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New Correlation Bound and Construction of
Quasi-Complementary Sequence Sets

Palash Sarkar, Chunlei Li, Sudhan Majhi, and Zilong Liu

Abstract—Quasi-complementary sequence sets (QCSSs) have
attracted sustained research interests for simultaneously sup-
porting more active users in multi-carrier code-division multiple-
access (MC-CDMA) systems compared to complete complemen-
tary codes (CCCs). In this paper, we investigate a novel class of
QCSSs composed of multiple CCCs. We derive a new aperiodic
correlation lower bound for this type of QCSSs, which is tighter
than the existing bounds for QCSSs. We then present a systematic
construction of such QCSSs with a small alphabet size and
low maximum correlation magnitude, and also show that the
constructed aperiodic QCSSs can meet the newly derived bound
asymptotically.

Index Terms—Multi-carrier code-division multiple-access
(MC-CDMA), aperiodic correlation, complete complementary
code (CCC), quasi-complementary sequence set (QCSS), mul-
tivariate function.

I. INTRODUCTION

As a generalization of the Golay complementary pair [1],
the complementary sequence set introduced by Tseng and Liu
[2] consists of M ≥ 2 constituent sequences of length L

having zero aperiodic auto-correlation sum for all nonzero
time shifts. A complementary sequence set is usually arranged
as an M × L matrix (known as a complementary matrix
or complementary code). A set of K complementary codes
with the same order (M,L) is called a mutually orthogonal
complementary sequence set (MOCSS) if any two distinct
complementary codes have zero aperiodic cross-correlation
sums for all time shifts [3]. A MOCSS has its size K ≤ M

and it is known as a complete complementary code (CCC)
when the equality is reached. Due to the ideal auto- and cross-
correlation properties, CCCs have a salient feature for sup-
porting interference-free multi-carrier code-division multiple-
access (MC-CDMA) communication where users are assigned
with different complementary codes from a CCC [4]–[6].

Palash Sarkar and Chunlei Li are with the Department of
Informatics, Selmer Center, University of Bergen, Norway, e-mail:
palash.sarkar@uib.no; chunlei.li@uib.no.

Sudhan Majhi is with the Department of Electrical Communi-
cation Engineering, Indian Institute of Science, Bangalore, India, e-
mail:smajhi@iisc.ac.in.

Zilong Liu is with the School of Computer Science and Electronic En-
gineering, University of Essex, UK, e-mail:zilong.liu@essex.ac.uk.

To support more users in MC-CDMA systems, the notion
of low-correlation zone complementary sequence set (CSS),
which refers to a set of complementary codes or codes having
low maximum correlation magnitudes within a time-shift zone
around the origin, was proposed [7]; in particular, when the
maximum correlation magnitude within the zone is zero, it
reduces to a zero-correlation zone CSS [8]–[10]. By extending
the low correlation zone to all the non-trivial time-shifts,
quasi-complementary sequence sets (QCSSs) with uniformly
low maximum correlation magnitude have been investigated
in [11]. A QCSS-based MC-CDMA system is expected to
accommodate larger amount of asynchronous time-offsets,
whilst supporting more users [12], [13].

A. Existing Works on the Constructions and the Correlation
Bounds of QCSSs

In this subsection, we recall some basics and known results
on QCSSs. Let q be a positive integer and Aq = {ξiq |0 ≤
i < q}, where ξq = exp(2π

√
−1/q) is a q-th primitive root of

unity. We denote by AM×L
q the set of all M×L matrices over

Aq . A subset of AM×L
q is termed a (K,M,L, θ)-QCSS over

Aq if it consists of K matrices in AM×L
q and its maximum

magnitude of aperiodic correlation sums equals a positive
value θ. The multipath interference and multiuser interference
in QCSS-based MC-CDMA system are closely related to the
maximum correlation sum magnitude θ, which is desired to
be small. In the literature, several researchers have studied the
lower bound on θ. Welch in [14] first gave the following lower
bound:

θ ≥ML

√
K
M − 1

K(2L− 1)− 1
. (1)

In 2014, Liu, Guan and Mow [15] extended the idea of
Levenshtein bound [16] for M ≥ 2 and provided a tighter
correlation lower bound for the case of K ≥ 3M and L ≥ 2:

θ ≥

√√√√ML

(
1− 2

√
M

3K

)
. (2)

With respect to a lower bound, the optimality of a QCSS
can be evaluated in terms of the optimality factor ρ, which
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is defined as the ratio of its maximum correlation magnitude
θ and the lower bound [11]. A (K,M,L, θ)-QCSS is said
to be optimal if ρ = 1, near-optimal if 1 < ρ ≤ 2, and
asymptotically optimal if ρ tends to 1 for sufficiently large L,
with respect to a lower bound, which is usually taken as the
best known one.

For periodic QCSSs, the first known optimal and near-
optimal QCSSs were proposed in [11] with the aid of Singer
difference sets. Several other constructions on periodic QCSSs
using various algebraic tools, such as difference sets and
characters over finite fields, can be found in [17]–[20]. Aperi-
odic QCSSs with asymptotically optimal correlation properties
have been developed with the help of various tools, such
as permutation functions and Florentine rectangles [21]–[23].
The QCSSs in [22] and [23] appear as a collection of CCCs
with low inter-set cross-correlation properties. In practice, this
type of QCSSs can be useful in a multi-cell (or multi-cluster)
mobile network where each cell is assigned with a distinctive
CCC for interference-free MC-CDMA communication; at the
same time, each cell also receives multiuser interference from
other neighbouring cells [24], [25]. In this setting, the low
inter-set cross-correlation property may permit minimum inter-
cell interference, whilst achieving zero intra-cell interference
due to the ideal correlation properties of CCCs. Besides low
correlation, it is also desirable to design QCSSs over an
alphabet of small size for the ease of practical implementations
[20].

B. Motivations and Contributions

Motivated by the promising applications of QCSSs in MC-
CDMA systems, in this paper we are interested in investigating
aperiodic QCSSs that are composed of multiple CCCs. Fun-
damentally, we aim to understand the theoretical trade-offs
between different parameters of this type of QCSSs. Further-
more, we target at developing systematic constructions with
both desirable correlation properties and flexible parameters.

Our first contribution in this paper is the derivation of a
new lower bound on the maximum correlation magnitude of
the new type of QCSSs. The new bound is obtained by a
revisit to the generalized Levenshtein bound for QCSSs in [15]
with extra consideration on a special feature of such QCSSs.
Several forms of this new lower bound are derived by setting
proper weighting vectors in the bounding function. As listed
in Table I, they are shown to be tighter than the lower bound
in [15]. Here it is worth noting that the bound in [15] was
proposed for generic QCSSs and that new bounds in Table
I should be used to evaluate aperiodic QCSSs composed of
multiple CCCs. It is to be noted that the QCSSs reported in

Table I: Aperiodic correlation lower bounds for (K,M,L, θ)-
QCSSs composed of (M,L)-CCCs

N = K/M Derived correlation lower bound Derivation Constraints
N = 2 θ2 ≥ ML2

2L−1 Corollary 1 L,M ≥ 2

N = 3

θ2 ≥ ML2

2L−1 Corollary 1 3 ≤ L ≤ 25, M ≥ 2

θ2 ≥ML
(
1− L2(2π2+4N−16)−Nπ2

16L2(N−1)

)
Corollary 2 L > 25, M ≥ 2

θ2 ≥ ML
3 [15] L,M ≥ 2

N = 4

θ2 ≥ML
(
1− L2(2π2+4N−16)−Nπ2

16L2(N−1)

)
Corollary 2 L ≥ 5, M ≥ 2

θ2 ≥ML(1− L−1.2
2L−1 ) Corollary 2 L = 4,M ≥ 2

θ2 ≥ML
(
1− 1√

3

)
[15] L,M ≥ 2

N > 4
θ2 ≥ML

(
1− π

√
N(2L2−N)−4L

4(N−1)L

)
Corollary 2 L ≥ 5, M ≥ 2

θ2 ≥ML
(
1− 2√

3N

)
[15] L,M ≥ 2

[22] and [23] satisfy our proposed aperiodic correlation lower
bound.

In the construction of QCSSs, multivariate functions have
turned to be an effective tool to generate sequences with
flexible parameters. Multivariate functions were studied in
[26] to design CCCs with flexible parameters and then soon
followed by [27] to construct Z-complementary sequences
and by [28] to construct Golay complementary array set. Our
second contribution in this paper is a systematic construction
framework of aperiodic QCSSs using multivariate functions
from a graphical perspective. We consider the multivariate
functions from Zm

p to Zq , where p is an arbitrary prime divisor
of q. This type of multivariate functions are referred to as q-
ary functions in this paper for ease of presentation. With a
graphical approach, we utilize q-ary functions in m variables
to construct a (pn+1(p − 1), pn+1, pm, pm)-QCSS over Aq ,
where 1 ≤ n < m. The key requirement on the employed
q-ary function f is that the graph of each restriction of f
on certain n variables yields a Hamiltonian path with edges
having identical weights of q/p. We show that such q-ary
functions give rise to p − 1 distinct (pn+1, pm)-CCCs, and
a QCSS composed of these CCCs has maximum correlation
magnitude pm. Notice that the alphabet size q of proposed
QCSSs can be as small as p, which is different from the
known QCSSs as listed in Table II, for which the alphabet
size is required to be at least the sequence length. To the best
of our knowledge, it is the first time in the literature that a
construction of aperiodic QCSSs can maintain a small alphabet
size irrespective of the sequence length and set size. Finally,
it is shown that the proposed QCSSs can asymptotically meet
the newly derived aperiodic correlation lower bound.

The structure of this paper is outlined as follows: In Section
II, we introduce the essential mathematical tools utilized
in this work. Section III derives the proposed new tighter
correlation lower bounds for QCSSs comprised of multiple
CCCs. In Section IV, we present our contributions related to
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the construction of QCSSs that can meet the correlation lower
bound introduced in Section III. Lastly, Section V concludes
this work.

II. PRELIMINARIES

We first define some notations which will be used through-
out the paper:

• Zt = Z/tZ is the set of all integers modulo t
• q is a positive integer and p is an arbitrary prime divisor

of q
• ξq = exp(2π

√
−1/q) is a primitive q-th root of unity

• Aq = {ξiq : 0 ≤ i < q} and AM×L
q is the set of matrices

over Aq

• 0L denotes the zero vector of length L
• lower-case letters in bold, e.g., a, b, denote sequences of

certain length
• upper-case letters in bold, e.g, C, X,Y, denote matrices

or codes over Aq

• Tu(a) = (aL−u, · · · , aL−1, a0, . . . , aL−u−1) for a se-
quence a = (a0, a1, · · · , aL−1)

• |a|, a∗ denote the magnitude and conjugate of a complex
number a, respectively

• ⟨a,b⟩ = a0b
∗
0 + a1b

∗
1 + . . . + aL−1b

∗
L−1 denotes the

inner product between two complex-valued sequences
a = (a0, a1, . . . , aL−1) and b = (b0, b1, . . . , bL−1)

• a · b denotes the inner product for two real-valued
sequences a and b

• ⌈a⌋ denotes the integer closest to a real number a
• [a, b] denotes a closed interval consisting of real numbers
x satisfying a ≤ x ≤ b

• [a : b] = [a, . . . , b] for integers a ≤ b

• ∅ denotes the empty set
• |S| denotes the size of a set S

A. Aperiodic Auto- and Cross-Correlation

For any two complex-valued sequences a =

(a0, a1, . . . , aL−1) and b = (b0, b1, . . . , bL−1) of length
L, we define the aperiodic cross-correlation function (ACCF)
at time-shift τ , where 0 ≤ |τ | < L as

Θ(a,b)(τ) =


∑L−τ−1

α=0 aαb
∗
α+τ , 0 ≤ τ < L,∑L+τ−1

α=0 aα−τ b
∗
α, −L < τ < 0.

(3)

For a = b, the ACCF defined in (3) reduces to the aperiodic
auto-correlation function (AACF) of a, which will be denotd
as Θ(a)(τ) for short.

Let C = {C1,C2, . . . ,CK} be a collection of K codes,
each containing M sequences of length L. By arranging each
code as a two-dimensional matrix, we write Ck as

Ck =


c1k
c2k
...

cMk


M×L

,

where k = 1, . . . ,K. The ACCF (sum) between Ck1
and Ck2

for 1 ≤ k1, k2 ≤ K is defined as

Θ(Ck1
,Ck2

)(τ) =

M∑
j=1

Θ(cjk1
, cjk2

)(τ). (4)

For k1 = k2 = k, the ACCF in (4) reduces to the AACF of
Ck and we denote it by Θ(Ck)(τ). Define

θA =max{|Θ(Ck)(τ)| : k = 1, . . . ,K, 0 < |τ | < L},

θC =max{|Θ(Ck1 ,Ck2)(τ)| : 1 ≤ k1 ̸= k2 ≤ K,

0 ≤ |τ | < L}.

The maximum correlation magnitude of C is given by θ =

max{θA, θC}. This collection of codes is called an aperiodic
QCSS, denoted by (K,M,L, θ)-QCSS. In particular, when
θ = 0 and K = M , C is said to be a CCC, denoted by an
(M,L)-CCC.

In order to investigate the lower bound on θ for QCSSs, we
recall an interesting function from [15, Eq. (17)] below. For
two (K,M,L, θ)-QCSSs X ,Y ⊂ AM×L

q , define the following
function:

F (X ,Y) =
1

|X ||Y|
×

∑
X∈X

∑
Y∈Y

2L−2∑
u=0

2L−2∑
v=0

∣∣〈Tu(X,0L−1), T
v(Y,0L−1)

〉∣∣2wuwv,

(5)

with 〈
Tu(X,0L−1), T

v(Y,0L−1)
〉

=

M∑
j=1

〈
Tu(Xj ,0L−1), T

v(Yj ,0L−1)
〉
,

(6)

where T represents the right cyclic shift operator,
(Xj ,0L−1), (Y

j ,0L−1) denote the concatenation of
the jth row of X, Y and 0L−1, respectively, and
w = (w0, w1, . . . , w2L−2) is a weight vector, satisfying

2L−2∑
j=0

wj = 1 and wj ≥ 0 for 0 ≤ j ≤ 2L− 2.

In the case of X = Y = C, a lower bound on F (C, C)
was derived in [15]. We represent the lower bound in the
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Table II: The parameters of the exisiting and proposed aperiodic QCSSs

Ref. K M L θ Alphabet Constraints

Th. 1 [21] u(u+ 1) u u u Zu u is power of prime
Th. 2 [21] u2 u u− 1 u Zu u is power of prime, u ≥ 5

[22] N(t0 − 1) N N N ZN
N (≥ 5) is odd positive integer with

t0 as its smallest prime factor

[23] N × F (N) N N N ZN

N (≥ 2) is any integer,
F (N) is the maximum number of rows for which

F (N)×N Florentine rectangle exists

Proposed pn+1(p− 1) pn+1 pm pm Zq

p is a prime number,
m is any positive integer,

n (≤ m− 1) is any non-negetive integer,
q is a positive multiple of p

following lemma which will be used in Section III to obtain
new correlation lower bound for θ:

Lemma 1 ( [15]). Let C be a (K,M,L, θ)-QCSS. Then

F (C, C) ≥
2L−2∑
u,v=0

M(L− τu,v,L)wuwv, (7)

where

0 ≤ τu,v,L = min{|v − u|, 2L− 1− |v − u|} ≤ L− 1.

In the following, we present some basics on q-ary functions
and it’s relation with graphs and sequences. We also discuss
some basic and necessary properties of sequences.

B. Sequences associated with q-ary Functions

Let q be a positive integer and p is a prime divisor of
q. For example, let q = 12 = 223, in this case p can
be either 2 or 3. For a q-ary function f : Zm

p → Zq , it
defines a Zq-valued sequence f = (f0, f1, . . . , fpm−1) , where
the coordinate fi = f(i0, i1, . . . , im−1) for 0 ≤ i < pm

with i =
∑m−1

j=0 ijp
m−j−1 and the arithmetic operations on

variables in the function f are taken modulo q. In the sequel
we shall identify an integer i with 0 ≤ i < pm as its p-
ary vector representation (i0, i1, . . . , im−1) when there is no
ambiguity. We define the complex-valued sequence associated
with f , denoted by ψq(f), as

ψq(f) =
(
ξf0q , ξ

f1
q , . . . , ξ

fpm−1
q

)
.

When there is no ambiguity in the context, we will write ψq(f)

as ψ(f) for simplicity. For x = (x0, x1, . . . , xm−1) ∈ Zm
p

and a subset J = {j0, j1, . . . , jn−1} ⊂ Zm, we define xJ =(
xj0 , xj1 , . . . , xjn−1

)
as the restriction of the vector x on J .

For c = (c0, c1, . . . , cn−1) ∈ Zn
p and xJ = c, we define the

complex-valued sequence corresponding to the restricted q-ary
function f |xJ=c as follows:

ψ(f |xJ=c) = (a0, a1, . . . , apm−1) with

ai =

ξfiq , iJ = c,

0, otherwise.

(8)

For any two functions f, g : Zm
p → Zq , below we define a

set of ordered pairs (γ, δ) to calculate the ACCF between two
q-ary restricted functions, ψ(f |xJ=c1

) and ψ(g|xJ=c2
), where

ci ∈ Zn
p for i = 1, 2, at a time-shift 0 ≤ τ < pm as follows:

Bτ (c1, c2) ={(γ, δ) : δ = γ + τ, 0 ≤ γ ≤ pm − τ − 1,

γJ = c1, δJ = c2}
(9)

where γJ , δJ correspond to the restrictions of the vector rep-
resentations of γ, δ, respectively. Following (8), the complex-
valued sequences ψ(f |xJ=c1) and ψ(g|xJ=c2) can be ex-
pressed as follows:

ψ(f |xJ=ci
) = (a0, a1, . . . , apm−1) with

aγ =

ξ
fγ
q , γJ = c1,

0, otherwise,

ψ(g|xJ=c2
) = (b0, b1, . . . , bpm−1) with

bδ =

ξgδq , δJ = c2,

0, otherwise.

(10)

From (3), (9) and (10), the ACCF can be expressed as

Θ(ψ(f |xJ=c1
), ψ(g|xJ=c2

))(τ) =

pm−τ−1∑
γ=0

aγb
∗
δ

=
∑

(γ,δ)∈Bτ (c1,c2)

ξfγ−gδ
q .

(11)
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When c1 = c2 = c, we denote the notation Bτ (c1, c2) in (9)
by Aτ (c) which can be expressed as follows:

Aτ (c) ={(γ, δ) : 0 ≤ γ ≤ pm − τ − 1, δ = γ + τ,

γJ = δJ = c}.
(12)

From (3), (10) and (12), the ACCF between ψ(f |xJ=c) and
ψ(g|xJ=c) can be expressed as

Θ(ψ(f |xJ=c), ψ(g|xJ=c))(τ) =
∑

(γ,δ)∈Aτ (c)

ξfγ−gδ
q . (13)

When f = g, the ACCF in (13) reduces to the AACF of
ψ(f |xJ=c).

The following example illustrates the sequences associated
with a q-ary function and the calculation of ACCF between
sequences associated with restricted q-ary functions.

Example 1. Assume p = 3, m = 3, and q = 3. Let us consider
f : Z3

3 → Z3 as follows:

f(x0, x1, x2) = x0x2 + 2x2x1 + 2x21 + x2 + 1.

According to the above definitions, the associated sequences f,
ψ(f) and restricted sequences ψ(f |xJ=c) w.r.t J = {0, 2} and
c ∈ {(0, 2), (1, 2), (2, 2)} can be given in the Table III, where
the blanks for the last three rows ψ(f |xJ=c) indicate that the
corresponding coordinates take values of 0. For c1 = (0, 2),
c2 = (1, 2), and c = (0, 2), from (9) and (12),

Bτ (c1, c2) = ∅, ∀ τ ̸= 3, 6, 9, 12, 15,

and

Aτ (c) = ∅, ∀ τ ̸= 0, 3, 6.

Therefore,

Θ(ψ(f |xJ=c1), ψ(f |xJ=c2))(τ) = 0,∀τ ̸= 3, 6, 9, 12, 15,

and

Θ(ψ(f |xJ=c))(τ) = 0, ∀ τ ̸= 0, 3, 6.

When τ ∈ {3, 6, 9, 12, 15}, for example τ = 3, from
the row ψ(f |xJ=(0,2)) in Table III we see γJ = c1 =

(0, 2) can hold only for γ ∈ {2, 5, 8}; furthermore, since
τ = 3 we see that δ = γ + τ with δJ = c2 =

(1, 2) can only hold for δ = 11, as indicated by the row
ψ(f |xJ=(1,2)). To summarize, we list Aτ (c) for τ = 0, 3, 6,
and Bτ (c1, c2) for τ = 3, 6, 9, 12, 15 in Table IV, where
Aτ ,Bτ are used for simplicity. From the Table IV, we can ex-
press Θ(ψ(f |xJ=c1

), ψ(f |xJ=c2
))(τ) and Θ(ψ(f |xJ=c))(τ)

for τ = 3 as follows: Θ(ψ(f |xJ=c1
), ψ(f |xJ=c2

))(3) =∑
(γ,δ)∈B3(c1,c2)

ξ
fγ−fδ
3 = ξf8−f11

3 = ξ1−2
3 = ξ−1

3 , and

Θ(ψ(f |xJ=c))(3) =
∑

(γ,δ)∈A3(c)
ξ
fγ−fδ
3 = ξf2−f5

3 +

ξf5−f8
3 = ξ0−0

3 + ξ0−1
3 = 1 + ξ−1

3 . For other values of τ ,

we can calculate the ACCFs similarly by following (11), (13)
and the Table IV.

We can observe that there are pm−n nonzero components
in ψ(f |xJ=c) for a choice of c in Zn

p . From (8) (and as
illustrated in the Table III), it is clear that the nonzero positions
in ψ(f |xJ=c1

) and ψ(f |xJ=c2
) for two distinct c1 and c2 in

Zn
p are always distinct. Therefore, ψ(f) can be expressed as

ψ(f) =
∑
c∈Zn

p

ψ(f |xJ=c). (14)

With this relaltion, one can express the ACCF between two
sequences ψ(f) and ψ(g) in terms of their correspoinding
restricted sequences.

Lemma 2. Let f and g be two q-ary functions in m variables.
The ACCF between ψ(f) and ψ(g) can be expressed as

Θ(ψ(f), ψ(g))(τ) =
∑

c1,c2∈Zn
p

Θ(ψ(f |xJ=c1
), ψ(g|xJ=c2

))(τ).

Proof: Following the relation in (14), we have

Θ(ψ(f), ψ(g))(τ)

= Θ

 ∑
c1∈Zn

p

ψ(f |xJ=c1),
∑

c2∈Zn
p

ψ(g|xJ=c2)

 (τ)

=
∑

c1∈Zn
p

Θ

ψ(f |xJ=c1),
∑

c2∈Zn
p

ψ(g|xJ=c2)

 (τ)

=
∑

c1,c2∈Zn
p

Θ(ψ(f |xJ=c1), ψ(g|xJ=c2)) (τ).

C. Quadratic Functions and Graphs

A quadratic q-ary function from Zm
p to Zq can be expressed

as

f(x0, x1, . . . , xm−1) =
∑

0≤i,j<m

qi,jxixj +
∑

0≤j<m

cjxj + c,

where qi,j , cj , c ∈ Zq . For a quadratic q-ary function f , we
define its graph G(f) as a graph, in which there are m vertices
labeled as xi, where there is an edge between vertices xi and
xj if qi,j ̸= 0. A Hamiltonian path in a graph is the path that
visits each vertex exactly once. A graph contains only one
vertex with no edges is also known as a Hamiltonain path [29].
For instance, Figure 1 represents the graph of f(x0, x1, x2) =
x0x2 + 2x2x1 + 2x21 + x2 + 1 in Example 1.

III. TIGHTER LOWER BOUNDS ON THE MAXIMUM

CORRELATION MAGNITUDE OF QCSSS

In this section, we will further investigate the lower bound
on the maximum correlation magnitude for (K,M,L, θ)-
QCSSs that are composed of multiple CCCs.
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Table III: Sequences corresponding to the ternary function x0x2 + 2x2x1 + 2x21 + x2 + 1

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

i0i1i2 000 001 002 010 011 012 020 021 022 100 101 102 110 111 112 120 121 122 200 201 202 210 211 212 220 221 222

f 1 2 0 0 0 0 0 2 1 1 0 2 0 1 2 0 0 0 1 1 1 0 2 1 0 1 2

ψ(f) ξ13 ξ23 ξ03 ξ03 ξ03 ξ03 ξ03 ξ23 ξ13 ξ13 ξ03 ξ23 ξ03 ξ13 ξ23 ξ03 ξ03 ξ03 ξ13 ξ13 ξ13 ξ03 ξ23 ξ13 ξ03 ξ13 ξ23

ψ(f |xJ=(0,2)) ξ03 ξ03 ξ13
ψ(f |xJ=(1,2)) ξ23 ξ23 ξ03
ψ(f |xJ=(2,2)) ξ13 ξ13 ξ23

x0 1 x2 2 x1

2

Figure 1: Graph of the function x0x2+2x2x1+2x21+x2+1

For the weight vector w in (5), we define a quadratic form

Q(w, a) = a

2L−2∑
u=0

w2
u +

2L−2∑
u,v=0

τu,v,Lwuwv, (15)

where a is a real number. Below we present the first main
theorem of this paper.

Theorem 1. Let N ≥ 2 and C be a collection of N different
(M,L)-CCCs. Then the maximum correlation magnitude θ of
C satisfies

θ2 ≥
M
(
L−Q

(
w, ML2

K

))
1− M

K

,

where K = NM .

Proof: Assume C = ∪N
i=1Ci, where Ci is an (M,L)-CCC.

Table IV: Aτ (c) for c = (0, 2), and Bτ (c1, c2) for c2 = (1, 2)

B3 {(8, 11)}
A0 {(2, 2), (5, 5), (8, 8)}

B6 {(5, 11), (8, 14)}
B9 {(2, 11), (5, 14), (8, 17)}

A3 {(2, 5), (5, 8)}
B12 {(2, 14), (5, 17)}
B15 {(2, 17)} A6 {(2, 8)}

Substituting D = C in (5), we have

|C|2F (C, C)

=
∑
X∈C

∑
Y∈C

2L−2∑
u=0

2L−2∑
v=0

∣∣〈Tu(X,0L−1), T
v(Y,0L−1)

〉∣∣2wuwv

=

N∑
i=1

∑
X,Y∈Ci

2L−2∑
u,v=0

∣∣〈Tu(X,0L−1), T
v(Y,0L−1)

〉∣∣2wuwv

+

N∑
i,j=1
i ̸=j

∑
X∈Ci

∑
Y∈Cj

2L−2∑
u,v=0

∣∣〈Tu(X,0L−1), T
v(Y,0L−1)

〉∣∣2wuwv

=S1 + S2,

(16)

where

S1 =

N∑
i=1

∑
X,Y∈Ci

2L−2∑
u,v=0

∣∣〈Tu(X,0L−1),

T v(Y,0L−1)
〉∣∣2wuwv,

and

S2 =

N∑
i,j=1
i̸=j

∑
X∈Ci

∑
Y∈Cj

2L−2∑
u,v=0

∣∣〈Tu(X,0L−1),

T v(Y,0L−1)
〉∣∣2wuwv.

As Ci is an (M,L)-CCC, for X,Y ∈ Ci and v ≤ u,〈
Tu(X,0L−1), T

v(Y,0L−1)
〉

=Θ(X,Y)(τu,v,L)

=


ML, X = Y, τu,v,L = 0,

0, X = Y, 1 ≤ τu,v,L < L,

0, X ̸= Y, 0 ≤ τu,v,L < L,

(17)

and for v > u ,〈
Tu(X,0L−1), T

v(Y,0L−1)
〉

=Θ(X,Y)(−τu,v,L)

=

0, X = Y, 1 ≤ τu,v,L < L,

0, X ̸= Y, 0 < τu,v,L < L.

(18)
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Using (17) and (18) in S1, we have

S1 =

N∑
i=1

∑
X,Y∈Ci

2L−2∑
u,v=0

∣∣〈Tu(X,0L−1),

T v(Y,0L−1)
〉∣∣2wuwv

=

N∑
i=1

∑
X,Y∈Ci
X=Y

2L−2∑
u,v=0
u=v

∣∣〈Tu(X,0L−1),

T v(Y,0L−1)
〉∣∣2wuwv

+

N∑
i=1

∑
X,Y∈Ci
X=Y

2L−2∑
u,v=0
u̸=v

∣∣〈Tu(X,0L−1),

T v(Y,0L−1)
〉∣∣2wuwv

+

N∑
i=1

∑
X,Y∈Ci
X ̸=Y

2L−2∑
u,v=0

∣∣〈Tu(X,0L−1),

T v(Y,0L−1)
〉∣∣2wuwv

=

N∑
i=1

∑
X∈Ci

2L−2∑
u=0

Θ2(X)(0)w2
u + 0 + 0

= KM2L2
2L−2∑
u=0

w2
u,

(19)

where K =MN . Now,

S2 =

N∑
i,j=1
i ̸=j

∑
X∈Ci

∑
Y∈Cj

2L−2∑
u,v=0

∣∣〈Tu(X,0L−1),

T v(Y,0L−1)
〉∣∣2wuwv

≤ θ2
N∑

i,j=1
i ̸=j

∑
X∈Ci

∑
Y∈Cj

2L−2∑
u,v=0

wuwv

= θ2K(K −M).

(20)

Combining (16), (19), and (20) gives

F (C, C) = S1 + S2

K2
≤ M2L2

K

2L−2∑
u=0

w2
u + θ2

(
1− M

K

)
.

(21)
From Lemma 1 and (21) it follows that

M2L2

K

2L−2∑
u=0

w2
u + θ2

(
1− M

K

)

≥
2L−2∑
u,v=0

M(L− τu,v,L)wuwv

=ML−M

2L−2∑
u,v=0

τu,v,Lwuwv.

Therefore, we have

θ2 ≥
ML− M2L2

K

∑2L−2
u=0 w2

u −M
∑2L−2

u,v=0 τu,v,Lwuwv

1− M
K

.

(22)

The desired conclusion directly follows from the definition of
Q(w, a) in (15).

Theorem 1 shows that the maximum correlation magnitude
of C = ∪N

i=1Ci heavily depends on the weight vector w. In
order to obtain tighter correlation lower bound for θ, our task
now is to choose suitable weight vectors in (22). We start with
the weight vector w from step functions.

Corollary 1. Suppose the weight vector w =

(w0, w1, . . . , w2L−2) is given by

wj =

 1
t , j = 0, 1, . . . , t− 1,

0, j = t, t+ 1, . . . , 2L− 2,
(23)

where 0 < t ≤ 2L − 1. Assume that L ≥ N . Then the lower
bounds for θ are given as follows:

• when N = 2, 3,

θ2 ≥ML
L

2L− 1
, (24)

• when N ≥ 4,

θ2 ≥ML

(
1− 2

√
3L2N −N2 − 3L

3L(N − 1)

)
. (25)

Proof: As the full proof is lengthy, it is placed in Appendix
A. Here we only provide the sketch of the proof. With weight
vector w given by (23), in the calculation of (22) we need to
consider two cases: 0 < t ≤ L and L+ 1 ≤ t ≤ 2L− 1.

Case 1: 0 < t ≤ L. In this case,
t−1∑

u,v=0
τu,v,L =

t−1∑
u=0

u(u+1)
2 +

t−1∑
u=0

(t−u−1)(t−u)
2 = t(t2−1)

3 .

Substituting the above equality into (22), we obtain

θ2 ≥ ML

1− M
K

(
1− 1

3L

(
t+

3ML2 −K

Kt

))
. (26)

We then need to find the value of t that gives the maximum
lower bound. For different choices of K/M = N , we obtain
the following results:

• For N = 2, 3, the maximum value of the lower bounds
in (26) is attained at t = L, implying

θ2 ≥ ML

1−M/K

(
2

3
− M

K
+

1

3L2

)
. (27)

• For N > 3, the maximum value of the lower bounds is

achieved at t =
⌈√

3L2

N − 1

⌋
∈ [1, L], and we have the

following simplified lower bound:

θ2 ≥ML

(
1−

2
√
N(3L2 −N)− 3L

3L(N − 1)

)
. (28)

Case 2: L < t ≤ 2L− 1. In this case, we obtain
t−1∑

u,v=0

τu,v,L = (t+ 1)(t− L)(L− 1)

+ (3Lt2 − t3 − 3L2t+ t+ 2L3 − 2L)/3.

(29)
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From (22) and (29), we have

θ2 ≥ M

3(1−M/K)

(
t+

a

t
− b

t2
− 3(L− 1)

)
, (30)

where

a = (6L2 − 6L+ 2)− 3ML2/K, and

b = L(L− 1)(2L− 1).
(31)

To find the maximum lower bound, we analyze the function
f(x) = t + a

t − b
t2 over the interval [L + 1, 2L − 1], where

we consider both the 1st-order and 2nd-order derivatives. For
the different choices of N , we have the following results:

• when N = 2, 3, the maximum lower bound is achieved
at t = 2L− 1, implying

θ2 ≥ ML2

2L− 1
,

• when N > 3, the maximum lower bound is achieved at
t = L+ 1, implying

θ2 ≥ML (1−
(N + 6)L3 + 3(N − 1)L2 + (2N − 3)L− 6N

3L(L+ 1)2(N − 1)

)
.

(32)

Comparing the bounds as derived in Case 1 and Case 2, we
reach the desired results.

In Remark 1, we compare the correlation lower bounds
derived in Corollary 1 with that of bound reported in [15].

Remark 1. From [15], the lower-bound on θ is given by

θ2 ≥ML

(
1− 2√

3N

)
, (33)

where N = K/M ≥ 3. For N = 3, it can easily be verified
that the derived lower bound in Corollary 1 is tighter than the
bound in (33). For N > 3, we have(

2
√
3L2N−N2−3L
3L(N−1)

)
2√
3N

≤
√
N −

√
3√

N − 1√
N

< 1. (34)

From (25), (33), and (34), it is clear that our derived lower
bound on θ in Corollary 1 is tighter than the lower bound in
[15].

Although we already have a tighter lower bound on θ with
respect to the weight vector in (23), another weight vector,
termed positive-cycle-of-a-sine-wave weight vector in [30],
may yield a tighter lower bound. Below, we present another
corollary to derive the proposed bound of Theorem 1 with
respect to the positive-cycle-of-a-sine-wave weight vector.

Table V: Value of φ(x) at x = 2, 3, and 4

x 2 3 4

φ(x) 1− L
N 1− L

2N − 1
2L 1− 429L

1250N − 2071
2500L

Corollary 2. The positive-cycle-of-a-sine-wave weight vector
is given by

wj =

tan π
2t sin

πj
t , j ∈ {0, 1, . . . , t− 1},

0, j ∈ {t, t+ 1, 2L− 2},

where 1 < t ≤ L. Assume L ≥ N . Then the lower bounds for
θ are given as follows:

• when 2 ≤ L ≤ 4,

θ2 ≥ ML

N − 1

(
N

4

(
3 + tan2

π

2L

)
−L

2

2
tan2

π

2L

)
,

• when L ≥ 5 and N = 2, 3, 4,

θ2 ≥ML

(
1− L2(2π2 + 4N − 16)−Nπ2

16L2(N − 1)

)
,

• when L ≥ 5 and N ≥ 5,

θ2 ≥ML

(
1−

π
√
N(2L2 −N)− 4L

4(N − 1)L

)
.

Proof: We have the following results from [30]:

2L−2∑
u=0

w2
u =

t

2
tan2

π

2t
. (35)

For 2 ≤ t ≤ L,
t−1∑

u,v=0

τu,v,Lwuwv =
t

4

(
1− tan2

π

2t

)
. (36)

From (22), (35), and (36), we have

θ2 ≥
ML

(
1− t

4L

(
1 + 2L2−N

N tan2 π
2t

))
1− 1

N

. (37)

Assume φ(x) = 1− x
4L

(
1 + 2L2−N

N tan2 π
2x

)
. We shall find

the maximum value of φ(x) in [2 : L]. Note that for x ≥ 5,
the function tan2 π

2x can be approximated as ( π
2x )

2 since their
difference is roughly 0.0987 at x = 5 and becomes smaller for
as x increases. In order to find the maximum value of φ(x) in
[2 : L], we divide the derivation in the following two cases:
L ≤ 4 and L ≥ 5.

Case 1 (L ≤ 4). In this case, we need to determine the
maximum value of φ(x) within the interval [2 : L]. This can
be easily determined since L ≤ 4 and x can only take on
L − 1 values 2, 3, and L. Table V lists the values φ(x) for
x = 2, 3, 4, where N ≤ L. It can be easily verified that
φ(2) ≤ φ(3) ≤ φ(4), indicating that the function φ(x) at
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[2 : L] achieves it’s maximum value at x = L. Therefore, we
can express the maximum as follows:

max
x∈[2,L]

φ(x) = φ(L) =
1

4

(
3 + tan2

π

2L

)
− L2

2N
tan2

π

2L

Case 2 (L ≥ 5). In this case, we consider the integer interval
[2 : L] = [2 : 4] ∪ [5 : L], indicating

max
x∈[2:L]

φ(x) = max

{
max
x∈[2:4]

φ(x), max
x∈[5:L]

φ(x)

}
. (38)

For the integer interval [2 : 4], since φ(4) ≥ φ(3) ≥ φ(2), we
have

max
x∈[2:4]

φ(x) = φ(4) = 1− 429L

1250N
− 2071

2500L
.

Next we find maximum of φ(x) over the integer interval [5 : L].
To this end, we will consider it over the interval [5, L] instead.
As discussed in the beginning, we have tan2 π

2x ≈ π2

4x2 for
x ∈ [5, L], thereby we approximate φ(x) as

φ(x) = 1− 1

4L

(
x+

π2(2L2 −N)

4xN

)
.

The derivative function φ′(x) has two zeros x0 = π
2

√
2L2−N

N ,
and −x0. Note that x0 lies in [5, L) if L ≥ N ≥ 5 and x0 ≥ L

otherwise. When L ≥ N ≥ 5, φ′(x) > 0 for x ∈ [5, x0)

and φ′(x) < 0 for x ∈ [x0, L), this implies that φ(x)
is monotonically increasing over [5, x0] and monotonically
decreasing over [x0, L). Hence f attains maximum value at
x = x0, when N ≥ 5. When N ≤ 4, the function f is
is monotonically increasing over [5, L] and therefore attains
maximum value at x = L. Furthermore, we can easily verify
that φ(L) ≥ φ(4) when N ≤ 4 and φ(x0) ≥ φ(4) when
N ≥ 5. That is to say, in Case 2 the function φ(x) achieves
its maximum value at x = L when N ≤ 4 and at x = x0

when N ≥ 5.

Combining the two cases, we have the following simplified
lower bounds for 2 ≤ t ≤ L:

• when 2 ≤ L ≤ 4, the lower bound in (37) is given by

θ2 ≥ ML

N − 1

(
N

4

(
3 + tan2

π

2L

)
− L2

2
tan2

π

2L

)
,

(39)
• when L ≥ 5 and N ≤ 4, the maximum lower bound in

(37) is approximately given by

θ2 ≥ML

(
1− L2(2π2 + 4N − 16)−Nπ2

16L2(N − 1)

)
, (40)

• when L ≥ N ≥ 5, by properly choosing t around x0,
we obtain the maximum lower bound in (37) and it is
approximately given by

θ2 ≥ML

(
1−

π
√
N(2L2 −N)− 4L

4(N − 1)L

)
. (41)

Remark 2. This remark compares the lower bounds derived in
Corollary 1 and Corollary 2. We start with the case of L ≤ 4.
In this case we have

• for N = 2, 3 and N ≤ L, the lower bound in (24) is
tighter than the lower bound in (39),

• for N = L = 4, the bound in (39) is tighter than that of
the lower bound in (25).

Now we compare the bounds for L ≥ 5. According to the
bounds in (24) and (40), it suffices to consider the sign of

L− 1

2L− 1
− L2(2π2 + 4N − 16)−Nπ2

16L2(N − 1)
.

A routine calculation indicates that

• for N = 2, the lower bound in (24) is tighter than that
in (40),

• for N = 3, the lower bound in (24) is tighter than that in
(40) for 5 ≤ L ≤ 25, and for L > 25, the lower bound
in (40) is tighter.

• for N = 4, the the lower bound in (40) is tighter than
that in (25) for L ≥ 5,

• for L ≥ N ≥ 5, the tighter bound is given by (41), which
is, according to (25) and (41), determined by

2
√
3L2N −N2 − 3L

3L(N − 1)
· 4(N − 1)L

π
√
N(2L2 −N)− 4L

=

√
192L2N − 64N2 − 12L√

18π2L2N − 9π2N2 − 12L
> 1.

In Appendix D, we discuss correlation lower bound for the
positive-cycle-of-a-sine-wave when L + 1 ≤ t ≤ 2L − 1, for
which the analysis is lengthy. We also compare the result with
Remark 2 based on the asymptotic behaviour of the lower
bounds.

Finally we summarize the newly derived tighter lower
bounds below.

Remark 3. For a (K,M,L, θ)-QCSS as a collection of N ≥
2 different (M,L) CCCs, where the sequence length L ≥
N , the lower bounds on the maximum aperiodic correlation
magnitude θ are improved as follows:

θ2 ≥



ML(1− L−1
2L−1 ), N = 2 or N = 3,

N ≤ L ≤ 25,

ML
(
1− L2(2π2+4N−16)−Nπ2

16L2(N−1)

)
, N = 3, L > 25

orN=4, L≥5,

ML(1− L−1.2
2L−1 ), N = L = 4,

ML

(
1− π

√
N(2L2−N)−4L

4(N−1)L

)
, L ≥ N ≥ 5,
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where the bound for N = L = 4 is transformed for a more
direct comparison. Furthermore, for sufficiently large L, the
lower bounds may be roughly given as follows:

θ2 ≥


ML/2, N = 2,

ML
(
1− 1

4(N−1)

)
, N = 3, 4,

ML
(
1− π

√
2N−4

4(N−1)

)
, N ≥ 5.

IV. CONSTRUCTION OF ASYMPTOTICALLY OPTIMAL

QCSSS COMPRISED OF CCCS

In this section, we shall first present a construction of CCCs
using q-ary functions, and then we will show that the collection
of those CCCs forms asymptotically optimal QCSSs with
respect to the correlation lower bounds derived in the previous
section.

We first introduce the q-ary functions which will be used
in our construction. For a subset J = {j0, . . . , jn−1} ⊂ Zm

with n ≤ m − 1, consider an m-variable q-ary function f :

Zm
p → Zq such that for each c ∈ Zn

p , the graph G(f |xJ=c)

is a Hamiltonian path with edges having identical weight q/p.
For the case of m = n + 1, f |xJ=c is a linear function of
one variable, which forms a simplest Hamiltonian path. For
m > n+1, the function f |xJ=c can be algebraically expressed
as

f |xJ=c =
q

p

m−n−2∑
α=0

xlπ(α)
xlπ(α+1)

+

m−n−1∑
α=0

clαxlα + c, (42)

where {l0, . . . , lm−n−1} = Zm \ {j0, . . . , jn−1}, π is a
permutation on Zm−n, and cl0 , cl1 , . . ., clm−n−1 , and c ∈ Zq .

Let k be an integer such that 1 ≤ k < p. For an integer
t with 0 ≤ t < pn+1, denote its vector representation w.r.t
base-p as (t, tn) ∈ Zn+1

p . Let us define the following set of
q-ary functions:

Ck
t =

{
fd,t = f +

kq

p

(
d · xJ + dnxlπ(0)

)
+

q

p

(
t · xJ + tnxlπ(m−n−1)

)
: 0 ≤ d < pn+1

}
,

(43)

where (d, dn) = (d0, d1, . . . , dn) ∈ Zn+1
p is the vector

representation of the integer d. Then we can define a code
as ψ(Ck

t ) = {ψ(fd,t) | fd,t ∈ Ck
t } and thereby a set of codes

as follows:

Ck =
{
ψ(Ck

t ) | 0 ≤ t < pn+1
}
. (44)

The following theorem characterizes the correlation proerties
of the code sets Ck.

Theorem 2. Let f be a q-ary function as characterized in
(42). Then, the code set Ck defined in (44) is a (pn+1, pm)-
CCC over Aq for any integer k with 1 ≤ k < p.

Proof: As the full proof is lengthy, here we only provide a
sketch of the proof and the full proof can be found in Appendix
B.

According to the defintion of Ck, we reprsent each set
of q-ary functions Ck

t given in (43) as follows: Ck
t ={

fd,t : 0 ≤ d < pn+1
}

, where

fd,t = f +
q

p
(kdnxlπ(0)

+ tnxlπ(m−n−1)
) +

q

p
(kd+ t) · xJ

= fdn,tn +
q

p
(kd+ t) · xJ .

(45)

Let τ be an integer satisfying 0 ≤ |τ | < pm. The ACCF
between two codes ψ(Ck

t ) and ψ(Ck
t′) in Ck at the time shift

τ can be expressed as

Θ
(
ψ(Ck

t ), ψ(C
k
t′)
)
(τ)

=

pn+1−1∑
d=0

∑
c1,c2∈Zn

p

Θ(ψ(fd,t|xJ=c1
), ψ(fd,t′ |xJ=c2

)) (τ)

=S1 + S2,

(46)

where

S1 =

pn+1−1∑
d=0

∑
c1=c2

Θ(ψ(fd,t|xJ=c1
), ψ(fd,t′ |xJ=c2

)) (τ),

and

S2 =

pn+1−1∑
d=0

∑
c1 ̸=c2

Θ(ψ(fd,t|xJ=c1
), ψ(fd,t′ |xJ=c2

)) (τ).

A routine calculation shows that S2 = 0. The calculation of
S1 is more complicated. Assume c1 = c2 = c ∈ Zn

p . Then we
have

S1 =

pn+1−1∑
d=0

∑
c∈Zn

p

Θ(ψ(fd,t|xJ=c), ψ(fd,t′ |xJ=c)) (τ)

=
∑

(d,dn)∈Zn+1
p

∑
c

Θ(ψ(fd,t|xJ=c), ψ(fd,t′ |xJ=c)) (τ)

= pn
∑
c

ξ(t−t′)·c
p S3,

(47)

where

S3 =
∑
dn

Θ
(
ψ (fdn,tn |xJ=c) , ψ

(
fdn,t′n

|xJ=c

))
(τ).

In Appendix B, we consider the calculation of S3 in three
cases and obtain

S3 =


pm−n+1, τ = 0, tn = t′n,

0, τ = 0, tn ̸= t′n,

0, τ ̸= 0.
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Figure 2: Correlation plot for Ck

The above result, combined with (46), (47) and S2 = 0, implies
that

Θ
(
ψ(Ck

t ), ψ(C
k
t′)
)
(τ) =

pm+n+1, τ = 0, t = t′,

0, otherwise.

Therefore, Ck forms a (pn+1, pm)-CCC for any choice of k in
{1, 2, . . . , p− 1}.

The following example illustrates the CCCs constructed in
Theorem 2.

Example 2. For m = 3, p = 3, and q = 6, let us consider
the following function:

f(x0, x1, x2) = x0x2 + 2x2x1 + x1x0 + x0 + 2x1 + x2 + 1.

Taking J = {0, 1}, from (43), we construct the following set
of 6-ary functions:

Ck
t = {f + 2k(d0x0 + d1x1 + d2x2)

+2(t0x0 + t1x1 + t2x2) : d ∈ Z3
3

}
,

(45)

where 1 ≤ k < 3, (t0, t1, t2) ∈ Z3
3 corresponds to integers

t = 0, 1, . . . , 26, and (d0, d1, d2) corresponds to integers d =

0, 1, . . . , 26. Following (44), we obtain Ck, k = 1, 2, as below:

Ck =
{
ψ(Ck

t ) : 0 ≤ t < 27
}

=
{
ψ(Ck

0 ), ψ(C
k
1 ), . . . , ψ(C

k
26)
}
.

(46)

From (46), it is clear that both C1 and C2 contain 27 codes of
length 27 over A6. In Table VI, we present the function sets
for generating codes in C1 and C2. Besides, in Appendix ??,
we list the codes ψ(C1

0 ), ψ(C
1
1 ), and ψ(C1

2 ) from C1 in Table
VII, and ψ(C2

0 ), ψ(C
2
1 ), and ψ(C2

2 ) from C2 in Table V III .
In addition, as shown in Figure 2, the AACF and ACCF of
the codes in Ck are ideal. Hence Ck forms a (27, 27)-CCC for
k = 1, 2, which is consistent with Theorem 2.

According to Theorem 2, the sets C1, C2, . . . , Cp−1 are
(pn+1, pm)-CCCs over Aq . In the sequel, we will show that
the maximum aperiodic cross-correlation magnitude between
two codes from any two distinct CCCs among C1, C2, . . . , Cp−1

is upper bounded by pm. To this end, we need the following
proposition.

Proposition 1. Let g and h be two q-ary functions from Zm
p

to Zq . For any two different integers 1 ≤ k1, k2 < p, define a
set S as

S =
{
(e1, e2) : e1, e2 ∈ Zw

p , k1e1 − k2e2 ≡ 0w(mod p)
}
.

Then for J1 = Zw with w < m and xJ1 = (x0, x1, . . . , xw−1),
we have∣∣∣ ∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1), ψ(h|xJ1

=e2))(τ)
∣∣∣ ≤ pm−w.

Proof: The full proof is lengthy, so here we only provide
important steps of the proof. The details of the full proof can
be found in Appendix C.

Let us define a mapping Λ : S → Z as follows:

Λ(e1, e2) =

w−1∑
t=0

e2,tp
w−1−t −

w−1∑
t=0

e1,tp
w−1−t.

It can be shown that the above mapping is injective. Define
two sets

S ′ = {(e1, e2) ∈ S : Λ(e1, e2) ≥ 0} and

S ′′ = {(e1, e2) ∈ S : Λ(e1, e2) ≤ 0}.

Clearly they satisfy the following properties:

S = S ′ ∪ S ′′, and S ′ ∩ S ′′ = {(0w,0w)},

implying |S ′| = |S ′′| = pw+1
2 = E since |S| = pw.

Assume that (ei1, e
i
2) is an element of S ′ and Λ(ei1, e

i
2) =

Di, where eij = (eij,0, e
i
j,1, . . . , e

i
j,n−1), i = 1, 2, . . . , E, and

j = 1, 2. Since, (0w,0w) ∈ S ′ and Λ is an injective mapping,
without loss of generality, we can assume that 0 = D1 <

D2 < · · · < DE . For 0 ≤ τ ≤ pm − 1, following (9), we have

Bτ (e
i
1, e

i
2) ={(γ, δ) : δ = γ + τ, 0 ≤ γ ≤ pm − τ − 1,

γα = ei1,α, δα = ei2,α, 0 ≤ α < w},
(48)

where (γ0, γ1, . . . , γm−1) and (δ0, δ1, . . . , δm−1) are the base-
p vector representations of the non-negative integers γ and δ,
respectively. Denote IDi = [pm−w(Di − 1) + 1 : pm−w(Di +

1)−1]. Then the set Bτ (e
i
1, e

i
2) is non-empty if τ is taken from

IDi
. In addition, it can be shown that for 1 ≤ i1 < i2 ≤ E,

IDi1
∩ IDi2

̸= ∅ iff Di2 = Di1 + 1.

For a fixed value of τ in [0 : pm − 1], we need to consider
the following three cases:
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Table VI: Sets Ck
t for the (27, 27)-CCCs C1 and C2

C1 C2
C1

0 = {f + 2(d0x0 + d1x1 + d2x2) : 0 ≤ d < 27} C2
0 = {f + 4(d0x0 + d1x1 + d2x2) : 0 ≤ d < 27}

C1
1 = {f + 2(d0x0 + d1x1 + d2x2) + 2x2 : 0 ≤ d < 27} C2

1 = {f + 4(d0x0 + d1x1 + d2x2) + 2x2 : 0 ≤ d < 27}
C1

2 = {f + 2(d0x0 + d1x1 + d2x2) + 4x2 : 0 ≤ d < 27} C2
2 = {f + 4(d0x0 + d1x1 + d2x2) + 4x2 : 0 ≤ d < 27}

C1
3 = {f + 2(d0x0 + d1x1 + d2x2) + 2x1 : 0 ≤ d < 27} C2

3 = {f + 4(d0x0 + d1x1 + d2x2) + 2x1 : 0 ≤ d < 27}
C1

4 = {f + 2(d0x0 + d1x1 + d2x2) + 2(x1 + x2) : 0 ≤ d < 27} C2
4 = {f + 4(d0x0 + d1x1 + d2x2) + 2(x1 + x2) : 0 ≤ d < 27}

C1
5 = {f + 2(d0x0 + d1x1 + d2x2) + 2(x1 + 2x2) : 0 ≤ d < 27} C2

5 = {f + 4(d0x0 + d1x1 + d2x2) + 2(x1 + 2x2) : 0 ≤ d < 27}
C1

6 = {f + 2(d0x0 + d1x1 + d2x2) + 4x1 : 0 ≤ d < 27} C2
6 = {f + 4(d0x0 + d1x1 + d2x2) + 4x1 : 0 ≤ d < 27}

C1
7 = {f + 2(d0x0 + d1x1 + d2x2) + 2(2x1 + x2) : 0 ≤ d < 27} C2

7 = {f + 4(d0x0 + d1x1 + d2x2) + 2(2x1 + x2) : 0 ≤ d < 27}
C1

8 = {f + 2(d0x0 + d1x1 + d2x2) + 2(2x1 + 2x2) : 0 ≤ d < 27} C2
8 = {f + 4(d0x0 + d1x1 + d2x2) + 2(2x1 + 2x2) : 0 ≤ d < 27}

C1
9 = {f + 2(d0x0 + d1x1 + d2x2) + 2x0 : 0 ≤ d < 27} C2

9 = {f + 4(d0x0 + d1x1 + d2x2) + 2x0 : 0 ≤ d < 27}
C1

10 = {f + 2(d0x0 + d1x1 + d2x2) + 2(x0 + x2) : 0 ≤ d < 27} C2
10 = {f + 4(d0x0 + d1x1 + d2x2) + 2(x0 + x2) : 0 ≤ d < 27}

C1
11 = {f + 2(d0x0 + d1x1 + d2x2) + 2(x0 + 2x2) : 0 ≤ d < 27} C2

11 = {f + 4(d0x0 + d1x1 + d2x2) + 2(x0 + 2x2) : 0 ≤ d < 27}
C1

12 = {f + 2(d0x0 + d1x1 + d2x2) + 2(x0 + x1) : 0 ≤ d < 27} C2
12 = {f + 4(d0x0 + d1x1 + d2x2) + 2(x0 + x1) : 0 ≤ d < 27}

C1
13 = {f + 2(d0x0 + d1x1 + d2x2) + 2(x0 + x1 + x2) : 0 ≤ d < 27} C2

13 = {f + 4(d0x0 + d1x1 + d2x2) + 2(x0 + x1 + x2) : 0 ≤ d < 27}
C1

14 = {f + 2(d0x0 + d1x1 + d2x2) + 2(x0 + x1 + 2x2) : 0 ≤ d < 27} C2
14 = {f + 4(d0x0 + d1x1 + d2x2) + 2(x0 + x1 + 2x2) : 0 ≤ d < 27}

C1
15 = {f + 2(d0x0 + d1x1 + d2x2) + 2(x0 + 2x1) : 0 ≤ d < 27} C2

15 = {f + 4(d0x0 + d1x1 + d2x2) + 2(x0 + 2x1) : 0 ≤ d < 27}
C1

16 = {f + 2(d0x0 + d1x1 + d2x2) + 2(x0 + 2x1 + x2) : 0 ≤ d < 27} C2
16 = {f + 4(d0x0 + d1x1 + d2x2) + 2(x0 + 2x1 + x2) : 0 ≤ d < 27}

C1
17 = {f + 2(d0x0 + d1x1 + d2x2) + 2(x0 + 2x1 + 2x2) : 0 ≤ d < 27} C2

17 = {f + 4(d0x0 + d1x1 + d2x2) + 2(x0 + 2x1 + 2x2) : 0 ≤ d < 27}
C1

18 = {f + 2(d0x0 + d1x1 + d2x2) + 4x0 : 0 ≤ d < 27} C2
18 = {f + 4(d0x0 + d1x1 + d2x2) + 4x0 : 0 ≤ d < 27}

C1
19 = {f + 2(d0x0 + d1x1 + d2x2) + 2(2x0 + x2) : 0 ≤ d < 27} C2

19 = {f + 4(d0x0 + d1x1 + d2x2) + 2(2x0 + x2) : 0 ≤ d < 27}
C1

20 = {f + 2(d0x0 + d1x1 + d2x2) + 2(2x0 + 2x2) : 0 ≤ d < 27} C2
20 = {f + 4(d0x0 + d1x1 + d2x2) + 2(2x0 + 2x2) : 0 ≤ d < 27}

C1
21 = {f + 2(d0x0 + d1x1 + d2x2) + 2(2x0 + x1) : 0 ≤ d < 27} C2

21 = {f + 4(d0x0 + d1x1 + d2x2) + 2(2x0 + x1) : 0 ≤ d < 27}
C1

22 = {f + 2(d0x0 + d1x1 + d2x2) + 2(2x0 + x1 + x2) : 0 ≤ d < 27} C2
22 = {f + 4(d0x0 + d1x1 + d2x2) + 2(2x0 + x1 + x2) : 0 ≤ d < 27}

C1
23 = {f + 2(d0x0 + d1x1 + d2x2) + 2(2x0 + x1 + 2x2) : 0 ≤ d < 27} C2

23 = {f + 4(d0x0 + d1x1 + d2x2) + 2(2x0 + x1 + 2x2) : 0 ≤ d < 27}
C1

24 = {f + 2(d0x0 + d1x1 + d2x2) + 2(2x0 + 2x1) : 0 ≤ d < 27} C2
24 = {f + 4(d0x0 + d1x1 + d2x2) + 2(2x0 + 2x1) : 0 ≤ d < 27}

C1
25 = {f + 2(d0x0 + d1x1 + d2x2) + 2(2x0 + 2x1 + x2) : 0 ≤ d < 27} C2

25 = {f + 4(d0x0 + d1x1 + d2x2) + 2(2x0 + 2x1 + x2) : 0 ≤ d < 27}
C1

26 = {f + 2(d0x0 + d1x1 + d2x2) + 2(2x0 + 2x1 + 2x2) : 0 ≤ d < 27} C2
26 = {f + 4(d0x0 + d1x1 + d2x2) + 2(2x0 + 2x1 + 2x2) : 0 ≤ d < 27}

Case 1: τ /∈ ∪E
i=1IDi

. In this case, since τ ≥ 0 and
Bτ (e

i
1, e

i
2) = ∅ for all i ∈ [1 : E], we have∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1

), ψ(h|xJ1
=e2

))(τ) = 0.

Case 2: τ ∈ IDi and τ /∈ IDj for all i ̸= j in [1 : E].
In this case, since τ does not belong to any IDj

, we have
Bτ (e

j
1, e

j
2) = ∅ for all j ∈ [1 : E] \ {i}. Partition the set

IDj
into two as I(1)Di

= {v ∈ IDj
: v ≤ pm−wDi} and

I
(2)
Di

= {v ∈ IDj
: v > pm−wDi}. Now τ can be expressed

as follows:

τ =

pm−w(Di − 1) + τ1, if τ ∈ I
(1)
Di
,

pm−wDi + τ2, if τ ∈ I
(2)
Di
,

where τ1 = 1, 2, . . . , pm−n and τ2 = 1, 2, . . . , pm−n−1. Then
we have

|Bτ (e
i
1, e

i
2)| =

τ1, if τ ∈ I
(1)
Di
,

pm−w − τ2, if τ ∈ I
(2)
Di
.

(49)

We can show that∑
(e1,e2)∈S

Θ(ψ(g|xJ1
=e1), ψ(h|xJ1

=e2))(τ)

=
∑

(γ,δ)∈Bτ (ei
1,e

i
2)

ξgγ−hδ
q .

(50)

From (49) and (50), we have∣∣∣∣∣∣
∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1), ψ(h|xJ1

=e2))(τ)

∣∣∣∣∣∣
≤

τ1, if τ ∈ I
(1)
Di
,

pm−w − τ2, if τ ∈ I
(2)
Di
,

implying

|
∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1), ψ(h|xJ1

=e2))(τ)| ≤ pm−w.

Case 3: τ ∈ IDi ∩ IDi+1 for some i ∈ {1, 2, . . . , E}, where
Di+1 = Di + 1. In this case we have

IDi
∩ IDi+1

= [pm−wDi + 1 : pm−w(Di + 1)− 1].

It can be observed that∑
(e1,e2)∈S

Θ(ψ(g|xJ1
=e1

), ψ(h|xJ1
=e2

))(τ)

=
∑

(γ,δ)∈Bτ (ei
1,e

i
2)

ξgγ−hδ
q +

∑
(γ,δ)∈Bτ (e

i+1
1 ,ei+1

2 )

ξgγ−hδ
q .

Note that τ can be expressed as τ = pm−wDi + τ3 =

pm−w(Di+1−1)+τ3, where τ3 = 1, 2, . . . , pm−w−1. There-
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Table VII: ψ(C1
0 ), ψ(C

1
1 ) and ψ(C1

2 ) from (27, 27)-CCC C1 over the alphabet A6, where ξi6 is given as i for simplicity

ψ(C1
0 ) ψ(C1

1 ) ψ(C1
2 )

123303543240531222303105501

141321501204555240321123525

105345525222513204345141543

123525321240153000303321345

141543345204111024321345303

105501303222135042345303321

123141105240315444303543123

141105123204333402321501141

105123141222351420345525105

123303543402153444141543345

141321501420111402105501303

105345525444135420123525321

123525321402315222141105123

141543345420333240105123141

105501303444351204123141105

123141105402531000141321501

141105123420555024105345525

105123141444513042123303543

123303543024315000525321123

141321501042333024543345141

105345525000351042501303105

123525321024531444525543501

141543345042555402543501525

105501303000513420501525543

123141105024153222525105345

141105123042111240543123303

105123141000135204501141321

141321501204555240321123525

105345525222513204345141543

123303543240531222303105501

141543345204111024321345303

105501303222135042345303321

123525321240153000303321345

141105123204333402321501141

105123141222351420345525105

123141105240315444303543123

141321501420111402105501303

105345525444135420123525321

123303543402153444141543345

141543345420333240105123141

105501303444351204123141105

123525321402315222141105123

141105123420555024105345525

105123141444513042123303543

123141105402531000141321501

141321501042333024543345141

105345525000351042501303105

123303543024315000525321123

141543345042555402543501525

105501303000513420501525543

123525321024531444525543501

141105123042111240543123303

105123141000135204501141321

123141105024153222525105345

105345525222513204345141543

123303543240531222303105501

141321501204555240321123525

105501303222135042345303321

123525321240153000303321345

141543345204111024321345303

105123141222351420345525105

123141105240315444303543123

141105123204333402321501141

105345525444135420123525321

123303543402153444141543345

141321501420111402105501303

105501303444351204123141105

123525321402315222141105123

141543345420333240105123141

105123141444513042123303543

123141105402531000141321501

141105123420555024105345525

105345525000351042501303105

123303543024315000525321123

141321501042333024543345141

105501303000513420501525543

123525321024531444525543501

141543345042555402543501525

105123141000135204501141321

123141105024153222525105345

141105123042111240543123303

fore,
∣∣Bτ (e

i
1, e

i
2)
∣∣ = pm−w − τ3 and

∣∣Bτ (e
i+1
1 , ei+1

2 )
∣∣ = τ3.

Similarly to Case 2, we have∣∣∣∣∣∣
∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1), ψ(h|xJ1

=e2))(τ)

∣∣∣∣∣∣
≤(pm−w − τ3) + τ3 = pm−w.

Combining Cases 1, 2, 3 gives∣∣∣∣∣∣
∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1

), ψ(h|xJ1
=e2

))(τ)

∣∣∣∣∣∣
≤pm−w,∀ τ ∈ [0 : pm − 1].

(51)

The statement for τ ∈ [−(pm−w − 1) : 0] can be similarly
shown.

Theorem 3. Consider C1, . . . , Cp−1 given in Theorem 2. Then
for J = {0, . . . , n − 1} and lπ(0) = n, the union ∪p−1

k=1Ck
forms a (pn+1(p− 1), pn+1, pm, pm)-QCSS over Aq .

Proof: Let f be the function as in (42). Take w = n+1,
J1 = {0, 1, . . . , n} = J ∪ {n} and d1 = (d, dn). Then we

have d · xJ + dnxn = d1 · xJ1 . Setting

g = f +
q

p

(
t · xJ + tnxlπ(m−n−1)

)
,

h = f +
q

p

(
t′ · xJ + t′nxlπ(m−n−1)

)
.

(52)

One can express the ACCF sum between two codes
ψ(Ck1

t ) ∈ Ck1
and ψ(Ck2

t′ ) ∈ Ck2
, where k1 ̸= k2, as

Θ
(
ψ(Ck1

t ), ψ(Ck2

t′ )
)
(τ)

=
∑
d1

Θ

(
ψ

(
g +

k1q

p
(d1 · xJ1)

)
,

ψ

(
h+

k2q

p
(d1 · xJ1)

))
(τ)

=
∑
d1

∑
e1,e2∈Zn+1

p

ξ
k1q
p d1e1+

k2
p d1e2

q Θ(ψ(g|xJ1
=e1

),

ψ(h|xJ1
=e2))(τ)

=
∑
d1

∑
e1,e2∈Zn+1

p

ξd1·(k1e1−k2e2)
p Θ(ψ(g|xJ1

=e1
),

ψ(h|xJ1
=e2))(τ)

(53)
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Table VIII: ψ(C2
0 ), ψ(C

2
1 ) and ψ(C2

2 ) from (27, 27)-CCC C2 over the alphabet A6, where ξi6 is given as i for simplicity

ψ(C2
0 ) ψ(C2

1 ) ψ(C2
2 )

123303543240531222303105501

105345525222513204345141543

141321501204555240321123525

123141105240315444303543123

105123141222351420345525105

141105123204333402321501141

123525321240153000303321345

105501303222135042345303321

141543345204111024321345303

123303543024315000525321123

105345525000351042501303105

141321501042333024543345141

123141105024153222525105345

105123141000135204501141321

141105123042111240543123303

123525321024531444525543501

105501303000513420501525543

141543345042555402543501525

123303543402153444141543345

105345525444135420123525321

141321501420111402105501303

123141105402531000141321501

105123141444513042123303543

141105123420555024105345525

123525321402315222141105123

105501303444351204123141105

141543345420333240105123141

141321501204555240321123525

123303543240531222303105501

105345525222513204345141543

141105123204333402321501141

123141105240315444303543123

105123141222351420345525105

141543345204111024321345303

123525321240153000303321345

105501303222135042345303321

141321501042333024543345141

123303543024315000525321123

105345525000351042501303105

141105123042111240543123303

123141105024153222525105345

105123141000135204501141321

141543345042555402543501525

123525321024531444525543501

105501303000513420501525543

141321501420111402105501303

123303543402153444141543345

105345525444135420123525321

141105123420555024105345525

123141105402531000141321501

105123141444513042123303543

141543345420333240105123141

123525321402315222141105123

105501303444351204123141105

105345525222513204345141543

141321501204555240321123525

123303543240531222303105501

105123141222351420345525105

141105123204333402321501141

123141105240315444303543123

105501303222135042345303321

141543345204111024321345303

123525321240153000303321345

105345525000351042501303105

141321501042333024543345141

123303543024315000525321123

105123141000135204501141321

141105123042111240543123303

123141105024153222525105345

105501303000513420501525543

141543345042555402543501525

123525321024531444525543501

105345525444135420123525321

141321501420111402105501303

123303543402153444141543345

105123141444513042123303543

141105123420555024105345525

123141105402531000141321501

105501303444351204123141105

141543345420333240105123141

123525321402315222141105123

=
∑

e1,e2∈Zn+1
p

Θ(ψ(g|xJ1
=e1

), ψ(h|xJ1
=e2

))(τ)×

∑
d1

ξd1·(k1e1−k2e2)
p .

According to (53), we consider the following cases:
Case 1: k1e1 − k2e2 ̸≡ 0n+1 (mod p). In this case, we

have ∑
d1

ξd1·(k1e1−k2e2)
p = 0,

which implies Θ
(
ψ(Ck1

t ), ψ(Ck2

t′ )
)
(τ) = 0.

Case 2: k1e1−k2e2 ≡ 0n+1 (mod p). In this case we have∑
d1

ξd1·(k1e1−k2e2)
p = pn+1.

Denote

S = {(e1, e2) : e1, e2 ∈ Zn+1,

k1e1 − k2e2 ≡ 0n+1 ( mod p)}.
(54)

Then the result in (53) reduces to the following:

Θ
(
ψ(Ck1

t ), ψ(Ck2

t′ )
)
(τ)

=pn+1
∑

(e1,e2)∈S

Θ
(
ψ
(
g|xJ1

=e1

)
, ψ
(
h|xJ1

=e2

))
(τ).

(55)

Applying Proposition 1 in (55), we obtain∣∣∣Θ(ψ(Ck1
t ), ψ(Ck2

t′ )
)
(τ)
∣∣∣

=pn+1
∣∣∣ ∑
(e1,e2)∈S

Θ
(
ψ
(
g|xJ1

=e1

)
, ψ
(
h|xJ1

=e2

))
(τ)
∣∣∣

≤pm.

Combining the above cases, it is clear that∣∣∣Θ(ψ(Ck1
t ), ψ(Ck2

t′ )
)
(τ)
∣∣∣ ≤ pm for |τ | < pm, k1 ̸= k2.

(56)
As per Theorem 2, each Ck is a (pn+1, pm)-CCC set for

k ∈ {1, 2, . . . , p−1}. From (56), it is clear that the maximum
magnitude of the ACCFs between the codes from two distinct
sets of CCCs Ck1 and Ck2 is upper bounded by pm. Therefore,
the set of codes ∪p−1

k=1Ck forms a (pn+1(p−1), pn+1, pm, pm)-
QCSS over Aq .

Remark 4. As a comparison, Table II lists the existing con-
structions of aperiodic QCSSs and our proposed construction
in this paper. It is clear that in all existing constructions, the
alphabets have sizes no less than the length of constituent
sequences. Therefore, for any integer q smaller than pm with
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m > 1, the known constructions cannot genetrate the QCSSs
as reported in Theorem 3.

The following corollary discusses the optimality of the
proposed QCSSs w.r.t the newly derived lower bounds in this
paper.

Corollary 3 (Asymptotic Optimality of the Proposed Con-
struction). The proposed construction produces (pn+1(p −
1), pn+1, pm, pm)-QCSS over Aq . We check optimality for
N > 4, with respect to our newly derived tighter lower bound
given in Remark 3. The optimality factor ρ can be expressed
as follows:

ρ =
θ√

ML

(
1− π

√
N(2L2−N)−4L

4(N−1)L

)
=

p
m−n−1

2√
1−

π

√
(p−1)

p2

(
2− p−1

p2m

)
− 4

p

1− 2
p

.

(57)

In particular, for m = n+1, it can be observed from (57) that
the optimality factor ρ achieve the value 1 for a sufficiently
large value of p.

Corollary 3 shows that the proposed QCSSs are asympotot-
ically optimal w.r.t to the lowers bound in Corollaries 1 and
2. As a matter of fact, when the prime p and m take small
values, the resulting QCSSs are near optimal. With respect to
the lowers bound in [15] and those in Remark 3, we denote
optimal factors

ρ1 =
θ√

ML
(
1− 2

√
M
3K

) and

ρ2 =



θ√
ML2

2L−1

, N = 2,

θ

ML
(
1−L2(2π2+4N−16)−Nπ2

16L2(N−1)

) , N = 4,

θ√
ML

(
1−π

√
N(2L2−N)−4L
4(N−1)L

) , N > 4.

Table IX lists the values of optimality factors ρ1, ρ2, re-
spectively, for certain parameters p and m. For p = 3, the
entries are denoted as “–” as the bound in [15] is valid for
K ≥ 3M . Table IX clearly shows that the proposed QCSS
tends to optimality faster with respect to the proposed bound.
Furthermore, we also have compared ρ1 and ρ2 for N > 4,
with respect to the proposd (p(p − 1), p, p, p)-QCSS, where
13 ≤ p < 15000 in Figure 3. In this figure, the horizontal
axis represents sequence lengths in the form of prime numbers
ranging from 13 to 14983, while the vertical axis represents
the values of ρ1 and ρ2, which range from 1 to 1.5382 (the

Table IX: Optimality factors for the proposed QCSS with
respect to the proposed lower bound and the lower bound in
[15]

p m K M N L θ ρ1 ρ2

3
1 6 3 2 3 3 − 1.29

2 18 9 2 9 9 − 1.37

5
1 20 5 4 5 5 1.54 1.27

2 100 25 4 25 25 1.54 1.3

7
1 42 7 6 7 7 1.38 1.22

2 294 49 6 49 49 1.38 1.23

11
1 110 11 10 11 11 1.25 1.17

2 1210 121 10 121 121 1.25 1.18

13 6829 14983
13 5 L 5 14983

1.01

1.1566

1.5382
;1

;2

Figure 3: Comparison between the optimality factors ρ1 and
ρ2 with respect to ((p−1)p, p, p, p)-QCSS for 13 ≤ p < 15000

value of ρ1 at p = 13, where ρ2 = 1.1566). It is evident that
ρ2 tends to converge to 1 faster than ρ1.

In the end we provide two examples for the proposed
QCSSs.

Example 3. Recall from Example 2 that m = 3, p = 3, q = 6,
J = {0, 1}, n = 2, and the function appears as follows:

f(x0, x1, x2) = x0x2 + 2x2x1 + x1x0 + x0 + 2x1 + x2 + 1.

In (46), we have derived (27, 27)-CCCs C1 and C2 from
Theorem 2. We present three codes from each of C1 and C2 in
Table VII and Table VIII, respectively, in Z6-valued form.

In this example, we shall consider the maximum ACCF
magnitude for codes drawn from C1 and C2. As each of C1
and C2 contains 27 codes, there are 729 possible ACCFs. For
clarity, we choose two codes ψ(C1

0 ) ∈ C1 and ψ(C2
1 ) ∈ C2 and

plot their ACCF magnitudes in Figure 4. It can be verified that
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Figure 4: Correlation plot between the codes ψ(C1
0 ) and

ψ(C2
1 )

the maximum magnitude among the remaining 728 ACCFs is
also given by 27, thus verifying the correlation properties as
stated in Theorem 3. Therefore C1∪C2 forms a (54, 27, 27, 27)-
QCSS over the alphabet A6. As N = p−1 = 2, from Remark
3, the optimality factor is ρ = θ√

ML2

2L−1

= 1.40. Therefore, the

code set (54, 27, 27, 27)-QCSS forms near-optimal QCSS over
A6.

Below we present another example to derive a near-optimal
QCSS from Theorem 3.

Example 4. Let f : Z2
3 → Z3 be a ternary function given by

f(x0, x1) = x0x1 + x20 + x1.

Taking J = {0}, from (43), we construct the following sets of
ternary functions for k = 1, 2:

Ck
t = {f + k(d0x0 + d1x1) + (t0x0 + t1x1) : d0, d1 ∈ Z3} ,

where (t0, t1) ∈ Z2
3 corresponds to integers t = 0, 1, . . . , 8.

Table X lists the sequences associated with the functions in
Ck

t .
Numerical results show that the sets C1 ={
ψ(C1

t ) : 0 ≤ t < 9
}

, C2 =
{
ψ(C2

t ) : 0 ≤ t < 9
}

are (9, 9)-
CCCs. It is also confirmed that the maximum magnitude of
ACCF between any two codes from C1 and C2, respectively,
is upper bounded by 9, indicating that C1 ∪ C2 forms an
(18, 9, 9, 9)-QCSS over the alphabet A3. As an illustration,
Figure 5 (a) and Figure 5 (b) represent the absolute value of
AACF and ACCF, respectively, for the CCCs C1 and C2. In
Figure 5 (c), we present the absolute value of ACCF between
ψ(C1

0 ) and ψ(C2
0 ). These numerical results are consistent

with Theorem 2 and Theorem 3.
In addition, since N = 2, the optimality factor appears

as: ρ = θ√
ML2

2L−1

= 1.37. This indicates that the derived

(18, 9, 9, 9)-QCSS C1 ∪ C2 is near-optimal.

V. CONCLUSION

In this paper, we have first studied the lower bound on the
maximum magnitude of aperiodic auto- and cross-correlation

0

40
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Figure 5: Correlation plot

functions for those QCSSs that appear as the collection of
multiple CCCs. By selecting appropriate weight vectors into
the bounding function, we have shown that the derived bound
is tighter than the bound reported in [15]. Then, we have
studied q-ary functions through a graphical point-of-view to
produce aperiodic QCSSs over a small alphabet. The proposed
construction generates aperiodic QCSSs over the alphabet Aq ,
where q is divisible by p. Unlike the existing aperiodic QCSSs,
the proposed construction can maintain a small alphabet size
with increasing set size and sequence lengths. It is also to be
noted that the obtained QCSSs appears in the form of the col-
lection of multiple sets of CCCs which may gurantee multipath
interference free communication in MC-CDMA system as the
multipath interference is closely related to the AACFs of the
codes assigned to the users. As the sequence length increases,
the proposed QCSSs tend to be asymptotically optimal with
respect to the derived lower bound.

APPENDIX A
PROOF OF COROLLARY 1

Case 1 (0 < t ≤ L): For 0 ≤ u ≤ t− 1, we obtain

t−1∑
v=0

τu,v,L =

u∑
v=0

(u− v) +

t−1∑
v=u+1

(v − u)

=
u(u+ 1)

2
+

(t− u− 1)(t− u)

2
.

Therefore,

t−1∑
u,v=0

τu,v,L =

t−1∑
u=0

u(u+ 1)

2
+

t−1∑
u=0

(t− u− 1)(t− u)

2

=
t(t2 − 1)

3
.



17

Table X: (18, 9, 9, 9)-QCSS over the alphabet A3, where ξi3 is given as i for simplicity

ψ(C1
0 ) ψ(C1

1 ) ψ(C1
2 ) ψ(C1

3 ) ψ(C1
4 ) ψ(C1

5 ) ψ(C1
6 ) ψ(C1

7 ) ψ(C1
8 )

012102111

021111120

000120102

012210000

021222012

000201021

012021222

021000201

000012210

021111120

000120102

012102111

021222012

000201021

012210000

021000201

000012210

012021222

000120102

012102111

021111120

000201021

012210000

021222012

000012210

012021222

021000201

012210000

021222012

000201021

012021222

021000201

000012210

012102111

021111120

000120102

021222012

000201021

012210000

021000201

000012210

012021222

021111120

000120102

012102111

000201021

012210000

021222012

000012210

012021222

021000201

000120102

012102111

021111120

012021222

021000201

000012210

012102111

021111120

000120102

012210000

021222012

000201021

021000201

000012210

012021222

021111120

000120102

012102111

021222012

000201021

012210000

000012210

012021222

021000201

000120102

012102111

021111120

000201021

012210000

021222012

ψ(C2
0 ) ψ(C2

1 ) ψ(C2
2 ) ψ(C2

3 ) ψ(C2
4 ) ψ(C2

5 ) ψ(C2
6 ) ψ(C2

7 ) ψ(C2
8 )

012102111

000120102

021111120

012021222

000012210

021000201

012210000

000201021

021222012

021111120

012102111

000120102

021000201

012021222

000012210

021222012

012210000

000201021

000120102

021111120

012102111

000012210

021000201

012021222

000201021

021222012

012210000

012210000

000201021

021222012

012102111

000120102

021111120

012021222

000012210

021000201

021222012

012210000

000201021

021111120

012102111

000120102

021000201

012021222

000012210

000201021

021222012

012210000

000120102

021111120

012102111

000012210

021000201

012021222

012021222

000012210

021000201

012210000

000201021

021222012

012102111

000120102

021111120

021000201

012021222

000012210

021222012

012210000

000201021

021111120

012102111

000120102

000012210

021000201

012021222

000201021

021222012

012210000

000120102

021111120

012102111

Substituting
∑t−1

u,v=0 τu,v,L = t(t2−1)
3 in (22), we have

θ2 ≥
ML

(
1− ML

Kt − (t2−1)
3Lt

)
1− M

K

=
ML

1− M
K

(
1− 1

3L

(
t+

3ML2 −K

Kt

))
.

(58)

Define a function f(x) = x+ 3ML2−K
Kx . We are interested

in the minimum value of f(x) over the interval [1, L]. Observe
that f(x) is continuous on [1, L]. Consider its derivative

f ′(x) = 1 − 3ML2−K
Kx2 . It has two zeros x0 =

√
3ML2

K − 1

and −x0, and is monotonically increasing over the interval
[1, L]. We now consider the minimum value of f(x) over the
interval [1, L].

1) When N = K/M = 2, one has x0 > L, which
means that f ′(x) < 0 over [1, L]. In this case f(x)

is monotonically decreasing over [1, L] and achieves the
minimum value at x = L. Then we have

f(x) ≥ f(L) = 2L− 1

L
for x ∈ [1, L],

which implies

θ2 ≥ ML

1−M/K

(
2

3
− M

K
+

1

3L2

)
=ML

(
1

3
+

2

3L2

)
.

2) When N = K/M = 3, one has x0 =
√

3ML2

K − 1 =√
L2 − 1 ≤ L, which is very close to L. In this case,

f ′(x) < 0 over the interval [1, L], and hence mono-
tonically decreasing. Therefore, f(x) achieve minimum
value at x = L, and we have the following lower bound:

θ2 ≥ML

(
1

2
+

1

2L2

)
.

3) When N = K/M > 3, one has x0 =
√

3ML2

K − 1 < L.
That is to say, f ′(x) < 0 over [1, x0] and f ′(x) > 0 over
[x0, L]. This implies that the function f(x) achieves the
minimum value at x = x0. Hence we have

f(x) ≥ f(x0) = 2

√
3ML2

K
− 1 for x ∈ [1, L].

In this case, by properly choosing x around
√

3L2

N − 1,
we have the following simplified lower bound:

θ2 ≥ML

(
1−

2
√
N(3L2 −N)− 3L

3L(N − 1)

)
.

Case 2 (L < t ≤ 2L− 1): For 0 ≤ u ≤ t− L− 1, we obtain
t−1∑
v=0

τu,v,L =

u−1∑
v=0

(u− v) +

u+L−1∑
v=u

(v − u)

+

t−1∑
v=u+L

(2L− 1− v + u)

= u(t+ 1− 2L)− L2 + 2Lt− t2 + t

2
.

Hence,
t−L−1∑
u=0

t−1∑
v=0

τu,v,L =
(t− L)(t+ 1)(L− 1)

2
.



18

For t− L ≤ u ≤ L− 1, we obtain
t−1∑
v=0

τu,v,L =

u∑
v=0

(u− v) +

t−1∑
v=u+1

(v − u)

= u2 − (t− 1)u+
t2 − t

2
.

Hence,
L−1∑

u=t−L

t−1∑
v=0

τu,v,L =
3Lt2 − t3 − 3L2t+ t+ 2L3 − 2L

3
.

Similarly, we obtain

t−1∑
u=L

t−1∑
v=0

τu,v,L =
(t+ 1)(t− L)(L− 1)

2
.

Therefore,
t−1∑

u,v=0

τu,v,L = (t+ 1)(t− L)(L− 1)

+
3Lt2 − t3 − 3L2t+ t+ 2L3 − 2L

3
.

(59)

From (22) and (59), we have

θ2 ≥ M

3(1−M/K)

(
t+

a

t
− b

t2
− 3(L− 1)

)
, (60)

where

a = (6L2 − 6L+ 2)− 3ML2

K
,

b = L(L− 1)(2L− 1).

Similarly we define a function

f(x) = x+
a

x
− b

x2
,

and will discuss the property of f(x) on the interval [L +

1, 2L− 1].
We shall consider both the 1st-order and 2nd-order deriva-

tives of f(x), which are given by

f ′(x) = 1− a

x2
+
2b

x3
and f ′′(x) =

2a

x3
− 6b

x4
=

2a

x4

(
x− 3b

a

)
.

The properties of f ′(x) and f ′′(x) on the interval [L+1, 2L−
1] will be used to determine the maximum value of f(x) in
[L+ 1, 2L− 1].

We start with the property of f ′′(x) on [L+1, 2L+1]. Note
that f ′′(x) has zero

x0 =
3b

a

=
3L(L− 1)(2L− 1)

(6L2 − 6L+ 2)− 3ML2

K

=
6L3 − 9L2 + 3L

(6− 3
N )L2 − 6L+ 2

= L

(
1 +

( 3
NL

2 − 3L+ 1)

(6− 3
N )L2 − 6L+ 2

)
.

We need to consider whether x0 lies in between L + 1 and
2L − 1. Hence we divide the discussion into three subcases:
N = 2, 3 ≤ N ≤ L/3 and N > L/3.

1) In the case of N = 2, we have

1

L
≤

( 3
NL

2 − 3L+ 1)

(6− 3
N )L2 − 6L+ 2

< 1.

In this case, the root x0 = 3b
a lies in the interval [L +

1, 2L− 1]. This implies f ′′(x) < 0 for x ∈ [L+ 1, x0)

and f ′′(x) > 0 for x ∈ (x0, 2L− 1]. Consequently, the
first order derivative f ′(x) is monotonically decreasing
over [L + 1, x0] and monotonically increasing over
[x0, 2L− 1]. Furthermore, we have

f ′(2L− 1) =
1

(2L− 1)3
(
(2L− 1)3−a(2L−1)+2b

)
=

3
NL

2 − 1

(2L− 1)2

=
3
2L

2 − 1

(2L− 1)2
> 0

(61)

and

f ′(L+ 1)

=
(L+ 1)3 − a(L+ 1) + 2b

(L+ 1)3

=
(L+ 1)3 − ((6L2 − 6L+ 2)− 3

NL
2)(L+ 1)

(L+ 1)3

+
2L(L− 1)(2L− 1)

(L+ 1)3

=
−(1− 3

N )L3 − L2(3− 3
N ) + 9L− 1

(L+ 1)3

=
L3 − 3L2 + 18L− 2

2(L+ 1)3
> 0.

(62)

Since for x ∈ [L + 1, 2L − 1], the derivative function
f ′(x) satisfies f ′(x) ≥ f ′

(
3b
a

)
= 1 − a·a2

9b2 + 2a3

27b3 =

1 − a3

27b2 > 0 for L ≥ 2. Hence the function f(x)

is monotonically increasing on [L + 1, 2L − 1] and it
achieves the maximum value at x = 2L− 1. Since

f(2L− 1) = (2L− 1) +
a

2L− 1
− b

(2L− 1)2

=
(9L2 − 9L+ 3)− 3

NL
2

2L− 1
.

(63)

It follows that (22) becomes

θ2 ≥ M

(1−M/K)
·
(1− 1

N )L2

(2L− 1)
=

ML2

2L− 1
.

2) When 3 ≤ N ≤ L/3, similarly one has

1

L
<

( 3
NL

2 − 3L+ 1)

(6− 3
N )L2 − 6L+ 2

< 1,
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implying that f ′(x) is monotonically decreasing over
[L+1, x0] and monotonically increasing over [x0, 2L−
1]. From the calculations in (61) and (62), one has

f ′(2L− 1) =
3
NL

2 − 1

(2L− 1)2
> 0

and

f ′(L+ 1) =
−(1− 3

N )L3 − L2(3− 3
N ) + 9L− 1

(L+ 1)3

< 0.

This implies the minimum value f ′(x0) < 0. Then
the function f ′(x) has a zero x1 in the interval
[x0, 2L − 1]. That is to say, f ′(x) < 0 for x ∈ [L +

1, x1] and f ′(x) ≥ 0 for x ∈ [x1, 2L − 1]. Hence the
function f(x) is monotonically decreasing on [L+1, x1]

and is monotonically increasing on [x1, 2L− 1]. Conse-
quently, the maximum value of f(x) is attained either
at x = L+ 1 or x = 2L− 1.
Note that

f(L+ 1)− f(2L− 1)

=(L+ 1) +
a

L+ 1
− b

(L+ 1)2

−
(
(2L− 1) +

a

2L− 1
− b

(2L− 1)2

)
=

(L− 2)

(L+ 1)2(2L− 1)

(
N − 3

N
L3 − 3

N
L2 − 4L+ 3

)
.

This implies that for L ≥ 3N , f(L + 1) < f(2L − 1)

for N = 3, and f(L + 1) > f(2L − 1) for N > 3.
Therefore, for N = 3 one has

θ2 ≥ M

(1−M/K)
·
(1− 1

N )L2

(2L− 1)
=

ML2

2L− 1
,

and for N > 3, we have

θ2 ≥ M

(1−M/K)
×

(2N − 3)L3 + 3(N − 1)L2 +NL+ 6N

3(L+ 1)2N

=ML (1−
(N + 6)L3 + 3(N − 1)L2 + (2N − 3)L− 6N

3L(L+ 1)2(N − 1)

)
.

(64)

3) When N > L/3 ≥ 3, one has x0 = 3b/a <

L + 1 for L ≥ 9. In this case f ′′(L + 1) > 0 and
f ′′(2L − 1) > 0, implying that f ′(x) is monotonically
increasing over [L + 1, 2L − 1]. Similarly, one has
f ′(L + 1) < 0 and f ′(2L − 1) > 0. Hence f(x)

achieve the maximum value either at L+ 1 or 2L− 1.
Similar to the previous discussion for the case, we know

f(L + 1) > f(2L − 1) when N > L/3 ≥ 3. Then the
lower bound is as given in (64).

In summary, for L + 1 ≤ t ≤ 2L − 1, when N = 2, 3, the
bound is given by

θ2 ≥ ML2

2L− 1
,

and when N > 3, the bound is given by

θ2 ≥ML (1−
(N + 6)L3 + 3(N − 1)L2 + (2N − 3)L− 6N

3L(L+ 1)2(N − 1)

)
.

(65)

Comparing the lower bounds in Case 1 and Case 2, we have
the following result:

• when N = 2, 3, the maximum value of the lower bounds
is achieved from (60) at t = 2L− 1, namely,

θ2 ≥ ML2

2L− 1
,

• when N > 3, the maximum value of the lower bounds

is achieved from (58) at
⌈√

3L2

N − 1

⌋
. The lower bound

is approximately given by

θ2 ≥ML

(
1− 2

√
3L2N −N2 − 3L

3L(N − 1)

)
.

APPENDIX B
PROOF OF THEOREM 2

According to the defintion of Ck, we reprsent each set
of q-ary functions Ck

t given in (43) as follows: Ck
t ={

fd,t : 0 ≤ d < pn+1
}

, where fd,t = fdn,tn + q
p (kd +

t) · xJ , fdn,tn = f + q
p (kdnxlπ(0)

+ tnxlπ(m−n−1)
), and

(d0, d1, . . . , dn) is the vector representation of d with respect
to base-p. Let τ be an integer satisfying 0 ≤ |τ | < pm. The
ACCF between two codes ψ(Ck

t ) and ψ(Ck
t′) in Ck at the time

shift τ can be expressed as

Θ
(
ψ(Ck

t ), ψ(C
k
t′)
)
(τ)

=

pn+1−1∑
d=0

Θ(ψ(fd,t), ψ(fd,t′)) (τ)

=

pn+1−1∑
d=0

∑
c1,c2∈Zn

p

Θ(ψ(fd,t|xJ=c1), ψ(fd,t′ |xJ=c2)) (τ)

=

pn+1−1∑
d=0

∑
c1=c2

Θ(ψ(fd,t|xJ=c1), ψ(fd,t′ |xJ=c2)) (τ)+

pn+1−1∑
d=0

∑
c1 ̸=c2

Θ(ψ(fd,t|xJ=c1
), ψ(fd,t′ |xJ=c2)) (τ)

=S1 + S2,

(66)
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where

S1 =

pn+1−1∑
d=0

∑
c1=c2

Θ(ψ(fd,t|xJ=c1
), ψ(fd,t′ |xJ=c2

)) (τ),

and

S2 =

pn+1−1∑
d=0

∑
c1 ̸=c2

Θ(ψ(fd,t|xJ=c1
), ψ(fd,t′ |xJ=c2

)) (τ).

(67)
Now,

ψ(fd,t|xJ=c1
) = ξk(d·c1)

p ξt·c1
p ψ (fdn,tn |xJ=c1

) , (68)

and

ψ(fd,t′ |xJ=c2) = ξk(d·c2)
p ξt

′·c2
p ψ

(
fdn,t′n

|xJ=c2

)
, (69)

where t′ = (t′0, t
′
1, . . . , t

′
n−1), and (t′0, t

′
1, . . . , t

′
n−1, t

′
n) is the

vector representation of t′ with respect to base-p. Let us first
start with S2 in (67),

S2 =

pn+1−1∑
d=0

∑
c1 ̸=c2

Θ(ψ(fd,t|xJ=c1
), ψ(fd,t′ |xJ=c2

)) (τ)

=
∑

(d,dn)∈Zn+1
p

∑
c1 ̸=c2

ξk(d·(c1−c2))
p ξ(t·c1−t′·c2)

p

×Θ
(
ψ (fdn,tn |xJ=c1) , ψ

(
fdn,t′n

|xJ=c2

))
(τ)

=
∑
dn

∑
c1 ̸=c2

ξ(t·c1−t′·c2)
p Θ(ψ (fdn,tn |xJ=c1

) ,

ψ
(
fdn,t′n

|xJ=c2

))
(τ)
∑
d

ξk(d·(c1−c2))
p .

Since, 1 ≤ k ≤ p − 1 and c1 ̸= c2,
∑

d ξ
k(d·(c1−c2))
p = 0.

Therefore, S2 = 0. Now let us move to S1. Let us assume
c1 = c2 = c ∈ Zn

p . Then

S1 =

pn+1−1∑
d=0

∑
c1=c2

Θ(ψ(fd,t|xJ=c1), ψ(fd,t′ |xJ=c2)) (τ)

=
∑

(d,dn)∈Zpn+1

∑
c

Θ(ψ(fd,t|xJ=c1
), ψ(fd,t′ |xJ=c2

)) (τ).

(70)

From (70), (68), and (69), we have

S1 =
∑

(d,dn)∈Zn+1
p

∑
c

ξk(d·(c−c))
p ξ(t−t′)·c

p

×Θ
(
ψ (fdn,tn |xJ=c) , ψ

(
fdn,t′n

|xJ=c

))
(τ)

= pn
∑
dn

∑
c

ξ(t−t′)·c
p Θ(ψ (fdn,tn |xJ=c) ,

ψ
(
fdn,t′n

|xJ=c

))
(τ)

= pn
∑
c

ξ(t−t′)·c
p S3,

(71)

where

S3 =
∑
dn

Θ
(
ψ (fdn,tn |xJ=c) , ψ

(
fdn,t′n

|xJ=c

))
(τ).

Let us recall γ and δ and their base-p vector representations
(γ0, γ1, . . . , γm−1) and (δ0, δ1, . . . , δm−1), respectively, and
Aτ (c) = {(γ, δ) : 0 ≤ γ ≤ pm − τ − 1, δ = γ + τ, γjα =

cα, δjα = cα, α = 0, 1, . . . , n − 1} as defined in Section
II-B. Based on the definition of complex-valued sequence
corresponding to restricted q-ary function given in Section II-
A, the γth component of ψ (fdn,tn |xJ=c) is given by ξ(fdn,tn )γ

q

if γjα = cα for α = 0, 1, . . . , n − 1, else the value is zero,
where (fdn,tn)γ = fdn,tn(γ0, γ1, . . . , γm−1). Similarly, the

γth component of ψ
(
fdn,t′n

|xJ=c

)
is given by ξ

(fdn,t′n
)γ

q if
γjα = cα for α = 0, 1, . . . , n − 1, else the value is zero,
where (fdn,t′n

)i = fdn,t′n
(γ0, γ1, . . . , γm−1). Then S3 can be

expressed as

S3 =
∑
dn

Θ
(
ψ (fdn,tn |xJ=c) , ψ

(
fdn,t′n

|xJ=c

))
(τ)

=
∑
dn

∑
(γ,δ)∈Aτ (c)

ξ
(fdn,tn )γ−(fdn,t′n

)δ
q .

(72)

Case 1 (τ ̸= 0, γlπ(0)
̸= δlπ(0)

): Since, 0 < k < p,∑
dn
ξ
kdn(γlπ(0)

−δlπ(0)
)

p = 0. From (72), we have

S3 =
∑
dn

∑
(γ,δ)∈Aτ (c)

ξ
(fγ−fδ)+

γkdn
p (γlπ(0)

−δlπ(0)
)

q

× ξ
q
p (tnγlπ(m−n−1)

−t′nδlπ(m−n−1)
)

q

=
∑
dn

∑
(γ,δ)∈Aτ (c)

ξfγ−fδ
q ξ

kdn(γlπ(0)
−δlπ(0)

)

p

× ξ
(tnγlπ(m−n−1)

−t′nδlπ(m−n−1)
p

=
∑

(γ,δ)∈Aτ (c)

ξfγ−fδ
q ξ

(tnγlπ(m−n−1)
−t′nδlπ(m−n−1)

p

×
∑
dn

ξ
kdn(γlπ(0)

−δlπ(0)
)

p

= 0,

where fγ = f(γ0, γ1, . . . , γm−1) and fδ =

f(δ0, δ1, . . . , δm−1).

Case 2 (τ ̸= 0, γlπ(0)
= δlπ(0)

): We assume u is the
smallest positive integer for which γlπ(u)

̸= δlπ(u)
. Let us also

assume γv to be an integer whose base-p vector representation
is given by (γ0, γ1, . . . , κp + γlπ(u−1)

− v, . . . , γm−1), where
v ∈ {1, 2, . . . , p − 1}, and κ = 0 when γlπ(u)

− v ≥ 0

and κ = 1 when γlπ(u)
− v < 0. Similarly, we assume

δv to be an integer whose base-p vector representation is
given by (δ0, δ1, . . . , κp+ δlπ(u−1)

− v, . . . , δm−1). It is clear
that, γv and δv differs from γ and δ, respectively, only
at lπ(u−1)th position. It is also to be noted that, it can
easily be drawn an invertible between any two pairs in
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{(γ, δ), (γ0, δ0), . . . , (γp−1, δp−1)}. Therefore, each of the p
pairs contributes to S3. Now

(fdn,tn)γv − (fdn,t′n
)δv − ((fdn,tn)γ − (fdn,t′n

)δ)

=fγv − fδv − (fγ − fδ)
(73)

Since γv and γ differs only at the position lπ(u−1), and γjα =

cα for α = 0, 1, . . . , n− 1,

fγv − fγ = qκ(γlπ(u−2)
+ γlπ(u)

) + κpglπ(u−1)

− v

(
q

p
γlπ(u−2)

+
q

p
γlπ(u)

+ glπ(u−1)

)
.

(74)

Similarly,

fδv − fδ =qκ(δlπ(u−2)
+ δlπ(u)

) + κpglπ(u−1)

− v

(
q

p
δlπ(u−2)

+
q

p
δlπ(u)

+ glπ(u−1)

)
.

(75)

Since γlπ(α)
= δlπ(α)

for α = 0, 1, . . . , u− 1, from (73), (74),
and (75), we have

(fdn,tn)γv − (fdn,t′n
)δv − ((fdn,tn)γ − (fdn,t′n

)δ)

=fγv − fδv − (fγ − fδ)

=qκ(γlπ(u)
− δlπ(u)

) +
vq

p
(δlπ(u)

− γlπ(u)
).

(76)

Since ξ
qκ(γlπ(u)

−δlπ(u)
)

q = 1, from (76), we have

p−1∑
v=1

ξ
(fdn,tn )γu−(fdn,t′n

)δu−((fdn,tn )γ−(fdn,t′n
)δ)

q

=

p−1∑
v=1

ξ
qκ(γlπ(u)

−δlπ(u)
)

q ξ
v(δlπ(u)

−γlπ(u)
)

p

=

p−1∑
v=1

ξ
v(δlπ(u)

−γlπ(u)
)

p

=− 1.

Therefore,

ξ
(fdn,tn )γ−(fdn,t′n

)δ
q +

p−1∑
v=1

ξ
(fdn,tn )γv−(fdn,t′n

)δv
q = 0.

Case 3 (τ = 0): Since τ = 0, γ = δ, from (72), we have

S3 =
∑
dn

Θ
(
ψ (fdn,tn |xJ=c) , ψ

(
fdn,t′n

|xJ=c

))
(τ)

=
∑
dn

∑
(γ,γ)∈Aτ (c)

ξ
(fdn,tn )γ−(fdn,t′n

)δ
q

=
∑

(γ,γ)∈Aτ (c)

ξfγ−fδ
q ξ

tnγlπ(m−n−1)
−t′nδlπ(m−n−1)

p

×
∑
dn

ξ
kdn(γlπ(0)

−δlπ(0)
)

p

= p
∑

(γ,γ)∈Aτ (c)

ξ
tnγlπ(m−n−1)

−t′nδlπ(m−n−1)
p

= p
∑

(γ,γ)∈Aτ (c)

ξ
(tn−t′n)γlπ(m−n−1)
p

= ppm−n−1

p−1∑
γlπ(m−n−1)

=0

ξ
(tn−t′n)γlπ(m−n−1)
p

=

pm−n+1, tn = t′n,

0, tn ̸= t′n.

Combining all the above cases in (71), we have

S1 =

pm−n+1pn
∑

c ξ
(t−t′)·c
p , τ = 0, tn = t′n,

0, otherwise,

=

pm+n+1, τ = 0, t = t′, tn = t′n,

0, otherwise.

(77)

From (66) and (77), we have

Θ
(
ψ(Ck

t ), ψ(C
k
t′)
)
(τ)

=

pm+n+1, τ = 0, t = t′, tn = t′n,

0, otherwise,

=


pm+n+1, τ = 0, t = t′,

0, 0 < |τ | < pm, t = t′,

0, 0 ≤ |τ | < pm, t ̸= t′.

Therefore, Ck forms (pn+1, pm)-CCC for any choice of k in
{1, 2, . . . , p− 1}.

APPENDIX C
PROOF OF PROPOSITION 1

For any element (e1, e2) in S, we have

k1e1 − k2e2 ≡ 0w(mod p)

⇒ e2 ≡
(
k1
k2

)
e1(mod p),
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where 1
k2

represents the multiplicative inverse of k2 with
respect to modulo p operation. Therefore, |S| = pw. Let us
define a mapping Λ : S → Z as follows:

Λ(e1, e2) = (e2 − e1) · (pw−1, pw−2, . . . , 1)

=

w−1∑
t=0

e2,tp
w−1−t −

w−1∑
t=0

e1,tp
w−1−t.

(78)

For any two (e1, e2) and (e′1, e
′
2) in S, we have k1e1−k2e2 ≡

0w(mod p) and k1e
′
1 − k2e

′
2 ≡ 0w(mod p), where e1 =

(e1,0, e1,1, . . . , e1,w−1), e2 = (e2,0, e2,1, . . . , e2,w−1), e′1 =

(e′1,0, e
′
1,1, . . . , e

′
1,w−1), and e′2 = (e′2,0, e

′
2,1, . . . , e

′
2,w−1).

Therefore,

e2 − e1 ≡
(
k1 − k2
k2

)
e1(mod p),

and

e′2 − e′1 ≡
(
k1 − k2
k2

)
e′1(mod p).

(79)

From (79), it can be observed that Λ is an injective mapping.
Since, 0 < k1 ̸= k2 < p, and k1e1 − k2e2 ≡ 0w(mod p),

Λ(e1, e2) = 0 iff e1 = e2 = 0w.

Now let us define two vectors ē1 and ē2 whose components
are defined as follows:

ēi,α =

p− ei,α, if ei,α ̸= 0,

0, otherwise,
(80)

where i = 1, 2, and α = 0, 1, . . . , w − 1. From (78) and (80),
it is clear that Λ(e1, e2) = −Λ(ē1, ē2). From the mapping,
define two sets S ′ = {(e1, e2) ∈ S : Λ(e1, e2) ≥ 0} and
S ′′ = {(e1, e2) ∈ S : Λ(e1, e2) ≤ 0}. Then the set S can
be expressed as S = S ′ ∪ S ′′, where S ′ ∩ S ′′ = {0w}. From
(80), we have |S ′| = |S ′′| = pw+1

2 = E. We assume that
(ei1, e

i
2) is an element of S ′ and Λ(ei1, e

i
2) = Di, where eij =

(eij,0, e
i
j,1, . . . , e

i
j,n−1), i = 1, 2, . . . , E, and j = 1, 2. Since,

(0w,0w) ∈ S ′ and Λ is an injective mapping, without loss of
generality, let us assume that 0 = D1 < D2 < · · · < DE .

For 0 ≤ τ ≤ pm − 1, following (9), we have Bτ (e
i
1, e

i
2) =

{(γ, δ) : δ = γ + τ, 0 ≤ γ ≤ pm − τ − 1, γα = ei1,α, δα =

ei2,α, α = 0, 1, . . . , w − 1}, where (γ0, γ1, . . . , γm−1) and
(δ0, δ1, . . . , δm−1) are the base-p vector representations of the

non-negative integers γ and δ, respectively. Now,

τ = δ − γ

=

m−1∑
α=0

(δα − γα)p
m−α−1

=

w−1∑
α=0

(ei2,α − ei1,α)p
m−α−1 +

m−1∑
α=w

(δα − γα)p
m−α−1

= pm−w(ei2 − ei1) · (pw−1, pw−2, . . . , 1)

+

m−1∑
α=w

(δα − γα)p
m−α−1

= pm−wDi +

m−1∑
α=w

(δα − γα)p
m−α−1.

The set Bτ (e
i
1, e

i
2) is non-empty if pm−wDi +

∑m−1
α=w((p −

1)−0)pm−α−1 ≥ τ ≥ pm−wDi+
∑m−1

α=w(0−(p−1))pm−α−1,
or τ ∈ [pm−w(Di − 1) + 1 : pm−w(Di + 1)− 1] = IDi , say.
Hence,

Bτ (e
i
1, e

i
2) ̸= ∅ iff τ ∈ IDi

. (81)

Let us assume that (ei11 , e
i1
2 ) and (ei21 , e

i2
2 ) are two distinct

elements in S ′ with Di1 < Di2 . Now

IDi1
∩ IDi2

=

[pm−wDi1 + 1, pm−w(Di1 + 1)− 1], if Di2=Di1+1,

∅, if Di2>Di1+1.

(82)

From (82), it is clear that

IDi1
∩ IDi2

̸= ∅ iff Di2 = Di1 + 1.

Therefore, for a fixed value of τ in [0, pm − 1], we need to
consider the following three cases: Case 1: In this case, we
consider τ /∈ ∪E

i=1IDi
. From (81), we have Bτ (e

i
1, e

i
2) =

∅ ∀ i ∈ [1 : E]. Since, τ ≥ 0 and Bτ (e
i
1, e

i
2) = ∅ ∀ i ∈ [1 : E],∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1), ψ(h|xJ1

=e2))(τ)

=
∑

(e1,e2)∈S′

Θ(ψ(g|xJ1
=e1

), ψ(h|xJ1
=e2

))(τ)

=

E∑
i=1

Θ(ψ(g|xJ1
=ei

1
), ψ(h|xJ1

=ei
2
))(τ)

=

E∑
i=1

∑
(γ,δ)∈Bτ (ei

1,e
i
2)

ξgγ−hδ
q

=0.

Therefore,
∣∣∣∑(e1,e2)∈S Θ(ψ(g|xJ1

=e1
), ψ(h|xJ1

=e2
))(τ)

∣∣∣ = 0

when τ /∈ ∪E
i=1IDi .

Case 2: In this case, we consider τ ∈ IDi and τ /∈
IDj ∀ i ̸= j ∈ [1 : E]. Since τ /∈ ∪E

j=1
j ̸=i

IDj ,
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Bτ (e
j
1, e

j
2) = ∅ for all j ∈ {1, 2, . . . , E} \ {i}. Now IDi

can
be expressed as IDi = ([pm−w(Di − 1) + 1 : pm−wDi]) ∪
((pm−wDi : p

m−w(Di + 1)− 1]) . Now τ can be expressed
as follows:

τ

=


pm−w(Di − 1) + τ1,

if τ ∈ [pm−w(Di − 1) + 1 : pm−wDi],

pm−wDi + τ2,

if τ ∈ (pm−wDi : p
m−w(Di + 1)− 1],

where τ1 ∈ [1 : pm−n] and τ2 ∈ [1 : pm−n − 1]. Also,

|Bτ (e
i
1, e

i
2)|

=

τ1, if τ ∈ [pm−w(Di − 1) + 1 : pm−wDi],

pm−w − τ2, if τ ∈ (pm−wDi : p
m−w(Di + 1)− 1].

(83)

Now, ∑
(e1,e2)∈S

Θ(ψ(g|xJ1
=e1

), ψ(h|xJ1
=e2

))(τ)

=
∑

(e1,e2)∈S′

Θ(ψ(g|xJ1
=e1), ψ(h|xJ1

=e2))(τ)

=Θ(ψ(g|xJ1
=ei

1
), ψ(h|xJ1

=ei
2
))(τ)

+

E∑
j=1
j ̸=i

Θ(ψ(g|xJ1
=ej

1
), ψ(h|xJ1

=ej
2
))(τ)

=
∑

(γ,δ)∈Bτ (ei
1,e

i
2)

ξgγ−hδ
q +

E∑
j=1
j ̸=i

∑
(γ,δ)∈Bτ (e

j
1,e

j
2)

ξgγ−hδ
q

=
∑

(γ,δ)∈Bτ (ei
1,e

i
2)

ξgγ−hδ
q .

(84)

From (83) and (84), we have∣∣∣∣∣∣
∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1

), ψ(h|xJ1
=e2

))(τ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(γ,δ)∈Bτ (ei
1,e

i
2)

ξgγ−hδ
q

∣∣∣∣∣∣
≤

τ1, if τ ∈ [pm−w(Di − 1) + 1 : pm−wDi],

pm−w − τ2, if τ ∈ (pm−wDi : p
m−w(Di + 1)− 1].

(85)

Since τ1 ∈ [1 : pm−w] and τ2 ∈ [1 : pm−w − 1], from (85),
we have

|
∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1

), ψ(h|xJ1
=e2

))(τ)| ≤ pm−w.

Case 3: In this case, we consider τ ∈ IDi ∩ IDi+1 for some
i ∈ [1 : E], where Di+1 = Di + 1. From (82), we have

(IDi ∩ IDi+1) = [pm−wDi + 1 : pm−w(Di + 1)− 1]. (86)

Also, Bτ (e
i
1, e

i
2) = ∅ ∀ i ∈ [1 : E] \ {i, i+ 1}. Therefore,∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1

), ψ(h|xJ1
=e2

))(τ)

=
∑

(e1,e2)∈S′

Θ(ψ(g|xJ1
=e1), ψ(h|xJ1

=e2))(τ)

=Θ(ψ(g|xJ1
=ei

1
), ψ(h|xJ1

=ei
2
))(τ)

+ Θ(ψ(g|xJ1
=ei+1

1
), ψ(h|xJ1

=ei+1
2

))(τ)

+

E∑
j=1

j ̸=i,i+1

Θ(ψ(g|xJ1
=ej

1
), ψ(h|xJ1

=ej
2
))(τ)

=Θ(ψ(g|xJ1
=ei

1
), ψ(h|xJ1

=ei
2
))(τ)

+ Θ(ψ(g|xJ1
=ei+1

1
), ψ(h|xJ1

=ei+1
2

))(τ)

=
∑

(γ,δ)∈Bτ (ei
1,e

i
2)

ξgγ−hδ
q +

∑
(γ,δ)∈Bτ (e

i+1
1 ,ei+1

2 )

ξgγ−hδ
q .

(87)

From (86), τ ∈ [pm−wDi + 1, pm−w(Di + 1) − 1] =

[pm−w(Di+1 − 1) + 1, pm−w(Di+1) − 1], then τ can be
expressed as τ = pm−wDi+τ3 = pm−w(Di+1−1)+τ3, where
τ3 ∈ [1 : pm−w − 1]. Therefore,

∣∣Bτ (e
i
1, e

i
2)
∣∣ = pm−w − τ3

and
∣∣Bτ (e

i+1
1 , ei+1

2 )
∣∣ = τ3. From (87), we have∣∣∣∣∣∣

∑
(e1,e2)∈S

Θ(ψ(g|xJ1
=e1), ψ(h|xJ1

=e2))(τ)

∣∣∣∣∣∣
=
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2)

ξgγ−hδ
q +

∑
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2 )
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q
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≤

∣∣∣∣∣∣
∑

(γ,δ)∈Bτ (ei
1,e

i
2)

ξgγ−hδ
q

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
(γ,δ)∈Bτ (e

i+1
1 ,ei+1

2 )

ξgγ−hδ
q

∣∣∣∣∣∣
≤pm−w − τ3 + τ3 = pm−w.

Therefore,∣∣∣∣∣∣
∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1), ψ(h|xJ1

=e2))(τ)

∣∣∣∣∣∣ ≤ pm−w

.

Combining all the above cases, it is clear that∣∣∣∣∣∣
∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1

), ψ(h|xJ1
=e2

))(τ)

∣∣∣∣∣∣
≤pm−w ∀ τ ∈ [0 : pm − 1].

Similarly, it can be shown that∣∣∣∣∣∣
∑

(e1,e2)∈S

Θ(ψ(g|xJ1
=e1

), ψ(h|xJ1
=e2

))(τ)
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≤pm−w ∀ τ ∈ [−(pm−w − 1) : 0].

(88)
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APPENDIX D
CORRELATION LOWER BOUND WITH RESPECT TO THE

POSITIVE-CYCLE-OF-A-SINE-WAVE WEIGHT VECTOR

WHEN t ∈ [L+ 1 : 2L− 1]

For L+1 ≤ t ≤ 2L−1, we have the following results from
[30]:

t−1∑
u,v=0

τu,v,Lwuwv

=− 3t− 4L+ 2

4
− t

4
tan2

π

2t
+
t− L− 1

2
cos

Lπ

t

+

(
2t− 2L+ 1

4
tan

π

2t
+

3

4 tan π
2t

)
sin

Lπ

t
.

(89)

To simplify the derivation, in (35) and (89), we consider the
following approximations:

2L−2∑
u=0

w2
u =

t

2
tan2

π

2t
≈ π2

8t
,

where t is sufficiently large,

sin Lπ
t ≈ 1.3Lπ

t − 0.4L2π2

t2 ,

cos Lπ
t ≈ 1.3

(
π
2 − Lπ

t

)
− 0.4

(
π
2 − Lπ

t

)2
.

With the above approximations, it follows from (22), (35), and
(89) that

θ2 ≥ MN

80(N − 1)

(
a0t+

a1
t

+
a2
t2

+
a3
t3

+ a4

)
, (90)

where a0 = 4π2 − 26π + 60, a1 = 5π2 − 10L2π2

N − 10Lπ2 −
4L2π+32L2π2 − 52Lπ, a2 = 10L2π2 +8L2π3 − 16L3π2 −
13Lπ2, a3 = 4L2π3 − 8L3π3, and a4 = 40− 156L+ 26π −
4π2 − 20Lπ2 + 78Lπ. It is challenging to get the maximum
value of this lower bound. As an alternation, we provide a
numerical comparisons between the above lower bound with
the other lower bounds finalized in Remark 2. In Figure 6
(a), (b), (c), and (d), the lower bound in (90) is denoted as θ1,
which is compared with the lower bounds θ2 in (24) for N = 2

and 3 ≤ L ≤ 1000, θ3 in (40) for N = 3, 1000 ≥ L ≥ 26,
and for N = 4, 5 ≤ L ≤ 1000, and the lower bound θ4 in
(41) for N = 5 and 5 ≤ L ≤ 1000.

REFERENCES

[1] M. J. E. Golay, “Complementary series,” IRE Trans. Inf. Theory, vol. 7,
no. 2, pp. 82–87, Apr. 1961.

[2] C.-C. Tseng and C. Liu, “Complementary sets of sequences,” IEEE
Trans. Inf. Theory, vol. 18, no. 5, pp. 644–652, Sep. 1972.

[3] A. Rathinakumar and A. K. Chaturvedi, “Complete mutually orthogonal
Golay complementary sets from Reed-Muller codes,” IEEE Trans. Inf.
Theory, vol. 54, no. 3, pp. 1339–1346, Mar. 2008.

[4] H.-H. Chen, The Next Generation CDMA Technologies. Wiley, 2007.
[5] Z. Liu, Y. L. Guan, and H.-H. Chen, “Fractional-delay-resilient receiver

design for interference-free MC-CDMA communications based on com-
plete complementary codes,” IEEE Trans. Wireless Commun., vol. 14,
no. 3, pp. 1226–1236, Mar. 2015.

3 500 1000
0.9

1

1.5

(a)

5 500 1000
0.9

1

1.5

(b)

5 500 1000
0.9

1

1.5

(c)

26 500 1000
0.9

1

1.5

(d)

Figure 6: Comparison of the lower bound θ1 with the lower
bounds θ2, θ3, and θ4

[6] N. Suehiro and M. Hatori, “N-shift cross-orthogonal sequences,” IEEE
Trans. Inf. Theory, vol. 34, no. 1, pp. 143–146, Jan. 1988.

[7] Z. L. Liu, Y. L. Guan, B. C. Ng, and H.-H. Chen, “Correlation and set
size bounds of complementary sequences with low correlation zone,”
IEEE Trans. Commun., vol. 59, no. 12, pp. 3285–3289, Dec. 2011.

[8] P. Sarkar, S. Majhi, H. Vettikalladi, and A. S. Mahajumi, “A direct
construction of inter-group complementary code set,” IEEE Access,
vol. 6, pp. 42 047–42 056, Aug. 2018.

[9] P. Sarkar, S. Majhi, and Z. Liu, “Optimal Z -complementary code set
from generalized Reed-Muller codes,” IEEE Trans. Commun., vol. 67,
no. 3, pp. 1783–1796, Mar. 2019.

[10] P. Sarkar, S. Majhi, and Z. Liu, “Pseudo-Boolean functions for optimal
z-complementary code sets with flexible lengths,” IEEE Signal Process.
Lett., vol. 28, pp. 1350–1354, July 2021.

[11] Z. Liu, U. Parampalli, Y. L. Guan, and S. Boztas, “Constructions
of optimal and near-optimal quasi-complementary sequence sets from
Singer difference sets,” IEEE Wireless Commun. Lett., vol. 2, no. 5, pp.
487–490, Oct. 2013.

[12] A. Samad and S. Majhi, “A near-optimal and low-complex joint mul-
tiuser detection for QCSS-MC-CDMA system,” IEEE Systems Journal,
vol. 15, no. 2, pp. 1594–1603, June 2021.

[13] H.-H. Chen, J.-F. Yeh, and N. Suehiro, “A multicarrier CDMA archi-
tecture based on orthogonal complementary codes for new generations
of wideband wireless communications,” IEEE Commun. Mag., vol. 39,
no. 10, pp. 126–135, Oct. 2001.

[14] L. Welch, “Lower bounds on the maximum cross correlation of signals
(corresp.),” IEEE Trans. Inf. Theory, vol. 20, no. 3, pp. 397–399, May
1974.

[15] Z. Liu, Y. L. Guan, and W. H. Mow, “A tighter correlation lower
bound for quasi-complementary sequence sets,” IEEE Trans. Inf. Theory,
vol. 60, no. 1, pp. 388–396, Jan. 2014.

[16] V. Levenshtein, “New lower bounds on aperiodic crosscorrelation of
binary codes,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 284–288,
Jan. 1999.

[17] Y. Li, T. Liu, and C. Xu, “Constructions of asymptotically optimal quasi-
complementary sequence sets,” IEEE Commun. Lett., vol. 22, no. 8, pp.
1516–1519, Aug. 2018.

[18] Y. Li, L. Tian, T. Liu, and C. Xu, “Two constructions of asymptotically
optimal quasi-complementary sequence sets,” IEEE Trans. Commun.,
vol. 67, no. 3, pp. 1910–1924, Mar. 2019.

[19] ——, “Constructions of quasi-complementary sequence sets associated



25

with characters,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp. 4597–4608,
July 2019.

[20] G. Luo, X. Cao, M. Shi, and T. Helleseth, “Three new constructions
of asymptotically optimal periodic quasi-complementary sequence sets
with small alphabet sizes,” IEEE Trans. Inf. Theory, vol. 67, no. 8, pp.
5168–5177, Aug. 2021.

[21] Y. Li, L. Tian, and C. Xu, “Constructions of asymptotically optimal
aperiodic quasi-complementary sequence sets,” IEEE Trans. Commun.,
vol. 67, no. 11, pp. 7499–7511, Nov. 2019.

[22] Z. Zhou, F. Liu, A. R. Adhikary, and P. Fan, “A generalized construction
of multiple complete complementary codes and asymptotically optimal
aperiodic quasi-complementary sequence sets,” IEEE Trans. Commun.,
vol. 68, no. 6, pp. 3564–3571, June 2020.

[23] A. R. Adhikary, Y. Feng, Z. Zhou, and P. Fan, “Asymptotically optimal
and near-optimal aperiodic quasi-complementary sequence sets based on
florentine rectangles,” IEEE Trans. Commun., vol. 70, no. 3, pp. 1475–
1485, Mar. 2022.

[24] Q. Zeng, Z. Liu, and G. Gradoni, “Optimal quasi-orthogonal FH
sequences with adaptive array receiver for massive connectivity in
asynchronous multi-cluster networks,” IEEE Trans. Wireless Commun.,
vol. 21, no. 8, pp. 5730–5743, Aug. 2022.

[25] X. Tang and W. H. Mow, “Design of spreading codes for quasi-
synchronous CDMA with intercell interference,” IEEE Journal on
Selected Areas in Communications, vol. 24, no. 1, pp. 84–93, Jan. 2006.

[26] P. Sarkar, Z. Liu, and S. Majhi, “A direct construction of complete
complementary codes with arbitrary lengths,” 2021. [Online]. Available:
https://arxiv.org/abs/2102.10517

[27] R. Kumar, P. Sarkar, P. K. Srivastava, and S. Majhi, “A direct con-
struction of asymptotically optimal type-II zcp for every possible even
length,” IEEE Signal Process. Lett., vol. 28, pp. 1799–1802, Aug. 2021.

[28] T. Liu, X. Men, Y. Li, and X. Chen, “Constructions of 2-D Golay
complementary array sets for MIMO omnidirectional transmission,”
IEEE Commun. Lett., vol. 26, no. 7, pp. 1459–1463, July 2022.

[29] K. G. Paterson, “Generalized Reed-Muller codes and power control in
OFDM modulation,” IEEE Trans. Inf. Theory, vol. 46, no. 1, pp. 104–
120, Jan. 2000.

[30] Z. Liu, U. Parampalli, Y. L. Guan, and S. Boztaş, “A new weight vector
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