
Journal Pre-proofs

Default dependence in the insurance and banking sectors: A copula approach

Xuan Zhang, Minjoo Kim, Cheng Yan, Yang Zhao

PII: S1042-4431(23)00179-8
DOI: https://doi.org/10.1016/j.intfin.2023.101911
Reference: INTFIN 101911

To appear in: Journal of International Financial Markets, Insti-
tutions & Money

Received Date: 30 July 2023
Revised Date: 14 December 2023
Accepted Date: 17 December 2023

Please cite this article as: X. Zhang, M. Kim, C. Yan, Y. Zhao, Default dependence in the insurance and banking
sectors: A copula approach, Journal of International Financial Markets, Institutions & Money (2023), doi:
https://doi.org/10.1016/j.intfin.2023.101911

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier B.V.

https://doi.org/10.1016/j.intfin.2023.101911
https://doi.org/10.1016/j.intfin.2023.101911


 1 

Default dependence in the insurance and banking 
sectors: A copula approach

Xuan Zhanga, Minjoo Kimb, Cheng Yanc, , Yang Zhaod*

a Nanjing University of Aeronautics and Astronautics, China

b University of Liverpool, UK

c University of Essex, UK

d Central University of Finance and Economics, China

* Yang Zhao, Chinese Academy of Finance and Development, Central University of Finance and 
Economics, China. Email: yangzhao@cufe.edu.cn
Xuan Zhang, College of Economics and Management, Nanjing University of Aeronautics and 
Astronautics, China. 
Minjoo Kim, Management School, University of Liverpool, United Kingdom. 
Cheng Yan, University of Essex, United Kingdom. 



 2 



 3 

Default dependence in the insurance and banking 

sectors: A copula approach

Highlights

 We explore the joint default dependence among firms based on their default 
probabilities.

 We combine a generalized autoregressive score model with a generalized 
hyperbolic skewed t copula.

 We identify the term structure of dynamic default dependence between these two 
sectors.

 We investigate the determinants of the time-series variation in default dependence.

 We find a significant negative correlation between default dependence and global 
geopolitical risk.

Default dependence in the insurance and banking 

sectors: A copula approach

ABSTRACT

We employ a time-varying asymmetric copula model that combines the 
generalized autoregressive score model with the generalized hyperbolic 
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skewed t copula to capture the dynamics and asymmetry of default 
dependence between insurers and banks. We identify the term structure of 
default dependence between these two sectors. The short-term and long-
term dependence of default risk rise and converge during financial crises. 
We explore the determinants of the time-series variation in default 
dependence. While traditional macro variables can explain only a small 
portion of the variation in default dependence, we find a significant 
negative correlation between default dependence and global geopolitical 
risk.

JEL: G22; G33

Keywords: Insurers; probability of default; default dependence; copula; 
determinants

“In the past, there was no perceived need to specifically address systemic risk in insurance but, 
given recent developments, it was high time for the insurance industry to engage in the debate 
on systemic risks and the way they are handled in terms of regulation and supervision.”

- Geneva Association (2010)

1. Introduction

The goal of this paper is to empirically model the interrelationship between insurance 
firms (i.e., insurers) and banks, which has been long neglected until the late 2000s 
global financial crisis (GFC) (Billio et al., 2012). Perhaps because the GFC is labelled 
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as a banking crisis (e.g., Aiyar, 2012; Cetorelli and Goldberg, 2012; Giannetti and 
Laeven, 2012; Chodorow-Reich, 2013; De Haas and Van Horen, 2013), the role of 
insurers has drawn less attention, although the insurers (e.g., American International 
Group2) experience potential insolvency earlier than the banks during the GFC. The 
traditional view3 that insurers protect other financial institutions during crises no 
longer holds as the insurers themselves also need protection during the GFC. As the 
insurers are no longer systematically irrelevant, it is inappropriate to study either 
insurers or banks alone without taking the other subsector into account (Billio et al., 
2012). 

As financial markets worldwide become more tightly integrated, financial 
conditions within the United States are increasingly influenced from abroad and 
affecting foreign financial markets. Previous studies show that U.S. financial markets 
are closely linked to international financial markets. Chan et al. (1992) show that the 
conditional expected excess return on U.S. stocks is positively related to the conditional 
covariance of the return of these stocks with the return on a foreign index but is not 
related to its own conditional variance. Samarakoon (2011) show that there is important 
bi-directional but asymmetric interdependence and contagion in emerging markets. 
Interdependence is driven more by shocks in the United States. Frontier markets also 
exhibit interdependence and contagion to United States shocks.

Using a sample of publicly listed insurers and banks in the U.S. market from 
March 1991 to February 2021, we study several aspects of the interrelationship between 
insurers and other banks in this paper. First, we investigate the possible existence of a 
default correlation/dependence between insurers and other banks4, because higher 
default dependence may contribute to higher systemic risk. Second, short-term and 
long-term default probabilities may contain different information. Therefore, we 
investigate if the default dependence varies with a default term structure. Third, to 
understand the determinants of the default dependence, we investigate whether the 
time-varying default dependence is related to some common risk factors or to the 

2 American International Group Inc. (AIG) was on the brink of collapse in September 2008. The 
American International Group Financial Products Corporation (AIGFP), a non-insurance entity which 
was not subject to insurance regulation, held a large portfolio of Credit Default Swaps (CDS) and 
Collateralized Debt Obligations (CDO). Consequently, it suffered a significant loss during the crisis. To 
protect the stability of the financial system, the Federal Reserve announced an $85 billion bailout of AIG 
in 2008.
3 For instance, insurers reduce the default risk of the policyholders of insurance firms—who are 
sometimes banks—by mitigating their loss during natural disasters (Lee et al., 2016).  Banks are likely 
to transfer their risk to insurers to reduce their default risk (Lehmann and Hofmann, 2010).
4 In this paper, default correlation means the interrelationship among PDs captured by pairwise 
correlations, while default dependence means the interrelationship among PDs captured by copulas.
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interactions among firms by regressing the default dependence between insurers and 
banks on the large set of macro variables5 proposed by Christoffersen et al. (2018).

Previous studies use stock returns and pairwise stock return correlations, which 
are backwards-looking in nature and only indirectly imply credit risk. Instead, we turn 
to two direct and forward-looking measures of credit risk: the probability of default 
(hereafter, PD) and correlations of PD. We find that those correlation coefficients are 
not able to model the interrelationship between insurers and banks. This is likely 
because this interrelationship tends to involve tail behavior and systemic risk, which 
calls for the use of the copula method. Finally, we use a dynamic copula model, which 
combines the generalized hyperbolic (GH) skewed t copula with the Generalized 
Autoregressive Score (GAS) 6 model to capture the dynamics of default dependence 
between insurers and banks.

Our main findings are as follows. Firstly, the PD with different term structures of 
both insurers and banks move in the same direction through the sample period. This 
implies that risk-based regulations, like Solvency II, applied to the EU insurance sector, 
are also needed for U.S. insurers.

Secondly, we estimate the joint default dependence of the two sectors based on the 
dynamic copula model. We also identify a significant dependence between insurers and 
banks in both short-term (i.e., from 1-month to 6-month) and long-term (i.e., 12-month) 
horizons. The short-term dependence is low but volatile, while the long-term 
dependence is high but stable. Both short-term and long-term PD dependence spike and 
converge during crises. Our study further shows that the default dependence between 
sectors is both time-varying and asymmetric.

Finally, we identify some underlying determinants of the joint default dependence 
of the insurance and financial sectors by regressing the variation of default dependence 
on the large set of financial and macroeconomic variables. We find that short-term 
correlations are only affected by interest rate level, yield curve slope, and the TED 
spread. Additionally, we incorporate the global geopolitical risk factor into our analysis.  
Caldara and Iacoviello (2022) discuss the impact of global geopolitical risk on the 
economy and analyse it at the firm and industry level, but do not go into depth on the 
financial sector. While there have been several studies exploring the relationship 
between global geopolitical risk and banks (Phan et al., 2022), there is a notable scarcity 
of research from the perspective of systemic default risk within the financial sector. Our 
findings reveal a significant negative correlation between default dependence and 
global geopolitical risk, a relationship that substantially differs from those observed in 

5 The early work of Couderc et al. (2008) on default probability modeling also shows that non-financial 
information plays a role in explaining default behavior, as found in the present paper.
6 The time-varying copula correlation is captured by the Generalized Autoregressive Score (GAS) model, 
which is pioneered by Creal et al. (2013). The GAS model is widely used in recent empirical research 
(Creal et al., 2014; Janus et al., 2014; Lucas et al., 2014; Salvatierra and Patton, 2015).
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other industries. Although macro variables can explain a small portion of the variation 
of default dependence, more than half remains unexplained, which is probably due to 
firm-level characteristics. 

This study contributes to the systemic risk literature in the following ways. First, 
we directly model the correlated default risk by PD, while most studies like Acharya et 
al. (2012), Adrian and Brunnermeier (2018), and Demirer et al. (2018) rely on stock 
returns, which only imply the credit risk indirectly. Second, we propose a time-varying 
asymmetric copula to model the joint default dependence, while previous studies 
mainly use CDS data (Lucas et al., 2014; Cerrato et al., 2017; Oh and Patton, 2018). 
One issue of studies using CDS data is that their sample is limited to the firms with 
CDS contracts, while our PD data cover a larger sample. Third, we further investigate 
the term structure of default dependence between insurance and other banks using the 
PD data estimated via the forward-intensity model of Duan et al. (2012), and hence 
provide richer information to regulators and investors to understand the dynamics of 
default dependence with different horizons. Finally, we use regression analysis to 
identify financial and macroeconomic variables that may drive the variations of default 
dependence between insurers and other banks. Our findings are relevant not only for 
academics, but also for practitioners, because identifying which factors drive joint 
default risk can help regulators and investors to forecast and mitigate systemic risk.

We also contribute to the small but growing literature on the role of insurers during 
the GFC. For instance, the Geneva Association (2010) points out that insurers might 
increase the systemic risk of the financial sector if they heavily engage in derivatives 
trading, while Billio et al. (2012) note that insurers have become more likely to invest 
in non-core and non-insurance businesses (e.g., credit default swaps, derivatives trading, 
investment management, and insurance financial products). As default risk can quickly 
propagate through credit derivatives7, insurers and banks become increasingly 
interconnected (e.g., Harrington, 2009; Chen et al., 2013; Cummins and Weiss, 2014; 
Weiß and Mühlnickel, 2014; Bierth et al., 2015; Mühlnickel and Weiß, 2015).

Our focus on the interrelationship between insurers and banks is not coincidental 
but motivated by both anecdotal evidence from the late 2000s global financial crisis 
and the literature (e.g., Billio et al., 2012) which underscores the importance of banks 
and insurers8. We follow the emerging literature (e.g., Acharya et al., 2012; Billio et 

7 For instance, Jorion and Zhang (2007) and Stulz (2010) find that counterparty risk is transferred through 
financial products like CDS.
8 Billio et al. (2012) note that “banking and insurance sectors may be even more important sources of 
connectedness than other parts, which is consistent with the anecdotal evidence from the recent financial 
crisis. The illiquidity of bank and insurance assets, coupled with the fact that banks and insurers are not 
designed to withstand rapid and large losses (unlike hedge funds), make these sectors a natural 
repository for systemic risk. The same feedback effects and dynamics apply to bank and insurance capital 
requirements and risk management practices based on VaR, which are intended to ensure the soundness 
of individual financial institutions, but may amplify aggregate fluctuations if they are widely adopted.”
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al., 2012; Adrian and Brunnermeier, 2018; Demirer et al., 2018) and focus on the last 
“L” (i.e., linkage) among the four “L”s of financial crises (i.e., leverage, liquidity, loss, 
and linkage), given the fact there are already enough studies of the first three (see Billio 
et al., 2012 and the references therein). In addition, we extend the sample end in Billio 
et al. (2012) from 2008 to the latest COVID-19 pandemic. 

The remainder of the paper is structured as follows: In Section 2, we briefly review 
the development of modeling default risk, and then introduce our methodology. Section 
3 presents the summary statistics of the data. Section 4 presents the default dependence 
analysis. Section 5 concludes. For brevity, we delegate the technical details to the 
appendices. Appendix A presents the forward intensity model proposed by Duan et al. 
(2012).

2. Systemic Credit Risk

Among several measures of systemic credit risk, we rely on the probability of default 
(hereafter, PD) correlation as a proxy for systemic credit risk. Albeit its simplicity, the 
PD correlation preserves the information about the joint default of the insurance and 
banking sectors. There are three steps to estimate the PD correlation between the 
insurance sector and the banking sector. First, we obtain the individual PD9 for each 
company from the RMI-NUS (National University of Singapore, Risk Management 
Institute) CRI database, which is estimated following Duan et al. (2012). Second, we 
construct a time series of aggregated PD by the cross-sectional median10 of individual 
PDs for each sector. Third, we estimate the time-varying PD correlation between the 
two sectors using a time-varying asymmetric copula model. 

2.1. Probability of Default

Credit risk models have been quickly developed from the credit scoring model to the 
structural and reduced-form models. Beaver (1966, 1968) and Altman (1968) first 
proposed the scoring model that calculates firm-level PD by including accounting-
based variables in the regression. The structural model, first introduced by Merton 
(1974), who applies the option theory to evaluate the value of firm-level liabilities in 
the presence of default (i.e., PD), is embedded in the option-pricing model. 

Since the seminal papers of Jarrow and Turnbull (1995) and Duffie and Singleton 
(1999), the reduced-form model, which assumes that exogenous Poisson random 

9 A key ingredient of this paper is the PD of individual firms, which is incredibly difficult to measure, 
given the fact that we do not observe many defaults. We take the estimated values from Duan et al. 
(2012) as a proxy of realized default probabilities.
10 Alternatively, we obtain the qualitatively similar results using weighted average PD. We omit these 
results for brevity, but they are available upon request. 
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variables determine firm-level default likelihood, has become very popular.11 For 
instance, Duffie et al. (2007) propose the doubly stochastic Poisson model with time-
varying covariates and forecast the evolution of covariates using Gaussian panel vector 
autoregressions. Duan et al. (2012) further refine it to a measure of the probability of 
default (PD) by applying the pseudo-likelihood to estimate the forward intensity rate of 
doubly stochastic Poisson processes with different horizons, “which captures a firm’s 
likelihood of not fulfilling its financial obligations over some future horizon. It focuses 
directly on the realization of a rare event of significance, which may trigger cascading 
defaults and cause widespread distress throughout the financial system”. 

Based on the individual single-period PD data from the RMI-NUS CRI database, 
we predict the multi-period individual PDs by the forward intensity function suggested 
by Duan et al. (2012).12 We define the aggregated PD as the cross-section median for 
each sector:

,𝑃(1)
𝑡 (𝓁) ∶= 𝑚𝑒𝑑𝑖𝑎𝑛𝑖 ∈ 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑠𝑒𝑐𝑡𝑜𝑟{𝑃𝑖,𝑡(𝓁)} (1)

,𝑃(2)
𝑡 (𝓁) ∶= 𝑚𝑒𝑑𝑖𝑎𝑛𝑖 ∈ 𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑠𝑒𝑐𝑡𝑜𝑟{𝑃𝑖,𝑡(𝓁)} (2)

where  denotes the -month PD for company  at time .𝑃𝑖,𝑡(𝓁) 𝓁 𝑖 𝑡

2.2. Default Risk Correlation

Systemic risk measures emphasizing the connectedness among banks include 
individual capital shortfall (Acharya et al., 2012), stock returns volatility (Demirer et 
al., 2018), and CoVar (Adrian and Brunnermeier, 2018).13 However, these measures 
are backward-looking in nature, and rely on stock returns, which means that they can 
only imply the credit risk indirectly (Chan-Lau et al., 2016). Alternatively, we prefer a 
directly relevant and forward-looking measure of credit risk — the probability of 
default (PD).

The intensity-based modeling of correlated default risk using PD has been well 
developed. The traditional reduced-form portfolio model relies on either a bottom-up 
approach (i.e., a portfolio intensity is the aggregate of individual intensities), or a top-
down approach (i.e., the portfolio intensity is calculated without individual intensities). 
The drawback of intensity-based models is their computational complexities. 

11 A company may default when the exogenous variables (e.g., macroeconomics and company-specific 
variables) shift from their levels.
12 The approach suggested by Duan et al. (2012) basically follows a doubly stochastic process proposed 
by Duffie et al. (2007). See Appendix A for more details. 
13 Weiß and Mühlnickel (2014) find a very similar magnitude of Marginal Expected Shortfall (MES) and 
∆CoVaR among the 20 largest U.S. insurers and the 20 largest U.S. banks in 2007-2009.
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We consider a simpler and more flexible approach to estimate the PD correlation 
between the insurance and financial sectors. We employ copula models among various 
alternatives due to their statistical advantages. First, copula allows for greater flexibility 
in modeling the marginal distribution of PD for each sector. Therefore, we model it by 
ARMA-GJR-GARCH (Glosten et al., 1993) with the skewed student’s t-distribution 
(Hansen, 1994) and the nonparametric empirical distribution. 

Second, it allows tail dependence between the two sectors. Since extreme 
underlying events generate extremely high PDs, tail dependence can capture the default 
dependence between the two sectors more accurately than traditional correlation 
measures during a market recession or crisis. We model the tail dependence by the 
generalized hyperbolic (GH) skewed t copula. 

Finally, we model the time-varying nature of PD correlation by implementing the 
Generalized Autoregressive Score (GAS) process into the copula model (e.g., Creal et 
al., 2013). For brevity, we delegate the technical details to the appendices. Appendix A 
presents the forward intensity model proposed by Duan et al. (2012).

3. Data

Due to data availability, our sample covers all publicly listed insurers and banks in the 
U.S. market from March 1991 to February 2021: 185 insurers and 507 banks over the 
period of 360 continuous months. We collect monthly individual PD data from the 
RMI-NUS CRI database. For each company, the PD data include the term structure of 
PD over 1-month, 3-month, 6-month, and 12-month horizons.14 We also collect market 
data such as the Chicago Fed National Financial Conditions Credit Subindex, VIX, the 
10-year Treasury rate, the 3-month Treasury bill, the TED spread, Crude oil price, CPI, 
and NASDAQ index returns from the Federal Reserve Bank of St. Louis. 

[INSERT FIGURE 1 ABOUT HERE]

First, we are interested in how the PD of financial institutions evolves, since the PD 
with different term structures shows a similar moving pattern (see Figure 1) and only 
the magnitude is different. The measures of PD in the banking sector are generally 
higher than in the insurance sector, no matter in short-term or long-term horizons. 
Moreover, the PD measures in both industries rise sharply during crises/recessions.  
Finally, the PD in the banking and insurance sectors rises sharply during COVID-19 
for the first time since hitting a low in 2013. During the pandemic, the PD rises the most 
in the 12-month period for both sectors.

14 In the main analysis, we selectively focus on these horizons as Duan et al. (2012) suggest that both in-
sample and out-of-sample accuracy ratios are above 85% at these horizons. However, our main results 
are robust to alternative horizons such as 24-month, 36-month, and 60-month.
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4. Dynamic Analysis of Joint Default Dependence

Tumminello et al. (2010) and Patro et al. (2013) use stock returns to study systemic 
risk, arguing that daily stock return pairwise correlation is a simple, robust, forward-
looking, and timely risk indicator (Patro et al., 2013; Tumminello et al., 2010). 
However, stock returns are not directly linked to default risk. Hence, we consider the 
PD correlations (see, e.g., Das et al., 2007). We investigate the dynamic PD correlation 
between the banking and insurance sectors using the copula model. First, we need to 
model the marginal distribution of each sector, and then we choose a (either static or 
dynamic) copula to model the dependence between the banking and insurance sectors. 

4.1. Default Probability – Industry Level

To apply the copula model, we transform the PD following the Duan and Miao (2016) 
method. Then, we calculate the average transformed PD for each sector. Table 1 shows 
the descriptive statistics for the log difference of transformed PD in different horizons. 
The average transformed PD of insurers is no higher than that of banks, which suggests 
that the insurance sector itself is relatively more stable than the banking sector. The 
variation of the insurance and financial sectors is similar in magnitude, except for the 
1-month horizon, where the insurers have a larger standard derivation. 

 [INSERT TABLE 1 ABOUT HERE]

Descriptive statistics gives us a quick review of the marginal distribution of 
transformed PD returns. In the next step, we focus on the joint distribution of two 
sectors. In particular, we are interested in their dependence structure.

4.2. Time-Varying Default Dependence

Patton (2012) suggests that the dependence structure may vary over time, like volatility. 
Ignoring the time-varying dependence of firms may cause a significant underestimation 
of their joint credit risk. Figure 1 further shows that PD of the banking and insurance 
sectors changes in the same trend under different market conditions.

We test the time-varying dependence based on the ARCH-LM test proposed by 
Engle (1982). The test applies an autoregressive model to (𝑢1,𝑡𝑢2,𝑡)

𝑢1,𝑡𝑢2,𝑡 = 𝛼0 +
𝑝

∑
𝑖 = 1

𝛼𝑖𝑢1,𝑡 ― 𝑖𝑢2,𝑡 ― 𝑖 + 𝜖𝑡, 𝑝 = 1,5,10. (6)

In Table 2, AR (1), AR (5), and AR (10) are rejected for all horizons. This suggests 
that time-varying dependence exists between the two sectors. Thus, we use the time-
varying copula to model default risk dependence between financial and insurers. Unlike 
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parameter-driven models such as the stochastic volatility model and the stochastic 
intensity model (see, e.g., Bauwens and Hautsch, 2006; Koopman et al., 2008), the GAS 
model is observation-driven and based on the score function. The scaled score drives 
the time variation of the parameters.

4.3. Asymmetric Default Dependence 

Tail dependence can provide insight into the potential for simultaneous defaults of 
multiple firms under extreme circumstances. We investigate if the default intensity of 
their dependence is statistically equivalent at both lower and upper tails. This is useful 
for the choice of copulas and the analysis of systemic risk. For the symmetric 
dependence,

, 𝜆𝑞 = 𝜆1 ― 𝑞 for 𝑞 ∈ [0,1] (3)

where  is the dependence at the th quantile and is defined as𝜆𝑞 𝑞

. 𝜆𝑞 = {𝑃[𝑢1,𝑡 ≤ 𝑞│𝑢2𝑡 ≤ 𝑞], 0 < 𝑞 ≤ 0.5
𝑃[𝑢1,𝑡 > 𝑞│𝑢2𝑡 > 𝑞],0.5 < 𝑞 < 1 (4)

Following Patton (2012), we test the symmetric dependence between the two 
sectors:

   𝐻0:[𝜆0.025 ― 𝜆0.975

𝜆0.050 ― 𝜆0.950

𝜆0.100 ― 𝜆0.900] = [0
0
0] 𝑣𝑠. 𝐻𝛼:[𝜆0.025 ― 𝜆0.975

𝜆0.050 ― 𝜆0.950

𝜆0.100 ― 𝜆0.900] ≠ [0
0
0] (5)

Table 2 shows that at the 5% significance level, we can reject the null hypothesis 
that the dependence between the two sectors is symmetric in three out of four cases 
(i.e., 1-month, 6-month, and 12-month horizon), and the same null hypothesis is 
rejected at 10% statistical level for the 3-month horizon case, which suggests that 
asymmetric copulas (such as skewed t copula) would be more suitable as they can treat 
upper and lower tails differently. To capture this asymmetric default dependence, we 
model the dependence structure of the two sectors in the following subsection using a 
time-varying asymmetric copula method.

 [INSERT TABLE 2 ABOUT HERE]

4.4. Modeling Marginal Distribution of Default Probability 

The forward intensity function of Duan et al. (2012) is the exponential of a linear 
combination of some firm-specific and macroeconomic variables. Then PD is equal to 
one minus the exponential of the product of default intensity and horizon. 
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We make the transformation of PDs, which takes them back to the linear 
combinations of default attributes (Duan and Miao, 2016):

𝑔𝑘,𝑡(𝓁) = ln { ― ln [1 ― 𝑃(𝑘)
𝑡 (𝓁)]}, 𝑘 = 1,2 (6)

so that . 𝑔𝑘,𝑡(𝓁) ∈ ( ―∞,∞)

Next, we assume that the change of transformed PD follows the stochastic process:

Δ𝑔𝑘,𝑡 = 𝜇𝑘,𝑡(𝑋𝑡 ― 1) + 𝜎𝑘,𝑡(𝑋𝑡 ― 1)𝑧𝑘,𝑡, 𝑘 = 1,2 (7)

where  denotes the latent underlying state vector and  the standardized 𝑋𝑡 ― 1 𝑧𝑘,𝑡
random variable.15 First, we specify the condition mean and volatility in (4) by ARMA 
(m, n) and GJR-GARCH (1,1,1) (Glosten et al., 1993).

Δ𝑔𝑘,𝑡 = 𝑐𝑘 + 𝜀𝑘,𝑡 +
𝑚

∑
𝑖 = 1

𝜑𝑘,𝑖Δ𝑔𝑘,𝑡 ― 𝑖 +
𝑛

∑
𝑗 = 1

𝜃𝑘,𝑗𝜀𝑘,𝑡 ― 𝑗 (8)

  𝜎2
𝑘,𝑡 = 𝜔𝑘 + 𝛼𝑘𝜀2

𝑘,𝑡 ― 1 + 𝛽𝑘𝜎2
𝑘,𝑡 ― 1 + 𝛾𝑘𝜀2

𝑘,𝑡 ― 1𝐼𝑘,𝑡 ― 1 (9)

where  takes the value of either 1 if  or 0 if . Second, we 𝐼𝑘,𝑡 ― 1 𝜀𝑘,𝑡 ― 1 < 0 𝜀𝑘,𝑡 ― 1 > 0
consider both parametric and nonparametric marginal distributions for . For the 𝑧𝑘,𝑡
parametric marginal one, we assume that  follows the skewed student’s t 𝑧𝑘,𝑡
distribution from Hansen (1994): 

      𝑧𝑘,𝑡~𝐹𝑘,𝑠𝑘𝑒𝑤 ― 𝑡(𝑣𝑘,𝜆𝑘),  𝑣𝑘 ∈ (2,∞], 𝜆𝑘 ∈ ( ―1,1). (10)

where  is the degree of freedom, and  the skewness parameter. For the 𝑣𝑖 𝜆𝑖
nonparametric marginal one, we assume that the Empirical Distribution Function (EDF) 
is the consistent estimate of probability distribution:

.   𝑧𝑘,𝑡 ∼ 𝐹𝑘(𝑧) ≈
1

𝑇 + 1∑𝑇
𝑡 = 11{𝑧𝑘,𝑡 ≤ 𝑧} (11)

15 Note that we remove the survival time-length, l, for simplicity without loss of generality.
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4.5. Joint Distribution of Default Probability

The Sklar (1959) theorem demonstrates that the joint probability distribution can be 
decomposed into marginal distributions and a copula. Thus, the joint probability 
distribution of default probabilities can be expressed in terms of its marginals u and a 
copula function C:

,  𝐹(𝑧1,𝑡,𝑧2,𝑡) = 𝐶(𝑢1,𝑡,𝑢2,𝑡) (12)

where  and C  is a 2-dimensional copula. We choose the 𝑢𝑘,𝑡 = 𝐹𝑘(𝑧𝑘,𝑡) [0,1]2→[0,1]
multivariate skewed t copula to model the default dependence:
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)

where K is the modified Bessel function of the second kind,  is the degree of freedom, 𝜐
and  is the asymmetric parameter.  is the time-varying covariance matrix, such 𝛾 Σ𝑡

that , where  is an identity matrix in the copula modeling and  is ∑
𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 𝐷𝑡 𝑅𝑡

the time-varying correlation matrix.

  𝑅𝑡 = [ 1 𝛿𝑡
𝛿𝑡 1 ]. (14)

The time-varying correlation is driven by the GAS model of Creal et al. (2013). First, 
we follow Patton (2012) and transform the correlation parameter  to be (-1,1):𝛿𝑡

   𝑓𝑡 = ℎ(𝛿𝑡)⇔𝛿𝑡 = ℎ ―1(𝑓𝑡) (15)

where ). Next, the transformed parameter is 𝛿𝑡 = (1 ― exp { ― 𝑓𝑡})/(1 + exp { ― 𝑓𝑡}
updated by the dynamic specification:
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    𝑓𝑡 + 1 = 𝜔 + 𝛽𝑓𝑡 +𝛼𝐼 ―1 2
𝑡 𝑠𝑡 (16)

where  denotes a constant,  the score of copula likelihood,  𝜔 𝐼 ―1 2
𝑡 𝑠𝑡 𝐼𝑡: = 𝐸𝑡 ― 1[𝑠𝑡𝑠′𝑡]

and . 𝑠𝑡: =
∂ln 𝑐(𝑢1,𝑡, 𝑢2,𝑡; 𝛿𝑡)

∂𝛿𝑡

4.6. Estimating Time-Varying and Asymmetric Joint Default Dependence

We first estimate the parameters of the time-varying skewed t copula16 for each time 
horizon using both parametric and semiparametric methods. For parametric estimation, 
we model the univariate distribution using the skewed t distribution function. For 
semiparametric estimation, we model it using the empirical distribution function. The 
log-likelihoods in Table 3 suggest that the parametric model outperforms the 
semiparametric model across different horizons, and hence we focus on the 
parametrically estimated default dependence hereafter.

 [INSERT TABLE 3 ABOUT HERE]

Table 4 reports the descriptive statistics of default dependence between the 
insurance and financial sectors for different horizons. The long-term default 
dependences (i.e., 6-month, 12-month ones) are of a larger magnitude than short-term 
ones (i.e., 1-month, 3-month ones). 

[INSERT TABLE 4 ABOUT HERE]

Figure 2 shows the estimated joint default dependence of the insurance and 
banking sectors from March 1991 to February 2021 by the time-varying skewed t 
copula. The joint default dependencies are estimated based on 1-month, 3-month, 6-
month, and 12-month horizons, respectively. The arrows indicate several major events 
in the global financial market. 

The joint default dependence across all horizons shows a similar moving trend in 
our 20-year period. The longer the time horizon is, the higher the joint default 
dependence will be. 

In addition, we find that the joint default dependence between the insurance and 
banking sectors is very sensitive to the global financial market. From 1997 to 1998, the 
dependence slightly rises during the Asian financial crisis. Later, we spot a big increase 

16 This time-varying skewed t copula has been used in empirical studies such as Christoffersen et al. 
(2012), Lucas et al. (2014) and Oh and Patton (2018), among many others.
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during the Argentine and Russian financial crises and further note that the joint PDs 
peak around 2000 when the dot-com bubble burst. During the GFC, the joint PDs grew 
dramatically and then decline gently until the end of 2009. We identify two upward 
slopes in the next two years, when the European debt crisis and the S&P downgrading 
of U.S. sovereign debt ratings occurred. During the COVID-19 outbreak, the short-term 
and long-term default correlations rise dramatically.

Consistent with previous results, Figure 2 suggests that the two sectors have a high 
positive default dependence in the long term, but the default dependence fluctuates 
more in the short term. The default dependence between the two sectors is more likely 
to increase during global financial events or economic recessions, noting that the default 
dependence with different horizons normally diverges, especially for the 1-month 
correlation. For example, although default risk correlations remain high, they show 
heterogeneous patterns for different term structures after 2012. Notably, the 1-month 
default risk correlation moves in the opposite direction from 2014 to 2015. However, 
all the default risk correlations show the same trend and converge during times of 
distress in general (i.e., the dot-com bubble, global financial crisis, S&P downgrading 
U.S. sovereign debt, the European debt crisis, and the COVID-19 pandemic).

The financial systemic risk proxied by our estimated default dependence suggests 
that financial regulatory reform is needed to prevent unexpected loss. For the U.S. 
market, insurers should follow more stringent risk-based regulations like Solvency II 
(which has been implemented in the EU), given their close relations with banks. For 
the entire financial industry, capital requirements should be increased to limit risk-
taking. Higher capital requirements should be imposed on systemically significant 
organizations with progressively increasing requirements as an entity’s default 
dependence grows. 

 [INSERT FIGURE 2 ABOUT HERE]

4.7. Determinants for the Default Dependence

The different behaviors from short- and long-term correlations between the two sectors 
motivate us to investigate the underlying determinants behind them. To understand the 
underlying determinants of the default dependence in the different horizons, we run the 
regression of the default dependence (the dependent variable) with macro variables (the 
independent variables). This analysis is also motivated by whether the time-varying 
movement of dependence between the two sectors comes from economic conditions or 
the interactions among insurance and other banks.

We select the following macroeconomic factors based on Christoffersen et al. 
(2018): (1) The change of the Chicago Fed National Financial Conditions Credit 
Subindex is used to measure the credit conditions in the market. It is composed of 
indexes of credit conditions. Increasing risk, tighter credit conditions, and declining 
leverage suggest tightening financial conditions. Therefore, a positive coefficient 
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indicates that the corresponding credit conditions are tighter than on average, while a 
negative one indicates the opposite. (2) The log of the VIX index is used to model the 
equity market risk. It measures the market expectation of near-term volatility conveyed 
by stock index option prices. (3) Financial stress indicator: the spread between the 10-
year Treasury rate and the 3-month Treasury bill is used to capture the term structure, 
and the 3-month Treasury bill is used as a level variable. (4) The TED spread, the 
difference between the Libor rate and short-term government debt rate, is used to 
capture liquidity in fixed-income markets. It is measured as the spread between the 3-
month Libor based on U.S. Dollars and the 3-month Treasury Bill. (5) Commodities 
Market: The log of Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, 
Oklahoma. (6) Inflation: The log of CPI to measure inflation. (7) The log return of the 
NASDAQ Composite Index. (8) The global geopolitical risk (GPR) by Caldara and 
Iacoviello (2022).

Compared to the paper by Christoffersen et al. (2018), we introduce the global 
geopolitical risk factor. Caldara and Iacoviello (2022) demonstrate that increased 
geopolitical risk is linked to reduced investment and employment, as well as an elevated 
probability of disasters and increased downside risk. Industries that are more exposed 
to geopolitical risk experience more pronounced declines in investment. Additionally, 
higher firm-level geopolitical risk is correlated with reduced firm-level investment. 
Adverse geopolitical events and threats can influence macroeconomic variables 
through various channels, such as capital stock destruction, increased military spending, 
or heightened precautionary behaviors.

 [INSERT TABLE 5 ABOUT HERE]

Table 5 reports the regression results for different horizons. The adjusted  of 𝑅2

1-month correlation is 0.2122, and it first declines (3-month) and then continues to rise 
as the time horizon expands. It peaks at the 12-month time horizon with an adjusted  𝑅2

of 0.2096. Low adjusted  indicates that, although macro variables can explain a 𝑅2

small portion of the variation of default dependence, more than half remains 
unexplained, which is probably due to firm-level characteristics.

The interest rate level and the geopolitical risk are significant at conventional 
statistical levels across different horizons while the credit index, VIX, and crude oil are 
statistically insignificantly different from zero. Since asset prices are affected by 
interest rates, this suggests that financial institutions hold similar assets, leading to 
increased systemic risk. Also, the financial systemic risk is more likely driven by 
fundamental economic factors, such as interest rate level, yield curve slope, the TED 
spread, and inflation. When the financial condition is tighter than average, the two 
sectors become more correlated. In addition, the index return is statistically significant 
on the long-term horizon, suggesting that the default correlation rises as the stock 
market booms. 
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It is evident that global geopolitical risks have a substantial impact on the 
macroeconomic environment. Financial markets are highly sensitive to changes in the 
macro environment. In previous research on systemic risk in financial markets, 
macroeconomic factors have been found to significantly influence systemic risk. The 
global geopolitical risk factor contributes unique and additional information not 
captured by other macroeconomic factors, making its relationship with systemic risk a 
valuable area of investigation. Earlier studies suggest that geopolitical risk is a form of 
economy-wide uncertainty that plays a pivotal role in investment decisions (Feng et al., 
2023). Moreover, global geopolitical risk has been shown to reduce bank stability (Phan 
et al., 2022). Remarkably, our findings reveal a significant negative correlation between 
default dependence and geopolitical risk. This suggests that an increase in geopolitical 
risk has not led to an escalation of future default correlation in financial markets. One 
possible explanation is that central banks and policymakers may intervene to stabilize 
financial markets during times of geopolitical turmoil. They can provide liquidity, 
implement monetary policies, and take measures to prevent widespread defaults across 
financial institutions.

5. Concluding Remarks

In this paper, we investigate the linkage between the insurance and banking sectors 
from the perspective of their default dependence. First, we model the dependence of 
default risk between the two sectors using a time-varying asymmetric copula. Both 
parametric and semiparametric approaches are implemented. We identify the 
asymmetric correlations between the two sectors in both short-term and long-term 
horizons. The PD correlation spikes before the late 2000s global financial crisis and 
rises dramatically again during the COVID-19 pandemic.

Second, we identify the time-varying PD correlations between these two sectors, 
highlighting the importance of using a time-varying tail dependence in risk modeling. 
Moreover, the PD correlations vary widely in different horizons. Short-term PD 
correlations are relatively lower but fluctuate more, while long-term PD correlations 
are higher but more stable. The short-term and long-term PD correlations between these 
two sectors spike and converge during crises.

Third, we identify some underlying determinants of the co-movement of the 
insurance and financial sectors by regressing the default dependence with 
macroeconomic variables. Across all horizons, interest rate level and geopolitical risk 
always remain significant while the credit index, VIX, and crude oil remain 
insignificant. In general, short-term correlations are affected by interest rate level, yield 
curve slope, and the TED spread. The index return is only significant in long-term 
correlation, suggesting that the default correlation rises as the stock market booms. 
However, macro variables can explain a small portion of the variation of default 
dependence, more than half remains unexplained, which is probably due to firm-level 
characteristics. 



 19 

Our results suggest that financial regulatory reform is needed to prevent 
unexpected losses. The insurance industry should follow more stringent risk-based 
regulations like Solvency II. For the banking industry, higher capital requirements 
should be imposed on systemically significant organizations with progressively 
increasing requirements as an entity’s default dependence grows.

Our study is one of the first steps in the literature toward improving our 
understanding of the relationship between insurers, banks, regulators, and the real 
economy. From the macro-prudential view, it calls for closer monitoring of interactions 
among banks and to what extent, a single firm contributes to the stability of the overall 
financial system. Other dynamic high-dimensional copulas, such as dynamic vine 
copulas or factor copulas, could be used for firm-level studies in the future.
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Appendix

A. Forward Intensity by Duan et al. (2012)

In this appendix, we briefly introduce the forward intensity model in Duan et al. (2012). 
This model is based on a doubly-stochastic formulation of the point process for default 
proposed by Duffie et al. (2007). The conditional probability of default within  years 𝜏
is

𝑞(𝑋𝑡,τ) = 𝐸(∫𝑡 + τ

𝑡
𝑒

― ∫
𝑧

𝑡
(𝜆(𝑢) + 𝜑(𝑢))𝑑𝑢

𝜆(𝑧)𝑑𝑧│𝑋𝑡) (1)

where is the Markov state vector of company-specific and macroeconomic Xt 
covariates. (i.e., the conditional mean arrival rate of default measured in events per λt 
year) is firm-level default intensity. The firm may exit for other reasons like mergers or 
acquisitions. The intensity is defined as , and the total exit intensity is . 𝜑𝑡  𝜑𝑡 + 𝜆𝑡

The doubly-stochastic model allows combining two decouple estimators  and  β  γ
to obtain the maximum likelihood estimator of the PD: . In the default  𝑞(𝑋𝑡,𝜏)
estimation models, given the path of state-vector X, the merger or acquisition and 
default times of the company are conditionally independent. We present a detailed log-
likelihood function and forward intensity below.

Likelihood Function

Instead of modeling the time-varying covariates to calculate the PD, Duan et al. 
(2012) use the forward intensity rate to calculate the default rate. The model needs to 
derive the forward intensity rate at time . 𝜏

The pseudo-likelihood function for the prediction time τ is defined as

ℒ𝜏(𝛼,𝛽;𝜏𝐶,𝜏𝐷,𝑋) =
𝑁

∏
𝑖 = 1

𝑇 ― 1

∏
𝑡 = 0

ℒ𝜏,𝑖,𝑡(𝛼,𝛽), (2)

where  and  are estimated parameters of the intensity model. The likelihood 𝛼 𝛽
function  for the company i consists of five situations: the first is the ℒτ,i,t(α,β)
company i survives in the prediction period, the second is the company i defaults in the 
prediction period, the third is the company i exits for other reasons (i.e., like merger 
and acquisition), the fourth is the company i exits after this prediction period and the 
last is the company i exits before the start of this time interval:
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   ℒ𝜏,𝑖,𝑡(𝛼,𝛽)

=  1{𝑡0𝑖 ≤ 𝑡, 𝜏𝐶𝑖 ≥ 𝑡 + 𝜏}𝑃𝑡(𝜏𝐶𝑖 > 𝑡 + 𝜏) + 1{𝑡0𝑖 ≤ 𝑡,𝜏𝐷𝑖 =  𝜏𝐶𝑖 ≤ 𝑡 + 𝜏}𝑃𝑡

(𝜏𝐷𝑖 = 𝜏𝐶𝑖 ≤ 𝑡 + 𝜏) + 1{𝑡0𝑖 ≤ 𝑡,𝜏𝐷𝑖 ≠  𝜏𝐶𝑖, 𝜏𝐶𝑖 ≤ 𝑡 + 𝜏}𝑃𝑡(𝜏𝐷𝑖 ≠ 𝜏𝐶𝑖, 𝜏𝐶𝑖 ≤ 𝑡 + 𝜏)

.+ 1{𝑡0𝑖 > 𝑡} + 1{𝑡𝐶𝑖 < 𝑡}

(3)
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Figure 1. Average PD of banking and insurance sectors

Notes: This figure plots the average PD of banking and insurance sectors with 1-month, 
3-month, 6-month, and 12-month horizons, respectively.

Figure 2. Joint default dependence for insurance and finance sectors

Notes: This figure plots the estimated time-varying joint default dependence of 
insurance and financial sectors from March 1991 to February 2021 by the time-varying 
skewed t copula. The joint default probabilities are estimated based on 1-month, 3-
month, 6-month, and 12-month horizons respectively. The arrows indicate several 
major events in the financial market.
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Table 1. Summary Statistics of the Log Difference of Transformed PDs

Month Sector Mean Max. Min Std

Insurers -0.0003 0.0578 -0.1239 0.0207 

1

Banks 0.0004 0.0541 -0.1975 0.0222 

Insurers -0.0003 0.0666 -0.1861 0.0250 

3

Banks 0.0005 0.0571 -0.2058 0.0233 

Insurers -0.0003 0.0716 -0.1785 0.0245 

6

Banks 0.0006 0.0772 -0.2050 0.0233 

Insurers -0.0002 0.0768 -0.1593 0.0234 

12

Banks 0.0006 0.1137 -0.1865 0.0231 

Note: This table shows the summary statistics of the log differences of transformed PDs 
from the insurers and banks in 1-month, 3-month, 6-month, and 12-month horizons. 
The original historical individual PDs are from the RMI-CRI database with the sample 
period from March 1991 to February 2021. ‘Std’ stands for standard derivation. 

Table 2. Tests for Time-varying and Asymmetric Dependence

Month AR (1) AR (5) AR (10) Symmetric test

1 0.080 0.000 0.004 0.008 

3 0.006 0.000 0.000 0.071 

6 0.056 0.000 0.001 0.000 
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12 0.052 0.002 0.001 0.002 

Note: Table 2 shows the results for the time-varying dependence ‘ARCH LM’ test and 
symmetric dependence test. P-values of AR (1), AR (5), AR (10), and symmetric 
dependence test are presented here with 1-month, 3-month, 6-month, and 12-month 
horizons, respectively. 
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Table 3. Parameter Estimations of GAS Skewed Copulas

　 　 1-month 3-month 6-month 12-month

Skewed t 𝜔 0.0694 0.0869 0.1387 0.1406 

(0.0096) (0.0053) (0.0114) (0.0205) 

𝛼 0.0334 0.1236 0.0135 0.0250 

(0.0186) (0.0264) (0.0077) (0.0047) 

𝛽 0.9178 0.9247 0.8930 0.8862 

(0.0127) (0.0061) (0.0875) (0.0166) 

𝜂 ―1 0.1635 0.2570 0.2719 0.2485 

(0.1280) (0.0088) (0.1304) (0.0919) 

𝜆 0.0135 0.0155 0.0171 0.0840 

(0.0041) (0.0235) (0.0412) (0.0140) 

𝑙𝑜𝑔ℒ 44.0710 66.1121 78.6004 68.0749 

EDF 𝜔 0.1057 0.0786 0.1707 0.1827 

(0.0028) (0.0088) (0.0101) (0.0369) 

𝛼 0.0599 0.1070 0.0142 0.0372 

(0.0169) (0.0011) (0.0137) (0.0182) 
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𝛽 0.8797 0.9304 0.8685 0.8510 

(0.0229) (0.0104) (0.0794) (0.0299) 

𝜂 ―1 0.0795 0.2020 0.2638 0.2470 

(0.0333) (0.0329) (0.0748) (0.1287) 

𝜆 0.0150 0.0102 0.0092 0.0840 

(0.0047) (0.0214) (0.0301) (0.0131) 

　 𝑙𝑜𝑔ℒ 45.7451 66.9093 81.4679 69.4305 

Note: Table 3 presents the estimated parameters of the GH skewed t copula and GAS 
model for the insurance and financial sectors with 1-month, 3-month, 6-month, and 12-
month horizons respectively. The marginal distributions are estimated by parametric 
(Hansen’s skewed t distribution) and nonparametric (empirical distribution function, 
EDF) models, respectively. Standard errors and log-likelihood for both parametric and 
semiparametric models are reported.

Table 4. Time-varying Joint Default Dependence via GH Skewed t GAS 
Copula

Month Mean Std. Median Max Min

1 0.3507 0.0403 0.3490 0.4425 0.2350 

3 0.5198 0.0525 0.5157 0.6342 0.3845 
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6 0.5565 0.0475 0.5599 0.6510 0.4093 

12 0.5478 0.0218 0.5487 0.5981 0.4847 

Note: Table 4 presents the average, standard derivation, median, maximum, and 
minimum of time-varying default dependence for 1-month, 3-month, 6-month, and 12-
month horizons, respectively. 
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Table 5. Potential Determinants of Default Correlations

　
1-

month
　 3-month 　 6-month 　 12-month 　

Constant
0.3757 

**
* 0.5327 

**
* 0.5817 

***
0.5717 

**
*

(0.007
8) (0.0113) (0.0097) (0.0042)

Credit Index (-1)
-

0.0001 -0.0001 -0.0001 -0.0001 

(0.000
1) (0.0001) (0.0001) (0.0000)

VIX (-1) 0.0060 0.0130 0.0252 0.0110 

(0.014
8) (0.0213) (0.0183) (0.0080)

Interest rate level (-1)
-

0.0100 
**
* -0.0042 

**
* -0.0090 

***
-0.0052 

**
*

(0.001
1) (0.0015) (0.0013) (0.0006)

Yield curve slope (-1)
-

0.0032 0.0040 -0.0010 -0.0024 
**

(0.002
0) (0.0028) (0.0024) (0.0011)
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TED (-1)
0.0307 

**
* 0.0145 0.0254 

***
0.0090 

**
*

(0.006
2) (0.0089) (0.0076) (0.0033)

Crude oil (-1) 0.0314 0.0271 0.0186 0.0002 

(0.0240) (0.0347) (0.0298) (0.0130)

Inflation (-1) 1.6314 ** 1.2946 1.0359 0.6305 

(0.7053) (1.0166) (0.8735) (0.3821)

Index return (-1) 0.0495 0.0944 0.1454 ** 0.0574 **

(0.0456) (0.0657) (0.0564) (0.0247)

GPR(-1)
-0.0002 

**
-0.0002 

**
-0.0002 

**
-0.0002 

**
*

(0.0001) (0.0001) (0.0001) (0.0000)

Adjusted 𝑅2 0.2122 　 0.0398 　 0.1329 　 0.2096 　

Note: Table 5 shows the full-sample regression results of default correlations on credit 
risk index, VIX, interest rate level yield curve slope, TED spread, crude oil, inflation, 
NASDAQ, Composite index return and GPR; standard errors in parentheses, *, ** and 
*** indicates significant coefficient at the 10%, 5%, and 1% level, respectively.


