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Abstract—Common spatial pattern (CSP) is a widely used
method for feature extraction in motor imagery (MI)-based
brain-computer interface (BCI) development. However, the per-
formance of traditional CSP features often lacks robustness
against inter-session and inter-subject variabilities present in
MI-related electroencephalogram (EEG) signals. To address this
limitation, we propose a novel approach to CSP-based feature
extraction, combining spectral information obtained from Welch
power-spectrum (PS) estimation with temporal variations which
we named here as SCSP-3. Our SCSP-3 method employs inde-
pendent learning paths for the temporal and spectral features
extracted through CSP. We introduce a postprocessing step
that crosses the classification probabilities from these pathways
using element-wise products, deriving linearly separable features.
The performance of SCSP-3 is evaluated and compared to the
traditional CSP approach utilizing a support vector machine
(SVM) for classification following a within-subject evaluation
scheme. The results demonstrate a significant improvement in
average accuracy for SCSP-3 with more generalizability, as it
performs equally well with datasets from healthy subjects and
stroke patients. This enhanced robustness and generalizability
highlight the potential of SCSP-3 as a superior alternative to
traditional CSP-based feature extraction methods for achieving
consistent performance across different subject categories.

Index Terms—BCI, CSP, Classification, EEG, Feature extrac-
tion, Motor Imagery, SVM, Welch PS

I. INTRODUCTION

Motor Imagery (MI) is typically associated with the
change in the sensorimotor rhythm (SMR) of the brain

during covert limb movements, such as imagining a right-
or left-hand movement [1]. Decoding the SMR related to
MI bears enormous significance for neurorehabilitation after
stroke as it can give neurofeedback to stroke survivors during
physiotherapy [2]. A brain-computer interface is typically used
for this purpose which uses advanced signal processing and
machine learning techniques to decode the MI from EEG
signals and controls a robotic hand orthosis device such as
exoskeletons [3], [4]. However, the problem lies in the fact
that the EEG signals are noisy, non-stationary, and suffer from
volume conduction and artifacts which ultimately reduces its
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detection accuracy significantly [5]. Over the years, many
signal-processing techniques have been used to extract mean-
ingful features of MI-related EEG signals, but the problem
persists [6]. Often the proposed methods are tested on a single
dataset and more often on only healthy individuals, while
the primary users of the MI-BCI, the stroke patients, are ex-
cluded [7]. The feature extraction techniques involve the time
domain and frequency domain representations of EEG signals.
Among the purely time-domain features, autoregressive (AR)
models are perhaps the most important [8]. Generally, the
coefficients of the temporal dependencies within the signal are
used as features in this case. Despite having some success, the
AR models suffer from many issues, such as limited frequency
information, insufficient spatial information, and sensitivity
to noise and nonstationarities in EEG signals [9]. On the
other hand, purely frequency-domain features such as power
spectral density (PSD) are also widely used for MI detection
as they can estimate the relative power distribution across
frequency bands [10]. However, it is limited in identifying
crucial transient temporal variations. Other limitations include
a lack of specificity in distinguishing different MI tasks
and high susceptibility to artifacts that distort the frequency
pattern resulting in less accurate feature representation [11].
Nonetheless, both time and frequency domain features suffer
from common problems, such as failing to capture spatial
information and sensitivity to nonstationarities [12]. Hence,
combined approaches of feature extraction where both tempo-
ral and frequency characteristics can be exploited are more
commonly used, for example, event-related desynchroniza-
tion/synchronization (ERD/ERS) [13], wavelet transform [14],
and common spatial pattern (CSP) [15].

Notably, CSP can identify spatial patterns very efficiently,
which contributes to enhanced feature separability by maxi-
mizing the variance of a specific class in a particular dimension
while minimizing the other [16], [17]. Other advantages of
using CSP involve dimensionality reduction of EEG data
enhancing computational efficiency, robustness against the
signal amplitude variation, and improvement of signal-to-noise
ratio. Consequently, CSP became the benchmark for decoding
MI-related EEG signals [18], [19], and several variants of this
approach are proposed, such as filter-bank CSP (FBCSP) [20],
regularised CSP (RCSP) [21], and multiclass CSP [22].

However, all these variants apply the standard technique of
using temporally filtered EEG signals within a frequency band
to generate the weight matrix of the CSP filter. This weight
matrix is then multiplied with the band pass filtered signals
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within a trial for feature extraction. One limitation of this
approach is that the CSP filters depend only on the temporal
variations, which do not capture the neurodynamics hidden in
the frequency spectrum. The problem becomes worse when
the used frequency bands are a bit larger such as the beta
band, which can range from 15 Hz up to 30 Hz. Using a
narrow band is also not always possible as EEG signals are
known for their inter-subject variability where information
content may vary across different frequencies for different
subjects. Hence, we propose a fundamental change in this
commonly used approach of using only temporally filtered
signals for the CSP weight matrix with an additional CSP
weight matrix based on the PS of the same band, which
will be multiplied by the samples of the PS to generate
different feature components. Thus we can take advantage
of both the temporal and frequency-specific variation of the
MI-related neurodynamics during spatial filtering on a more
granular level. However, adding these new feature elements
from PS-based CSP will increase the dimension of the feature
vector, which may cause other problems during classification,
such as overfitting. To encounter this challenge, we developed
a postprocessing step to control the feature vector length.
The temporal CSP and PS-based CSP features are held in
separate feature vectors to train two different support vector
machines (SVM), thereby generating two classifier models.
The posterior probabilities of these classifier outputs are then
fused using the Hadamard product to create a single feature
vector which is then used to train the final SVM. The output
of this two-stage classification architecture is then used as
the predicted class of a given trial. The proposed novel
feature extraction technique using PS-based CSP and the two-
stage postprocessing approach combined is named SCSP-3 in
the paper. The proposed signal processing and classification
pipeline is tested on stroke patients’ MI dataset recorded on
a hand exoskeleton-based neurorehabilitation paradigm and
compared against the healthy subjects dataset. Such validation
is essential for the progress of neurorehabilitative BCIs as
most of the newly proposed algorithms are tested primarily
on healthy individuals, ignoring that the same algorithm may
have drastic performance variation between healthy individuals
and stroke patients. This phenomenon held back the progress
of neurorehabilitative BCIs since its early days. For example,
Prasad and colleagues worked on the gamification of BCI
systems for stroke rehabilitation and tested them on five stroke
patients. However, their accuracy was limited between 60-
75% [23]. Later studies on BCI for hand rehabilitation showed
that using a traditional CSP+SVM-based approach, the classi-
fication accuracy can only be improved after many repetitive
sessions [24]. Adaptive BCIs with covariate shift detection also
failed to produce comparable accuracies between healthy and
stroke patients [5]. Gaur and colleagues proposed the longest
consecutive repetition-based postprocessing of predicted labels
from CSP features using a sliding window approach (SW-
LCR) to address this problem. However, it is a slower pro-
cess, requiring the entire trial to be windowed for making a
prediction [1].

Therefore, the critical contributions of the paper are as
follows:

1) A novel method of generating CSP filters using PS
components combined with the CSP filters generated by
the temporally filtered signals enhances the robustness
of extracted features.

2) A novel postprocessing step with a two-stage SVM
classification based on the posterior probabilities of the
predicted labels to enhance the classification accuracy.

3) The performance of the novel feature extraction and
classification approach on stroke patients is comparable
to the healthy subjects and better than the traditional
CSP-based approach.

II. MATERIALS AND METHODS

A. Dataset-A: Stroke Patients’ Dataset

This dataset is generated from the EEG recordings of ten
hemiparetic stroke patients undergoing the following exper-
imental protocol. The experimental protocol consists of two
sessions as follows:

1) Training Session without Feedback: The training phases
consist of two blocks of 40 trials each. Each test lasts for 8s;
from t = 0 s to 3 s of the trial, the subject is prompted to be
ready with a ‘get ready’ message supplied visually. At t = 2 s,
there is an auditory beep for a short duration, followed by a
cue for the subject to attempt a left- or right-hand grasp. The
grasp attempt lasts from t = 3 s to 8 s of the trial. Subsequent
trials have an inter-trial interval (ITI) of 2 s - 3 s. The trials
are equally distributed between the two classes to create a
balanced dataset of 80 trials per subject [25].

2) Online Session with Feedback: The online trial follows
the diagram in Fig. 1 where the first 3 s is the same as
the trials in the training session. The cue period lasts from
t = 3 s to 5s and is preceded by an auditory beep at t = 2
s. The feedback lasts from t = 5 s to 8 s and is provided
in visual and exoskeleton-based finger motion. A computer
screen provides visual feedback, whereas a hand exoskeleton
device delivers proprioceptive feedback. The exoskeleton is
capable of helping subjects in flexing and extending their
fingers. Two servo motors move the coupled index-middle
finger and the thumb in the natural finger trajectories [25].
The Institute Ethics Committee of the Indian Institute of
Technology Kanpur approved the experimental protocol.

B. Dataset-B: Healthy Subjects’ Dataset

The BCI Competition IV-2a dataset has been used to com-
pare the classification results of healthy individuals performing
MI tasks. This dataset has been referred to as Dataset-B for
the rest of the paper. Nine healthy subjects performed MI tasks
on four body parts: left hand, right hand, feet, and tongue. The
training and test sessions were recorded for each subject on
separate days. There were 72 trials for each class, i.e., 288
total trials per subject. Signals are sampled at a frequency of
250 Hz with an initial bandpass filter between 0.5 Hz and
100 Hz with a notch filter at 50 Hz. There were 22 Ag/AgCl
electrodes following the 10-20 international system with a 3.5
cm inter-electrode distance. A trial lasts for 6 s, followed by a
short break period. A fixation cross and an auditory warning
were given during the first 2 s from the start of the trial.
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Fig. 1. The timing diagram of a trial during the online feedback phase for
Dataset-A.

Fig. 2. Training: Block-I: The sub-pipeline above filters N sample EEG signal
into its µ and β band rhythms based on the selected pass bands. Then Welch
PS estimation is performed on the filtered N sample signal and produces
the F length PS. Finally, four arrays are created for the next step of feature
extraction, i.e., two arrays of temporally filtered EEG signal- [1×N] µt and
[1×N] βt; and two arrays of PS, [1×F] µs and [1×F] βs.

After that, a cue was presented with an arrow sign to instruct
different MI tasks. Our algorithm uses the left- and right-hand
MI trials as classes for our binary classification problem. This
selection is made as we intend to study the performance of
the classification pipeline for an upper limb motor task.

C. Signal Filtering and PS Generation

For the given experimental paradigms, T and C denote the
number of trials and the number of channels, respectively. EEG
signals are analyzed by investigating different frequency band
components, such as the µ and β rhythms. This is based on the
fact that the β rhythm has distinct topographies and responses
to the limb movements compared to the µ rhythm. Thus the µ
and β rhythms have been individually extracted. The µ band
is defined here as 8 - 12 Hz, while two different frequency
ranges were explored for the β band, namely 14 - 30 Hz and
16 - 24 Hz. The EEG signals are temporally filtered using
these bandpass filters, and the PS is computed for the filtered
EEG. Then we computed the CSP weight matrix from both the
temporal and spectral components of the EEG signals. Finally,
log-variance normalization is performed to form the feature
vector. These processes are described in detail in the following
sections.

A digital fourth-order Butterworth bandpass filter is used to
bandpass filter the raw signals into their µ and β band rhythms.
Then we apply Welch’s Power Spectrum estimation method to
extract spectral information for each specified frequency band,
which we then processed for feature extraction [26]. Previous
research has shown that during the performance of MI tasks,
there is a significant change in the µ and β band power of
the EEG signals, particularly a fall in the band power during
the post-cue phase with recovery after approximately 2 - 3 s,
which varies between subjects [27]. Therefore, for Dataset-A,

feature extraction was done over the trial duration of 0 - 8s
and 3.5 - 5.5 s of the trial period. For Dataset-B, we consider
the 3 - 5 s of the trial for feature extraction. After applying
the Welch method to an N-sample EEG, an F-length PS is
obtained, where F is given as

F = ⌊N/2⌋+ 1 (1)

After this process, the following data arrays are obtained:

µt [1xN], µ rhythm EEG

βt [1xN], β rhythm EEG

µs [1xF], welch PS obtained from µt

βs [1xF], welch PS obtained from βt

The steps above are depicted as pipeline Block-I in Fig 2.

D. Spatial Filtering and Log-Variance Normalization

1) Common Spatial Pattern: The objective of spatial filters
is to transform given data space into surrogate data space with
optimized variances that enhance the differentiation between
two sets of EEG signals associated with the left- and right-
hand motor imagery. The approach employed to create these
spatial filters relies on concurrently diagonalizing two covari-
ance matrices.

First, we calculate the normalized spatial covariance Csp

for a C × N data array X, with C channels and N samples
per channel as given in (2). We followed the convention of
defining A′ as the transpose of the matrix A.

Csp =
XX ′

trace(XX ′)
(2)

For the two given groups: left-hand trials denoted by the
set l and right-hand trials denoted by the set r, we have the
group spatial covariance Cl and Cr respectively, calculated
as the average of the group covariances. Thus the composite
covariance is given by (3)

Cc = Cl + Cr (3)

Cc can be factored using the eigenvalue decomposition into
the diagonal eigenvalue matrix, λc, and eigenvector matrix,
Uc,

Cc = UcλcU
′
c (4)

After sorting all the eigenvalues in descending order, the
whitening matrix P is formed using (5), and further transfor-
mations are performed on Cl and Cr to get Al and Ar.

P =
√
λ−1
c U ′

c (5)

Al = PClP
′ (6)

Ar = PCrP
′ (7)
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Fig. 3. Training: Block-IIa: The sub-pipeline above generates features for
training the SVM classifiers. [1xN] EEG data from C sensors are stacked
to form a [C x N] data array. [CxC] CSP weight matrix transforms the
sensor space into surrogate sensors space Z with dimension [CxN]. Then per-
channel log-variance normalization is performed, and channels with maximum
separability are selected to form [1xC] normalized features. Finally, [1x2]
provisional feature vector is created using the first and last elements of [1xC]
for each temporal component, µt and βt.

Then the eigenvalue decomposition of Al and Ar will give
us the eigenvector matrix B and eigenvalues λl and λr,

Al = BλlB
′ (8)

Ar = BλrB
′ (9)

λl + λr = I (10)

where Al and Ar have the same eigenvector matrix B and
the eigenvalues of the two groups sum to 1.

The constraint in (10) implies that the largest eigenvalue
for one group has the smallest eigenvalue for the other group.
Thus, if we project X onto the first and the last eigenvectors of
B, we will have the most optimally separable feature vectors.
Thus, the decomposition of X is given as,

Z = (B′P )′X (11)
W := (B′P ) (12)

We refer to the matrix W as the CSP weights and Z as
the transformed data. Let Wµ,t and Wβ,t be the CSP weight
matrices against temporal components µt and βt respectively,
while Wµ,s and Wβ,s be the CSP weight matrices for the spec-
tral components µs and βs respectively. Then the transformed
data Z for the temporal and spectral components are obtained
as follows:

Zµ,t = Wµ,tµt (13)
Zβ,t = Wβ,tβt (14)
Zµ,s = Wµ,sµs (15)
Zβ,s = Wβ,sβs (16)

2) Log-Variance Normalization: Given a matrix X having
R rows and C columns, i.e.,

X ∈ RR×C (17)

We performed the log-variance normalization step to under-
stand the spread of the data per row on the logarithmic scale.
To do so, we perform a matrix transpose, then calculate

Fig. 4. Training: Block-IIb: The sub-pipeline above generates features for
te SVM classifiers. [1xN] EEG data from C sensors are stacked to form a
[C x N] data array. [CxC] CSP weight matrix transforms the sensor space
into surrogate sensors space Z with dimension [CxN]. Then per-channel log-
variance normalization is performed, and channels with maximum separability
are selected to form [1xC] normalized features. Finally, the [1x2] provisional
feature vector is created using the first and last elements of [1xC] for each
temporal component, µs and βs.

variances of R different [1×C] vectors. Then we obtained
base ten logarithms on each R variance value and rescaled
each log variance by the sum of all the log variances. The
function var(X) describes calculating the variance per column
of a matrix X , and the log operation describes the real-valued
base 10 logarithms as follows:

Y = X ′, Y ∈ RC×R (18)

V = var(Y ), V ∈ R1×R (19)

L[i] =
log V [i]

R∑
i=1

log V [i]

(20)

The CSP filtering and log variance normalization process
for the temporal components µt and βt is shown in Fig. 3
while the same process for the spectral components µs and βs

is demonstrated in Fig. 4. Thus we obtain [1×C] normalized
features from each of the four data arrays: µt and βt temporal;
and, µs and βs spectral. Next, we select the first and the
last column elements from each of the four [1xC] normalized
feature vectors based on the eigenvalue ordering described in
section II-D1 to form the provisional feature vectors so that
they have the maximum variance difference and hence the
maximum separability between the two classes.

E. Feature Compilation and Classification

As per the scheme in Fig 5, there are four temporal and
four spectral features per trial as we concatenated the [1x2]
feature vector from the µ band with [1x2] feature vector from
the β band for each other over T trials. Finally, we obtain a
temporal feature space Ft and a spectral feature space Fs as
follows:

Ft ∈ RT×4 (21)

Fs ∈ RT×4 (22)

Next, we will explain a two-step classification approach based
on these two feature spaces as defined in (21) and (22).
These classification steps form Block-III and Block-IV of the
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Fig. 5. Training: Block-III: The temporal CSP features from the µ and the
β bands are concatenated to train the SVM model St while the spectral CSP
features from the µ and the β bands are concatenated to train the SVM
model Ss. These two different SVMs are used to generate the classification
probabilities for each trial in a (p, 1− p) pair for the temporal pathway and
(q, 1− q) pair for the spectral path. Pt and Qs denote the space of p and q
respectively.

pipeline, as shown in Fig. 5 and Fig. 6. As linear classifiers
perform well in EEG-based MI-BCIs, we used SVM with a
linear kernel to classify the features. For the sake of parity, we
have chosen left- and right-hand MI classes from Dataset-B
so that it matches with the classes in Dataset-A, where similar
motor tasks are performed.

1) Stage I: We instantiate two SVM binary classifiers St

and Ss to be independently trained on the temporal feature
space Ft and spectral feature space Fs, respectively. The
training paradigm performs iterative training of each SVMs
with a linear kernel and uses squared L2 regularization. Let
the ground truth labels be denoted by y, and the classifier
function as pclf , which accepts two arguments: the feature
space (Ft/Fs) and the SVM training model (St/Ss); and returns
the binary label prediction probabilities. Here we use the
symbols p and q to represent the predicted probability of an
observation being in class 1 for the SVM training models
St and Ss, respectively. Then we have the following training
and probability prediction paradigm given in (23)-(26) for an
untrained SVM object S where Pt and Qs denote the entire
space of p and q respectively.

(Ft, y, S)
train−−→ St (23)

(Fs, y, S)
train−−→ Ss (24)

Pt = pclf(Ft, St), Pt ∈ RT×2 (25)

Qs = pclf(Fs, Ss), Qs ∈ RT×2 (26)

2) Stage II: We further process each column of Pt and
Qs as depicted in Fig. 6 using the Hadamard product. This
product performs an element-wise product of two 1-D arrays
of the same length to produce another 1-D array.

Let Fp denote the newly created feature space and Fp,i

indicate the i-th column and 1n = (1, 1, ..., 1) ∈ Rn then,
as depicted in Fig. 6, we compute four new features with the

Fig. 6. Training: Block-IV: The last sub-pipeline computes features from
the predicted probabilities and uses them to train the final SVM (Sp) of the
pipeline. The probability arrays from Block-III are used to compute cross-
classification probabilities using the element-wise product (Hadamard) per
trial. The final SVM, Sp, uses these cross-products and predicts the final
class labels for each trial.

Fig. 7. Evaluation: The evaluation flow is described to the unseen assessment
EEG. The blocks (as hexagons) represent the process flows during the training
phase. Calculated matrices and trained objects ( as rectangles) are also shown
with the respective block to indicate their pre-existence ( from the training
phase) and not a new computation.

following heuristics

Pt = [P (1′T − P )] (27)
Qs = [Q (1′T −Q)] (28)

Fp,1 = P ⊙Q (29)
Fp,2 = P ⊙ (1′T −Q) (30)
Fp,3 = (1′T − P )⊙Q (31)
Fp,4 = (1′T − P )⊙ (1′T −Q) (32)

In Fig. 6, p and q are single row entries for Pt,1 and Qs,1

respectively.
The classifier learns the same task of assigning a class to

each example from two versions of the data expressed in the
temporal and spectral domains. The classifiers agree with a
product of probabilities given by (29) and (32) and disagree
on the assigned label with a product of probabilities given by
(30) and (31). Using this new feature space Fp, we train a
new SVM classifier object denoted by Sp from an untrained
SVM binary classifier object S.

(Fp, y, S)
train−−→ Sp (33)

Finally, we use the predict function to compute the pre-
dicted labels for each trial denoted by ŷ

ŷ = predict(Fp, Sp) (34)
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III. RESULTS

The performance of the proposed feature extraction and
classification scheme was evaluated following the within-
subject evaluation approach, as shown in Fig. 7, for both
Dataset-A and Dataset-B. After completing the training
pipeline, we used the subject-specific training data, such as
CSP projection weights Wµ,t, Wβ,t, Wµ,s, and Wβ,s, along
with the trained SVM objects St, Ss, and Sp to predict
the outcome labels ŷe for each trial in the test data of
the same subject. We calculated the classification accuracy
based on the percentage agreement between each subject’s
predicted and ground truth labels and Cohen’s Kappa (κ)
values. These values were then averaged across all the subjects
for comparison against the baseline method. The baseline
method is defined as the method which uses traditional CSP
features based on temporally filtered EEG data only and uses
SVM without further postprocessing. The CSP+SVM method
described in [5] without adaptation can be considered the
baseline method when subject-specific selection of frequency
bands and time points is not made.

A. Performance on Dataset-A

We have seen improved performance using the SCSP-3
method on Dataset-A compared to the baseline method, which
uses only temporally filtered variations in EEG for CSP-based
feature extraction followed by a linear SVM for classification
without postprocessing. Table I showed the comparison be-
tween SCSP-3 and baseline when we took the entire trial, i.e.,
from 0 s to 8 s for feature extraction, while the frequency
bands were chosen as 8-12 Hz for the alpha band and 16-24
Hz for the beta band. For more clarity, the comparison between
the two methods for this setting is also depicted in Fig. 8. An
average test accuracy of 79.25±7.73% was obtained for SCSP-
3, while the baseline performance was only 71.12±11.26%.
Interestingly, the subject who scored the maximum/minimum
in SCSP-3 did not score maximum/minimum for the baseline.
For example, P01 got the highest accuracy in SCSP-3 with
92.5%, while P07 got the highest in the baseline with the same
number. Although it failed to achieve the highest accuracy, the
performance of P01 in the baseline (85%) and P07 (87.5%)
in SCSP-3 were comparable and above the average. The
lowest performance in SCSP-3 occurred for P06 with 65%,
while the lowest for the baseline was for P05 with 55%.
However, in this case, we observed that the performance
for P05 in SCSP-3 was above the average at 80% while
P06 got below average performance for the baseline with
67.5%. This shows the potential of SCSP-3 in improving the
performance of low-scoring subjects in the baseline. A high
average Kappa of 0.585±0.155 ensured that the classification
accuracies obtained for SCSP-3 were not biased.

Table II shows the classification accuracies for Dataset-A
calculated for the trial period of 3.5-5.5s, using 8 - 12 Hz for
the µ band and 14-30 Hz for the β band. For a more precise
comparison between the two methods for this setting, the re-
sults are also depicted in Fig. 9. The SCSP-3 method achieved
much higher classification accuracy (76.25±10.09%) than the
baseline (67.50±11.96%) in this case. The average Kappa

value for SCSP-3 was also much greater than the baseline
as the average Kappa obtained for SCSP-3 was 0.525±0.202,
while for the baseline method, it was only 0.350±0.239. The
capability of SCSP-3 in uplifting the performance of low-
scoring subjects is again evident from the fact that P06 (lowest
performer for the baseline method), who achieved only chance
level accuracy of 50% for the baseline method, reached a
much higher accuracy of 67.5% for SCSP-3. But the reverse
is invalid, i.e., the lowest performer (P08) in SCSP-3, with an
accuracy of 62.5%, scored the same for the baseline method.
On the other hand, the highest performers (P01 for SCSP-3
and P10 for the baseline) got comparable performance. For
example, P10 achieved the same accuracy of 87.5% for both
ways, while P01 achieved a bit higher performance in SCSP-3
(90%) than in the baseline (80%).

B. Performance on Dataset-B

The superiority of SCSP-3 over the baseline method is also
evident in the case of healthy subjects from Dataset-B, shown
in Table III. Here, the average test classification accuracy for
SCSP-3 was 76.34±8.5% with a kappa of 0.527±0.316, while
the baseline method performed lesser than SCSP-3 with an av-
erage classification accuracy of 73.82±18.71% and a kappa of
0.477±0.374. Subject P08 achieved the highest classification
accuracy (94.03% for SCSP-3 and 95.22% for the baseline),
while subject P05 got the lowest accuracy (52.6% for SCSP-3
and 44.44% for baseline). It is to be noted that one-third (3
out of 9 subjects) of the subjects scored very low (accuracy
< 60%) in the case of the baseline method, while for SCSP-
3, this number is only at 11.11% (1 out of 9 subjects). For
more clarity, Fig. 10 gives a comparative bar graph for the test
accuracies for SCSP3 versus the baseline for Dataset-B.

IV. DISCUSSION

The current study introduces a novel approach to extracting
CSP features using P components and the traditional bandpass-
filtered time series. It combines them using a novel post-
processing technique of fusing classifier outputs to enhance
the decoding accuracy of MI-related EEG signals for BCI
applications. The strength of the proposed approach lies in
using the µ and β band Ps to generate CSP filters. This is a
frequency domain approach, whereas traditionally, band pass
filtered signals for µ and β bands in the time domain were
used to generate the CSP filters. The novelty has also been
introduced in the classification approach, where we considered
the posterior probabilities of the predictions made by the
SVM classifiers for both temporal and spectral CSP feature
spaces. These probabilities are then combined using the feature
product technique to obtain the final predicted labels.

Another important aspect of our work is that we have
tested this new algorithm for stroke patients and healthy
individuals as subjects, which is rarely found in the litera-
ture [4]. Generally, stroke patients have altered neurodynamics
which can generate a different activation pattern than healthy
individuals, and often a higher non-stationarity is also found
in such datasets [28]. The fact that the proposed method
works equally well for healthy subjects and stroke patients
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TABLE I
CLASSIFICATION ACCURACY (ACC) AND KAPPA VALUE (κ) COMPARISON BETWEEN SCSP-3 AND THE BASELINE (CSP+SVM) FOR THE ENTIRE TRIAL

DURATION: 0 S TO 8 S WITH FREQUENCY BANDS µ=[8-12 HZ] AND β=[16-24 HZ] FOR DATASET-A.

Algorithm → SCSP-3 Baseline Method
Subject-ID 10CV Acc Test Acc κ 10CV Acc Test Acc κ
P01 77.5 92.5 0.85 66.25 85 0.7
P02 88.75 80 0.6 87.5 62.5 0.25
P03 82.5 85 0.7 80 62.5 0.25
P04 87.5 75 0.5 86.25 75 0.5
P05 91.25 80 0.6 88.75 55 0.1
P06 90 65 0.3 90 67.5 0.35
P07 78.75 87.5 0.75 70 92.5 0.85
P08 85 75 0.5 73.75 72.5 0.45
P09 81.25 75 0.5 80 65 0.3
P10 88.75 77.5 0.55 83.75 75 0.5
Avg 85.125 79.25 0.58 80.62 71.25 0.43
Std 4.88 7.73 0.15 8.23 11.26 0.22

TABLE II
CLASSIFICATION ACCURACY (ACC) AND KAPPA VALUE (κ) COMPARISON BETWEEN SCSP-3 AND THE BASELINE (CSP+SVM) FOR TRIAL DURATION:

3.5 S TO 5.5 S WITH FREQUENCY BANDS µ=[8-12 HZ] AND β=[14-30 HZ] FOR DATASET-A.

Algorithm → SCSP-3 Baseline Method
Subject-ID 10CV Acc Test Acc κ 10CV Acc Test Acc κ
P01 82.5 90 0.8 78.75 80 0.6
P02 91.25 65 0.3 86.25 52.5 0.05
P03 73.75 72.5 0.449 72.5 67.5 0.35
P04 87.5 80 0.6 83.75 65 0.3
P05 87.5 70 0.4 77.5 65 0.3
P06 90 67.5 0.35 75 50 0
P07 77.5 87.5 0.75 66.25 80 0.6
P08 78.75 62.5 0.25 66.25 62.5 0.25
P09 82.5 80 0.6 78.75 65 0.3
P10 88.75 87.5 0.75 78.75 87.5 0.75
Avg 84 76.25 0.5249 76.375 67.5 0.35
Std 5.92 10.08 0.20 6.60 11.96 0.24

TABLE III
CLASSIFICATION ACCURACY (ACC) AND KAPPA VALUE (κ) COMPARISON BETWEEN SCSP-3 AND THE BASELINE (CSP+SVM) FOR TRIAL DURATION: 3

S TO 5 S WITH FREQUENCY BANDS µ=[8-12 HZ] AND β=[16-24 HZ] FOR DATASET-B.

Algorithm → SCSP-3 Baseline Method
Subject ID 10CV Acc Test Acc κ 10CV Acc Test Acc κ
P01 85.55 85.82 0.716 86.26 85.11 0.702
P02 86.1 61.27 0.225 78.9 52.11 0.042
P03 96.43 93.43 0.868 95.66 91.24 0.825
P04 87.5 65.52 0.311 82.11 67.24 0.345
P05 86.1 52.6 0.055 75.26 44.44 -0.108
P06 81.44 62.96 0.26 76.14 58.33 0.166
P07 87.77 80.71 0.614 85 81.43 0.628
P08 95.38 94.03 0.88 94.62 95.22 0.91
P09 91.51 90.77 0.815 88.71 89.23 0.785
Avg 88.64 76.34 0.53 84.74 73.82 0.48
Std 4.88 15.85 0.31 7.41 18.71 0.37

indicates its robustness in extracting discriminative features
against such conditions. For example, using the proposed
method, we got 76.25% accuracy (Table II) for stroke patients
(Dataset-A), while for healthy subjects (Dataset-B), we got
76.34% (Table III) accuracy. These performances have no sta-
tistically significant (p-value>0.05) difference, making them
comparable. It can be further argued that the performance
of stroke patients can be considered a bit better than that of
healthy subjects as 70% of the subjects (7 out of 10 in Table II
) in Dataset-A achieved an accuracy of more than 70% while in
Dataset-B this figure is 55.55% (5 out of 9 in Table III). The
distribution of performance across various subjects between

the patient and healthy datasets (Dataset-A and Dataset-B) is
given in the box plot in Fig. 11 for better clarity. Moreover,
in almost all the results, there is a reduced standard deviation
in favor of the proposed method, indicating that it can handle
inter-subject variabilities better. An interesting observation in
Table I for stroke patients’ results is that the drop in accuracy
from training to testing is 5.87% for the proposed SCSP-3
method, which is much less than the baseline method where
the fall is 9.37%. Such a drop in accuracy from one session
to another is due to the change in the data distribution related
to nonstationarity [29], which is quite common in MI-related
EEG data. Therefore, a lesser drop in inter-session accuracy
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Fig. 8. Accuracy comparison between SCSP-3 and baseline (CSP+SVM)
across all the subjects from Dataset-A when the entire trial period is chosen.

Fig. 9. Accuracy comparison between SCSP-3 and baseline (CSP+SVM)
across all the subjects from Dataset-A when a particular trial segment (3.5 -
5.5 s)is chosen.

can be attributed to the greater generalizability of the extracted
features by the SCSP-3 algorithm. Previous studies have used
special techniques such as covariate shift adaptation to deal
with the inter-session variability in accuracy, contributing to
a drop of 3.88% ( [5]). Thus although the proposed method
has around 2% more reduction in inter-session transfer, the
advantage is that, unlike covariate shift adaptation, we do
not require additional computation to calculate the shift and
repeated retraining of the classifier at the testing stage.

We have also compared our methods to several algorithms
applied to the same dataset in the past, shown in Fig 12.
The baseline method for comparison was chosen as µ and
β band CSP features with SVM classifier (CSP+SVM) [30],
[31], which yielded an average classification accuracy of
71.25% for the stroke patients’ dataset (Dataset-A). Thus the
proposed method (SCSP-3) has performed significantly (p-
value<0.05) better than the baseline approach of CSP+SVM.
The accuracy achieved for SCSP-3 is also significantly (p-
value<0.05) more than the accuracy achieved by CSP+SVM
non-adaptive classifier (NAC) [5] on the same dataset, which
was an average 70.25% where the time windows and frequency
bands were explicitly selected to each subject while using the
baseline method. Even comparing with an adaptive version

Fig. 10. Accuracy comparison between SCSP-3 and baseline (CSP+SVM)
across all the subjects from Dataset-B.

(covariate shift-based adaptative classifier or CSAC) of the
baseline method (average accuracy of 75.75%), reported in [5]
SCSP-3 performed better (average accuracy of 79.25% in Ta-
ble I). Moreover, the proposed method has also outperformed
the deep learning-based (EEGNet) classification approach [7]
(average accuracy of 70.25%) with a medium effect size
(Cohen’s d=0.69). The performance of SCSP-3 is also found
to be superior (medium effect size, cohen’s d= 0.58) to the
recently proposed sliding-window-based CSP with longest-
consecutive-repetition (SW-CSP-LCR) [1] method which re-
ported an average accuracy of 73.5% on the same dataset.
Further comparisons can be made with a recently conducted
international BCI competition [2] on Dataset-A. Although the
performance of SCSP-3 is only comparatively better (+0.81%)
than the winner of the competition (average accuracy of
78.44%), it is much higher as compared to the second-
(average accuracy of 74.69%) and third-rank (average accuracy
of 73.75%) holders of the competition achieving an increase
of 4.56% and 5.5% accordingly.

To show that the SCSP-3 is also compatible with a more
traditional selection of time-frequency windows, for example,
between 0.5s and 2.5s after the cue (here, 3.5s to 5.5s within
the trial) and a wider β band of 14-30 Hz we have given the
results in Table-II. This shows that the proposed method can
significantly (p-value<0.05) outperform the baseline method
for the same time-frequency window selection with +8.75%
higher accuracy. SCSP-3 has also achieved a much higher
kappa value of 0.52 compared to the baseline kappa of 0.35,
which indicates a balanced prediction accuracy across the two
classes in favor of the proposed method. The results on the
healthy subjects’ dataset (Dataset-B) are also consistent with
the patients’ dataset (Dataset-A) as the average accuracy across
the nine subjects (in Table III) is significantly (p-value<0.05)
better than the baseline method. Notably, the achieved kappa
value (0.53) in this case is similar to Dataset-A.

V. CONCLUSION

The paper introduces a novel technique (SCSP-3) for ex-
tracting CSP features using P, combined with a postprocessing
technique of fusing classifier outputs to enhance the decoding
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Fig. 11. Boxplot comparing the distribution of test accuracies between the
Stroke patients (Dataset-A) and the healthy subjects’ (Dataset-B).

Fig. 12. Boxplot compares the distribution of test accuracies between SCSP-3
and other methods applied on Dataset-A in the past.

accuracy of MI-related EEG signals. The results have shown
that SCSP-3 has performed better than the traditional approach
of CSP+SVM and other comparable methods, not only in
the case of healthy subjects but also for stroke patients,
which is rarely found in the literature. Hence, the proposed
methodology can be a significant step toward realizing robust
BCI systems for stroke rehabilitation with improved accuracy.
Also, the fact that it performed similarly in both datasets shows
its potential for being a generalized approach to decoding MI
signals across various categories of BCI users.
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