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ABSTRACT

Modeling 3D genome organisation has been boom-
ing in the last years thanks to the availability of ex-
perimental datasets of genomic contacts. However,
the field is currently missing the standardisation of
methods and metrics to compare predictions and ex-
periments. We present 3DGenBench, a web server
available at https://inc-cost.eu/benchmarking/, that
allows benchmarking computational models of 3D
Genomics. The benchmark is performed using a
manually curated dataset of 39 capture Hi-C profiles
in wild type and genome-edited mouse cells, and five
genome-wide Hi-C profiles in human, mouse, and
Drosophila cells. 3DGenBench performs two kinds
of analysis, each supplied with a specific scoring
module that compares predictions of a computa-
tional method to experimental data using several
metrics. With 3DGenBench, the user obtains model
performance scores, allowing an unbiased compari-
son with other models. 3DGenBench aims to become
a reference web server to test new 3D genomics mod-
els and is conceived as an evolving platform where
new types of analysis will be implemented in the fu-
ture.

GRAPHICAL ABSTRACT

INTRODUCTION

Understanding the mechanisms driving chromatin folding
is among the most challenging questions in modern ge-
nomics. Robust experimental techniques allow nowadays to
obtain various datasets describing chromosome organisa-
tion and dynamics quantitatively. The plethora of genome-
wide experimental data provides opportunities to infer re-
lationships between 1D (epi)genomic and 3D genome fold-
ing properties, as well as the underlying molecular mech-
anisms, using statistical analysis (1,2) or biophysical mod-
elling (3,4).

Statistical methods are being actively developed, and be-
sides exploration of interdependencies between genomic
datasets, dozens of recent models allow predictions of chro-
matin architecture in unseen cell types, species, and genetic
conditions. Although each study contains certain bench-
marks, a direct comparison of developed models is difficult
due to differences in the model’s input information, statis-
tical engine, design of validation experiments and metrics
characterising the model performance.

In contrast to the statistical approaches which are agnos-
tic to the mechanisms underlying the observed dependen-
cies, biophysical models can be used to (in)validate specific
biological mechanisms or reconstruct 3D genome struc-
tures from data (3,5,6). In particular, biophysical models
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Conte, Andrea M. Chiariello, Vladimir B. Teif, Dariusz Plewczynski, Bin Zhang, Daniel Jost*, Veniamin Fishman*

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/W

1/W
4/6593108 by guest on 09 January 2024

https://inc-cost.eu/benchmarking/


Nucleic Acids Research, 2022, Vol. 50, Web Server issue W5

have predictive power and can be employed to understand
the consequences of (epi)genetic perturbations (7,8) with-
out the need to perform time-consuming and laborious ex-
periments. However, as for statistical inference, standard-
ised benchmarks and metrics are missing to evaluate and
compare model performances and to quantify similarities
between predictions and experiments.

To sum up, although multiple modeling approaches have
been developed, the fundamental differences among the
methodologies and validation datasets render the compar-
ison challenging. To address this challenge, the Interna-
tional Nucleome Consortium (https://inc-cost.eu/) has re-
cently started a benchmarking initiative, providing tools for
the uniform assessment of computational models for 3D-
Genomics. This initiative includes the collection and pro-
cessing of a reference dataset based on previously published
experimental data and the implementation of metrics mod-
ules scoring the similarity between experimental data and
modeling results. The central component of this work is a
web server, 3DGenBench, allowing users to submit their
predictions and access performance metrics.

MATERIALS AND METHODS

Datasets collection

3DGenBench performs two kinds of analysis. The first type
aims at quantifying how good a method predicts one experi-
mental dataset. We defined this analysis as horizontal bench-
marking. The second analysis, defined as vertical bench-
marking aims to estimate how well a method can predict
changes in chromosome folding caused by structural per-
turbations of the genome (see results text and Figure 1A for
details of each analysis type). For each of these analyses, we
collected specific datasets.

The data for the vertical benchmark were collected from
nine studies from 2016 to 2019 (7,9–15) describing genomic
mutations (deletions, inversions, duplications) of specific re-
gions associated with chromatin architecture (Figure 1B,
Supplementary Table S1). We collected and processed cap-
ture Hi-C (cHi-C) reads for wild-type (WT) and mutated
conditions. Since CTCF is particularly important for chro-
matin architecture in vertebrates and several examples in
our dataset include mutations of CTCF binding sites, we
collected CTCF ChIP-seq data for relevant cell types. For
this aim, we either reprocessed CTCF ChIP-seq reads ob-
tained from the same study as cHi-C reads or, if not
available, we searched for CTCF ChIP-seq experiments on
matching cell type from other studies in PubMed and EN-
CODE datasets.

Data for the horizontal benchmarking include GM12878
and K562 human cell lines (16), mouse embryonic stem cell
(mESC) line (17), and one Drosophila cell line Kc167 (18).
We chose five regions for prediction for each cell type (Sup-
plementary Table S2). Since epigenetics data are important
as features for several modelling tools, we composed a table
(Supplementary Table S3) with download links to the most
widely used formats for several epigenetics marks for each
cell type.

In addition, we used CTCF ChIA-PET dataset for
human GM12878 cell line available as GEO accession

GSM1872886 (19) for horizontal ChIA-PET benchmark-
ing.

Datasets processing

Hi-C data processing. Hi-C and cHi-C data processing
was performed in five steps:

1) Fetching FastQ from raw SRA datasets (fastq-dump of
SRATools, NCBI);

2) Mapping reads, removing sequencing duplicates, and
building fragment map (Juicer pipeline (20));

3) Building Hi-C map (JuicerTools);
4) Building COOL maps for several resolutions (5, 10, 20,

25 and 50 kb)––cooltools package (open2c) (21);
5) Hi-C map normalization––CTaleNormalize for cHi-C

data (22) and cooler balance for genome-wide data.

ChIA-PET data processing. PET clusters file was down-
loaded from GSM1872886, single interaction for mitochon-
drial chromosome was removed, the remaining data were
used without any further processing.

ChIP-seq data processing. All CTCF ChIP-seq data were
processed using ENCODE ChIP-seq pipeline v1 (https:
//github.com/kundajelab/chipseq pipeline) with parameters
default for transcription factors analysis mode. Links to raw
data and reference genomes are provided in Supplementary
Table S1.

Performance metrics

Horizontal benchmark metrics.

• Stratum adjusted correlation coefficient (SCC) metric.
SCC is a special measure to quantify the similarity be-
tween Hi-C matrices. This algorithm stratifies all Hi-C
contacts according to their genomic distance and com-
putes a Pearson correlation coefficient for each stratum.
We used SCC metric (23) implemented via the hicreppy
package (https://github.com/cmdoret/hicreppy). SCC al-
gorithm has a tuning parameter h controlling the smooth-
ing level. Smoothing the Hi-C matrix minimizes the effect
of noise and biases. We used h = 2 for all comparisons.

• Insulation score (IS) metric. IS metric reflects the
segmentation of the genome into domains. We
used calculate insulation score function from cooll-
tools.api.insulation package (version 0.5.0) with window
size parameter equals to 5× bin size (resolution) to
compute IS for all bins in the experimental and predicted
data. We then computed Spearman’s correlation coeffi-
cient between IS tracks obtained from experimental and
predicted data.

• Compartment strength (CS) metric. CS track for experi-
mental and predicted data was calculated as in (24). CS
for each bin (b) quantifies as the ratio between the aver-
age OoE (observed over expected) value of b with bins
of the same compartment and the average OoE value of
b with any other bin in the same chromosome. We then
used Pearson’s correlation coefficient between obtained
tracks as the resulting metric.
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• Contacts scaling metric. We calculated the average num-
ber of contacts at separate genomic distances for experi-
mental and predicted data. The obtained arrays of values
were compared using Pearson’s correlation coefficient.

ChIA-PET-specific horizontal benchmark metrics.

• The percentage of captured ChIA-PET interactions (i.e.
true-positive predictions);

• The percentage of ChIA-PET interactions predicted by
the model but not observed experimentally (i.e. false-
positive predictions);

• The percentage of ChIA-PET observed experimentally
but not predicted by the model (i.e. false-negative predic-
tions);

• The mean-squared error of PET counts: for N overlap-
ping PET clusters, each characterized by observed count
CExp

i and predicted count CPred
i , we computed MSE as

∑
i = 1..N (CExp

i −C pred
i )

2

N

Vertical benchmark metrics.

• Insulation score changes metric. We used cal-
culate insulation score function from cooll-
tools.api.insulation package (version 0.5.0) to compute IS
for all bins in the WT and mutation (Mut) conditions for
experimental and predicted data. Then the Mut IS was
divided by WT IS both for experimental and predicted
data. Finally, we used Pearson’s correlation coefficient to
compare Mut/Wt experimental and Mut/Wt predicted
ratio tracks.

• Ectopic interactions area under the curve (AUC) met-
ric. Ectopic interactions for experimental and predicted
data were calculated as in (7). Normalization coefficients
computation accounts for the effects of the copy number
changes caused by structural variants. Specifically,
I. We normalized Mut matrix by coverage excluding con-

tacts inside of deleted or duplicated regions. Let M be
a Hi-C matrix for Mut condition with elements mi j ,
and W be a matrix for WT condition with elements wi j .
Than we define normalized matrix for Mut condition
as:

M̌ = M ∗
∑

i, j �∈del,dup wi j
∑

i, j �∈del,dup mi j

In case of duplication, we computed an additional nor-
malization coefficient as:

Dcoef =

∑
i ∈ dup
j€dup

wi j

∑
i ∈ dup
j€dup

m̌i j

where m̌i j are elements of M̌.
Next, we calculated normalized mutated matrix as:

M̃ = M̌∗Dcoe f

where Dcoef = 1 for deleted and inverted regions.

These normalization steps were performed both for ex-
perimental and predicted data.

II. At the second stage, we subtracted the W matrix from
the M̃ matrix.

III. Then we normalized the obtained differences matrix,
dividing each entry by the average value at the corre-
sponding diagonal.

IV. Finally we calculated Z-scores at each diagonal. We fil-
tered out elements above the 96th percentile of all di-
agonal values in the calculation of standard deviations.

Ectopic interactions were defined as interactions exceed-
ing a Z-score of 2 for experimental data. These ectopic
interactions for the experimental data were used as true
labels for precision recall curve function from sckit-learn
python library. Matrix with standard deviations of pre-
dicted data was a second argument of precision recall curve
function. Different thresholds of standard deviation defined
predicted ectopic interactions, precision, and recall. AUC
was calculated using sckit-learn python library as well.

Generation of baselines

To provide baselines for comparison, we simulated fake
predictions with varying quality either by adding different
amounts of noise into experimentally observed data, or ran-
domly by permuting observed contacts on each diagonal of
a Hi-C matrix. Metrics were then computed between these
baselines and the original experimental datasets.

Noise perturbation was implemented by adding a ran-
dom value to each interaction of the experimental contact
matrix. This random value was sampled from a normal dis-
tribution with the mean equal to the observed contact fre-
quency and standard deviation ranging from 0.001 (the low-
est noise level) to 50 (the highest noise level). We used nine
control models with standard deviations equal to 0.001,
0.01, 0.01, 0.5, 1, 2, 10, 20, 50.

Diagonal shuffling was performed by grouping contacts
of loci with the same genomic distance, and by randomly
shuffling the observed contact values within each group.
The Hi-C matrices obtained after this shuffling procedure
were used as a baseline.

Generation of case study datasets

To demonstrate the metrics performance implemented in
the horizontal benchmark challenge, we chose two ge-
nomic regions for GM12878 cell line at 10 Kb resolution.
We used predictions generated by the DRAGON (25) and
PRISMR (7) models as an example of computational pre-
dictions of chromatin architecture. DRAGON uses poly-
mer simulations to predict Hi-C contact matrices and three-
dimensional (3D) chromosome structures at five kilobase
resolution from 12 key epigenetic marks and the genomic
locations and orientations of CTCF binding sites. It was
parameterized with a maximum entropy optimization algo-
rithm using Hi-C data from GM12878 cells. PRISMR mod-
elling was performed at 10 kb resolution as described before
(7,26). In brief, PRISMR infers, through a recursive proce-
dure based on polymer physics, the minimal polymer model
that, at equilibrium, best describes the input contact matrix.
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The inferred set of binding sites of the model correlates with
key epigenetic factors and defines a code linking epigenetics
to architecture, as detailed in (26). By using this code, the
contact matrices of entire chromosomes can be predicted
from only epigenetics (26).

To demonstrate the metrics performance for the vertical
benchmark, we simulated predictions of WT and Mut data
for three rearrangements (structural variants ids according
to the Supplementary Table S1: deletion MusDel-B, inver-
sion Inv1, and duplication dup-C) using 3DPredictor (27)
and 3DPolyS-Fit (28). 3DPolyS-Fit infers pair-wise inter-
action strengths of a self-interacting polymer model from
WT data and then use them to predict the MUT data by
simulating the corresponding structural rearrangement as
in (29).

Web site development

The web site was developed with the following tools:

• PureCSS (https://github.com/pure-css/pure/) style
library;

• Tabulator (https://github.com/olifolkerd/tabulator) for
table rendering;

• Google Charts (https://developers.google.com/chart) for
plotting;

Visualization was performed with HiGlass JS API (30).

RESULTS

Benchmarking datasets and challenges

We implemented two types of analysis in the 3DGenBench
benchmark platform, which we defined as horizontal and
vertical benchmarking (Figure 1A). The horizontal bench-
marking challenge aims at quantifying the predictive power
of computational models that predict Hi-C data from locus-
specific 1D-epigenetic data. For this challenge, we chose
four high-resolution Hi-C datasets describing well-studied
human, mouse, and Drosophila cell lines (human K562 and
GM12868; mouse embryonic stem cells; Drosophila Kc167
cells). In addition, we selected CTCF ChIA-PET data for
human GM12868 cells to allow scoring ChIA-PET data
prediction.

To standardise the 1D-epigenetic information, we pro-
vided a list of available epigenetic tracks for each of the cell
lines included in the benchmarking, such as ChIP-seq pro-
files, transcriptome data, and other genomic features. We
limited the challenge to six 20-Mb long regions from differ-
ent chromosomes, which should allow most of the models
to participate in the benchmarking. Model parameters can
be learned from whole genome data from which the bench-
marking validation datasets are excluded. The submission
to the platform consists of one predicted Hi-C map for one
of the six regions of the benchmarking dataset. ChIA-PET
data submission consists of a single file of PET clusters.

We implemented several metrics measuring model perfor-
mance in the horizontal benchmarking challenge (see Ma-
terials and Methods). For Hi-C data, these included Spear-
man’s correlation and stratum adjusted correlation coeffi-
cient (SCC) (23) to measure overall similarity of experimen-

Figure 1. Benchmarking analysis provided by 3DGenBench. (A) Hori-
zontal benchmarking consists of comparing experimental data and model
in the same condition (i.e. WT versus WT or Mut versus Mut). Vertical
benchmarking aims to quantify the accuracy of the model in predicting
changes of chromatin architecture due to the mutations. (B) Graphical
summary of the datasets collected for the vertical benchmark.

tal and predicted Hi-C maps. SCC is advantageous over cor-
relation because it is not biased by the strong distance de-
pendence of chromatin interaction data. We measured the
accuracy of the predicted distance dependence separately
as the correlation between observed and predicted contact
scaling functions. We used Pearson’s correlation between
predicted and observed compartmentalization profiles (24)
to show how well the model captures preferences in inter-
actions between chromatin compartments. Finally, we used
Spearman’s correlation of insulation scores to estimate how
the model predicts boundaries of topologically associating
domains (TADs). Since there are multiple models predict-
ing TAD boundaries without inferring contact maps, we
provided an option to submit insulation scores tracks only.
To support visual assessment of the predicted data, we in-
tegrated a HiGlass view in the 3DGenBench output pages.

For ChIA-PET data prediction the overlap between pre-
dicted and reference lists of PET clusters are estimated (see
Materials and Methods) and the mean-squared error of
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Figure 2. The main steps of the 3DGenBench workflow. (A) Dataset selection and download. (B) Generation and upload of predicted data. (C) Job
submission. (D) Submission status validation. (E) Exploring results.

PET counts is computed to estimate the accuracy of clus-
ter counts.

The second type of analysis implemented in the 3DGen-
Bench platform is called vertical challenge. It aims at quan-
tifying how accurate models are in predicting changes of
chromatin architecture caused by genetic perturbations. For
this challenge, we collected capture Hi-C-datasets available
for CRISPR-edited mouse cells and tissues with matched
wild-type controls. The resulting dataset includes 49 wild-
type––mutation pairs from nine loci and nine cell types
(Figure 1B). The input data for this type of analysis con-
sists of a pair of predicted Hi-C datasets matching ex-
perimental wild-type and mutation data. For each wild-
type––mutation pair, 3DGenBench will extract the fraction
of chromatin interactions that differ between both condi-
tions. 3DGenBench then compares this predicted set of ec-
topic interactions with experimentally observed differences.

We implemented several previously-published metrics,
specifically measuring how the model captures differences
in chromatin architecture between two conditions (see Ma-
terials and Methods). These metrics score the overlap be-
tween observed and predicted ectopic chromatin interac-
tions (7) and predictions of TAD boundaries changes.

3DGenBench workflow, input and output description

We expect the following usage of the 3DGenBench services.
First, modellers can explore the 3DGenBench datasets

available under the ‘Datasets’ tab to find relevant exper-
imental data for benchmarking (Figure 2A). Each Hi-C
dataset is available in the most commonly used formats: hic,
cool (5, 10, 20 and 50 kb resolutions), and pairs. Also, there
are supplementary tracks describing CTCF binding sites for
most of the datasets. All the data can be downloaded via hy-
perlinks in the table. Alternatively, the complete metadata
table can be obtained from the server in JSON or text for-
mat to fetch and process download URLs automatically.

After exploring and modeling experimental data, predic-
tions for the corresponding datasets can be uploaded to the
server via FTP or the submission page (Figure 2B). Pre-
dicted Hi-C contacts should be formatted as 4-column files,
each row containing the chromosome name, two genomic
coordinates, and contact count (see Supplementary Data
1 for a representative example); ChIA-PET predictions as
6-column files, with the same format as the pairs format
utilized by 4DNucleome portal (https://www.4dnucleome.
org/). Example files are available at the 3DGenBench tuto-
rial pages. Users can upload multiple files that will appear
in the drop-down list at the next (submission) step.

Once the data is uploaded, users can follow the ‘Compute
metrics’ tab from the home menu, choose the type of pre-
diction (single for horizontal benchmarking or paired for
vertical benchmarking) and fill all the fields related to the
predicted sample (Figure 2C).

The status of the submission is then available at the ‘Sub-
missions list’ tab of the home menu (Figure 2D). Blue status
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Figure 3. Examples of scoring metrics provided by 3DGenBench. (A) Example of vertical benchmarking using 3DGenBench. Performance metrics com-
paring experimental Hi-C data with noise-injected datasets (solid lines), diagonal shuffling (dashed horizontal lines), DRAGON (asterisk) and PRISMR
(diamond) models. Data is shown for two loci of GM12878 cells on chromosome 1 (orange) and chromosome 19 (blue). X-axes show noise levels (measured
in standard deviation values, the higher the value the noisier the data, see Materials and Methods for details). Y-axes show corresponding metric values.
(B) Example of vertical benchmark. Data is presented as in (A). (C) HiGlass views comparing experimental data (above diagonal) with two noise-injected
datasets and DRAGON model (below diagonal) for genomic region 22–42 Mb on chromosome 1 in GM12878 cells.

of submission indicates that the job is queued; yellow sta-
tus of submission indicates the server is currently being pro-
cessed the job; green status means that metrics computation
was successfully completed, and red indicates an error with
data processing.

When data processing is over, clicking on the ID link (e.g.
bmXXXXXXXX) redirects the user to the page with the
job results (Figure 2E). This page contains metrics describ-
ing the prediction accuracy of the model. In addition, the re-
sult pages shows metrics obtained for baselines, simulating

predictions of varying quality (see Materials and Methods
for details). It is also possible to compare with previously-
submitted jobs by choosing any available IDs with a green
colour of the status icon.

Case study

To evaluate how 3DGenBench scores the similarity be-
tween Hi-C datasets, we generated fake predictions by in-
jecting different amounts of noise into experimental Hi-C
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data or by randomly shuffling contacts on each diagonal
of Hi-C matrices (see Materials and Methods) and submit-
ted all generated datasets to the 3DGenBench platform. We
also generated predictions for contact maps of two loci in
GM12878 cells based on 1D epigenomic data (horizontal
challenge) using the DRAGON and PRISMR chromatin
models (7,25,26), and predicted three pairs of WT and Mut
contact maps (vertical challenge) using 3DPredictor, and
3DPolyS-Fit algorithms (25,27,28).

As shown in Figure 3A for horizontal benchmarking,
the 3DGenBench metrics are concordant with the level of
noise injection. Noisier models have lower SCC, compart-
mentalization and insulation score similarity metrics. Inter-
estingly, metrics show differ sensitivity to noise injections.
The correlation coefficient computed from all contacts de-
creases even when a small amount of noise was added to
contacts, whereas compartments strength and insulation
scores were relatively stable at these noise levels. Diagonal
shuffling expectedly preserve contacts scaling, but result in
strong changes of the insulator score.

According to our metrics, the DRAGON model perfectly
captures contact scaling, shows good metrics of compart-
ment prediction, but is less efficient regarding the insula-
tion landscape (Figure 3A and C). PRISMR model captures
insulation landscape significantly better than DRAGON
model, but is not as good in predicting contacts scaling.
This toy example shows how 3DGenBench can be used to
discover strengths and weaknesses of different predictive
models.

Similarly, 3DGenBench correctly scores noise injection
models in vertical benchmarking (Figure 3B). For exam-
ple, precision-recall AUC gradually decreases from 1 to
∼0.2 when increasing the amount of noise. Our compari-
son of 3DPredictor and 3DPolyS-Fit algorithms shows that
in most of cases 3DPolyS-Fit reconstructs chromatin archi-
tecture and its changes better than 3DPredictor, although in
few cases (i.e. for prediction of insulation score changes in
the inversion Inv1) 3DPredictor outperforms 3DPolyS-Fit.
Overall, this shows that the 3DGenBench metrics module
provides a user-friendly interface to score computational
predictions of genome architecture.

CONCLUSIONS AND FUTURE PROSPECTS

Here, we describe 3DGenBench, a web-platform for bench-
marking of computational models of 3D chromatin archi-
tecture. There are two types of analysis implemented in
3DGenBench currently, but this platform can be easily ex-
tended to include additional species, cell types and bench-
marks. It can be used by model developers to improve their
methods based on robust metrics but also by model users
to choose the best methods to tackle their questions. One
promising direction of 3DGenBench development is the
integration with 4DNucleome datasets (31), which is cur-
rently the largest available collection of 3D genomic data.
In addition, different types of data could be integrated, e.g.
from microscopy based experimental approaches (32), to
test the models at the single molecule level (33) beyond
the population averaged contact maps. Another future di-
rection is the development of online services implement-
ing the most popular algorithms for chromatin modelling.

Currently, the vast majority of computational models do
not have user-friendly implementations, and only few of
them have online-tools allowing simple access (27,34). A
web-implementation of these modeling tools alongside with
benchmarking results provided by 3DGenBench platform
will allow the 4D Genomics community to easily integrate
chromatin models in their research.

DATA AVAILABILITY

The 3DGenBench web server is accessible at https://inc-
cost.eu/benchmarking/. The corresponding open-source
code is available in the GitHub repository (https://github.
com/regnveig/3DGenBench).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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