S rRNA gene sequences. The 112 

average relative abundances of biocontrol, PGP bacteria, and stress resistance categories were 113 

10.85%, 21.07%, and 7.11%, respectively (Supplementary Fig. 3). At the continental scale, the 114 

relative abundance of potential PBB was highest in Oceania (38.55%) and Europe (29.56%), while 115 

both North and South America had below 15% of potential PBB (Fig. 2a). Oceania also occupied 116 

highest relative abundances of biocontrol (27.72%), PGP (37.36%) and stress resistance (23.84%) 117 

categories (Fig. 2a). With respect to distinct habitats and biomes, freshwater (33.78%) and grassland 118 

(33.55%) had the highest total potential PBB relative abundance, while tundra (15.38%) had the 119 
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lowest. Grassland (biocontrol: 23.85%; PGP: 33.03%; stress resistance: 19.22%) and tundra 120 

(biocontrol: 4.34%; PGP: 15.04%; stress resistance: 2.67%) soils had the highest and lowest relative 121 

abundances of all three types of potential plant-beneficial bacteria, respectively (Fig. 2a). In 122 

cropland, the relative abundances of all potential PBB, biocontrol, PGP, and stress-resistance 123 

bacteria were 22.49%, 12.43%, 21.96%, 10.51%, respectively (Fig. 2a). Globally, we found a weak – 124 

albeit significant – relationship between latitude and the relative abundance of potential PBB. This 125 

correlation suggests a faint latitudinal gradient in potential PBB relative abundance occurrence in 126 

global soils (R2 = 0.005, P < 0.001; Fig. 2b, Supplementary Fig. 3). 127 

We then investigated the global richness patterns of PBB (defined as the number of observed 128 

potential PBB OTUs). At the continental scale, Africa (mean richness = 76.73±17.94), Asia (67.21±129 

24.38), and North America (58.66±25.12) had the higher PBB richness, while Antarctica (27.75±130 

9.27) had the lowest (Supplementary Fig. 4). With respect to land cover types, rangeland (76.76±131 

14.00), grassland (75.67±26.71), freshwater (75.02±16.15), and cropland (67.74±22.19) had 132 

higher PBB richness, while desert (35.95±22.48) and tundra (33.28±15.04) had the lowest 133 

(Supplementary Fig. 4). We also found higher PBB richness in lower latitude regions, and 134 

determined a significant linear relationship between PBB richness and absolute latitude (Pearson’s 135 

r = -0.320, P < 0.001; Fig. 2c, Supplementary Fig. 4). This supports the existence of a latitudinal 136 

diversity gradient (LDG) for potential PBB, which is consistent with the LDG observed for plants, 137 

arthropods, vertebrates1, total fungi18, and some bacteria16. To ensure this finding was robust and 138 

not biased by unbalanced sampling, we conducted a random resampling from densely sampled 139 

areas, and repeated the resampling for 100 times (Supplementary Fig. 5). The consistently negative 140 

latitude-diversity relationship confirmed that a latitudinal diversity gradient (LDG) for potential PBB 141 
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is not driven by sampling effects (Supplementary Fig. 5). 142 

Principal coordinates analysis combined with three-way PERMANOVA showed that potential 143 

PBB communities were compositionally distinct across continents and land cover types (Fig. 2d, 144 

Supplementary Fig. 6). Land cover type was the primary factor explaining the composition of PBB 145 

communities (R2 = 0.191, P < 0.001), followed by sampling region (R2 = 0.095, P < 0.001) and 146 

sampling season (R2 = 0.012, P < 0.001). In macroecology, the distance-decay relationship (DDR) is 147 

used to explain an increase in community dissimilarity as the geographic distance between samples 148 

increases 31. DDR reflects spatial community turnover and can also be used to infer the underlying 149 

ecological processes structuring the metacommunity32. Our results revealed a strong DDR for 150 

potential PBB communities (slope = -6.805, R2 = 0.444, P < 0.001, Supplementary Fig. 6). This 151 

suggests that the potential PBB communities may be strongly structured by environmental filtering 152 

and/or dispersal limitation, which can steepen the DDR slope33.  153 

It is worth noting that the EMP database contains intrinsic sampling biases (as most samples 154 

were collected within the Northern Hemisphere; Supplementary Fig. 1). As such, we acknowledge 155 

that caution is warranted in interpreting and extending these results to underrepresented locations 156 

within the dataset. To account for this possibility, the biogeographical patterns of potential PBB 157 

revealed in our main dataset were cross-validated by an independent global dataset34, for which 158 

the soil samples were collected following a standardized protocol35. Using this independent dataset, 159 

we also observed a LDG (Pearson r = -0.176, P < 0.001) and DDR (Slope = -1.577, P < 0.001) for 160 

potential PBB (Supplementary Fig. 7). 161 

Factors affecting the global distribution of PBB 162 

We used multivariate negative-binomial General Linear Models to examine the role of 163 
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environmental variables (climate, soil property, and vegetation) and spatial variables (described by 164 

PCNMs: principal coordinate of neighbor matrices 36) in determining the relative abundance and 165 

global distribution of potential PBB, and thus the composition of PBB communities. The relative 166 

occurrence of the majority of potential PBB (>50%) was better predicted by environmental variables 167 

than spatial variables, and analysis of AIC deviations showed this to be consistent for all potential 168 

PBB (environment: 57.55%; space: 40.67%) and its categories biocontrol (environment: 54.75%; 169 

space: 43.18%), PGP (environment: 57.57%; space: 40.64%), and stress resistance (environment: 170 

53.54%; space: 44.42%) bacteria (Fig. 3a). Moreover, the potential PBB OTUs strongly influenced by 171 

environmental factors accounted for >99% of total potential PBB sequences (Supplementary Fig. 172 

8). This also suggests that potential PBB communities are more consistently structured by 173 

environmental filtering than dispersal limitation. We tested the correlations between environmental 174 

factors and the relative abundances of dominant potential PBB genera. The results revealed that 175 

the relative abundance of all 30 dominant genera was significantly correlated with at least 17 176 

environmental variables (Fig. 3b). These results further confirmed a tight relationship between PBB 177 

distribution and local environmental variables. 178 

Based on these relationships, we examined the key environmental factors structuring the 179 

distribution of potential PBB using a random forest modeling approach. Seven random forest 180 

models, which separately or jointly accounted for different environmental variables, were 181 

constructed (Model 1: Climate; Model 2: Soil properties; Model 3: Vegetation; Model 4: Climate & 182 

Soil properties; Model 5: Climate & Vegetation; Model 6: Soil properties & Vegetation; Model 7: 183 

Climate & Soil properties & Vegetation) and compared for model performance (based on R2). Then, 184 

the model performances (R2) were compared. All models were statistically significant, with Model 185 
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1 (climate factors) consistently performing better than Model 2 (soil properties) and Model 3 186 

(vegetation) in predicting the relative abundance of PBB (Fig. 3c). Besides, adding either soil 187 

properties (Model 4) or vegetation (Model 5), or both soil properties and vegetation (Model 7; Fig. 188 

3c) to a climate-only model provided only minor improvement to the explained variation in the 189 

relative abundance of potential PBB. Across all variables, climate factors explained 59.1%~60.8% of 190 

the variation in the relative abundance of global potential PBB, whereas soil properties and 191 

vegetation variables explained 26.5%~31.8% and 8.0%~12.6%, respectively (Fig. 3c). Using an 192 

independent global dataset, we also demonstrated that the global distribution of PBB was more 193 

affected by bioclimatic variables (Supplementary Fig. 7). While soil pH is considered to be a key 194 

factor structuring the distribution of soil bacteria17, 21, we found soil pH to be only a minor factor in 195 

explaining the global distribution of potential PBB when compared to climate factors. Moreover, 196 

the effect of vegetation was much lower than that of climate factors on potential PBB communities, 197 

possibly because local climates are also primary determinants of global plant distribution37-39. 198 

PBB abundance under future climate change scenarios 199 

The effect of climate change on the distribution of PBB has remained a major uncertainty. Therefore, 200 

we modeled the relative abundance of potential PBB in the year 2100 under four future climate 201 

scenarios (SSP126: Sustainability; SSP245: Middle of the road; SSP370: Regional rivalry; SSP585: 202 

Fossil-fueled development) using twenty-one different CMIP6 downscaled global change models 203 

(GCMs) to minimize the deviations derived from different climate models (Fig. 4a). The multivariate 204 

environmental similarity surface (MESS) analysis indicated that predicting global distribution of PBB 205 

using our dataset is acceptable (Supplementary Fig. 9), and all projections were cross-validated 206 

(Fig. 4b, Supplementary Fig. 10). Our projections showed that the relative abundance of all potential 207 
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PBB would potentially decrease by 0.07%, 0.24%, 0.40%, and 0.60% under the scenarios SSP126, 208 

SSP245, SSP370, and SSP585, respectively, by the end of this century. This suggests that the relative 209 

abundance of PBB would be potentially suppressed under non-sustainable development. Under all 210 

four climate scenarios, the PBB increase mainly occurs in equatorial and polar regions. However, in 211 

mid-latitude regions, especially in Central Asia, Western Asia, Europe, North Africa, Central North 212 

America, and Southern South America, the relative abundance of potential PBB would consistently 213 

decline by 2100, especially under the fossil-fuel-dependent future scenarios (Fig. 4a). 214 

For PGP bacteria, their relative abundance is expected to increase by 0.16%, 0.14%, 0.12%, and 215 

0.08% under the scenarios SSP126, SSP245, SSP370, and SSP585, respectively (Fig. 4b; 216 

Supplementary Fig. 11). Given the enhanced vegetation productivity by CO2 fertilization effect in 217 

the future40, more available soil nutrients are expected to be required by plants, which would 218 

consequently selectively enrich more PGP bacteria to meet the plant’s nutrient requirements41. 219 

Therefore, the increased PGP bacteria may represent one positive feedback on the CO2 fertilization 220 

effect. In contrast to PGP, the biocontrol and stress resistance categories are expected to 221 

consistently decline in the future. The relative abundance of biocontrol is expected to decrease by 222 

0.31%, 0.54%, 0.80%, and 1.03% under SSP126, SSP245, SSP370, and SSP585, respectively; the 223 

relative abundance of stress resistance is predicted to decrease by 0.17%, 0.32%, 0.49%, and 0.61% 224 

under SSP126, SSP245, SSP370, and SSP585, respectively (Fig. 4b; Supplementary Fig. 11). We 225 

initially expected that the proportion of biocontrol agents would increase to antagonize soil 226 

phytopathogens, as these represent a group of soilborne taxa predicted to increase by ~1%-2.5% 227 

in the future21. On the contrary, the expected decline in biocontrol bacteria in our projection implied 228 

a potential dysbiosis between phytopathogens and non-phytopathogenic soil taxa, which may 229 
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potentially threaten global food production and (agro)ecosystem services. 230 

We also determined the relative area that may be impacted by the decline of PBB relative 231 

abundance. This was carried out by calculating the deviated abundance in each grid cell. Our results 232 

showed that > 50% of global regions may encounter a decline of potential PBB under all future 233 

climate scenarios (Fig. 4c). In particular, > 80% of global regions may encounter a decline of 234 

biocontrol bacteria and stress resistance bacteria in the future (Fig. 4c). Moreover, we observed a 235 

significant negative correlation between change in stress resistance bacteria and future probability 236 

of climate extremes42 at the global scale (r = -0.294, P < 0.001; Supplementary Fig. 12). This implies 237 

that the increased climate extremes may potentially lead to a decrease in stress resistance bacteria 238 

in the future. It is important to note that these projections are based on currently available 239 

observational data alone, with no mechanistic inference to drive these trends, and that these 240 

projections need to be properly experimentally tested. 241 

Limitations, conclusions, and future perspectives 242 

This study provides novel insights into the biogeography, and factors regulating the structure, of 243 

communities of plant-beneficial bacteria. However, our PBB database is not yet absolutely 244 

comprehensive nor fully resolved to the species level, which may obscure some of the overall PBB 245 

abundances. Yet, as more microbes are cultured in the future and their functions are resolved, 246 

underrepresented guilds in our database can be further improved. Nevertheless, our 247 

characterization of PBB biogeography and the ecological relationships driving their distributions, 248 

provides the bases for a robust initial first-order approximation of their underlying ecology and 249 

susceptibility to climate change. However, we acknowledge that our predictions of PBB response 250 

to climate change do not consider direct or indirect (via host plants) CO2 fertilization effects, as the 251 
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relationship between CO2 concentration and potential PBB remains largely unknown. Moreover, our 252 

projections are founded on a permanent relationship between climate and PBB relative abundance, 253 

and the projections may need to be amended if the form of these relationships also changes under 254 

future climate scenarios. Our predictions may also deviate from observed changes if major and 255 

unforeseen alterations to land use or vegetation types occur in the future. 256 

Applying microbiome management practices, including synthetic microbiomes, to crop 257 

production is a promising approach to realizing global food security and sustainable agriculture. 258 

By providing a full list of native plant-beneficial microbial candidates in different regions across the 259 

globe, our PBB database would contribute to designing the effective synthesis of beneficial native 260 

microbiomes. However, we acknowledge that caution is required when directly applying PBB 261 

species to fields, since such active management could also potentially raise the risk of introducing 262 

unwanted invasive microbes43-45. Our study highlights the importance of climate factors in 263 

regulating the global biogeography of PBB communities. Moreover, our model projections 264 

indicated that non-sustainable development may suppress potential PBB abundance, and more 265 

regions would encounter a greater PBB decline under fossil-fuel dependent future scenarios than 266 

under sustainable development climate scenarios. These changes are likely to have direct 267 

consequences for the productivity and sustainability of managed and natural ecosystems, with 268 

direct implications for food production. Our research suggests that sustainable development is 269 

highly required to maintain ‘stable’ PBB abundances, shedding light on optimized sustainable 270 

development solutions that promote crop production from plant-beneficial soil microbes. 271 

Methods 272 
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Construction of the plant-beneficial bacteria database 273 

Given the wide taxonomic coverage of the Silva database, its taxonomic information (Silva v.138) 274 

was extracted at the genus level because most functions are conserved at this level25-27. We then 275 

classified each genus into one or more plant-beneficial categories based on the current literature 276 

to construct the plant-beneficial bacteria database (Fig. 1). A genus was associated with a particular 277 

function if all cultured species within the genus have been shown to exhibit that function. The 278 

genus must have at least one plant-beneficial trait, either biocontrol potential, plant growth-279 

promoting (PGP), or stress-resistance. The biocontrol potential includes antagonism to either 280 

phytopathogenic bacteria, fungi, or nematodes. That is, only those able to directly antagonize 281 

phytopathogens were considered in this database. Those that improve disease resistance through 282 

indirect pathways, such as activating induced systemic resistance (ISR), were not included. The PGP 283 

traits include either nitrogen fixation, phosphorus solubilization, potassium solubilization, zinc 284 

solubilization, siderophores production, or production of phytohormones including indole acetic 285 

acid (IAA) and acetyl-CoA carboxylase (ACC). Other conditionally plant-beneficial traits, such as 286 

nitrification, were discarded because they may be beneficial to only some specific plant species. 287 

The stress resistance traits include functions that assist plants to couple with either drought, flood, 288 

or changes in soil salinity. Other plant-beneficial traits were not considered in the current PBB 289 

database. 290 

It should be noted that all plant-beneficial traits were experimentally tested, either in situ or 291 

ex vivo. That is, we removed plant-beneficial traits if that trait was solely derived from genome 292 

prediction or correlation-based analysis. For example, one may find a significant correlation 293 

between plant growth and some microbial taxa in field experiments. These taxa would not enter 294 
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our database if their PGP traits were not experimentally tested using pure isolates. Therefore, all 295 

uncultured taxa were removed from our database. Overall, our PBB database has three plant-296 

beneficial-trait levels (Supplementary Data 1). Level 1 simply defines whether the bacteria are 297 

potentially plant-beneficial or plant-harmful (if some species of a genus are also phytopathogens); 298 

Level 2 defines if the bacteria are potential phytopathogens, or biocontrol agents, or PGP bacteria, 299 

or stress resistance bacteria; Level 3 gives detailed plant-beneficial traits such as nitrogen fixation, 300 

phytohormone production, and assist in plant salt tolerance. It should be noted that most stress 301 

resistance taxa are halotolerant and anti-drought bacteria in our database due to relatively less 302 

experimental evidence on other stresses such as flooding. 303 

As some PBB may be potentially phytopathogenic, we decided to remove these 304 

phytopathogenic bacteria after annotating a species-abundance table using the PBB database. We, 305 

therefore, also integrated a very comprehensive list of phytopathogenic bacteria (Supplementary 306 

Data 2), which covers almost all known phytopathogens recorded by 2022. This list was used to 307 

conduct the exclusion procedure. This list of phytopathogenic bacteria contains 57 bacterial genera 308 

and 258 species (valid nomenclature under the ICNP), and strain-specific variations within species 309 

were ignored. It is worth noting that while the list of phytopathogens may look longer in some 310 

other studies, these also include many redundant species that have different nomenclatures46. For 311 

example, Clavibacter michiganensis (valid nomenclature under the ICNP) and Corynebacterium 312 

michiganensis represent the same species47. Besides our full list of phytopathogens, a multiple 313 

bacterial pathogen detection pipeline has been recently developed46, which can detect the 314 

phytopathogens based on the 16S rRNA sequences in amplicon sequencing data. 315 

While the risk of false generalizations was minimized via extensive manual investigation of 316 
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available literature, we point out that as more microbes are cultured in the future some of these 317 

generalizations may turn out to be false. In addition, there may be some missing traits during our 318 

manual investigation, and our database can be further extended after adding the missing and 319 

newly demonstrated plant-beneficial traits in the future. We note that the use of our PBB database 320 

to address further more specific questions may require careful manual refinement of the functional 321 

annotations; for example, based on expert knowledge of the system examined. The PBB database 322 

is written in a human-readable format that allows for easy modification and extension by any user. 323 

Our PBB database is freely available, and we also provide an R script to use with this database 324 

(Supplementary Data 3). 325 

Processing the data from field experiments 326 

Field experiment settings and sampling. We conducted multiple field experiments to assess the 327 

applicability of the PBB database in positively affecting crop production. Three crops, namely maize 328 

(Zea mays L.), rice (Oryza sativa L.) and peanut (Arachis hypogaea L.) were cultivated in different 329 

fields. Maize samples were collected from eleven field plots in 2019, and each plot is 20 m length 330 

× 5 m width. The fields were located in Ecological Experimental Station of Red Soil at the Chinese 331 

Academy of Sciences in Yujiang, Jiangxi province, China (28°13′ N, 116°55′ E). The maize cultivar 332 

is Suyu 24. Rice samples were collected from twenty-three field plots in 2022, and each plot is 10 333 

m length × 7 m width. The fields were located in Jiangning, Jiangsu Province, China (32°01′ N, 334 

119°09′ E). The rice cultivar is Nangeng 46. Peanut samples were collected from twelve fields in 335 

2020, and each plot is 6 m length × 4 m width. The fields were located in Comprehensive 336 

Experimental Station of red soil in Dongxiang County, Jiangxi Province, China (28°10′ N, 106°35′ 337 
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E). The peanut cultivar is Ganhua 1. 338 

All crops were harvested at maturity stage. For maize samples, 5 maize plants in each filed plot 339 

were randomly selected; for rice samples, 3 rice plants in each plot were randomly selected; for 340 

peanut samples, 10 peanut plants in each plot were randomly selected. The selected plants were 341 

carefully removed from each plot using a spade, after which the soil attached to the roots was 342 

collected and pooled to represent a composite rhizosphere soil sample. The collected rhizosphere 343 

soils were stored at −20 °C until DNA extraction and analyses. The maize grains were collected 344 

after harvesting maize plants, and the maize yield of each field plot was then calculated after drying 345 

the grains; the peanut pods were collected after harvesting peanut plants, and the peanut yield of 346 

each plot was calculated after drying the peanut pods. However, we did not collect rice grains after 347 

harvesting the rice plants. Instead, only biomass was determined for rice plants. Given the tight 348 

correlation between rice plant biomass and rice yield, we used plant biomass to indicate rice 349 

production in this study. 350 

Soil DNA extraction. Soil DNA was extracted from 0.5 g of soil (fresh weight) using a Fast®DNA 351 

SPIN Kit (MP Biomedicals, CA, USA) and then subsequently purified using a PowerClean® DNA 352 

Clean-up Kit (MoBio, CA, USA) according to the manufacturer's instructions. The concentration and 353 

quality of the extracted DNA were measured using a NanoDrop ND-1000 spectrophotometer 354 

(NanoDrop Technologies, DE, USA). 355 

Amplicon high-throughput sequencing and data processing. The PCR amplification of the DNA 356 

samples was conducted for bacterial community analysis using 519F and 907R primers48. We 357 

performed high-throughput sequencing using the Illumina MiSeq sequencing platform (Illumina 358 

Inc., CA, USA). The raw sequence data were analyzed using the QIIME 2 (version 2021.8)49. Raw 359 
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sequence data were demultiplexed and quality filtered using the q2-demux plugin followed by 360 

denoising with DADA2 (via q2-dada2)50, and the sequences that were not present in at least 2 361 

samples were filtered out. After quality filtering and the removal of chimaeras, sequences were 362 

clustered into ASVs after rarefying sequences to even sequencing depth (based on the sample with 363 

the minimum numbers of reads)51. Subsequently, taxonomic classification was conducted using 364 

plugin feature-classifier classify-sklearn by searching against database Silva 138 SSURef NR99 full-365 

length taxonomy28. Finally, we annotated the generated ASV tables using our PBB database to 366 

extract the PBB ASVs, and then plotted the relative abundance of PBB against crop yield. 367 

Processing of the Earth Microbiome Project data 368 

The microbial abundance table used in the present study was derived from the Silva-based rarefied 369 

table generated by the Earth Microbiome Project (EMP)16. The EMP employed a unified standard 370 

workflow for sample metadata curation, DNA extraction, sequencing, and sequence preprocessing, 371 

to avoid known issues in combining multiple amplicons across diverse environments. A total of 372 

4,245 soil samples that have geographical information (latitude and longitude) were extracted from 373 

the raw dataset. These 4,245 soil samples were collected across 8 continents and 9 land cover types. 374 

Each sample contains 10,000 rarefied high-quality sequences. Based on the taxonomic information, 375 

we annotated each OTU (operational taxonomic unit) using our PBB database. Of all 63,094 OTUs 376 

in the raw microbial abundance table, 13,979 OTUs were successfully annotated with the PBB 377 

database, 6,381 OTUs were classified as biocontrol bacteria, 13,568 OTUs were classified as PGP 378 

bacteria, and 4,598 OTUs were classified as stress resistance bacteria. Using these newly generated 379 

abundance tables, the biogeographical pattern, driving forces and future changes of PBB 380 
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communities were subsequently analyzed. 381 

To infer the global alpha diversity of potential PBB, we also used a 90-bp Deblur BIOM table 382 

in EMP, which was generated using the non-reference framework. This table was based on the 383 

sequence data from the EMP database after filtering errors and trimming to 90 bp (the length of 384 

the shortest sequencing run) using Deblur in Qiime2. This abundance table was filtered to keep tag 385 

sequences with at least 25 reads total over all samples. We did not directly use the ready-made 386 

rarefied OTU table because the rarefaction procedure was conducted based on all >20,000 samples. 387 

Instead, after extracting these 4,245 samples from the raw table (File 388 

‘emp_deblur_90bp.qc_filtered.biom’ in EMP release), we resampled these samples into the same 389 

sequencing depth (6,160 tag sequences per sample). The taxonomic information of 90-bp 390 

representative sequences was assigned based on the Silva v.138 database28. 391 

Climate, vegetation, and soil property data 392 

Nineteen bioclimatic variables for each sample location were extracted from WorldClim2 393 

(https://www.worldclim.org/)52. The historical climate data represent the average for the years 394 

1970-2000 and comprise 19 variables, 11 of which are temperature-related, and 8 of which are 395 

precipitation-related (for detailed information see Supplementary Table 1; 396 

https://www.worldclim.org/data/bioclim.html). The future climate data (2080-2100) are CMIP6 397 

(Coupled Model Intercomparison Project 6, https://esgf-node.llnl.gov/projects/cmip6/) 398 

downscaled future climate projections. Monthly values of minimum temperature, maximum 399 

temperature, and precipitation were processed for four Shared Socio-economic Pathways (SSP): 400 

126, 245, 370, and 585 (SSP126: sustainability; SSP245: middle of the road; SSP370: regional rivalry; 401 

SSP585: fossil-fueled development). The full explanation of different SSP scenarios is available 402 
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(https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-403 

climate-change). The climate data under different SSP scenarios were separately predicted using 404 

twenty-one CMIP6 downscaled global change models (Supplementary Table 2). The vegetation 405 

variables are indicated by gross primary production (GPP). The GPP data used in this study were 406 

the annual average GPP data during the last four decades derived from satellite near-infrared 407 

reflectance data53. Soil property data including pH, soil organic carbon (SOC), cation exchange 408 

capacity (CEC), soil salinity (indicated by electroconductibility), and base saturation were derived 409 

from Harmonized World Soil Database (HWSD v1.2, https://www.fao.org/soils-portal/soil-survey) 410 

at a resolution of 250 m. 411 

Statistical analysis 412 

Biogeographical pattern analysis. The richness (defined as the number of observed potential PBB 413 

OTUs in this study) was plotted against the absolute latitude to investigate whether the alpha-414 

diversity of PBB followed a latitudinal diversity gradient (LDG). Given the potential unbalanced 415 

sampling effect in EMP, we conducted random resampling from densely sampled areas. Briefly, we 416 

randomly selected 50 or 100 samples if the samples were >50 or >100 within 5 degrees in latitude., 417 

and repeated the resampling for 100 times (Supplementary Fig. 5). Bray–Curtis distances were 418 

calculated to quantify taxonomic β-diversity. Three-way PERMANOVA was conducted to compare 419 

the effects of continent, land cover type and sampling seasonality on the composition of PBB 420 

communities. The Bray–Curtis distances were plotted against the log-transformed geographical 421 

distances [log(distance+1)] to determine whether the composition of PBB communities followed a 422 

distance-decay relationship (DDR).  423 

Multivariate negative binomial General Linear Models. Multivariate negative binomial General 424 
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Linear Models54 were used to disentangle whether the community composition of PBB 425 

communities was more strongly controlled by environmental or spatial factors. We fitted the 426 

relative abundance of each potential PBB OTU to environmental variables and spatial variables, 427 

respectively. The environment model contains all 19 bioclimatic variables, 5 soil properties, and 428 

gross primary production data. Spatial variables were derived from the principal coordinates of 429 

neighbor matrices (PCNM) algorithm36, which was able to deconvolute total spatial variation into a 430 

discrete set of explanatory spatial scales32. The fit of environment and space models was compared 431 

using OTU-specific AIC scores. A model was considered to have support over the other model if 432 

the difference in AIC (ΔAIC) was > 255, 56. 433 

Random forest model. We applied a machine-learning model, random forest, to quantitatively 434 

examine the key environmental variables influencing the relative abundance of potential PBB using 435 

the randomForest R package57. Seven random forest models were constructed. Climatic (indicated 436 

by 11 temperature-related and 8 precipitation-related bioclimatic variables), soil property 437 

(indicated by pH, SOC, CEC, soil salinity, and base saturation), and vegetation (indicated by gross 438 

primary production) variables were separately or jointly considered in these seven random forest 439 

models (Model 1: Climate; Model 2: Soil properties; Model 3: Vegetation; Model 4: Climate & Soil 440 

properties; Model 5: Climate & Vegetation; Model 6: Soil properties & Vegetation; Model 7: Climate 441 

& Soil properties & Vegetation). To reduce collinearity among predictors, we reduced the initial set 442 

of 25 environmental variables to 14 variables with a variation inflation factor (VIF) below 10. This 443 

final set included eight bioclimatic variables (BIO2: Mean diurnal range; BIO3: Isothermality; BIO8: 444 

Mean temperature of the wettest quarter; BIO9: Mean temperature of the driest quarter; BIO14: 445 

Precipitation of driest month; BIO15: Precipitation seasonality; BIO18: Precipitation of warmest 446 
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quarter; BIO19: Precipitation of coldest quarter), five soil variables (pH, SOC, CEC, 447 

electroconductibility, and base saturation), and one vegetation variable (gross primary production). 448 

A total of 500 trees were fitted in each model. Each tree was fitted based on a random sample of 449 

two-thirds of the observations (“in-bag”), and each tree split was based on a different random 450 

subset of one-third of the predictors, while the results were cross-validated against the remaining 451 

observations (“out-of-bag”), which is in line with standard protocols57. The model performance was 452 

assessed based on model R2 using rfUtilities R package with 999 permutations. To express variable 453 

importance across all modeled ppSHs, the relative importance of each predictor was calculated as 454 

a sum of the predictor relative importance of all Random Forests for potential PBB richness/relative 455 

abundance weighted by Random Forest predictive ability (out-of-bag R2)18. 456 

Future relative abundance projection. The global pattern of relative abundance of potential PBB 457 

under the current climate was estimated using GLMs. A multivariate environmental similarity 458 

surface (MESS) analysis was conducted to assess extrapolation reliability of PBB using the variables 459 

selected from the GLMs58. The GLMs were also cross-validated by common Pearson correlation test 460 

using 2/3 samples as a model training dataset and 1/3 as a validation dataset. Using the model 461 

constructed based on the current climate data, the global patterns of relative abundance under 462 

different future climate scenarios were then estimated based on the model parameters. We 463 

predicted the future relative abundance of potential PBB under different climate scenarios using 464 

the climate data derived from the above twenty-one different CMIP6 downscaled GCMs, and the 465 

relative changes were averaged. The projections were conducted using the formula listed in 466 

Supplementary Table 3. 467 

Data availability 468 
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All raw data used in the current study including the plant-beneficial bacteria database, sample 469 

metadata, climate data and species-abundance dataset are publicly available in Figshare 470 

(https://doi.org/10.6084/m9.figshare.22274866). The taxonomy information of bacteria is available 471 

in Silva database (https://www.arb-silva.de/). The current and future climate data are available in 472 

WorldClim2 (https://www.worldclim.org/). The soil property data are available in Harmonized 473 

World Soil Database (https://www.fao.org/soils-portal/soil-survey). Source data are provided with 474 

this paper. 475 

Code availability 476 

Most numerical analyses included in this article do not have an associated code. Used codes are 477 

available in Figshare (https://doi.org/10.6084/m9.figshare.22274866). 478 

Acknowledgements 479 

This study was supported by the National Key R&D Program of China (2022YFA0912501 to J.J.), 480 

Fundamental Research Funds for the Central Universities (KYZZ2023003 to J.J.; KYQN2023027 to 481 

P.L.; XUEKEN2022003 to B.W.), National Natural Science Foundation of China (42207349 to P.L.; 482 

41977056 to B.W., and 42107336 to L.L.), Jiangsu Funding Program for Excellent Postdoctoral Talent 483 

(2022ZB331 to P.L.), Natural Science Foundation of Jiangsu Province (BK20221005 to P.L.), China 484 

Postdoctoral Science Foundation (2022M711653 to P.L.), and grants from D.O.B. Ecology and the 485 

Bernina foundation to T.W.C. 486 

Author Contributions Statement 487 



24 

 

J.J. and B.W. designed the framework. P.L., M.W., Y.J., L.L. and Z.L. contributed the sample collecting. 488 

P.L., L.K., T.L. and M.B. performed the data analysis. P.L., L.T., T.W.C., A.J.D., F.D., M.B., L.L., M.S., F.T.V. 489 

and J.J. wrote the paper. All authors discussed the results and commented on the manuscript. 490 

Competing Interests Statement 491 

The authors declare no competing interests.  492 

Figure captions 493 

Fig. 1 | Taxonomy of plant-beneficial bacteria in global soils. a, Workflow used to construct the 494 

PBB database. Briefly, all taxa in the Silva v.138 database were checked to determine whether they 495 

have literature-documented and experimentally confirmed plant-beneficial traits. This yielded a 496 

three-level PBB database consisting of 396 bacterial genera. Besides, a comprehensive list of 497 

phytopathogens was generated to be used as a reference (PBB also identified as pathogens were 498 

removed from the final database). b, Taxonomy information of potential PBB. In the left panel, each 499 

circle represents a PBB genus, and the circle size is proportional to the mean relative abundance in 500 

global soils. The top right panel shows the composition of PBB at different taxonomic levels. The 501 

bottom right panel shows the top ten PBB genera, and the rectangle area is proportional to the 502 

mean relative abundance in global soils. PGP: Plant growth-promoting. 503 

Fig. 2 | Global biogeographical distribution of plant-beneficial bacteria. a, Average relative 504 

abundance of different categories of potential PBB in different continents and land cover types. 505 

Purple, orange and blue lines within the bars represent the relative abundance of PGP, biocontrol 506 

and stress resistance bacteria, respectively. Data are presented as mean values ±  SEM. n 507 
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represents the number of samples. b, The relationship between absolute latitude and relative 508 

abundance of potential PBB. The line shows the second-order polynomial fit based on ordinary 509 

least squares regression, and shaded areas represent the 95% confidence intervals. The analysis 510 

was based on one-side F and two-side t tests (model parameters and P values are reported as inset 511 

panels). n represents the number of samples. c, The relationship between absolute latitude and 512 

number of observed potential PBB OTUs. The significant negative latitude-richness relationship 513 

supports a latitudinal diversity gradient (LDG) of potential PBB. Lines represent the fit of the least 514 

squares regressions and shaded areas represent the 95% confidence intervals. The analysis was 515 

based on one-side F and two-side t tests (model parameters and P values are reported as inset 516 

panels). n represents the number of samples. d, Principal coordinates analysis (PCoA) of potential 517 

PBB communities based on Bray-Curtis dissimilarity. The effects of land cover type, continent and 518 

sampling season on potential PBB communities were assessed by three-way PERMANOVA based 519 

on Bray-Curtis dissimilarity. Samples are colored by land cover type (left panel) or continent (right 520 

panel). PGP: Plant growth-promoting. 521 

Fig. 3 | Factors affecting the global distribution of plant-beneficial bacteria. a, The effects of 522 

environmental and geographic distance on PBB community composition were examined via 523 

multivariate negative binomial General Linear Models. The relative abundance of each potential 524 

PBB OTU was modeled as a function of either environment (climate, soil property, and vegetation 525 

variables) or space (using principal coordinate of neighbor matrices (PCNMs) based on Moran’s 526 

eigenvector maps). The AIC scores of the space-only and environment-only models of each 527 

potential PBB OTU were compared. A lower AIC score represents a superior fit (ΔAIC >2). Pink and 528 

blue points represent OTUs that are better explained by environment or space models, respectively. 529 
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Green points and the black line represent equal support for the environment-only or space-only 530 

models for a given potential PBB OTU based on AIC scores (ΔAIC < 2). Within each plot, the pie 531 

chart summarizes the proportion of OTUs that are best supported by either the environment-only 532 

or space-only models. b, Correlations between environmental variables and the relative 533 

abundances of the top 30 dominant potential PBB genera. The correlation coefficient and 534 

significance were determined by Spearman test. We applied one-side F and two-side t tests, and 535 

then calculated P values. c, Random Forest model of key environmental factors structuring the 536 

potential PBB communities. The left panel shows the performance (R2) of different models. Model 537 

1: Climate; Model 2: Soil properties; Model 3: Vegetation; Model 4: Climate & Soil properties; Model 538 

5: Climate & Vegetation; Model 6: Soil properties & Vegetation; Model 7: Climate & Soil properties 539 

& Vegetation. The right panel shows the contribution of climatic, soil properties, and vegetation 540 

variables to the explained variation based on each PBB category. Each tree was fitted based on a 541 

random sample of two-thirds of the observations (“in-bag”), and each tree split was based on a 542 

different random subset of one-third of the predictors, while the results were cross-validated 543 

against the remaining observations (“out-of-bag”), which is in line with standard protocols. The 544 

model performance was assessed based on model R2 with 999 permutations. Vegetation is 545 

indicated by gross primary production. PGP: Plant growth-promoting. 546 

Fig. 4 | Predicted future changes in plant-beneficial bacteria. a, Predicted change in relative 547 

abundance of potential PBB under future climate-change scenarios. A relative abundance-climate 548 

model was constructed by GLMs using relative abundance of potential PBB and 19 climate variables. 549 

This model was used to predict the future relative abundance of potential PBB under four different 550 

climate scenarios. All climate variables were derived from WorldClim2 using a 5 min (~10 km) 551 
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resolution. The future climate data were derived from twenty-one different CMIP6 downscaled 552 

global change models (GCMs; See detailed information in Methods). The relative change in the 553 

relative abundance of potential PBB under different GCMs compared to current climate conditions 554 

was averaged. The right panel shows the latitudinal change in relative abundance of potential PBB 555 

under four future climate scenarios. The plot axis labels reflect the shared socioeconomic pathway 556 

(SSP), sustainability (SSP126), middle of the road (SSP245), regional rivalry (SSP370), and fossil-557 

fueled development (SSP585) scenarios. b, Predicted changes in relative abundance of different 558 

categories of potential PBB under future climate-change scenarios. Box plots indicate the median 559 

(middle line) with 25th, and 75th percentile (box), and 5th and 95th percentile (whiskers). n = 21 for 560 

SSP126; n = 20 for SSP245, and SSP585; n = 19 for SSP370. c, The relative area that may be 561 

impacted by a decline in relative abundance of potential PBB under different future climate 562 

scenarios. We calculated the number of declined grid cells and divided it by the total number of 563 

grid cells to determine the relative decline area. PGP: Plant growth-promoting. 564 
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