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Abstract. As summarized by Papageorgiou (Annu. Rev. Fluid Mech., vol. 51, 2019, pp. 155–187), a
strong normal electric field can cause instability of the interface in a hydrodynamic system. In the present work,
singularities arising in electrocapillary-gravity waves on a dielectric fluid of finite depth due to an electric field
imposed in the direction perpendicular to the undisturbed free surface are investigated. In shallow water, for a
small-amplitude periodic disturbance in the linearly unstable regime, the outcome of the system evolution is that
the gas-liquid interface touches the solid bottom boundary, causing a rupture. A quasi-linear hyperbolic model
is derived for the long-wave limit and used to study the formation of the touch-down singularity. The theoretical
predictions are compared with the fully nonlinear computations by a time-dependent conformal mapping for the
electrified Euler equations, showing good agreement. On the other hand, a nonlinear dispersive model system
is derived for the deep-water scenario, which predicts the blowup singularity (i.e., the wave amplitude tends to
infinity in a finite time). However, when the fluid thickness is significantly large, one can numerically show the
self-intersection non-physical wave structure or 2/3 power cusp singularity in the full Euler equations.
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1. Introduction. Electrohydrodynamics (EHD) is a cross-disciplinary subject concerned
with interactions between fluid motion and electric field. It has been studied intensively in many
different contexts by applied mathematicians, fluid dynamicists, and engineers due to its practical
importance in the modern industry (see, for example, [10, 12]). In particular, EHD usually deals
with an interface between two different fluids, which is a free boundary problem and, therefore,
mathematically challenging. A decent understanding of interfacial waves under the effect of an
electric field can significantly benefit relevant disciplinary communities.

The study of EHD interfacial waves was initiated by Taylor & McEwan [21]. The authors
showed theoretically and experimentally that normal electric fields (the direction of the applied
electric field is perpendicular to the undisturbed interface) could destabilize the interface between a
dielectric and a conducting fluid. Later, a linear stability analysis of the problem under tangential
electric fields (the direction of the applied electric field is parallel to the undisturbed interface)
was conducted by Melcher & Schwarz [15]. It was shown in that paper that the electric force could
regularize short waves. These two pioneering works illustrate the effects of electric fields on linear
interfacial waves in the inviscid limit.

The research of EHD waves was later extended to nonlinear regimes. The long-wave ap-
proximation was most commonly examined in the literature, and the method of multiple scales
was employed for analyses. In these reduced models, a touching singularity, i.e., the interface
touches the rigid wall, is usually observed. For tangential electric fields, the rupture and touch-
ing singularity were numerically found in long-wave models in liquid films [22] and interfacial
electrocapillary-gravity waves [2], respectively. While for normal electric fields, the touching sin-
gularity was shown to exist by Papageorgiou et al. [19] for interfacial waves between two dielectrics
with a hydrodynamically passive gas on top of a thin liquid layer.

More recently, Gao et al. [7, 8] conducted numerical experiments for the electrified Euler
equations on the time evolution of the interface between an active dielectric liquid and a passive
conducting gas. Gao et al. [9] followed to study the nonlinear wave interactions in the same phys-
ical configuration and derived a number of useful model equations in this context. In particular,
numerical evidence for the touch-down singularity was shown by [7]; however, the mechanism of
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Fig. 2.1. Schematic of the problem. The electric potential difference between two electrodes is a constant.

singularity formation has not been thoroughly investigated. More importantly, the existence of
touching singularity seems to depend on the thickness of the liquid layer, and it becomes difficult
for the interface to touch the wall when the fluid is considerably deep. As an extreme example,
Kochurin et al. [13] showed the curvature singularity (blowup of the second derivative) and cusp
singularity (blowup of the first derivative) appearing on the interface between two semi-infinite di-
electrics within the limit of strong normal electric fields. Their results were obtained using reduced
quadratic models with different permittivity and density ratios. On the other hand, other special
physical processes may occur before forming the singularities mentioned above and hence halt the
further evolution of the system; for instance, the self-intersection structure enclosing air bubbles
due to the capillary effect in small-scale water waves. These intuitions motivate us to explore
the singularities and dynamics in different depths of fluids with the electrified Euler equations.
For other physical configurations such as dielectric gas and conducting fluid or dielectric gas and
dielectric fluid, the touch-down may also occur, as shown by the numerical evidence in [19]. A full
investigation will be conducted in future work.

We conduct numerical experiments for the electrified Euler equations in the present work based
on the same configuration as [7], namely a dielectric of finite depth bounded above by a perfectly
conducting and hydrodynamically passive gas ([7]) or liquid helium charged by electrons localized
above its surface ([26]). The purpose of the paper is twofold: to understand the mechanism of the
touching singularity in shallow fluid and singularity transition from shallow to deep fluids (i.e.,
the appearance and disappearance of rupture). The rest of the paper is structured as follows. The
mathematical formulation of the problem, together with its Hamiltonian formulation, is described
in §2. Reduced nonlinear models are derived in §3 in the shallow-water and deep-water limits,
respectively, via the asymptotic analyses of the Hamiltonian. The numerical scheme for the prim-
itive equations, the time-dependent conformal mapping, is introduced in §4. In §5, the theoretical
results of the reduced models are compared with those of the electrified Euler equations. Finally,
a conclusion is given in §6.

2. Mathematical Formulation.

2.1. Governing equations. We consider an incompressible and inviscid fluid of depth h
in a two-dimensional x − y Cartesian coordinate system. The forces due to surface tension σ
and gravitational acceleration g are present – the latter acts in the negative y-direction. The
fluid is bounded below by a rigid wall and above by a hydrodynamically passive gas of depth h+.
The interface between gas and liquid is usually referred to as the free surface, which is deformed
by waves propagating in the x-direction denoted by y = ζ(x, t), with t being the time variable.
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Without loss of generality, we choose the mean level of the free surface to be y = 0 and, therefore,
the bottom is at y = −h. An electric field is imposed following the positive y-direction, i.e.,
perpendicular to the undisturbed free surface, by setting two electrodes on the top and bottom,
respectively, with a difference in voltage potential, which is always a constant. We denote by v
the voltage potential and let v = −V0 at the bottom and v = 0 at the top. The fluid is assumed
to be a dielectric with permittivity ϵ0, whereas the gas is perfectly conducting. A schematic of the
problem is sketched in Figure 2.1. The fluid motion is supposed to be irrotational; hence there
exists a potential function ϕ such that the velocity field is its gradient. Following [8], the governing
equations and boundary conditions read

∇2ϕ = 0 , for y < ζ(x, t) ,(2.1)

∇2v = 0 , for y < ζ(x, t) ,(2.2)

ζt = ϕy − ϕxζx , on y = ζ(x, t) ,(2.3)

v = 0 , for y ⩾ ζ(x, t) ,(2.4)

v = −V0 , on y = −h ,(2.5)

ϕy = 0 , on y = −h ,(2.6)

and

(2.7) ϕt +
1

2
|∇ϕ|2 + gζ − σ

ρ
κ+

ϵ0
2ρ

|∇v|2 = 0 , on y = ζ(x, t) ,

where ρ is the fluid density, the subscripts denote partial derivatives, and κ = ζxx(1 + ζ2x)
− 3

2 is the
curvature. The last three terms of equation (2.7) are the forces due to gravity, surface tension, and
Maxwell stresses resulting from the electric field. The electric term in (2.7) has been simplified
by making use of (2.4) as shown in [8, 23]. Equations (2.3) and (2.6) are the kinematic boundary
condition on the free surface and the impermeability condition at the bottom, respectively. By
[7], the associated linear dispersion relation takes the form of

ω2 = g|k| − ϵ0V
2
0

ρh2
k2 +

σ

ρ
|k|3 ,(2.8)

where ω is the angular frequency and k is the wavenumber. When the right-hand side of (2.8)
becomes negative, the fluid system is linearly unstable, resulting in the formation of singularities
which will be investigated later on for various fluid depths.

2.2. Hamiltonian structure. In this section, we prove that equations (2.3) and (2.7) form
a Hamiltonian system, provided (2.1)–(2.2) and (2.4)–(2.6) hold. In the absence of the electric
field, it was Zakharov [25] who first published the Hamiltonian structure of the free-surface water-
wave problem. In Zakharov’s seminal work, the Hamiltonian is the total energy, and the surface
displacement and velocity potential on the free surface form a pair of canonical variables. It is
noted that the voltage potential can be uniquely determined by ζ provided the Dirichlet boundary
conditions are given; thus, we can reasonably speculate that the canonical variables remain the
same when the electric field is included. Defining φ(x, t) = ϕ(x, ζ(x, t), t), we will show in the
subsequent analysis that
(2.9)

H[ζ, φ] =
1

2

∫
R

∫ ζ

−h

|∇ϕ|2dydx︸ ︷︷ ︸
kinetic energy

+
g

2

∫
R

ζ2dx︸ ︷︷ ︸
gravity

− ϵ0
2ρ

∫
R

∫ ζ

−h

|∇v|2dydx︸ ︷︷ ︸
electric potential energy

+
σ

ρ

∫
R

(√
1 + ζ2x − 1

)
dx︸ ︷︷ ︸

capillarity

is the Hamiltonian with the canonical equations

(2.10) ζt =
δH

δφ
, φt = −δH

δζ
,
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which are equivalent to equations (2.3) and (2.7). For this purpose, it suffices to calculate the
variational derivative of the electric potential energy with respect to ζ. We consider a small
increment δζ in the free surface ζ, and v(x, y, t) is the corresponding electric potential solved with
the new surface ζ+δζ and the same Dirichlet boundary conditions (2.4)–(2.5). Thus by definition,

(2.11)

δ

∫
R

∫ ζ

−h

|∇v|2dydx =

∫
R

∫ ζ+δζ

−h

|∇v|2dydx−
∫
R

∫ ζ

−h

|∇v|2dydx

=

∫
R

δζ
(
|∇v|2

)
y=ζ

dx+

∫
R

∫ ζ

−h

(
|∇v|2 − |∇v|2

)
dydx

=

∫
R

δζ
(
|∇v|2

)
y=ζ

dx+ 2

∫
R

(
δv
∂v

∂n

)
y=ζ

√
1 + ζ2x dx ,

while retaining the leading order terms, where δv = v(x, y, t)−v(x, y, t) and n = (−ζx, 1)/
√
1 + ζ2x

is the unit normal vector of the free surface. It follows from v(x, ζ, t) = 0 and v(x, ζ + δζ, t) = 0
that δv(x, ζ, t) = −vyδζ to leading order. Substituting the above relation into equation (2.11)
yields

(2.12) δ

∫
R

∫ ζ

−h

|∇v|2dydx =

∫
R

δζ
[
|∇v|2 − 2vy(vy − ζxvx)

]
y=ζ

dx = −
∫
R

δζ
(
|∇v|2

)
y=ζ

dx ,

where vx + ζxvy = 0 (because v is identically zero on the surface) at y = ζ has been used. Thus,

(2.13) φt = −δH
δζ

=
1

2

(
ϕ2y − ϕ2x

)
− ζxϕxϕy − gζ − ϵ0

2ρ
|∇v|2 + σ

ρ

ζxx
(1 + ζ2x)

3/2
,

and we complete the proof. To further simplify the Hamiltonian, we introduce the Dirichlet-
Neumann operator, denoted by G[ζ, h], which is defined in the standard manner (see also [23]):

(2.14) G[ζ, h]φ = ∇ϕ · n
√

1 + ζ2x = ϕy − ζxϕx .

The dependence of the operator on ζ and h is suppressed hereafter for ease of notations. It can be
expanded as a recursive convergent series G =

∑∞
j=0Gj if the C1-norm of η is smaller than some

constant [5], and the first two terms read

(2.15) G0 = (−∂xx)1/2 tanh
(
h(−∂xx)1/2

)
, G1 = −∂xζ∂x −G0ζG0 .

Thus, based on the Dirichlet-Neumann operator, the Hamiltonian (2.9) can be rewritten as

(2.16) H[ζ, φ] =
1

2

∫
R

[
φGφ+ gζ2 − ϵ0V0

ρ
vy

∣∣∣∣
y=−h

+
2σ

ρ

(√
1 + ζ2x − 1

)]
dx .

For the deep-water case, the boundary condition (2.5) is usually replaced by v → E0y as y → −∞.
We can define a new variable w = v−E0y such that ∆w = 0, wy → 0 as y → −∞, and w(x, ζ, t) =
−E0ζ. It then follows that the term associated with the electric field in the Hamiltonian (2.9) can
also be expressed by using the Dirichlet-Neumann operator, specifically

(2.17) H[ζ, φ] =
1

2

∫
R

[
φGφ+ gζ2 − ϵ0E

2
0

ρ
ζGζ +

2σ

ρ

(√
1 + ζ2x − 1

)]
dx .

3. Asymptotic Models.

3.1. A shallow-water model. Nonlinear evolution equations can be derived in the long-
wave limit. Here we present a procedure based on the Hamiltonian structure and analyticity
property of the Dirichlet-Neumann operator, and interested readers may refer to [1, 3] for the
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traditional derivation. It is first noticed that the Hamilton’s equations (2.10) realize an extremum

of the action

∫
L dt with the Lagrangian

(3.1) L =

∫
R

φζtdx− 1

2

∫
R

[
φGφ+ gζ2 − ϵ0V0

ρ
vy

∣∣∣∣
y=−h

+
2σ

ρ

(√
1 + ζ2x − 1

)]
dx .

To proceed, we non-dimensionalize the problem by writing

x = lX , y = hY , ζ = hΞ , t =
l

c0
T , φ = c0lΦ , v = V0V(3.2)

where l is the typical wavelength, and c0 =
√
gh is the long-wave speed. After changing variables,

the rescaled Lagrangian L, denoted by L̃, becomes

(3.3) L̃ =

∫
R

{
ΦΞT − 1

2

[
l

ϵ
ΦG̃Φ+ Ξ2 − ϵ0V

2
0

ρgh3
VY

∣∣∣∣
Y=−1

+
2σ

ρgh2

(√
1 + ϵ2Ξ2

X − 1

)]}
dX ,

where ϵ = h
l is a small parameter under the shallow-water approximation, and G̃ is the rescaled

Dirichlet-Neumann operator. Since

(3.4) tanh
(
ϵ (−∂XX)

1/2
)
= ϵ (−∂XX)

1/2 − ϵ3

3
(−∂XX)

3/2
+ · · · ,

the pseudo-differential operator G̃ can be expanded, in terms of ϵ, as

(3.5) G̃ = −ϵ
l
∂XX − ϵ

l
∂XΞ∂X − ϵ3

3l
∂XXXX − ϵ3

l
∂XXΞ∂XX + · · · .

The rescaled voltage potential satisfies ϵ2VXX + VY Y = 0 with the boundary conditions: V = 0
at Y = Ξ and V = −1 at Y = −1. The asymptotic expansion of V can be written as V =
V 0 + ϵ2V 1 + ϵ4V 2 + · · · . It then follows that, to leading order, V 0 = Y−Ξ

1+Ξ . Substituting (3.5) and

V 0Y = 1
1+Ξ into the Lagrangian (3.3) and retaining the leading order terms, one obtains

(3.6) L =

∫
R

[
ΦΞT − 1

2
(1 + Ξ)Φ2

X − 1

2
Ξ2 +

E

2

1

1 + Ξ

]
dX ,

where L is the truncated version of L̃ and E =
ϵ0V

2
0

ρgh3 is the electric Weber number. The inverse

Weber number W = σ
ρgh2 is supposed to be of O(1) or smaller; thus, the rescaled force of surface

tension becomes O(ϵ2), which does not appear in the Lagrangian to leading order. Minimizing

the approximate action

∫
Ldt yields


ST + (US)X = 0 ,

UT + UUX + SX − E
SX

S3
= 0 ,

(3.7)

where U = ΦX and S = 1 + Ξ. The last two terms in the second equation of (3.7) represent
the forces due to gravity and the electric field, respectively. System (3.7) can be rewritten in the
matrix form as (

S
U

)
T

+

(
U S

1− E

S3
U

)(
S
U

)
X

=

(
0
0

)
,(3.8)

as derived in [3]. By the linear theory, it is readily shown that system (3.7) is unstable due to the
destabilizing effect of the electric field when (3.8) is of elliptic type, i.e., the associated eigenvalues
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are complex and can be written by λ± = U ± i
√

E
S2 − S. To adapt the theory of shock formation

for a 2 × 2 quasi-linear hyperbolic system pioneered by [14], a change of variables is required as
first successfully used in [16] for studying a singularity problem in vortex sheets. It is also worth
mentioning that these first-order systems have been further investigated by [4]. For the following
initial conditions:

S(X, 0) = 1 + δ cosX , U(X, 0) = δ sinX ,(3.9)

we proceed by letting

Z = iX , W (T,Z) = iU(T,Z)(3.10)

and then obtain (
S
W

)
T

+

(
W S

−1 +
E

S3
W

)(
S
W

)
Z

=

(
0
0

)
.(3.11)

Then the initial conditions (3.9) are transformed into

S(Z, 0) = 1 + δ coshZ , U(Z, 0) = δ sinhZ .(3.12)

The eigenvalues of the system read

λ± =W ±
√
E

S2
− S ,(3.13)

and the corresponding left eigenvectors are

e± =

(
±
√
E − S3

S2
, 1

)
.(3.14)

It is not difficult to find the Riemann invariants

r =W +

∫ √
E − S3

S2
dS , s =W −

∫ √
E − S3

S2
dS ,(3.15)

which are constant along the two characteristics dZ/dT = λ±. Given an initial point Z0, after
similar calculations as [18], we can approximate the characteristics, up to O(δ2), as follows:

(3.16)
Z+ = Z0 + µT + δeZ0f1(T ) + δe−Z0f2(T ) +O(δ2) ,

Z− = Z0 − µT − δeZ0f2(T )− δe−Z0f1(T ) +O(δ2) ,

where µ =
√
E − 1, and

(3.17) f1(t) = ν1T + ν2e
2µT , f2(t) = ν3T + ν4e

−2µT .

The parameter E is required to be greater than 1 such that µ ∈ R. The explicit expressions of
the coefficients (ν1, ν2, ν3, ν4) are tedious and unnecessary in estimating the leading order, so we
omit the detail here. The formation of singularity causing an infinite slope in a finite time may
occur in the following two scenarios.

• Two characteristics of Z+ (or Z−) cross each other. We must have

(3.18) Z
(1)
0 + δf1(T )e

Z
(1)
0 + δf2(T )e

−Z
(1)
0 = Z

(2)
0 + δf1(T )e

Z
(2)
0 + δf2(T )e

−Z
(2)
0 +O(δ2)

for two distinct initial points, Z
(1)
0 and Z

(2)
0 . We denote by Tc the minimal possible

solution for the function t(Z
(1)
0 , Z

(2)
0 ). It follows that ∂t

∂Z
(1)
0

= ∂t

∂Z
(2)
0

= 0 must be satisfied

at T = Tc. It can then be readily shown that

(3.19) eZ
(1)
0 =

−1 +
√

1 + 4δ2f1(Tc)f2(Tc)

2δf1(Tc)
, eZ

(2)
0 =

−1−
√
1 + 4δ2f1(Tc)f2(Tc)

2δf1(Tc)
.
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By substituting (3.19) back into (3.16), an implicit equation for Tc in terms of δ is obtained:

(3.20) 2 + 2 ln δ + ln (−f1 (Tc) f2 (Tc)) = 0(δ2) .

It can be deduced from (3.20) that the asymptotic behavior of Tc when δ tends to zero is

(3.21) Tc ≈
1

µ
ln

1

δ
.

• The envelope of the family of the characteristics Z+ (or Z−) reaches the real axis. The

equation of the characteristics ∂Z+

∂Z0
= 0 admits identical solutions as (3.19) but at T = Td.

Substituting (3.19) into (3.16) and setting Z+ = 0 yield

(3.22) 1 + µTd + ln δ + ln f2(Td) = 0(δ2) .

The asymptotic behavior of Td at the leading order for small δ is identical to that of Tc,
i.e.,

(3.23) Td ≈ 1

µ
ln

1

δ
.

The theory developed in this section can be used to predict the critical time of singularity formation
in the limit δ → 0. The infinity slope is believed to be related to the touch-down phenomenon
where the fluid touches the lower boundary. In what follows, we will conduct fully nonlinear
numerical computations to find the blowup times in the shallow-water case and compare them
with the theoretical estimations.

3.2. A deep-water model. When the fluid depth is considerably large, the instability of
the free surface still develops in the unstable regime, causing the formation of a different type
of singularity. To understand the mechanism of such electricity-generated singularity, we focus
on the particular case of strong electric fields such that the electric force is dominant over the
gravity and capillary forces at a specific wavenumber provided 1/Eb ≪ k ≪ Eb. Under such an
assumption, the problem is reformulated in this section using the Dirichlet-Neumann operator to
propose a model in the deep-water limit.

Following [13], we assume the electric force dominates over gravity and surface tension, thus
the Lagrangian in the deep-water scenario reads

(3.24) L =

∫
R

φζtdx− 1

2

∫
R

(
φGφ− ϵ0E

2
0

ρ
ζGζ

)
dx .

The pseudo-differential operator can be expanded as

(3.25) G = −H∂x − ∂xζ∂x −H∂xζH∂x + · · · .

Here H is the Hilbert transform with the Fourier symbol i sgn(k), and it can also be defined in
the physical space as

H[f ](x) =
1

π
P.V.

∫ ∞

−∞

f(x′)

x′ − x
dx′ ,(3.26)

where ‘P.V.’ denotes the Cauchy principal value of the integral. We retain the Dirichlet-Neumann
operator expansion valid up to the second order of ζ and substitute it into the Lagrangian. After
minimizing the truncated action by taking the variational derivatives with respect to φ and ζ, one
obtains
(3.27)
ζt +H∂xφ = −∂x(ζ∂xφ)−H∂x(ζH∂xφ) ,

φt +
ϵ0E

2
0

ρ
H∂xζ =

1

2

[
(H∂xφ)2 − φ2

x

]
− ϵ0E

2
0

2ρ

[
(H∂xζ)2 − ζ2x

]
− ϵ0E

2
0

ρ
[∂x (ζ∂xζ) +H∂x (ζH∂xζ)] .
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It is noted that system (3.27) can also be derived by directly expanding the Dirichlet-Neumann
operator in the kinematic and dynamic boundary conditions. The linear part of system (3.27) can
be recast to

Pt +A0 H∂xP = 0 ,(3.28)

Qt −A0 H∂xQ = 0 ,(3.29)

with

P =
1

2
(φ+A0ζ) , Q =

1

2
(φ−A0ζ) ,(3.30)

where we denote A0 =
√

ϵ0E2
0

ρ for ease of notations. As remarked in [13], equation (3.28) charac-

terizes the growth of the variables, whereas (3.29) is concerned with attenuation, which is much
less important in studying instability. It is reasonable to make a further assumption that Q is
identically zero up to O(ζ2) such that all the nonlinear terms in Q are eliminated. It follows that
φ = A0ζ up to the quadratic order, and (3.27) reduces to

(3.31) Pt +A0 H∂xP = −2 (PPx +HPHPx)x ,

We note that (3.31) is equivalent to the system derived in [13] by considering interfacial waves
between two semi-infinite dielectric fluids. Using the formula associated with the Hilbert transform
H[fg] = fHg + gHf +H[Hf · Hg], we can recast equation (3.31) to

(3.32) Ft + iA0Fx = −(1− iH)(FF ∗
x )x .

where F = (1− iH)P and the superscript asterisk represents complex conjugation. Furthermore,
(3.32) can be solved using a complex variable method in which F (x, t) can be expressed by a sum

of simple poles in the complex plane, as shown by [13]. If we pick F (x, 0) = iS/2
x+ia0

as the initial

condition, where S and a0 are real constants, the solution reads F (x, t) = iS/2
x+ia(t) , and a(t) satisfies

(3.33)
da

dt
= −A0 +

S

4a2
, a(0) = a0 .

We remark that equation (3.33) was obtained by noticing

H
[

1

x− ia

]
=

−i

x− ia
, H

[
1

x+ ia

]
=

i

x+ ia
, and H

[
1

(x− ia)2

]
=

−i

(x− ia)2
.

If S is negative, integrating equation (3.33) yields

(3.34)
a

A0
− 1

2A0

√
|S|
A0

arctan

(
2a

√
A0

|S|

)
= tc − t ,

where the integration constant tc reads

(3.35) tc =
a0
A0

− 1

2A0

√
|S|
A0

arctan

(
2a0

√
A0

|S|

)
.

Upon noticing the specific expression of the solution F (x, t), the amplitude of the free surface ap-
proaches infinity at x = 0, as t→ tc. However, we should emphasize that the above argument only
provides a possibility for singularity formation, and the effectiveness of this theoretical prediction
is ambiguous. That is because the expansion of the Dirichlet-Neumann operator does not converge
when the wave amplitude is sufficiently large. The above discussion indicates that reduced models
are sometimes limited, and it is vital to understand their respective applicable scopes.
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In contrast to the infinite-amplitude singularity predicted by the weakly nonlinear theory,
Zubarev showed in [26] that the free surface develops a cusp singularity with the slope and curva-
ture becoming infinite in a finite time in the full Euler problem in deep water where the electric
field provides the only restoring force. More precisely, the spatial behaviour of the solution close
to the singular point x = xk features, to leading order,

ζ(x)− ζ(xk) = O
(
|x− xk|2/3

)
.(3.36)

The above estimate was obtained in [26], with the aid of the well-known Laplacian growth equa-
tions, for a particular case where the singularity is formed at the trough of the free surface, i.e.,
the cusp is perpendicular to the x−axis. More generally, the cusp formation can occur at any
position along the interface with a qualitatively similar asymptotic spatial behaviour to (3.36). It
is usually referred to as the 2/3 power cusp in the literature, which was intensively investigated in
other contexts of fluid dynamics, e.g., see [20] for Stefan problems and [11] for Hele-Shaw flows.
In our situation, such a result predicts that the fluid system in deep water is destabilized, and the
free surface exhibits the formation of 2/3 power cusps in the presence of very strong electric fields,
which will be helpful in examining the fully nonlinear computations of the Euler equations.

4. Numerical Scheme. We describe the numerical scheme for the electrified Euler equations
in this section. We first non-dimensionalize the system by choosing

(4.1)

[
σ

ρg

]1/2
,

[
σ

ρg3

]1/4
,

[
σ3

ρ3g

]1/4
,

V0
h

[
σ

ρg

]1/2
as the reference length, time, velocity potential, and voltage potential, respectively. Under this
scaling, the bottom boundary is given by y = −H, where the rescaled depth H = h

√
ρg/σ. The

governing equations (2.1) and (2.2) remain the same, while the dynamic boundary condition (2.7)
becomes

ϕt +
1

2
|∇ϕ|2 + ζ +

Eb

2
|∇v|2 − ζxx

(1 + ζ2x)
3/2

= 0 , on y = ζ(x, t) ,(4.2)

where Eb =
ϵ0V

2
0

h2√ρgσ . The boundary conditions for the voltage potential are now scaled to be

v = −H , on y = −H ,(4.3)

v = 0 , on y = ζ(x, t) .(4.4)

The kinematic boundary conditions (2.3) and (2.6) remain unchanged. By following [7] to linearize
the governing equations, it is not difficult to obtain the dispersion relation

c2p =

(
1

k
+ k

)
tanh(kH)− Eb ,(4.5)

where k is the wavenumber and cp is the phase speed. The fluid system is destabilized for a given
Eb at a particular value of k when the right-hand side of (4.5) is negative at this wavenumber.
In what follows, we will show that the destabilization always occurs at some wavenumber for
Eb = 2.5. An example for H = 5 is presented in Figure 4.1.

A numerical method pioneered by [6], based on a conformal mapping technique, is used for
fully nonlinear time-dependent computations. The fluid domain is transformed onto a strip with
depth D in the new ξ − η plane. The harmonic conjugate of x(ξ, η) can be obtained via the
Cauchy-Riemann equations for the analytic function z(ξ, η) = x(ξ, η) + iy(ξ, η). Similarly, we
can derive the harmonic conjugates of ϕ(ξ, η) and v(ξ, η), denoted by ψ(ξ, η) and ν(ξ, η). We
write the surface variables in the transformed plane as X(ξ, t) ≡ x(ξ, 0, t), Y (ξ, t) ≡ y(ξ, 0, t),
Φ(ξ, t) ≡ ϕ(ξ, 0, t), Ψ(ξ, t) ≡ ψ(ξ, 0, t), V (ξ, t) ≡ v(ξ, 0, t), and Θ(ξ, t) ≡ ν(ξ, 0, t). The map can
be formally defined as the solutions to the following boundary value problems

yξξ + yηη = 0, ψξξ + ψηη = 0, vξξ + vηη = 0, for −D < η < 0,(4.6)
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Fig. 4.1. Linear dispersion relation for H = 5 and Eb = 2.5. The solid curves are for c2p > 0, and the dotted
curve is in the area of destabilization.

y = Y (ξ, t), ψ = Ψ(ξ, t), v = V (ξ, t) = 0, on η = 0,(4.7)

y = −H, ψ = Q, v = −H, on η = −D,(4.8)

where Y (ξ, t) = ζ(ξ, 0, t), and Q is a constant. We choose Q = ⟨Ψ⟩, with ⟨·⟩ the mean value
defined as

⟨f⟩ = 1

L

∫ L/2

−L/2

f(ξ) dξ ,(4.9)

where
[
−L

2 ,
L
2

]
is the computational domain, and L is usually set to be the wavelength. Following

[7], it can be shown that

(4.10) D = H + ⟨Y ⟩ , Xξ = 1− T [Yξ] , Φξ = −T [Ψξ] , Θξ = −H
D

+ T [Vξ] ,

where T [·] is defined by

(4.11) T [f ](ξ) =
1

2D
P.V.

∫
f(ξ′) coth

( π

2D
(ξ′ − ξ)

)
dξ′ .

We note that Vξ = 0 as v is identically zero everywhere on the free surface. Again, we follow [7]
to derive the evolution equations, yielding

Yt = YξT
[
Ψξ

J

]
−Xξ

Ψξ

J
,(4.12)

Φt =
1

2J

(
Ψ2

ξ − Φ2
ξ

)
− Y − EbH

2

2D2J
+
XξYξξ − YξXξξ

J3/2
+ΦξT

[
Ψξ

J

]
,(4.13)

where J = X2
ξ + Y 2

ξ is the Jacobian of the conformal map. The T -transform can be computed
numerically using its Fourier symbol as follows

(4.14) T [f ] = F−1
[
i coth(kD)F [f ]

]
,

where F is the Fourier transform. The wave height and the distance from the bottom are written
respectively as

A =

∣∣∣∣min
ξ∈R

Y

∣∣∣∣ , d = H −A .(4.15)

A fourth-order Runge-Kutta method is used for time-stepping with 210 to 214 grid points and the
time step of 10−4 to 10−9 to solve (4.12)–(4.13).
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Fig. 5.1. (a) Surface evolution in the stable regime for Eb = 1 and H = 1, 20, and 500 (from left to right).
(b) The maximal values of |Y | as time evolves (t ∈ [0, 50]).

5. Numerical Results.

5.1. Stable regime. We start by examining the numerical scheme in the stable regime for
Eb = 1, with the grid number N = 210 and time step dt = 10−4. The initial uniform solution on
the domain [0, 2π] is perturbed by a small spatially periodic disturbance, specifically Y = 0.1 cos ξ.
The time evolution of the surface is presented in Figure 5.1 for t ∈ [0, 50] with H = 1, 20, and 500.
We observe standing waves with quasi-periodic oscillations akin to those obtained in [2] by solving
a long-wave evolution system. Such oscillatory behaviour will continue for an infinite time. The
frequency of oscillation in the dynamics is larger as the depth becomes deeper, as shown in Figure
5.1(b). In other words, there are more numerical observations for smaller H while computing with
the same time step in a fixed time interval as confirmed from Figure 5.1(a).

5.2. Unstable regime. In the remaining part of the work, we confine our attention to the
unstable regime in which the linear phase speed from (4.5) no longer admits a real solution for
some wavenumber, causing the fluid system to be destabilized. For an in-depth understanding of
singularity formation, we investigate the dynamics of a monochromatic periodic wave under the
effect of a strong electric field in an unstable regime for liquids of various depths.

5.2.1. Destabilization of a periodic wave on shallow water. For the problem in the
shallow-water regime, similar to [2], the fluid surface has a very localized structure when the trough
approaches and eventually touches the solid bottom. We refer to this phenomenon as touch-down
singularity hereafter. The parameters are chosen to be H = 0.1 and Eb = 2.5, corresponding
to the unstable regime of destabilization. The initial condition for the system is Y = ϵ cos ξ for
ϵ = 0.001, 0.002, · · · , 0.01 with N = 213 collocation points and dt = 10−7 for time integration.
The snapshots of wave profiles obtained in the experiment for ϵ = 0.01 are shown in Figure 5.2,
where the touch-down singularity is observed.

Meanwhile, we record the critical times when the distance between the bottom boundary and
the lowest point of the free surface is less than 0.002. It is not difficult to compare these values to
the asymptotic predictions of the formation of infinite slope from (3.21) and (3.23) with a simple
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Fig. 5.2. (Left) Snapshots of wave profiles in the numerical experiment of destabilization on a shallow fluid
with H = 0.1 and Eb = 2.5 at t = 1.1 (dotted curve), t = 1.14 (dashed curve), and t = 1.14832 (solid curve).
(Right) A blow-up graph of the wave profile at t = 1.14832.
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Fig. 5.3. Comparison of the critical times (denoted by tc) for the free surface almost touching the bottom
between the full Euler computations (black dots) and the asymptotic predictions (black curve) of formation of
infinity slope for different values of ϵ.

change of scaling. Numerical results of the full Euler equations and theoretical predictions are
plotted in Figure 5.3, where a good agreement has been found. It is a piece of strong numerical
evidence that these two times, the touch-down time observed in the numerical computations and
the time for forming an infinite slope predicted by the asymptotic theory, are identical. However,
the scaling used in the asymptotic theory is inappropriate near singularity formation since the
capillary force also tends to infinity and cannot be ignored. Because the surface curvature has a
faster divergence rate to infinity than the slope, the asymptotic theory, which has not taken the
surface tension effect into account, always slightly overestimates the blowup time (see Figure 5.3).

To further understand such touch-down singularity, we follow [3] to seek a self-similar solution
when the free surface reaches the bottom at t = ts and x = xs by defining

(5.1) τ = ts − t≪ 1 , χ =
x− xs
τ b

= O(1)

and writing

d = τap(χ) , ϕx = τ b−1q(χ) ,(5.2)

where (2.3) has been used to derive the asymptotics of ϕx. Since the gravity term remains finite
at t = ts, the dynamic boundary condition (2.7) is satisfied by balancing to leading order,
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Fig. 5.4. Maximal values of |κ| and 1/J versus the maximal value of ϕx when t is close to ts (t ∈
[1.148, 1.14832]).

• the surface tension, κ, of order O(τ b−2a),
• the electric force, ζ2x, of order O(τ2a−2b),
• terms associated with the velocity potential, ϕt +

1
2ϕ

2
x, of order O(τ2b−2).

A simple calculation shows that these terms may be balanced and all retained in the equation
when b = 0.8 and a = 0.6. The parameter values are found to be different from the ones obtained
in [3], where the electric force was ignored at the touch-up while forming the self-similar solutions
due to the physical configuration. We compare the maximal value of κ (surface tension) and
1/J (electric force) to that of ϕ2x when t is close to ts. The quantities are found to be linearly
dependent, as shown in Figure 5.4. Hence, the scaling being used is consistent.

The exact touch-down time can be estimated by a quick and efficient approach of the least
squares method. We conduct computations for d and ϕ2x and obtain the same estimator for ts,
which is found to be ts ≈ 1.148326. The data fittings are presented in Figure 5.5, where an
excellent agreement has been found between the simulation data and the least squares estimators.
By writing

p(χ) ∼ |χ|np , q(χ) ∼ |χ|nq ,(5.3)

after similar calculations to those in [2], it is obtained for χ≫ 1 that np = 3
4 and nq = − 1

4 , leading
to

d ∼ |x− xs|
3
4 , ϕx ∼ |x− xs|−

1
4 .(5.4)

The maximal gradient and curvature of the free surface both tend to infinity when the touch-down
occurs. Hence, a cusp is expected to be formed. This is confirmed by the numerical simulation, as
seen from the solid curve in Figure 5.2. In summary, the destabilization of electrocapillary-gravity
waves on shallow water leads to the formation of a cusp that touches down the bottom boundary,
causing a rupture.

5.2.2. Destabilization of a periodic wave on deep water. It is evident that the touch-
down singularity no longer occurs in the case of deep water; instead, we can observe the pinch-off
phenomenon in numerical experiments. More specifically, the instability due to the electric desta-
bilization still develops in the unstable regime and causes a growth in the surface displacement,
which surges up to its maximum amplitude, evolves into a mushroom-shaped structure, and ends
up with two closed bubbles due to the presence of surface tension. The feature is confirmed
by the direct numerical computations of the electrified Euler equations. We stop the numerical
computation when the self-intersecting structure appears since further interface evolution shows
multiple self-intersecting points leading to a non-physical solution. A typical example for H = 20
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Fig. 5.5. Upper: time evolution of d near the touch-down singularity with H = 0.1 and Eb = 2.5. The
triangles are the data obtained from the numerical simulations. The solid curve is the fitted curve, and the dotted
curve is the prediction of the self-similar solution. The circle point is the intersection of the dotted curve and the
horizontal axis. (Lower) time evolution of maxϕ2

x near the touch-down singularity.
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Fig. 5.6. Snapshot of the wave profile at t = 8.25 in the numerical experiment of destabilization with H = 20
and Eb = 2.5.

and Eb = 2.5 is presented in Figure 5.6. Qualitatively similar results are obtained for more con-
siderable depths. Hence, the numerical result indicates that the formation of bubbles, a physical
constraint, occurs earlier than the generation of the touch-down or cusp singularities caused by
the electric field.

Next, we focus on the case where the fluid depth is deep enough to avoid touch-down but
insufficient to allow pinch off. Under such circumstances, the effect of the electric field plays a
dominant role in the singularity formation. To this end, the water depth must be chosen carefully
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Fig. 5.7. Left: time evolution of the maximal surface slope for H = 5 and Eb = 2.5. Right: time evolution of
the maximal surface curvature for H = 5 and Eb = 2.5. The dash-dotted curves are the asymptotes estimated by
the least square method.

for the numerical study to guarantee that neither touch-down nor pinch-off occurs. In practice,
we select H = 5 for simulations, so the deep-water approximations are still appropriate. The wave
magnitude increases in the same manner as in the deep-water case until the wave trough is not far
from the bottom boundary. Accordingly, as seen from the right panel of Figure 5.7, the maximal
surface curvature dramatically surges and tends to infinity at a critical time. The maximal slope
is also examined and sketched in the left panel of Figure 5.7. It also tends to infinity but is much
slower in comparison to the growth rate of the curvature. The wave profile before the collapse
of the numerical experiment is presented in Figure 5.7. Suspicious singular behaviours have been
observed at several positions on the free surface. The 2/3 power asymptotics are fitted to a point
(xk, yk) with the most significant feature (extreme curvature) and sketched in the right panel of
Figure 5.7, in which a good agreement has been found. The full examination of the cuspidal curve
is achieved by evaluating the following quantities near the singular point

M1 =
α2
1

α3
2

, M2 =
α2
1

α2
2

, M3 =
α1

α3
2

,(5.5)

where α1 and α2 are the distances defined in Figure 5.8. It follows that M1 remains finite, M2

tends to zero, andM3 tends to infinity on the occasion of singularity formation. Such a theoretical
prediction is confirmed by the simulation results listed in Table 5.1 and presented in Figure 5.10,
which shows strong numerical evidence that the cusp follows 2/3 power asymptotics. The liquid
surface around x = xk tends to have infinite curvature that causes a breakdown of the wave
structure. The least-square estimator returns tk = 6.9795 for the present example, also shown
in Figure 5.9. As previously investigated, we believe the cusp formation causes this curvature
singularity in deep water. It is developed at multiple positions on the free surface, unlike the
touch-down singularity in shallow water, where the cusp is always formed at the lowest point of
the free surface.

6. Conclusion. The transition of the singularities arising in electrocapillary-gravity waves
on a dielectric fluid of finite depth under vertical electric fields has been investigated. Unsteady
numerical simulations have been performed based on a time-dependent conformal mapping tech-
nique. The shallow-water, deep-water, and medium-depth cases were all studied. When the water
depth is shallow, the surface touches down the bottom boundary, causing the surface slope and
curvature to tend to infinity, forming a cusp at a terminal finite time. The surface displacement
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Fig. 5.8. Schematic of a cuspidal curve (solid), the symmetry axis of the cusp (dashed )and its perpendicular
passing through the cusp (dashed-dotted). The plot-scale is exaggerated for illustrating purpose.
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Fig. 5.9. Left: snapshot of the wave profile at t = 6.9665, close to the cusp blow-up time. Right: The blow-up
graph near the dot highlighted in the left panel. The 2/3 power asymptotic behaviours are fitted and depicted in
dotted curves. The line of symmetry is sketched in a dotted-dashed curve.

Evaluation of (5.5) at P1 M1 M2 M3

t = 6.9663 44.1786 0.3646 8.8636× 103

t = 6.9664 45.0139 0.3624 9.2894× 103

t = 6.9665 44.6226 0.3522 9.5259× 103

Evaluation of (5.5) at P2 M1 M2 M3

t = 6.9663 44.0283 0.4230 7.0459× 103

t = 6.9664 34.5310 0.3035 7.1312× 103

t = 6.9665 28.6152 0.2205 7.9076× 103

Table 5.1
The quantities given in (5.5) at the nearest neighbours (P1 and P2) of the singular point before the numerical

simulation is ended due to a blow-up in the surface curvature.
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Fig. 5.10. The behaviours of M1, M2, and M3 in the logarithm scale versus time at the neighbour point P2

near the singularity before the blow-up of the surface curvature.

increases when the water depth is deep, forming self-intersecting structures and trapped bubbles
before touch-down/cusp/curvature singularities appear. When the water depth is deep but in-
sufficient for bubble formation, the maximal surface curvature and the surface slope grow and
eventually tend to infinity, causing the surface structure to collapse. Motivated by theoretical
results for the deep-water case in the absence of gravity and surface tension (electric field only),
the 2/3 power cuspidal singularity is confirmed on a dielectric fluid of medium depth, though the
singular points do not occur in the middle.
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