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Abstract—To satisfy the heterogeneous service requirements
in future internet of things (IoT), this paper investigates the
novel framework for intelligent reflecting surface (IRS)-aided
wireless powered over-the-air computation (AirComp) and com-
munication networks, where the IoT devices first harvest energy
from the downlink signal sent by the base station, and then
conduct the information transmissions and AirComp in the
uplink. In particular, the IRS is used to improve the efficiency of
wireless energy transfer, and alleviate the harmful interference
between the communication and AirComp signals. To balance
the performance of such an integrated system, we present
two joint beamforming and reflection optimization problems
via minimizing the computation distortion and maximizing the
sum rate, respectively. To solve the non-convex problems, we
develop the alternating optimization framework with proved
convergence, in which the penalty function-based method and
variable substitution technique are exploited to acquire the
optimal solutions of beamformers and reflection parameters. Fi-
nally, simulation results show that the proposed method realizes
significantly higher computation accuracy and communication
rate, in comparison with several existing benchmark methods.

Index Terms—Intelligent reflecting surface, over-the-air com-
putation, non-orthogonal multiple access, wireless energy trans-
fer, Internet of Things.

I. INTRODUCTION

The recent advancement of IoT leads to the explosive
growth in terminal devices. It is expected that over 29.4
billion IoT devices will be installed in 2030 to execute
some environment sensing tasks and to enable multitudinous
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applications, e.g., smart cities, industrial automation and e-
mergency rescue [1]. Typically, these applications require
stable energy supply and high-speed communications. Radio-
frequency-based wireless energy transfer (WET) is developed
to offer convenient, controllable and stable energy supply
for massive IoT devices, in which the base station (BS) can
broadcast downlink energy signals to charge distributed IoT
devices [2], [3]. Nowadays, the efficiency of WET has been
significantly enhanced with the development of hardwares and
algorithms. For instance, Xiaomi company has proposed "Mi
Air Charge", which can deliver up to 5 watt power over
the wireless channels to multiple IoT devices simultaneously
within a distance of several meters [4].

Furthermore, due to the limited spectrum resources, con-
ventional orthogonal multiple access method cannot ensure
the high-speed communications for massive IoT devices. Non-
orthogonal multiple access (NOMA) is thus proposed to
enable massive access of ubiquitous IoT devices [5], [6].
Nevertheless, the severe co-channel interference restricts the
application of NOMA in IoT [7], [8]. To tackle this issue, spa-
tial beamforming is recognized as a promising solution, where
BS and IoT devices are equipped with multiple antennas for
conducting the refined transmit/reflect beamforming to reduce
the harmful co-channel interference in NOMA-based IoT [9].

In addition to the energy supply and data transmissions,
the real-time data processing/computation is another challenge
faced by IoT [10]–[12]. For instance, in the temperature
measurement applications, the BS prefers to obtain the average
temperature measured by multiple IoT devices, instead of
acquiring the individual measured data. However, the conven-
tional transmit-then-compute approach requires two phases to
achieve the data computation, and it will be low-efficiency and
high-latency. To this end, AirComp is developed to support
the direct computation of distributed data from IoT devices,
through utilizing the superposition property of wireless trans-
mission channels [13]–[15]. Despite the benefits introduced
by AirComp, it also incurs the deviation between the desired
computation result and the actual computation result [16]. In
[17], Cao et al. studied the interference management scheme
to minimize the computation error for multi-cell AirComp
systems. In [18], Fu et al. utilized the mobility of UAV to
reduce the computation error of AirComp systems.

To satisfy the heterogeneous service requirements in IoT, it
is meaningful and essential to design the integrated framework
of energy transfer, data communication and AirComp, which
will lead to a new design paradigm, i.e., wireless powered



AirComp and communication networks. In [19], Li at al.
proposed the power allocation and beamforming optimization
strategy for wireless powered AirComp systems. In [20], Qi
et al. focused on the joint transmit and receive beamform-
ing scheme for an integrated multi-antenna AirComp and
communication network. In [21], the same group extended
their work to wireless powered AirComp and communication
networks, where IoT devices need to harvest radio-frequency
energy to conduct the uplink information transmissions and
AirComp. Although performance advantages of the wireless
powered AirComp and communication network, it is funda-
mentally restricted by uncontrollable wireless transmission
environments and the nonnegligible co-channel interference
between communication and computation signals.

Benefited from the advantage of reconstructing the wireless
channels, IRS has attracted extensive attentions from both
industrial and academia [22]–[25]. IRS is composed of a
large number of passive/active reflection elements, where
the phase/amplitude of incident signals can be dynamically
adjusted to form refined reflect beamforming to enhance the
intended signal and to eliminate the harmful interference
signal at receivers. Therefore, the IRS is of great potential in
improving the efficiency of wireless powered AirComp and
communication networks. In [26]–[33], the authors utilized
the IRS technique to improve the performance of sum rate,
power consumption, energy efficiency, security, latency, etc.,
for wireless energy and information transfer systems. In [34]–
[37], Fang et al. aimed at minimizing the computation error
for IRS-aided AirComp systems. In [38], Wang et al. focused
on the optimal beamforming strategy for IRS-assisted wireless
powered AirComp systems. Nevertheless, only uplink Air-
Comp was considered in this article, and it cannot reveal the
tradeoff relationship between uplink information transmission
and AirComp. Table I compares this article with existing
literature.

As observed in Table I, the transmit and receive beamform-
ing was investigated to improve the efficiency of wireless ener-
gy transfer, information communication or AirComp in [19]–
[21]. Moreover, IRS was utilized to enhance the efficiency of
wireless energy/information transmissions [26]–[33], and to
reduce the computation error [34]–[38] of AirComp. However,
the integration framework of IRS-aided wireless powered
AirComp and communication networks was not investigated
in existing literature. Moreover, the joint beamforming and
reflecting optimization method was not developed to balance
the heterogeneous performance requirements of such an inte-
grated network. Notice that the joint optimization problem is
extremely challenging considering complex coupled relation-
ship between energy transfer, information transmissions and
AirComp. As expected, available energy of IoT devices for
AirComp and information transmissions is restricted by the
harvested radio-frequency energy in the downlink. Besides,
the co-channel interference originated from AirComp will
degrade the signal-to-interference-plus-noise-ratio (SINR) of
information transmissions, and the computation error can
be deteriorated due to the existence of information trans-
missions. Meanwhile, despite the benefits introduced by the
IRS, it is difficult to configure the reflection parameters to

coordinate with transmit/receive beamforming for improving
the performance of such an integrated system. Due to the
highly coupled multi-dimensional optimization variables and
diverse performance requirements, the existing beamforming
methods cannot be exploited in IRS-aided wireless powered
AirComp and communication networks. As a result, there is
an urgent requirement to design new optimization framework
and algorithms for IRS-aided wireless powered AirComp and
communication networks.

This paper considers a typical IRS-aided wireless powered
AirComp and communication network, where each IoT device
first harvests the radio-frequency energy from the BS, and then
conducts the uplink information transmission and AirComp
simultaneously. The contribution of this article is summarized
as follows.

• A Novel framework is proposed for balancing the
communication rate and computation accuracy of IRS-
assisted wireless powered AirComp and communication
networks. In particular, each IoT device and BS dedicate
two transmit and receive beamformers separately for
uplink information transmissions and AirComp, while
the IRS reflect coefficient is configured to reduce the
harmful co-channel interference between communication
and AirComp.

• A new optimization problem is formulated to minimize
the computation MSE under the energy causality restric-
tions and communication SINR constraints, with the joint
optimization of the transmit beamforming at IoT devices,
reflection matrix of the IRS, energy beamforming and
receive beamforming of the BS. To solve the non-
convex problem, we develop an alternating optimization
framework to sequentially optimize the receive, reflect
and transmit beamfomers, where the variable substitution
technique and penalty function-based method are utilized
to solve each subproblem.

• We further present the sum rate maximization problem
under the computation MSE and energy causality con-
straints, via jointly optimizing the transmit and receive
beamforming, as well as the reflection matrix of IRS.
We first adopt an approximate method to rewrite the non-
concave sum rate expression to a tractable form. Then, an
alternating optimization method is developed to decouple
the optimization variables, and the variable substitution
technique and penalty function-based method are applied
to acquire the optimal solutions of beamformers and
reflection parameters.

Simulation results show that the optimal configuration of
IRS contributes significantly to improving the communication
and computation performance of considered systems, espe-
cially when there are a large number of transmit antennas
and reflection elements. Besides, the integrated design can
achieve comparable communication rate and computation ac-
curacy than Communication only scheme and Computation
only scheme, respectively.

The remainder of this article is outlined as follows. Sec-
tion II introduces the system model for IRS-aided wireless
powered AirComp and communication networks. Sections



TABLE I: Synopsis of relevant research works

Ref. Optimization target IRS AirComp WET Communication
[19] Computation MSE % ! Linear energy harvesting !

[20] Computation MSE&Sum rate % ! % !

[21] Computation MSE % ! Linear energy harvesting !

[26], [27] Sum rate ! % Linear energy harvesting !

[28], [29] System power consumption ! % Linear energy harvesting !

[30] Common throughput ! % Linear energy harvesting !

[31] Secrecy throughput ! % Linear energy harvesting !

[32] Energy efficiency ! % Linear energy harvesting !

[33] Total transmission time ! % Linear energy harvesting !

[34]–[37] Computation MSE ! ! % %

[38] Computation MSE ! ! Linear energy harvesting %

This article Computation MSE&Sum rate ! ! Linear&Non-Linear energy harvesting !

III and IV investigate the joint beamforming and reflection
optimization methods for minimizing the MSE and maximiz-
ing the sum rate, respectively. Section V extends the joint
beamforming and reflect optimization method to the scenario
with non-linear energy harvesting model. Simulation results
are presented in Section VI. We conclude this paper in Section
VII.

II. SYSTEM MODEL

As shown in Fig. 1, this paper considers an IRS-aided wire-
less powered AirComp and communication network, which
includes a BS with NA antennas, an IRS with M reflection
elements, K IoT devices with NI antennas. We denote the
sets of IRS’s reflection elements and IoT devices as M =
{1, 2, · · · ,M} and K = {1, 2, · · · ,K}, respectively. The
time-division duplex is utilized to coordinate the downlink
wireless energy transfer, uplink AirComp and information
transmissions.

Fig. 1: IRS-aided wireless powered AirComp and communication
networks.

In the first half of the time slot, the BS broadcasts the
downlink energy signals to charge IoT devices with the aid
of IRS. According to classic energy harvesting model in [21],
the energy collected by the k-th IoT device is expressed as

Ek = TET ηk∥GH
E,kv∥2, ∀k ∈ K, (1)

where TET indicates the duration for downlink energy trans-
fer, ηk ∈ [0, 1] represents the energy conversion efficiency of
the k-th IoT device, GH

E,k = GH
d,k+GH

r,kΘEH, where Gd,k ∈
CNA×NI , Gr,k ∈ CM×NI and H ∈ CM×NA stands for the
channels between the BS and the k-th IoT device, between
the IRS and the k-th IoT device, and between the BS and the
IRS, respectively, v ∈ CNA×1 denotes the energy beamformer
at the BS, ΘE = diag{ejθE,1 , ejθE,2 , · · · , ejθE,M } is the
IRS reflection matrix for downlink energy transfer, where
θE,m ∈ (0, 2π] indicates the phase shift of m-th reflection
element. Noted that the power harvested from noise is gener-
ally negligible, when compared to the power harvested from
the radio-frequency signal [39]. In order to unless the potential
of IRS, it is assumed that the BS can obtain accurate channel
state information (CSI) in considered systems [40]. In practice,
the CSI of direct channels can be estimated via conventional
methods by setting IRS into absorbing mode. In addition, a
small number of low-power sensors can be installed at the
IRS for estimating the CSI of channels between the IRS and
BS/IoT devices.

Fig. 2: The system framework of uplink signal transmission and
reception.

In the second half of the time slot, the IoT devices will
utilize the harvested energy to execute two tasks in the uplink,
namely AirComp and information transmissions. Hence, the
transmit signals of IoT devices include two parts, one for
information transmissions and the other for data computation
using the AirComp technique. For convenience, the former
signal and the latter signal are denoted by communication
signal and computation signal, respectively. As seen in Fig. 2,
each IoT device first conducts transmit beamforming for the
communication signal and computation signal, and then sends



the superposed signal to the BS. Benefited from the advantage
of AirComp, the BS will utilize the receive computation beam-
forming to obtain the computation result directly. Besides, the
communication information can be decoded by the BS through
exploiting the receive communication beamforming.

TABLE II: Some examples of nomographic functions

Function ϕk ψ f

Arithmetic Mean ϕk = dk ψ = 1
K

f = 1
K

K∑
k=1

dk

Geometric Mean ϕk = ln(dk) ψ = exp( ·
K
) f = (

∏K
k=1 dk)

1/K

Polynomial ϕk = νkd
ϱk
k ψ = 1 f =

K∑
k=1

νkd
ϱk
k

Euclidean Norm ϕk = d2k ψ =
√
· f =

√
K∑

k=1
d2k

Furthermore, we denote dk and scomm,k as the computation
symbol and communication signal of k-th IoT device, respec-
tively. Based on the principle of AirComp, the BS tends to
acquire the the desired nomographic function of computation
symbols from all IoT devices, instead of obtaining the indi-
vidual computation symbol of each IoT device. Defining f as
the target function at the BS, it follows that

f = ψ

(
K∑

k=1

ϕk(dk)

)
, (2)

where ϕk and ψ denote the pre-processing function at the k-th
IoT device and post-processing function at the BS, respective-
ly. Besides, scomp,k = ϕk(dk) is defined as the computation
signal at the k-th IoT device, which satisfies E(scomp,k) = 0,
E(scomp,k(scomp,k)

H) = 1 and E(scomp,k(scomp,j)
H) = 0 for

k ̸= j. Note that this article focuses on a scenario that the

BS wants to acquire the desired function f =
K∑

k=1

scomp,k

[38]. In addition, the other nomographic functions can also
be computed by designing proper pre-processing and post-
processing functions (See examples in TABLE II). According
to above descriptions, the transmit signal of the k-th IoT
device is given by

xk = bcp,kscomp,k + bcc,kscomm,k, ∀k ∈ K, (3)

where bcp,k ∈ CNI×1 and bcc,k ∈ CNI×1 represent the trans-
mit beamformers of computation signal and communication
signal at the k-th IoT device, respectively. Defining Qini,k as
the initial battery energy of k-th IoT device, its transmit power
is restricted by the sum of initial energy and harvested energy,
which yields that

∥bcp,k∥2 + ∥bcc,k∥2 ≤ Ek +Qini,k

TIT
,∀k ∈ K. (4)

where TIT represents the time duration for uplink information
transmissions and AirComp.

Furthermore, the received signal of the BS is denoted by

y =
K∑

k=1

GD,kxk + n. (5)

Note that n ∈ CN (0, δ2I) indicates the additive white

Gaussian noise, GD,k = Gd,k + HHΘDGr,k, and ΘD =
diag{ejθD,1 , ejθD,2 , · · · , ejθD,M } is the IRS reflection matrix
for uplink signal transmissions, where θD,m ∈ (0, 2π] indi-
cates the phase shift of m-th reflection element. As shown in
Fig. 2, the BS will utilize the receive computation beamformer
w ∈ CNA×1 to recover the desired function f after receiving
the superposition signals from all IoT devices. Hence, the
estimated function f̂ at the BS is written as

f̂=wH
K∑

k=1

GD,kbcp,kscomp,k+

wH
K∑

k=1

GD,kbcc,kscomm,k +wHn.

(6)

Generally, the computation error is evaluated by the MSE
between the target function f and the estimated function f̂ ,
which follows that

MSE(f, f̂) = E
[
|f − f̂ |2

]
=

K∑
k=1

|wHGD,kbcp,k− 1|2+
K∑

k=1

|wHGD,kbcc,k|2+ δ2∥w∥2.

(7)
Next, we will discuss the processing of communication signals
at the BS. Let us denote u ∈ CNA×1 as the receive beamform-
ing vector for recovering the communication signals at the BS.
Therefore, the received signal for decoding the communication
information is expressed as

y= uH
K∑
k=1

GD,kbcp,kscomp,k+

uH
K∑
k=1

GD,kbcc,kscomm,k+uHn.

(8)

Since the signals decoded before the k-th IoT device’s signal
have been subtracted from y, so the SINR for decoding the
information of the k-th IoT device is written as

Γk=
|uHGD,kbcc,k|2

K∑
i=k+1

|uHGD,kbcc,i|2+
K∑
i=1

|uHGD,kbcp,i|2+δ2∥u∥2
,

∀k ∈ K.
(9)

In this paper, the computation and communication perfor-
mance are evaluated by the MSE of computation result and
the sum rate of information transmissions, respectively. As
observed in (7) and (9), the system performance depends
on the transmit beamformers {bcc,k,bcp,k} of IoT devices,
reflection matrix {ΘE ,ΘD} of IRS, energy beamformer v and
receive beamformers {u,w} of BS. In the following Sections
III and IV, we will jointly optimize the beamforming and
reflection strategies via minimizing the MSE and maximizing
the sum rate, respectively.

III. MSE MINIMIZATION PROBLEM

This section aims at minimizing the MSE of computation
result, while ensuring the minimum SINR requirements of



information transmissions, which is formulated as

min
{v,u,w,bcc,k,

bcp,k,ΘE,ΘD}

MSE(f, f̂)

s.t. C1: Γk ≥ rmin,k, ∀k ∈ K,
C2: ∥bcp,k∥2 + ∥bcc,k∥2 ≤
Qini,k + TET ηk∥GH

E,kv∥2

TIT
, ∀k ∈ K,

C3: 0 ≤ θE,m ≤ 2π, ∀m ∈ M,

C4: 0 ≤ θD,m ≤ 2π, ∀m ∈ M,

C5: ∥v∥2 ≤ Pmax,A,

(10)

where Pmax,A represents the maximum transmit power at the
BS. In (10), C1 restricts the minimum SINR requirements
of IoT devices, C2 indicates the energy causality constraints
of IoT devices, C3-C4 denotes the phase shift constraints
of reflection elements at the IRS, and C5 represents the
maximum transmit power constraint of the BS.

Because of the non-convex MSE expression and the high-
ly coupled optimization variables, the optimal solution of
non-convex problem (10) cannot be acquired via standard
methods in polynomial time. Based on the block coordinate
descent (BCD) method, this paper decouples the optimization
variables into three subproblems, namely energy and receive
beamforming optimization subproblem, phase shift optimiza-
tion subproblem, and transmit beamforming optimization sub-
problem. The details for solving the three subproblems are
elaborated in the following subsections.

A. Energy and Receive Beamforming Optimization Subprob-
lem

Under given {b∗
cc,k,b

∗
cp,k,Θ

∗
E ,Θ

∗
D}, (10) is reduced as

min
{v,u,w}

K∑
k=1

|wHG∗
D,kb

∗
cp,k − 1|2 +

K∑
k=1

|wHG∗
D,kb

∗
cc,k|2

+ δ2∥w∥2

(11a)

s.t.

|uHG∗
D,kb

∗
cc,k|2

K∑
i=k+1

|uHG∗
D,kb

∗
cc,i|2 +

K∑
i=1

|uHG∗
D,kb

∗
cp,i|2 + δ2∥u∥2

≥ rmin,k, ∀k ∈ K,
(11b)

∥b∗
cp,k∥2 + ∥b∗

cc,k∥2 ≤
TET ηk∥(G∗

E,k)
Hv∥2

TIT
+

Qini,k

TIT
, ∀k ∈ K,

(11c)

∥v∥2 ≤ Pmax,A, (11d)

where G∗
D,k = Gd,k +HHΘ∗

DGr,k and (G∗
E,k)

H = GH
d,k +

GH
r,kΘ

∗
EH. Next, we first infer the optimal w in Theorem 1,

and then adopt the variable substitution technique and penalty
function-based algorithm to obtain the optimal {u,v}.

Theorem 1: The optimal receive computation beamforming

w is expressed as

w∗ = (
K∑

k=1

(G∗
D,kb

∗
cp,k(b

∗
cp,k)

H(G∗
D,k)

H+

G∗
D,kb

∗
cc,k(b

∗
cc,k)

H(G∗
D,k)

H) + δ2I)−1
K∑

k=1

G∗
D,kb

∗
cp,k.

(12)

Proof: Let us define MSE(w) =
K∑

k=1

|wHG∗
D,kb

∗
cp,k −

1|2 +
K∑

k=1

|wHG∗
D,kb

∗
cc,k|2 + δ2∥w∥2. The optimal w is

obtained at the stationary point of MSE(w). The first-order
derivation of MSE(w) is given by

∂MSE(w)

∂w
= 2(

K∑
k=1

(G∗
D,kb

∗
cp,k(b

∗
cp,k)

H(G∗
D,k)

Hw+

G∗
D,kb

∗
cc,k(b

∗
cc,k)

H(G∗
D,k)

Hw −G∗
D,kb

∗
cp,k) + δ2w)

(13)

By setting ∂MSE(w)
∂w = 0, the optimal w∗ is acquired as given

in (12).

As observed, the optimal w adopts the minimum mean
square error (MMSE) receiver. Defining U = uuH , V =
vvH , gcp

D,k,i = G∗
D,kb

∗
cp,i, gcc

D,k,i = G∗
D,kb

∗
cc,i, Gcp

D,k,i =

gcp
D,k,i(g

cp
D,k,i)

H , and Gcc
D,k,i = gcc

D,k,i(g
cc
D,k,i)

H , (11) is
converted as

find
{V≽0,
U≽0}

{V,U} (14a)

s.t.

Tr(Gcc
D,k,kU)

rmin,k
≥

K∑
i=k+1

Tr(Gcc
D,k,iU) +

K∑
i=1

Tr(Gcp
D,k,iU)

+ δ2Tr(U), ∀k ∈ K,
(14b)

∥b∗
cp,k∥2 + ∥b∗

cc,k∥2 ≤
TET ηkTr(G∗

E,k(G
∗
E,k)

HV)

TIT

+
Qini,k

TIT
, ∀k ∈ K,

(14c)
Tr(V) ≤ Pmax,A, (14d)
Rank(V) = 1, Rank(U) = 1. (14e)

(14) is non-convex because of the rank-one constraint (14e).
According to matrix theory, we have

Tr(V)− λmax(V) ≥ 0, (15)

Tr(U)− λmax(U) ≥ 0, (16)

where λmax(V) and λmax(U) represent the maximum eigen-
value of V and U, respectively. The equalities of (15)-(16)
hold when the ranks of V and U are equivalent to 1. By
replacing (14e) as (15)-(16) and integrating them into the
objective function, problem (14) is transformed as

min
{V≽0,U≽0}

Tr(V)− λmax(V) + Tr(U)− λmax(U) (17a)

s.t. (14b)-(14d). (17b)



Problem (17) is still non-convex due to the non-concave eigen-
value function. Based on the successive convex approximation
method, (17) can be convexified as

min
{V≽0,
U≽0}

Tr(V)− (v(i)
max)

HVv(i)
max + Tr(U)− (u(i)

max)
HUu(i)

max

(18a)
s.t. (14b)-(14d), (18b)

where v
(i)
max and u

(i)
max denote the eigenvectors associated with

the maximum eigenvalue of V and U, respectively. The rank-
one solution is acquired by iteratively solving the convex prob-
lem (18). Then, v(i) and u(i) will be obtained by exploiting
the eigenvalue decomposition, i.e., v(i) =

√
λmax(V(i))v

(i)
max

and u(i) =
√
λmax(U(i))u

(i)
max, where v

(i)
max and u

(i)
max represent

the eigenvectors associated with the maximum eigenvalue of
V(i) and U(i), respectively.

B. Phase Shift Optimization Subproblem

Given {b∗
cc,k,b

∗
cp,k,u

∗,w∗,v∗}, (10) is simplified to the
following phase shift optimization subproblem

min
ΘE,
ΘD

K∑
k=1

|(w∗)HGD,kb
∗
cp,k − 1|2 +

K∑
k=1

|(w∗)HGD,kb
∗
cc,k|2

(19a)

s.t.

|(u∗)HGD,kb
∗
cc,k|2

K∑
i=k+1

|(u∗)HGD,kb∗
cc,i|2+

K∑
i=1

|(u∗)HGD,kb∗
cp,i|2+δ2∥u∗∥2

≥ rmin,k, ∀k ∈ K,
(19b)

∥b∗
cp,k∥2 + ∥b∗

cc,k∥2 ≤
TET ηk∥GH

E,kv
∗∥2

TIT

+
Qini,k

TIT
, ∀k ∈ K,

(19c)

C3-C4. (19d)

Next, we will adopt the variable substitution technique to
transform (19) to a more tractable form. Denoting ck =
(w∗)HGd,kb

∗
cp,k−1, dk = (w∗)HHHdiag(Gr,kb

∗
cp,k), vD =

[ejθD,1 , · · · , ejθD,M ]T , and v̂D = [vT
D, 1]

T , we have

|(w∗)H(Gd,k +HHΘDGr,k)b
∗
cp,k − 1|2 = |dkvD + ck|2

= vH
DdH

k dkvD + vH
DdH

k ck + cHk dkvD + cHk ck = v̂H
DZ1kv̂D,

(20)
where Z1k = [dH

k dk,d
H
k ck; c

H
k dk, c

H
k ck]. Similarly, the

following equalities hold

|(w∗)H(Gd,k +HHΘDGr,k)b
∗
cc,k|2 = v̂H

DZ2kv̂D, (21)

|(u∗)H(Gd,k +HHΘDGr,k)b
∗
cp,i|2 = v̂H

DZ3k,iv̂D, (22)

|(u∗)H(Gd,k +HHΘDGr,k)b
∗
cc,i|2 = v̂H

DZ4k,iv̂D, (23)

where ek = (w∗)HGd,kb
∗
cc,k, fk =

(w∗)HHHdiag(Gr,kb
∗
cc,k), mk,i = (u∗)HGd,kb

∗
cp,i,

qk,i = (u∗)HHHdiag(Gr,kb
∗
cp,i), hk,i = (u∗)HGd,kb

∗
cc,i,

lk,i = (u∗)HHHdiag(Gr,kb
∗
cc,i),

Z2k =

[
fHk fk fHk ek
eHk fk eHk ek

]
,

Z3k,i =

[
qH
k,iqk,i qH

k,imk,i

mH
k,iqk,i mH

k,imk,i

]
,

Z4k,i =

[
lHk,ilk,i lHk,ihk,i
hHk,ilk,i hHk,ihk,i

]
.

(24)

Meanwhile, we have

∥(GH
d,k +GH

r,kΘEH)v∗∥2 = v̂H
EZ5kv̂E , (25)

where vE = [ejθE,1 , ejθE,2 , · · · , ejθE,M ]T , v̂E = [vT
E , 1]

T ,
Z5k = [diag((v∗)HHH)Gr,kG

H
r,kdiag(Hv∗),

diag((v∗)HHH)Gr,kG
H
d,kv

∗; (v∗)HGd,kG
H
r,kdiag(Hv∗),

(v∗)HGd,kG
H
d,kv

∗].

According to (20)-(23) and (25), the phase shift optimiza-
tion subproblem (19) is rewritten as

min
V̂E≽0,

V̂D≽0

K∑
k=1

Tr(Z1kV̂D) +
K∑

k=1

Tr(Z2kV̂D) (26a)

s.t.

Tr(Z4k,kV̂D)

rmin,k
≥

K∑
i=k+1

Tr(Z4k,iV̂D)+

K∑
i=1

Tr(Z3k,iV̂D) + δ2∥u∗∥2,∀k ∈ K,

(26b)

∥b∗
cp,k∥2 + ∥b∗

cc,k∥2 ≤ TET ηkTr(Z5kV̂E)

TIT

+
Qini,k

TIT
, ∀k ∈ K,

(26c)

[V̂E ]mm = 1, [V̂D]mm = 1,m ∈ {M,M + 1},
(26d)

Rank(V̂E) = 1, Rank(V̂D) = 1, (26e)

where V̂E = v̂H
E v̂E and V̂D = v̂Dv̂H

D . Similar to Section
III-A, the penalty function-based algorithm is utilized to tackle
the rank-one constraint (26e). Therefore, (26) is transformed
to the following convex problem

min
V̂E≽0,

V̂D≽0

K∑
k=1

Tr(Z1kV̂D) +
K∑

k=1

Tr(Z2kV̂D)+

χ1(Tr(V̂D)− (v
(i)
D,max)

HV̂Dv
(i)
D,max+

Tr(V̂E)− (v
(i)
E,max)

HV̂Ev
(i)
E,max)

(27a)

s.t. (26b)-(26d), (27b)

where χ1 denotes the penalty factor, v(i)
D,max and v

(i)
E,max stand

for the eigenvectors associated with maximum eigenvalue of
V̂E and V̂D, respectively.



C. Transmit Beamforming Optimization Subproblem

For given {Θ∗
E ,Θ

∗
D,u

∗,w∗,v∗}, (10) is reduced as the
transmit beamforming optimization subproblem

min
{bcc,k,

bcp,k}

K∑
k=1

|(w∗)HG∗
D,kbcp,k − 1|2 +

K∑
k=1

|(w∗)HG∗
D,kbcc,k|2

(28a)

s.t.

|(u∗)HG∗
D,kbcc,k|2

K∑
i=k+1

|(u∗)HG∗
D,kbcc,i|2+

K∑
i=1

|(u∗)HG∗
D,kbcp,i|2 + δ2∥u∗∥2

≥ rmin,k, ∀k ∈ K,
(28b)

∥bcp,k∥2 + ∥bcc,k∥2 ≤
TET ηk∥(G∗

E,k)
Hv∗∥2

TIT

+
Qini,k

TIT
, ∀k ∈ K.

(28c)

According to the principle of matrix operations, we have

|(w∗)HG∗
D,kbcp,k − 1|2 = bH

cp,k(G
∗
D,k)

H(w∗)(w∗)HG∗
D,kbcp,k

− bH
cp,k(G

∗
D,k)

Hw∗ − (w∗)H(G∗
D,k)bcp,k + 1 = Tr(J1kB̂cp,k),

(29)
|(u∗)HG∗

D,kbcp,k|2 = Tr(J2kB̂cp,k), (30)

where b̂cp,k = [bT
cp,k1]

T , B̂cp,k = b̂cp,kb̂
H
cp,k,

J1k =

[
(G∗

D,k)
H(w∗)(w∗)H(G∗

D,k) −(G∗
D,k)

Hw∗

−(w∗)HG∗
D,k 1

]
,

J2k =

[
(G∗

D,k)
H(u∗)(u∗)HG∗

D,k 0NI×1

01×NI 0

]
.

(31)

Defining Bcc,k = bcc,kb
H
cc,k, and integrating (29)-(30) into

(28), the transmit beamforming optimization subproblem is
rewritten as

min
{Bcc,k≽0,

B̂cp,k≽0}

K∑
k=1

Tr((G∗
D,k)

Hw∗(w∗)HG∗
D,kBcc,k)+

K∑
k=1

Tr(J1kB̂cp,k)

(32a)

s.t.

Tr((G∗
D,k)

Hu∗(u∗)HG∗
D,kBcc,k)

rmin,k
≥

K∑
i=k+1

Tr((G∗
D,k)

Hu∗(u∗)HG∗
D,kBcc,i)

+
K∑
i=1

Tr(J2kB̂cp,i) + δ2∥u∗∥2, ∀k ∈ K,

(32b)

Tr(B̂cp,k) + Tr(Bcc,k) ≤ 1 +
TET ηk∥(G∗

E,k)
Hv∗∥2

TIT

+
Qini,k

TIT
, ∀k ∈ K,

(32c)

[B̂cp,k]NI+1,NI+1 = 1, ∀k ∈ K, (32d)

Rank(Bcc,k) = 1, Rank(B̂cp,k) = 1, ∀k ∈ K.
(32e)

Similarly, the penalty function-based iterative algorithm is
utilized to tackle the rank-one constraint (32e). Therefore, (32)
is reformulated as the following convex problem

min
{Bcc,k≽0,

B̂cp,k≽0}

K∑
k=1

Tr(J1kB̂cp,k)+
K∑

k=1

Tr((G∗
D,k)

Hw∗(w∗)HG∗
D,kBcc,k)

+ χ2(
K∑

k=1

(Tr(Bcc,k)− (b
(i)
max,cc,k)

HBcc,kb
(i)
max,cc,k)

+

K∑
k=1

(Tr(B̂cp,k)− (b
(i)
max,cp,k)

HB̂cp,kb
(i)
max,cp,k))

(33a)
s.t. (32b)-(32d), (33b)

where χ2 represents the penalty factor, b(i)
max,cc,k and b

(i)
max,cp,k

denote the eigenvectors with the maximum eigenvalue of Bcc,k

and B̂cp,k, respectively.

D. Algorithm, Convergence and Complexity

As described in above subsections, this paper develops
an alternating optimization framework to solve the MSE
minimization problem (10) inspired by the block coordinate
descent method. The optimization variables of original prob-
lem (10) are divided into three blocks. Then, the receive
beamforming strategy {u,w,v}, the phase shift optimiza-
tion strategy {ΘE ,ΘD}, and transmit beamforming strategy
{bcc,k,bcp,k} are alternately optimized by solving (11), (19)
and (28), respectively, while keeping the other variables fixed.
The details of the proposed method are elaborated in Algo-
rithm 1. Then, we prove the convergence of Algorithm 1, and
further analyze its computational complexity.

Convergence: Defining MSE(w(n),v(n),u(n),Θ
(n)
E ,Θ

(n)
D ,

b
(n)
cc,k,b

(n)
cp,k) as the objective function of (10) at the n-th

iteration. Given {Θ(n)
E ,Θ

(n)
D ,b

(n)
cc,k,b

(n)
cp,k}, the optimal receive

beamforming is designed by solving (11), it follows that

MSE(w(n),v(n),u(n),Θ
(n)
E ,Θ

(n)
D ,b

(n)
cc,k,b

(n)
cp,k)

(a1)

≥ MSE(w(n+1),v(n),u(n),Θ
(n)
E ,Θ

(n)
D ,b

(n)
cc,k,b

(n)
cp,k)

(a2)
= MSE(w(n+1),v(n+1),u(n+1),Θ

(n)
E ,Θ

(n)
D ,b

(n)
cc,k,b

(n)
cp,k),

(34)
where (a1) holds because the optimal w(n+1) is obtained
to minimize the MSE according to Theorem 1, and (a2)
holds because the MSE is not related to {v(n+1),u(n+1)}.
Meanwhile, given {w(n+1),v(n+1),u(n+1),b

(n)
cc,k,b

(n)
cp,k}, the

optimal phase shift matrix {Θ(n+1)
E ,Θ

(n+1)
D } is obtained by

solving (19) for minimizing the MSE. Hence, we have

MSE(w(n+1),v(n+1),u(n+1),Θ
(n)
E ,Θ

(n)
D ,b

(n)
cc,k,b

(n)
cp,k) ≥

MSE(w(n+1),v(n+1),u(n+1),Θ
(n+1)
E ,Θ

(n+1)
D ,b

(n)
cc,k,b

(n)
cp,k).

(35)
Given {w(n+1),v(n+1),u(n+1),Θ

(n+1)
E ,Θ

(n+1)
D }, the optimal

transmit beamforming {b(n+1)
cc,k ,b

(n+1)
cp,k } is achieved by solv-



Algorithm 1: Proposed method to solve the MSE mini-
mization problem (10)

1 Set the iteration factor n = 0 and i = 0. Initialize a
feasible solution {u(0),v(0),Θ

(0)
E ,Θ

(0)
D ,b

(0)
cc,k,b

(0)
cp,k}.

2 Repeat:
3 Update n = n+ 1.
4 Calculate the optimal w(n) according to (12).
5 Repeat:
6 Update i = i+ 1.
7 Given {w(n),Θ

(n−1)
E ,Θ

(n−1)
D ,b

(n−1)
cc,k ,b

(n−1)
cp,k },

obtain {U(i),V(i)} by solving (18).
8 Until convergence.
9 Recovery u(n) =

√
λmax(U(i))u

(i)
max and

v(n) =
√
λmax(V(i))v

(i)
max, and set i = 0.

10 Repeat:
11 Update i = i+ 1.
12 Given {u(n),v(n),w(n),b

(n−1)
cc,k ,b

(n−1)
cp,k }, acquire

{V̂(i)
E , V̂

(i)
D } by solving (27).

13 Until convergence.

14 Recovery Θ
(n)
D = diag(

√
λmax(V̂

(i)
D )v

(i)
D,max(1 :M))

and Θ
(n)
E = diag(

√
λmax(V̂

(i)
E )v

(i)
E,max(1 :M)), and set

i = 0.
15 Repeat:
16 Update i = i+ 1.
17 Given {u(n),v(n),w(n),Θ

(n)
D ,Θ

(n)
E }, obtain

{B(i)
cc,k, B̂

(i)
cp,k} by solving (33).

18 Until convergence.

19 Recovery b
(n)
cc,k =

√
λmax(B

(i)
cc,k)b

(i)
max,cc,k and

b
(n)
cp,k =

√
λmax(B̂

(i)
cp,k)b

(i)
max,cp,k(1 : NI), and set i = 0.

20 Until convergence.
21 Output: optimal solution

{u,v,w,ΘE ,ΘD,bcc,k,bcp,k}.

ing (28), and it yields that

MSE(w(n+1),v(n+1),u(n+1),Θ
(n+1)
E ,Θ

(n+1)
D ,b

(n)
cc,k,b

(n)
cp,k) ≥

MSE(w(n+1),v(n+1),u(n+1),Θ
(n+1)
E ,Θ

(n+1)
D ,b

(n+1)
cc,k ,b

(n+1)
cp,k ).
(36)

According to above analysis, the objective function of (10)
keeps non-increasing after each iteration. Combined with the
boundedness of MSE, we derive that the proposed iterative
method can converge to a suboptimal solution within a finite
number of iterations.

Computational Complexity: The computational complexity
of Algorithm 1 is expressed as the product of the iteration
number and per-iteration complexity. In each iteration, three
subproblems are solved sequentially, and the corresponding
complexity is illustrated as follows.

• Energy and Receive beamforming optimization subprob-
lem: In steps 4-9, Algorithm 1 is executed to acquire
the optimal energy and receive beamforming strate-
gy {w(n),v(n),u(n)}. The optimal w(n) is derived in

closed-form expression, and the corresponding complex-
ity is negligible. To obtain optimal {v(n),u(n)}, the
interior point method-based solver is called to solve (18)
in each iteration with 2K + 1 constraints and 2N2

A vari-
ables. Therefore, the computational complexity of receive
beamforming optimization subproblem can be expressed
as O(4T1(2K + 1 + 2N2

A)N
4
A

√
2K + 1 log( 1

ϵ1
)), where

T1 represents the iteration number in steps 5-8, and ϵ1
denotes the convergence accuracy.

• Phase shift optimization subproblem: In steps 10-14,
Algorithm 1 tends to acquire the optimal phase shift ma-
trix {Θ(n)

D ,Θ
(n)
E }. Moreover, the penalty function-based

algorithm is utilized to iteratively solve (27) consisting of
2(M +1)2 variables and 2(K +M +1) constraints, and
the computational complexity is given by O(8T2(M +
1)4((M +1)2 +K +M +1)

√
2(K +M + 1) log( 1

ϵ2
)),

where T2 and ϵ2 stand for the iteration number and
convergence accuracy, respectively.

• Transmit beamforming optimization subproblem: In step-
s 15-19, Algorithm 1 concentrates on optimizing the
transmit beamforming strategy {b(n)

cc,k,b
(n)
cp,k}. The penal-

ty function-based algorithm is applied to iteratively solve
(33) with N2

I + (NI +1)2 variables and 3K constraints,
and the complexity can be expressed as O(T3(3K+N2

I +
(NI + 1)2)(N2

I + (NI + 1)2)2
√
3K log( 1

ϵ3
)), where T3

and ϵ3 indicate the iteration number and convergence
accuracy, respectively.

Defining T4 as the iteration number of Algorithm 1, the
whole computational complexity of Algorithm 1 will be
O(T4(4T1(2K + 1 + 2N2

A)N
4
A

√
2K + 1 log( 1

ϵ1
) + 8T2(M +

1)4((M + 1)2 + K + M + 1)
√
2(K +M + 1) log( 1

ϵ2
) +

T3(3K+N2
I +(NI +1)2)(N2

I +(NI +1)2)2
√
3K log( 1

ϵ3
))).

IV. SUM-RATE MAXIMIZATION PROBLEM

This section investigates the sum rate maximization prob-
lem considering the maximum MSE constraint of the compu-
tation result, through jointly optimizing the transmit beam-
former {bcc,k,bcp,k} of IoT devices, phase shift matrix
{ΘE ,ΘD} of IRS, energy beamformer v and receive beam-
former {u,w} of BS. The sum rate maximization problem is
given by

max
{v,u,w,bcc,k,

bcp,k,ΘE,ΘD}

K∑
k=1

TIT log2(1 + Γk) (37a)

s.t. MSE(f, f̂) ≤ emax, (37b)

∥bcp,k∥2 + ∥bcc,k∥2 ≤
TET ηk∥GH

E,kv∥2

TIT

+
Qini,k

TIT
, ∀k ∈ K,

(37c)

0 ≤ θE,m ≤ 2π, 0 ≤ θD,m ≤ 2π, ∀m ∈ M,
(37d)

∥v∥2 ≤ Pmax,A. (37e)

As observed, (37) is non-convex problem due to the ex-
istence of co-channel interference signal and highly coupled
optimization variables. To address it, this paper first utilizes



the Lemma 1 to rewrite the non-convex and non-concave
rate expression, and then develops an alternating optimization
framework to decouple the coupled optimization variables.

Lemma 1: Denoting f(b) = −ba+ ln(b) + 1, it yields that

− ln a = max
b>0

f(b). (38)

The equality holds when b = 1/a. Defining GD,k =

Gd,k + HHΘDGr,k, a =
K∑

i=k+1

|uHGD,kbcc,i|2 +

K∑
i=1

|uHGD,kbcp,i|2 + δ2∥u∥2 and b = y
(n)
k , log2(1 + Γk)

is rewritten as

log2(1+ Γk)=

log2(
K∑
i=k

|uHGD,kbcc,i|2+
K∑
i=1

|uHGD,kbcp,i|2+ δ2∥u∥2)

− log2(

K∑
i=k+1

|uHGD,kbcc,i|2 +
K∑
i=1

|uHGD,kbcp,i|2 + δ2∥u∥2)

= log2(
K∑
i=k

|uHGD,kbcc,i|2 +
K∑
i=1

|uHGD,kbcp,i|2 + δ2∥u∥2)+

1

ln 2
(−y(n)k (

K∑
i=k+1

|uHGD,kbcc,i|2+
K∑
i=1

|uHGD,kbcp,i|2+δ2∥u∥2)

+ ln y
(n)
k + 1).

(39)

Hence, the optimal solution of (37) is able to be acquired
by iteratively solving the following problem

max
{v,u,w,bcc,k,

bcp,k,ΘE,ΘD}

K∑
k=1

log2(
K∑
i=k

|uHGD,kbcc,i|2 +
K∑
i=1

|uHGD,kbcp,i|2

+ δ2∥u∥2) + 1

ln 2
(−y(n)k (

K∑
i=k+1

|uHGD,kbcc,i|2

+

K∑
i=1

|uHGD,kbcp,i|2+δ2∥u∥2) + ln y
(n)
k + 1)

(40a)

s.t.
∥bcp,k∥2 + ∥bcc,k∥2 ≤

TET ηk∥GH
E,kv∥2

TIT

+
Qini,k

TIT
, ∀k ∈ K,

(40b)
(37b), (37d)-(37e). (40c)

Based on the block coordinate descent method, (40) can
be solved by iteratively solving three subproblems, namely
receive beamforming optimization subproblem, phase shift
optimization subproblem, and transmit beamforming opti-
mization subproblem, which are elaborated in the following
subsections.

A. Energy and Receive Beamforming Optimization Subprob-
lem

Given {b∗
cc,k,b

∗
cp,k,Θ

∗
E ,Θ

∗
D}, (40) is reduced as

max
v,u,w

K∑
k=1

log2(
K∑
i=k

|uHG∗
D,kb

∗
cc,i|2+

K∑
i=1

|uHG∗
D,kb

∗
cp,i|2

+ δ2∥u∥2) + 1

ln 2
(−y(n)k (

K∑
i=k+1

|uHG∗
D,kb

∗
cc,i|2+

K∑
i=1

|uHG∗
D,kb

∗
cp,i|2 + δ2∥u∥2) + ln y

(n)
k + 1)

(41a)

s.t.

K∑
k=1

|wHG∗
D,kb

∗
cp,k − 1|2 +

K∑
k=1

|wHG∗
D,kb

∗
cc,k|2

+ δ2∥w∥2 ≤ emax,
(41b)

∥b∗
cp,k∥2 + ∥b∗

cc,k∥2 ≤
TET ηk∥(G∗

E,k)
Hv∥2

TIT

+
Qini,k

TIT
,∀k ∈ K,

(41c)

∥v∥2 ≤ Pmax,A. (41d)

Similar to Section III-A, the optimal w adopts the MMSE
beamforming method as given in (12). Defining U = uuH

and V = vvH , (41) is further transformed as

max
{V≽0,
U≽0}

K∑
k=1

log2(
K∑
i=k

Tr(G∗
D,kb

∗
cc,i(b

∗
cc,i)

H(G∗
D,k)

HU)+

K∑
i=1

Tr(G∗
D,kb

∗
cp,i(b

∗
cp,i)

H(G∗
D,k)

HU) + δ2Tr(U))

+
1

ln 2
(−y(n)k (

K∑
i=k+1

Tr(G∗
D,kb

∗
cc,i(b

∗
cc,i)

H(G∗
D,k)

HU)

+
K∑
i=1

Tr(G∗
D,kb

∗
cp,i(b

∗
cp,i)

H(G∗
D,k)

HU) + δ2Tr(U))

+ ln y
(n)
k + 1)

(42a)

s.t.
∥b∗

cp,k∥2 + ∥b∗
cc,k∥2 ≤

TET ηkTr(G∗
E,k(G

∗
E,k)

HV)

TIT

+
Qini,k

TIT
, ∀k ∈ K,

(42b)
Tr(V) ≤ Pmax,A, (42c)
Rank(U) = 1, Rank(V) = 1. (42d)

Furthermore, similar to the proposed penalty function-based
method in Section III, the rank-one constraint (42d) can be
removed by adding a penalty item at the objective function



(42a). Hence, (42) can be converted as

max
{V≽0,
U≽0}

K∑
k=1

log2(

K∑
i=k

Tr(G∗
D,kb

∗
cc,i(b

∗
cc,i)

H(G∗
D,k)

HU)+

K∑
i=1

Tr(G∗
D,kb

∗
cp,i(b

∗
cp,i)

H(G∗
D,k)

HU) + δ2Tr(U))+

1

ln 2
(−y(n)k (

K∑
i=k+1

Tr(G∗
D,kb

∗
cc,i(b

∗
cc,i)

H(G∗
D,k)

HU)

+

K∑
i=1

Tr(G∗
D,kb

∗
cp,i(b

∗
cp,i)

H(G∗
D,k)

HU) + δ2Tr(U))

+ ln y
(n)
k + 1)− χ3(Tr(V)− (v(i)

max)
HVv(i)

max+

Tr(U)− (u(i)
max)

HUu(i)
max)

(43a)
s.t. (42b)-(42c), (43b)

where χ3 is the penalty factor. Besides, the convex problem
(43) can be solved by the convex toolbox, such as CVX or
Yalmip [41].

B. Phase Shift Optimization Subproblem

Given {b∗
cc,k,b

∗
cp,k,v

∗,u∗,w∗}, (40) is simplified as

max
ΘE ,ΘD

K∑
k=1

log2(

K∑
i=k

|(u∗)H(Gd,k+HHΘDGr,k)b
∗
cc,i|2+

K∑
i=1

|(u∗)H(Gd,k+HHΘDGr,k)b
∗
cp,i|2+δ2∥u∗∥2)+

1

ln 2
(−y(n)k (

K∑
i=k+1

|(u∗)H(Gd,k +HHΘDGr,k)b
∗
cc,i|2

+

K∑
i=1

|(u∗)H(Gd,k +HHΘDGr,k)b
∗
cp,i|2 + δ2∥u∗∥2)

+ ln y
(n)
k + 1)

(44a)

s.t.

K∑
k=1

|(w∗)H(Gd,k+HHΘDGr,k)b
∗
cp,k − 1|2+

K∑
k=1

|(w∗)H(Gd,k+HHΘDGr,k)b
∗
cc,k|2 +δ2∥w∗∥2

≤ emax,
(44b)

∥b∗
cp,k∥2 + ∥b∗

cc,k∥2 ≤
TET ηk∥(GH

d,k +GH
r,kΘEH)v∗∥2

TIT

+
Qini,k

TIT
, ∀k ∈ K,

(44c)
0 ≤ θE,m ≤ 2π, 0 ≤ θD,m ≤ 2π, ∀m ∈ M. (44d)

According to the similar transformation in Section III-B, (44)
is transformed as

max
V̂D≽0,

V̂E≽0

K∑
k=1

log2(

K∑
i=k

Tr(Z4k,iV̂D)+

K∑
i=1

Tr(Z3k,iV̂D)+δ2∥u∗∥2)

+
1

ln 2
(−y(n)k (

K∑
i=k+1

Tr(Z4k,iV̂D)+
K∑
i=1

Tr(Z3k,iV̂D)

+δ2∥u∗∥2)+ ln y
(n)
k + 1)−χ4(Tr(V̂D) + Tr(V̂E)

−(v
(i)
D,max)

HV̂Dv
(i)
D,max− (v

(i)
E,max)

HV̂Ev
(i)
E,max)

(45a)

s.t.

K∑
k=1

Tr(Z1kV̂D) +

K∑
k=1

Tr(Z2kV̂D) + δ2∥w∗∥2

≤ emax,
(45b)

∥b∗
cp,k∥2 + ∥b∗

cc,k∥2 ≤ TET ηkTr(Z5kV̂E)

TIT

+
Qini,k

TIT
, ∀k ∈ K,

(45c)

[V̂E ]mm = 1, [V̂D]mm = 1,m ∈ {M,M + 1},
(45d)

where χ4 denotes the penalty factor. Meanwhile, the convex
problem (45) can be solved by calling the classic convex
methods integrated in CVX.

C. Transmit Beamforming Optimization Subproblem

Given {u∗,w∗,v∗,Θ∗
E ,Θ

∗
D}, (40) is simplified as

max
{bcc,k,bcp,k}

K∑
k=1

log2(
K∑
i=k

|uHG∗
D,kbcc,i|2+

K∑
i=1

|uHG∗
D,kbcp,i|2

+ δ2∥u∗∥2) + 1

ln 2
(−y(n)k (

K∑
i=k+1

|uHG∗
D,kbcc,i|2+

K∑
i=1

|uHG∗
D,kbcp,i|2 + δ2∥u∗∥2) + ln y

(n)
k + 1)

(46a)

s.t.

K∑
k=1

|(w∗)HG∗
D,kbcp,k−1|2+

K∑
k=1

|(w∗)HG∗
D,kbcc,k|2

+ δ2∥w∗∥2 ≤ emax,
(46b)

∥bcp,k∥2 + ∥bcc,k∥2 ≤
TET ηk∥(G∗

E,k)
Hv∗∥2

TIT

+
Qini,k

TIT
, ∀k ∈ K.

(46c)



By utilizing the similar transformation in Section III-C, (46)
is converted as

max
{Bcc,k≽0,

B̂cp,k≽0}

K∑
k=1

log2(

K∑
i=k

Tr((G∗
D,k)

Hu∗(u∗)HG∗
D,kBcc,i)+

K∑
i=1

Tr(J2kB̂cp,i) + δ2∥u∗∥2)+

1

ln 2
(−y(n)k (

K∑
i=k+1

Tr((G∗
D,k)

Hu∗(u∗)HG∗
D,kBcc,i)+

K∑
i=1

Tr(J2kB̂cp,i)+ δ2∥u∗∥2)+ ln y
(n)
k + 1)

− χ5(
K∑

k=1

(Tr(Bcc,k)− (b
(i)
max,cc,k)

HBcc,kb
(i)
max,cc,k)

+

K∑
k=1

(Tr(B̂cp,k)− (b
(i)
max,cp,k)

HB̂cp,kb
(i)
max,cp,k))

(47a)

s.t.

K∑
k=1

Tr((G∗
D,k)

Hw∗(w∗)HG∗
D,kBcc,k)

K∑
k=1

Tr(J1kB̂cp,k)+δ
2∥w∗∥2≤ emax,

(47b)

Tr(B̂cp,k) + Tr(Bcc,k) ≤ 1 +
Qini,k

TIT

+
TET ηk∥(G∗

E,k)
Hv∗∥2

TIT
, ∀k ∈ K,

(47c)

[B̂cp,k]NI+1,NI+1 = 1, ∀k ∈ K, (47d)

where χ5 denotes the penalty factor. Due to the concave
objective function and the linear constraints, (47) is a convex
problem, which can be solved by various methods, such as
interior-point method.

D. Algorithm, Convergence and Complexity

This subsection summarizes the whole procedure for solv-
ing the sum rate maximization problem (37) in Algorithm 2.
Similar to Algorithm 1, the convergence of Algorithm 2 can
be proved by the monotone bounded theorem. The achievable
sum rate of (37) is non-decreasing through each iteration,
since the three subproblems maximize the sum rate in an
alternating manner. In addition, the sum rate is upper bounded
due to the limited energy supply of IoT devices. Therefore,
Algorithm 2 can converge to the optimal solution after several
iterations.

The computational complexity of Algorithm 2 is com-
prised by the iteration number and per-iteration complexity.
The whole complexity is written as O(T8(4T5(K + 1 +
2N2

A)N
4
A

√
K + 1 log( 1

ϵ4
) + 4T6(K + 1 + 2(M + 1)(M +

2))(M + 1)4
√
K + 1 + 2(M + 1) log( 1

ϵ5
) + T7(2K + 1 +

N2
I +(NI+1)2)(N2

I +(NI+1)2)2
√
2K + 1 log( 1

ϵ6
))), where

T8 denotes the iteration number of Algorithm 2, T5, T6 and
T7 represent the iteration number of the receive beamforming
subproblem, phase shift optimization subproblem, and trans-

Algorithm 2: Proposed method to solve the sum rate
maximization problem (37)

1 Set the iteration factor n = 0 and i = 0. Initialize a
feasible solution {u(0),v(0),Θ

(0)
E ,Θ

(0)
D ,b

(0)
cc,k,b

(0)
cp,k} and

y
(0)
k .

2 Repeat:
3 Update n = n+ 1.
4 Calculate the optimal w(n) according to (12).
5 Repeat:
6 Update i = i+ 1.
7 Given
{w(n), y

(n−1)
k ,Θ

(n−1)
E ,Θ

(n−1)
D ,b

(n−1)
cc,k ,b

(n−1)
cp,k }, obtain

{U(i),V(i)} by solving (43).
8 Until convergence.
9 Recovery u(n) =

√
λmax(U(i))u

(i)
max and

v(n) =
√
λmax(V(i))v

(i)
max, and set i = 0.

10 Repeat:
11 Update i = i+ 1.
12 Given {u(n),v(n),w(n), y

(n−1)
k ,b

(n−1)
cc,k ,b

(n−1)
cp,k },

acquire {V̂(i)
E , V̂

(i)
D } by solving (45).

13 Until convergence.

14 Recovery Θ
(n)
D = diag(

√
λmax(V̂

(i)
D )v

(i)
D,max(1 :M))

and Θ
(n)
E = diag(

√
λmax(V̂

(i)
E )v

(i)
E,max(1 :M)), and set

i = 0.
15 Repeat:
16 Update i = i+ 1.
17 Given {u(n),v(n),w(n),Θ

(n)
D ,Θ

(n)
E , y

(n−1)
k }, obtain

{B(i)
cc,k, B̂

(i)
cp,k} by solving (47).

18 Until convergence.

19 Recovery b
(n)
cc,k =

√
λmax(B

(i)
cc,k)b

(i)
max,cc,k and

b
(n)
cp,k =

√
λmax(B̂

(i)
cp,k)b

(i)
max,cp,k(1 : NI), and set i = 0.

20 Update y(n)k =
1

K∑
i=k+1

|(u(n))HG
(n)
D,kb

(n)
cc,i |2+

K∑
i=1

|(u(n))HG
(n)
D,kb

(n)
cp,i|2+δ2∥u(n)∥2

,

where G
(n)
D,k = Gd,k +HHΘ

(n)
D Gr,k.

21 Until convergence.
22 Output: optimal solution

{u,v,w,ΘE ,ΘD,bcc,k,bcp,k}.

mit beamforming optimization subproblem, respectively, ϵ4,
ϵ5 and ϵ6 stand for the corresponding convergence accuracy.

According to above descriptions, Algorithms 1-2 are devel-
oped to solve the non-convex MSE minimization problem and
sum rate maximization problem with polynomial complexity
order. In contrast, defining Gt as the candidate value size
for each optimization variable, the complexity of exhaustive
search algorithm is O(G3NA+2KNI+2M

t ), which exponentially
increases as NA, K, NI and M . In addition, the particle
swarm optimization algorithm can be modified to solve the
beamforming optimization problems with the complexity of
O(ItIsIf ) [42], [43], where It denotes the iteration number,



Is represents the swarm size, and If stands for the complexity
in evaluating the fitness value in formulated optimization
problems. Defining Ov as the size of optimization variables
for formulated problems, we have If ∼ O3.5

v [44], which is
close to the per-iteration complexity of proposed method. In
addition, the swarm size Is and iteration number It increase
with the search space dimension and problem complexity
remarkably. Considering the high-dimensional optimization
variables, the proposed method has lower computational com-
plexity than the particle swarm optimization-based algorithms.

V. EXTENSION TO NON-LINEAR ENERGY HARVESTING

In above sections, we consider a scenario with classic linear
energy harvesting model. In order to adjust the beamforming
and reflecting optimization strategies to non-linear energy
harvesters, we further consider the following non-linear energy
harvesting model

Pk =
Ψk − Psat,k∆k

1−∆k
, ∀k ∈ K, (48)

where Pk denotes the power harvested by k-th IoT device,
∆k = 1

1+exp(akbk)
, Ψk = Psat,k

1+exp(−ak(PEH,k−bk))
, and PEH,k =

∥GH
E,kv∥2. Noted that Psat,k denotes the maximum harvested

power at k-th IoT device, ak and bk are associated with
circuit architecture. Therefore, the energy harvested by k-th
IoT device is indicated as Ek = TETPk.

In the MSE minimization problem and sum-rate maximiza-
tion problem, the energy causality constraint is rewritten as

∥bcp,k∥2 + ∥bcc,k∥2 ≤ TETPk

TIT
+
Qini,k

TIT
, ∀k ∈ K. (49)

Similarly, the formulated MSE minimization problem and
sum-rate maximization problem are strictly non-convex, which
can be decoupled into several subproblems including receive
beamforming optimization subproblem, phase shift optimiza-
tion subproblem, and transmit beamforming optimization sub-
problem. Compared to the methods used in the scenario with
linear energy harvesting model, we only need to make a simple
modification for solving the decoupled subproblems in the
scenario with non-linear energy harvesters. Specifically, the
energy causality constraint in the receive beamforming op-
timization subproblem, phase shift optimization subproblem,
and transmit beamforming optimization subproblem can be
converted as

∥b∗
cp,k∥2 + ∥b∗

cc,k∥2 ≤ TET

TIT

Ψk(v,ΘE
∗)− Psat,k∆k

1−∆k

+
Qini,k

TIT
, ∀k ∈ K,

(50)

∥b∗
cp,k∥2 + ∥b∗

cc,k∥2 ≤ TET

TIT

Ψk(v
∗,ΘE)− Psat,k∆k

1−∆k

+
Qini,k

TIT
, ∀k ∈ K,

(51)

∥bcp,k∥2 + ∥bcc,k∥2 ≤ TET

TIT

Ψk(v
∗,ΘE

∗)− Psat,k∆k

1−∆k

+
Qini,k

TIT
, ∀k ∈ K,

(52)

respectively. After some inequality transformations, (50)-(51)
can be rewritten as

bk −
ln

(
Psat,k

Psat,k∆k+
TIT
TET

(∥b∗
cp,k∥2+∥b∗

cc,k∥2−
Qini,k
TIT

)(1−∆k)
− 1

)
ak

≤ ∥(G∗
E,k)

Hv∥2, ∀k ∈ K,
(53)

bk −
ln

(
Psat,k

Psat,k∆k+
TIT
TET

(∥b∗
cp,k∥2+∥b∗

cc,k∥2−
Qini,k
TIT

)(1−∆k)
− 1

)
ak

≤ ∥GH
E,kv

∗∥2, ∀k ∈ K.
(54)

Since the right side of inequality (52) and the left side
of inequalities (53)-(54) are constant in their corresponding
subproblems, so the energy causality constraint in non-linear
energy harvesting scenario is similar to that of linear energy
harvesting scenario. As a result, the same variable substitution
method at above sections can be exploited to transform (52)-
(54) to the equivalent convex form. Therefore, the proposed
joint beamforming and reflecting optimization methods can be
directly utilized in the non-linear energy harvesting scenario
after the simple modifications.

VI. NUMERICAL RESULTS

In this section, the performance of our proposed IRS-aided
wireless powered AirComp and communication system is
evaluated by numerical simulations. Moreover, the benchmark
methods for comparison are listed as follows.

• IRS with random phase: In this strategy, the phase shift
of reflection units is randomly selected from the interval
(0, 2π]. Besides, the transmit and receive beamformers
are jointly optimized to improve the computation or
communication performance.

• Without IRS: In this strategy, no IRS is deployed
in the wireless powered AirComp and communication
network, and the transmit and receive beamforming will
be jointly optimized to improve the computation accuracy
or communication rate.

• Computation only: In this strategy, only the computation
signals are transmitted from IoT devices to the BS, and
the MSE is minimized by jointly optimizing the receive
beamformer of BS, phase shifts of IRS, and transmit
beamformers of IoT devices.

• Communication only: In this strategy, only the communi-
cation signals are transmitted from IoT devices to the BS,
and the sum rate is maximized through jointly optimizing
the receive beamformer of BS, phase shifts of IRS, and
transmit beamformer of IoT devices.

• Time-division computation and communication: In this
method, the uplink information transmissions and Air-
Comp are conducted in a time-division manner with the
aid of IRS.

In the simulations, the antennas of BS and IoT devices are
set as NA = 10 and NI = 4, respectively, the number of
reflection units and IoT devices are M = 30 and K = 2,
respectively, the maximum transmit power of BS is set as



Pmax,A = 20 W, the initial energy of IoT devices is set as
Qini,k = 0 Joule, the noise power is δ2 = 10−9 W, the
time duration ratio between the energy transfer and uplink
information transmission is set as TET

TIT
= 1, and the energy

conversion efficiency is set as ηk = 0.8. Moreover, the BS,
IRS, and IoT devices are located at [0 0 5], [0 5 3], ([2 7 0],
[1 6 0]), respectively. The direct links between the BS and IoT
devices are modeled as the Rayleigh fading channels, namely
Gd,k =

√
γ1d

−β1

d,k Ĝd,k, where γ1 denotes the channel gain
at unit distance, dd,k is the distance between the BS and k-
th IoT device, β1 represents the path-loss factor, and Ĝd,k

follows complex Gaussian distribution with zero mean and
unit variance. Moreover, the reflection channels follow the
Rician fading model, which are expressed as

H =
√
γ2d

−β2

r,0

(√
κ

κ+ 1
HLoS +

√
1

κ+ 1
HNLoS

)
, (55)

Gr,k =
√
γ3d

−β3

r,k

(√
κ

κ+ 1
GLoS

r,k +

√
1

κ+ 1
GNLoS

r,k

)
, ∀k ∈ K,

(56)
where γi and βi, i ∈ {2, 3}, denote the channel gain at
unit distance and the path-loss factor, respectively, κ is the
Rician coefficient, dr,0 stands for the distance between the
BS and the IRS, dr,k represents the distance between the
IRS and the k-th IoT device, HLoS and HNLoS indicate the
line-of-sight (LoS) component and non-LoS component of H,
respectively, GLoS

r,k and GNLoS
r,k stand for the LoS component

and non-LoS component of Gr,k, respectively. Based on above
simulation settings, our proposed methods are simulated by
MATLAB R2012a, and the CVX toolbox is adopted as the
convex optimization modeling system.

A. MSE of Computation Result

This subsection evaluates the MSE of computation result
achieved by Algorithm 1. In this scenario, the simulation
parameters are set as follows: rmin,k = 20 dB, γ1 = γ2 =
γ3 = 10−3, β1 = 3, β2 = β3 = 2.5, κ = 3, χ1 = 0.1, and
χ2 = 0.01.

Fig. 3 plots the MSE against the number of reflection
elements at the IRS. As observed, the MSE realized by
both the proposed method and the computation only method
exhibits a decreasing trend with the increase of number of
reflection elements at the IRS. Because that a larger number
of reflection elements will provide higher degrees of freedom
to align all the different IoT devices’ channels. Moreover, we
observe from this figure that our proposed method can obtain
significantly lower MSE than both the Without IRS scheme
and the IRS with random phase scheme, especially when the
size of reflection units is large. In addition, the computation
only scheme exhibits a slightly lower MSE than the proposed
method. The reason is that the communication signal will
incur the harmful co-channel interference to AirComp, and
it will further lead to the increase of computation error, as
shown in (7).

Fig. 4 shows the relationship between the MSE and the
number of antennas at IoT devices. We observe from this
figure that the MSE decreases with the increasing number

of antennas at IoT devices. That is because that more refined
transmit beamforming strategy will be designed to reduce the
computation distortion, when each IoT device is equipped with
a lager number of antennas. Moreover, due to the optimal
configuration of IRS, the proposed method outperforms both
the IRS with random phase scheme and the Without IRS
scheme. Besides, when NI ≥ 6, the proposed method can
achieve almost the same MSE of computation result, in
comparison with the computation only scheme.

Fig. 5 evaluates the influence of maximum transmission
power at the BS on the MSE achieved by Algorithm 1. As
seen in this figure, the MSE decreases with the increase of
maximum transmission power at the BS. Because that the IoT
devices will harvest more energy to conduct efficient transmit
beamforming to reduce the MSE. In addition, the proposed
method is able to achieve at least 33% MSE reduction than
both the Without IRS scheme and the IRS with random phase
scheme. It further demonstrates that the optimal configuration
of IRS phase shift is of great importance to reduce the com-
putation error. Moreover, the proposed method will lead to at
most 16% higher computation distortion than the computation
only scheme.
B. Sum Rate of Information Transmissions

In this subsection, we show the sum rate achieved by
Algorithm 2. In this scenario, the simulation parameters are
set as follows: γ1 = γ2 = γ3 = 10−2, β1 = 2.5, β2 = β3 = 2,
κ = 3, and χ3 = χ4 = χ5 = 1.

Fig. 6 shows the curves of the sum rate against the number
of reflection units at the IRS. One can observe that the sum
rate increases with the number of reflection elements at the
IRS. The reason is that a larger number of reflection elements
contribute to more efficient reflect beamforming to alleviate
the harmful interference between communication and com-
putation signals. Besides, our proposed method outperforms
the IRS with random phase scheme, and the performance
gap increases with the size of reflection units at the IRS. It
further verifies the necessity to optimize the IRS phase shift
for improving the sum rate of considered systems. Moreover,
it is found that the proposed method can realize a slightly
lower sum rate than the communication only scheme. That
is because the computation signal will lead to the increase
of co-channel interference, and further reduces the SINR of
information transmissions, as shown in (9).

Fig. 7 investigates the effect of the number of antennas
at IoT devices on the sum rate achieved by Algorithm 2.
As observed, the sum rate obtained by the proposed method
increases with the number of antennas at IoT devices. That
is because that more refined transmit beamforming will be
designed to improve the sum rate with the increasing antennas
of IoT devices. Moreover, the significant performance gain
realized by the proposed method is demonstrated in this figure,
as compared to the IRS with random phase scheme and
the time-division computation and communication scheme.
As expected, the IoT devices have to allocate the additional
time to transmit the computation signals to the BS in the
time-division computation and communication scheme, and
it will lead to the reduction of available time for transmit-
ting communication signals. Therefore, the proposed method
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MSE.

exhibits significantly higher sum-rate than the time-division
computation and communication scheme.

Fig. 8 compares the proposed method with the considered
benchmark methods under the varying maximum tolerable
MSE emax. It is seen that the sum rate achieved by the
proposed method increases with the growth of maximum
tolerable MSE. Because that IoT devices can allocate more
power for communication signals with the increase of emax,
and it will further lead to the improvement of SINR of
information transmissions. This figure further demonstrates
the tradeoff between the achievable computation accuracy
and communication rate for IRS-aided wireless powered Air-
Comp and communication networks. Besides, the proposed
method can realize at least 22% and 79% higher sum rate,
in comparison with the IRS with random phase scheme and
the time-division computation and communication scheme,
respectively. In addition, it is found that the communication
only scheme is superior to the proposed method in terms
of sum rate, and the rate gain decreases with the growth of
maximum tolerable MSE.

C. Convergence of proposed algorithms

Figs. 9-10 plot the convergence of proposed algorithms
under different simulation parameters. It is seen from Fig. 9
that the MSE gradually decreases with the increase of iteration
number, and then converges to a stationary point after no more
than ten iterations. Meanwhile, we also observe from Fig. 10
that the sum rate will converge to the optimal solution after
several iterations. Combined with the low per-iteration com-
plexity, these simulation results reveal that proposed methods

are computationally efficient.

VII. CONCLUSION

This paper proposed a novel framework for IRS-aided
wireless powered AirComp and communication networks. In
order to achieve accurate computations and high-speed com-
munications, we developed two joint beamforming and reflec-
tion optimization algorithms for minimizing the computation
error while ensuring the minimum SINR constraints, and
maximizing the sum rate while guaranteeing the maximum
computation error constraints, respectively. Simulation results
showed that the proposed method realizes comparable com-
putation accuracy and transmission rate than the computation
only scheme and the computation only scheme, respectively.
Moreover, the IRS-aided method is significantly superior to
both the without IRS scheme and the IRS with random phase
scheme in terms of MSE and sum rate.

In the future, this article can be extended to several inter-
esting research directions. First, it is challenging and high-
cost to obtain accurate channel state information for IRS-
aided communication networks, especially when the IRS is
equipped with massive reflection elements. Therefore, it is
meaningful to investigate the robust beamforming and re-
flecting optimization strategy for IRS-aided wireless powered
AirComp and communication networks considering imperfect
channel state information. Second, the conventional reflecting-
only IRS can only achieve the half-space coverage. Hence, the
intelligent omni-surfaces can be exploited to achieve the full-
space coverage for considered systems. Finally, this article
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adopted the ideal IRS phase shift model that cannot capture
the phase-dependent amplitude variation at the IRS. There-
fore, it is essential to adjust the beamforming and reflecting
optimization scheme to practical IRS phase shift model.
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